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A series of ZnO thin films doped with various vanadium concentrations were prepared on glass substrates by
direct current reactive magnetron sputtering. The results of the X-ray diffraction (XRD) show that the films
with doping concentration less than 10 at.% have a wurtzite structure and grow mainly along the c-axis
orientation. The residual stress, estimated by fitting the XRD diffraction peaks, increases with the doping
concentration and the grain size also has been calculated from the XRD results, decreases with increasing the
doping concentration. The surface morphology of the ZnO:V thin films was examined by SEM. The optical
constants (refractive index and extinction coefficient) and the film thickness have been obtained by fitting
the transmittance. The optical band gap changed from 3.12 eV to 3.60 eV as doping concentration increased
from 1.8 at.% to 13 at.% mol. All the results have been discussed in relation with doping concentration.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Diluted magnetic semiconductors (DMSs) are a new kind of
materials for spintronic application. To be largely used in electronic
applications, a spintronic device requires the realization of a ferro-
magnetic material that exhibits polarized spin density at the carrier
bands at room temperature. In DMS materials, transition metal(TM)
or rare earth metal ions are substituted onto cation sites of the host
semiconductor and coupled with free carriers to introduce ferromag-
netism [1]. Dielt et al. [2] and K. Sato et al. [3] have predicted that
among the DMS, ZnO doped with transition metal impurities is one of
the most promising spintronic materials. There is considerable
interest in the development of zinc oxide based (ZnO:TM) diluted
magnetic semiconductors because of their high Curie temperature
which is essential for spintronic devices [2]. A number of experiments
have revealed magnetic properties of ZnO thin films doped with
transition metal at room temperature [4-7]. ZnO thin films can be
deposited by several physical and chemical deposition techniques,
such as laser-molecular-beam-epitaxy [8], chemical vapor deposition
[9], pulsed laser deposition [10] and sputtering [11]. Among these
depositing techniques, sputtering technique presents some important
advantages and improved technological possibilities [12-14].
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Sputtering technique, which requires less expensive setup, is quite
simple and is considered to be the most favorable deposition method
to obtain highly uniform films which have high packing density and
strong adhesion at a high deposition rate [15]. In this paper, a series
of ZnO thin films doped with various vanadium concentrations were
prepared by direct current(DC) reactive magnetron sputtering and the
structure and optical properties of ZnO:V films were analyzed in
detailed.

2. Experiment

ZnO:V thin films were deposited on the glass substrate by DC
magnetron sputtering using zinc (99.99%) metal target with some
pieces of vanadium sticking on the surface of the target. The distance
between the target and the substrate was 50 mm. The sputtering
chamber was evacuated to a base pressure below 3*10~3 Pa before
argon gas. After vacuum pumping, the sputtering gas Ar with a purity
of 99.99% and the reactive gas O, with a purity of 99.99% were in-
troduced into the chamber separately and controlled by the standard
mass flow controllers. The total pressure and the oxygen partial
pressure were kept at 0.9 Pa and 0.3 Pa, respectively and the
sputtering current was fixed at 0.3 A. The substrate was without
extra hearting.

The structure and crystallinity of the films were investigated by X-ray
diffraction (XRD) (Philips PW-1710 with Cu Ko radiation A = 0.154056 nm,
40 kV, 30 mA) measurements, which scan range from 10° to 80° using
0.02 degree steps. The surface morphologies of the films were monitored
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Fig. 1. XPS of ZnO:V film with different concentrations (a) 13 at.%, (b) 10 at.%, (c) 6.8 at.%, (d) 5.8 at.%, (e) 3.9 at.%, and (f) 1.8 at.%.

by field emission scanning electron microscope (FESEM) (Joel JSM
6301F, 15 kV) and the stoichiometries of the films were determined by
Energy Dispersive X-ray Spectroscopy (EDS) (Oxford INCA 350 Energy)
with 15 kV collected for 50 s and using EDAX PhiRhoZ Quantification to
analyze the stoichiometries. X-ray photoelectronic spectrometry (XPS)
data were recorded on a VG ESCALAB using an AlKa line radiation source
(with a base pressure of 10~7 Pa, 15 kV, 20 mA). Region characteristics
for signals were run in high resolution mode using 0.1 eV steps and
calibrated the binding energy by C 1s at 285 eV. The charge state of V ions
in the ZnO:V films was characterized by XPS. The optical properties were
characterized by transmittance spectra measured using a Shimadzu UV-
3101PC spectrophotometer at 300-2500 nm. The film thickness was
valued with FESEM and calculated from the transmittance.

