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Abstract 

Solid polymer electrolytes (SPEs) systems based on interpenetrating blends of 

poly(ethylene oxide-co-propylene oxide) and poly(methyl methacrylate) host matrices, 

with lithium perchlorate as guest salt, were prepared. These electrolytes were presented 

as free-standing films, and their thermal and electrochemical properties were 

characterized by conductivity and electrochemical stability measurements. 

The properties of the interpenetrating blends of poly(ethylene oxide-co-

propylene oxide) and poly(methyl methacrylate) host matrices as the electrolyte 

component of a solid-state electrochromic device are reported and the results obtained 

suggest that this electrolyte provides an encouraging performance in this application. 

The most conducting electrolyte composition of this SPE system is the formulation 

designated as SPE2-0PC (5.01x10
-4

 S cm
-1

 at about 57ºC). The lowest decomposition 

temperature was registered with the SPE6-15PC composition (233ºC). The average 

transmittance in the visible region of the spectrum was above 41% for all the samples 

analyzed. After coloration the device assembled with 71 wt% PC presented an average 

transmittance of 15.71% and an optical density at 550nm of 0.61. 
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INTRODUCTION 

Poly(ethylene oxide) complexed with inorganic salts were first reported as a 

novel sub-class of solid electrolytes by Fenton, Parker and Wright.
[1]

 Since 1973 these 

materials have been the object of intense study as solid electrolyte components that may 

form the basis of future all-solid-state lithium batteries.
[2, 3]

 There are however 

significant problems to overcome. In practical devices, the ionic conduction of the 

electrolyte component must be raised from values of 10
-7

 – 10
-6

 S cm
-1

 typical of first-

generation SPEs, to values approaching 10
-3

 S cm
-1

 at room temperature.
[3]

 While this 

value is accessible to “gel” type polymer electrolytes
[3]

, this conductivity performance 

has not been achieved by “dry” polymer electrolyte systems like PEO. Unlike dry 

polymer electrolytes, gel polymer electrolyte formulations contain components such as 

propylene carbonate or ethylene carbonate that are included as additives to enhance 

ionic conduction. While these liquids in the gel systems certainly increase ion 

conduction, they also decrease the mechanical stability of the polymer and contribute to 

the formation of an unstable passivation layer at the lithium/polymer electrolyte 

interface.
[3]

 

Various strategies for improving ionic conduction in polymer electrolytes have 

been reported, including using polysiloxane and polyphosphazene host matrices with 

backbone structures and side chains incorporating oxyethylene oligomers.
[4-7]

 New 

generation electrolytes have been developed incorporating suitable fillers, novel guest 

compounds or plasticizing components.
[8-15]

 

Electrochromic windows represent one of the most promising applications of 

SPEs
[16-18]

 where these materials simultaneously function as the ion-conducting layer, 

sealing surface and adhesive. In this class of electrochemical device the demands placed 
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on the conductivity of the electrolyte are not so high because instantaneous color change 

is not essential in normal device operation.  

In this study we report the preparation of solid polymer electrolytes and 

characterization by measurements of ionic conductivity, differential scanning 

calorimetry, thermogravimetry and scanning electron microscopy of several different 

SPEs based on interpenetrating p(EO-PO)/pMMA blends doped with lithium 

perchlorate and produced by co-deposition from THF. The performance of these SPEs 

was tested on small-scale solid-