3. Results and discussion

Vanadium concentration in ZnO films was detected by EDS
measurements. The doping concentration is varied from 1.8 at.%
to 13 at.%. In order to analyze the chemical states of the constituent
elements, XPS measurements were performed with an emphasis on
the peaks associated with Znyp, Vyp,, and Oys. Fig. 1 presents the V 2p
core-level photoemission spectrum. The charge shifted spectra were
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Fig. 2. Deposition rate at different doping concentrations.

corrected using the adventitious C 1s photoelectron signal at 285 eV. It
is clear from Fig. 1 that the V 2p5,, core levels for V-0 bonding were
situated at 517.5 eV, and the energy difference between V 2ps,, and V
2p1,2 was 7.6 eV [16]. This suggests that the V ions in the films are in
the chemical state of V>, Besides, XPS data showed that no V clusters
existed in the ZnO:V thin films.

Fig. 2 gives the deposition rate of ZnO thin films with different doping
concentrations. The total pressure and the oxygen partial pressure were
kept at 0.9 Pa and 0.3 Pa respectively at fixed current 0.3 A. The deposition
time is 25 min. The deposition rate decreases as the doping concentration
increases. It may result from the difference of the sputtering yield for
vanadium and zinc. Chapman [17] gives an equation of reactive sputtering
yield as follows:

3am;mE
=5 1
m°Ey(m; + m,)
where E, is the binding energy of the surface atoms, m; and m, are
masses of incident atom and the target atom respectively, E is the
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Fig. 3. XRD patterns of ZnO:V films with various doping concentrations.
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Table 1
Grain size along (001) direction and residual stress of the ZnO:V films with various
concentrations prepared with different doping concentrations.

Doping d (A) Stress (GPa) FWHM Grain size (nm) Thickness (nm)
concentration

13 at.% 664

10 at.% 706

6.8 at.% 2,678 —6.69 1.66 5.0 859

5.8 at.% 2660 —5.03 0.88 9.5 1012

3.9 at.% 2656 —4.69 0.71 11.7 1220

1.8 at.% 2.658 —4.89 0.40 20.8 1271

0 at.% 2633 =272 0.31 274 1522

energy of the incident atom. « is a function of m¢/m; and it increases
with the value of m¢/m. #’”‘)Z increases a little from zinc to
vanadium, but ;%f, decreases a lotn}‘rom zinc to vanadium. According to

Eq. (1), the sputtering yield of zinc is much bigger than that of vanadium.
3.1. Structural properties

Fig. 3 shows the XRD patterns of ZnO:V thin film doped with
various vanadium concentrations. It shows that the films with the
doping concentration below 6.8 at.% have a preferred orientation
along the (001) direction. ZnO:V thin films below 6.8 at.% have a
preferential c-axis orientation. The doping concentration further
arrives to 10 at.%, the (002) peak of ZnO disappeared and another
peak were observed at 260 =30 corresponding to ZnO (100). However,
when the doping concentration goes up to 13 at.%, the film shows an
amorphous structure. This indicates that higher content of vanadium
leads to a deterioration of the crystal structure by distorting the ZnO
lattice. The doping concentration should be lower than 10 at.% in order
to get the polycrystalline ZnO thin films.

The full width half maximum (FWHM) of (002) peak was found
to increase continuously with the doping concentration. Assuming a
homogeneous strain across crystallites, the grain size, representing
the longitudinal coherence length in the direction perpendicular to

the substrate, is deduced from the (002) peak width by using the
Debye-Scherrer's formula [18]

0.9\
" Bcosh 2)

where D is the grain size, A is the X-ray wavelength, 6 is the Bragg
diffraction angle and B is the full width half maximum (FWHM) of the
diffraction peak. By fitting the XRD results, the average grain size of
the films has been calculated from the (002) diffraction peak. The
calculated grain sizes with lower doping concentration are shown in
Table 1. It can be found that the grain size decreases with the increase
of vanadium concentration. The broadening in X-ray peak with an
increase of vanadium concentration is observed which indicates the
deteriorated effect of vanadium on ZnO crystalline quality. This
confirms that the disordering increases with the increase of vanadium
concentration in ZnO thin films. It is reported that the incorporation of
3d transition metal deteriorates generally the crystallinity of ZnO [1].
It may due to the vanadium ions that could disturb the ZnO crystal
lattice and obstruct the crystal growth. Z.C. Chen et al. have reported
similar result in ZnO:Fe [19].

The positions of (002) peak are given in Table 1. It can be seen that
the position of (002) peak shifted to lower angles gradually with the
increasing of doping concentration until 6.8 at.%. It is important to
note that the value of the c-axis lattice parameter for the ZnO:V films
is larger than the standard value of 5.2066 A. The residual stresses
of the films are calculated from the value of lattice parameter of film
by Eq. (3) [20]

_ 2ct; — eyl + ¢ d — dg
2¢43 dy

()

where d is the crystallite plane spacing of the films, and dy=2.6033 A
is the standard plane spacing from X-ray diffraction. The values of the
elastic constant from single crystalline ZnO are used, c;; =208.8 GPa,
¢33 =213.8 GPa, c1, =119.7 GPa and c;3 = 104.2 GPa. Substituting these
values in the above equation gives 0= —233(d — dg) / do. The calculated

Fig. 4. SEM micrographs of films prepared with various doping concentrations (a) 1.8 at.%, (b) 3.9 at.%, (c) 5.8 at.%, (d) 6.8 at.%, (e) 10 at.%, and (f) 13 at.%.
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residual stresses of the films are shown in Table 1. From Table 1 it can be
seen that all the samples have a negative residual stress which indicates
a compressive stress in the films. The residual stress of the films
increases with the increase of doping concentration. Since all the ZnO
films with different doping concentrations were grown at room
temperature under similar processing condition, the presence of stress
is not related to the mismatch in the thermal expansion coefficient with
the glass substrate. However, the presence of interstitial oxygen has an
expansive effect on the lattice, which results in the compressive strain,
normally, occurring along the c axis. Therefore, the additive contribution
of the presence of interstitial defects and the incorporation of vanadium
in ZnO lattice site are responsible for the presence of large stress in the
ZnO0:V thin films.

3.2. Surface morphology

The surface morphology of the deposited ZnO:V films with various
concentrations was examined by FESEM as shown in Fig. 4. It can be seen
that the average particle size along the surface and the roughness of the
film increases with the increasing of concentration of vanadium. The
surface of the films with doping concentration at 10 at.% and 13 at.%
are very different from the others. This is in agreement with the XRD
result. As we can see, the large doping concentration can destroy the
crystal structure.

3.3. Optical properties

Optical transmission spectra of the ZnO:V films in the wavelength
region of 300-900 nm are shown in Fig. 5. Transmittance spectra of all
samples exhibit interference fringe patterns with an average trans-
mission of 80% indicating the good optical quality of the deposited
films. The transmission is found to be the maximum for the film with
13% doping concentration in ZnO film and decreases with the decrease
of doping concentration until 3.9 at.%. This may be due to the thickness
of the films and the doping effect. The transmittance increases with
the doping concentration because of the disorder of the films. The
scatter of the amorphous film will be less than the polycrystalline
films. The transmittances of thin films with doping concentration
below 3.9 at.% decrease with increase of the doping concentration.
The decrease in optical transmission with lower concentration is
associated with the scattering at grain boundaries. The increase in
scattering centers, which is caused by more grain boundaries with
an increase in V dopant content, should be responsible for the loss
of transmission. The grain size decreases and thereby increase grain
boundaries in ZnO:V thin films, which agrees with the results cal-
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Fig. 5. Optical transmittance spectra of the V doped ZnO films with various doping
concentrations.
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Fig. 6. The band gap dependence on the doping concentration.

culated from XRD. The difference in the absorption edge of ZnO:V thin
films was observed compared with that of pure ZnO films. A sharp
absorption edge was observed for pure ZnO thin film. However, the
absorption edge of ZnO:V films shows a broader edge with the increase
of doping concentration. The broadening of absorption edge sug-
gests an increase of the disorder in ZnO:V film with incorporation of
vanadium, which is in agreement with X-ray diffraction analysis as
discussed before. In the present work, the thickness, refractive index
and extinction coefficient of films have been obtained by fitting from
the transmittance spectra using the Drude model and OJL [S.K. O'Leary,
S.R. Johnson, P.K. Lim] model [21,22].

In order to model the inter-band transitions, we have used two
models to generate theoretical spectra for the transmittance of thin
ZnO:V films in the spectral range from 300 to 2500 nm. In order to get
a satisfying fit, the following models were applied:

(a) Drude model with frequency-dependent damping to describe the
intra-band transitions of the electrons in the conduction band.
The classical Drude model of free charge carriers leads to a simple
expression of the susceptibility with only two parameters, the
plasma frequency and the damping constant. If the effective mass
is known, these quantities can be directly related to the charge
carrier density and their mobility [21].

The O'Leary-Johnson-Lim (OJL) model that has been proposed
to model the band gap transitions of amorphous materials [22].

(b

~

3.3.1. Band gap
The energy band gap can be obtained from the simulation model.
The optical energy band gap of the films was found to increase from
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Fig. 7. a) The refractive index and b) the extinction coefficient of the films with different
doping concentrations.
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3.12 to 3.60 eV with increasing the doping concentration as shown in
Fig. 6. These relative high shifts may be due to the influence of several
factors such as thickness, grain size, structural parameters and lattice
strain, carrier concentration, presence of impurities (or other defects),
or even deviation from stoichiometry [23,24]. But for these samples,
the reason for the increasing should be mainly thickness and doping
concentration.

3.3.2. Refractive index and extinction coefficient

Refractive index of a transparent DMS is an important parameter for
magneto-optical device design such as magneto-optical isolators and
modulators. The variation of refractive index varies with the photon
energy for all the films and is shown in Fig. 7(a). The refractive index of
the samples increases with the doping concentration below 6.8 at.%
and then decreases. The increase in refractive index is attributed to
the decreasing in the value of grain size with the vanadium doping
concentration. The decreasing of the transmittance is from the poor
qualities of the films. But for all of the doped ZnO, the refractive index
is bigger than pure ZnO thin film in the same deposition condition.
The observed variation of refractive index with doping concentration
for ZnO:V films can be explained on the basis of the contribution from
both lattice contraction and the disorder of the films. Generally, dense
thin films with optical and structural homogeneity are desirable for
industrial applications, since stability and reproducibility of optical
and electrical properties are strictly related to the density of atoms per
unit volume. The n values are dependent on the density of the atoms in
the UV-vis spectral range. So the doping concentration needs to be
below 6.8 at.%. These results agree with the XRD result.

From Fig. 7(b), the extinction coefficient of films shows similar
dependence on wavelength to the refractive index.

4. Conclusion

In summary, ZnO:V films were prepared with various concentra-
tions (0 at.%, 1.8 at.%, 3.9 at.%, 5.8 at.%, 6.8 at.%, 10 at.% and 13 at.%)
on glass substrates using the DC magnetron sputtering technique and
the properties were discussed from the effect of various vanadium
concentrations on the structure, morphology and optical properties of
ZnO:V films in details. From the XRD patterns of ZnO:V films, the
samples had a preferential c-axis orientation and the position of (002)
peak with the doping concentration below 6.8 at.%. At the concentra-
tion 10 at.%, a peak (002) of ZnO disappeared and a weak peak (100) of
ZnO exists. At the doping concentration of 13 at.%, the film becomes
amorphous. High dopant concentration hinders crystallization. The SEM
images showed the surface topography of the deposited ZnO:V films.

The transmittance of the ZnO:V thin films decreases with decreasing the
doping concentration until 3.9 at.% and then increases. The thickness,
refractive index and extinction coefficient of films have been obtained by
fitting from the transmittance spectra using the Drude model and OJL
model. The refractive index of the samples increases with the doping
concentration below 6.8 at.% and then decreases but the refractive index
of all the doped samples is bigger than pure ZnO, which is due to the
lattice contraction and the disorder of the films. The extinction co-
efficient of films has similar dependence on the wavelength.

Acknowledgments

The authors express their thanks to the NSFC (60576016 and
10774013), 863 program (2006AA03Z0412), BNSFC (2073030), 973
Program (2003CB314707), Key program of NSFC(10434030) and
FBJTU (2005SM057 and 2006XM043) and Beijing Jiao Tong University
Doctor Science Creative Grants No. 48027.

References

[1] SJ. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, J. Vac. Sci. Technol. B 22 (2004) 932.
[2] T. Dietl, H. Ohno, F. Matsukura, ]. Cibert, D. Ferrand, Science 287 (2000) 1019.
[3] K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys Part 2 Lett. 39 (2000) L555.
[4] M. Diaconu, H. Schmidt, H. Hochmuth, M. Lorenz, G. Benndorf, ]. Lenzner, D. Spemann,
A. Setzer, KW. Nielsen, P. Esquinazi, M. Grundmann, Thin Solid Films 486 (2005) 117.
[5] C.H. Choi, S.H. Kim, Thin Solid Films 515 (2007) 2864.
[6] E.Bacaksiz, S. Aksu, B.M. Basol, M. Altunbas, M. Parlak, E. Yanmaz, Thin Solid Films
516 (2008) 7899.
[7] J.C. Pivin, G. Socol, 1. Mihailescu, P. Berthet, F. Singh, M.K. Patel, L. Vincent, Thin
Solid Films 517 (2008) 916.
[8] SJ. An, W.L Park, G.C. Yi, S. Cho, Appl. Phys. A 74 (2002) 509.
[9] T.M. Barnes, J. Leaf, C. Fry, C.A. Wolden, ]. Cryst. Growth 274 (2005) 412.
[10] V. Craciun, S. Amirhaghi, D. Craciun, . Elders, ]. Gardeniers, LW. Boyd, Appl. Surf. Sci. 86
(1995) 99.
[11] DJ.Kang,].S.Kim, SW. Jeong, Y. Roh, S.H. Jeong, ].H. Boo, Thin Solid Films 475 (2005) 160.
[12] Z.Z. Ye, .. Tang, Appl. Opt. 28 (1989) 2817.
[13] EJ.Zhang, A. Vollmer, J. Zhang, Z. Xu, J.P. Rabe, N. Koch, Org. Electron. 8 (2007) 606.
[14] Q.B. Ma, ZZ. Ye, HP. He, ] R. Wang, L.P. Zhu, B.H. Zhao, Mater. Charact. 59 (2008) 124.
[15] Q.B. Ma, Z.Z. Ye, H.P. He, S.H. Hu, ].R. Wang, L.P. Zhu, Y.Z. Zhang, B.H. Zhao, J. Cryst.
Growth 304 (2007) 64.
[16] J.E. Moulder, W.E. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron
Spectroscopy, Physical Electronics Inc, USA, 1995.
[17] B. Chapman, Sputtering [Glow Discharge Process], John Wiley&Sons Inc, New York,
1980, p. 177.
[18] M.T. Weller, Inorganic Materials Chemistry, Oxford University Press, Oxford, 1997.
[19] Z.C. Chen, L]J. Zhuge, X.M. Wy, Y.D. Meng, Thin Solid Films 515 (2007) 5462.
[20] Y.G.Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, K.Y. Tse, H.H. Hng, ]. Appl.
Phys. 94 (2003) 1597.
[21] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Saunders Co., Philadelphia, 1976.
[22] S.K. O'Leary, S.R. Johnson, PK. Lim, J. Appl. Phys. 82 (1997) 3334.
[23] T. Ren, H.R. Baker, K.M. Poduska, Thin Solid Films 515 (2007) 7976.
[24] RE. Marottia, D.N. Guerraa, C. Bellob, G. Machadoa, E.A. Dalchiele, Sol. Energy Mater. Sol.
Cells 82 (2004) 85.



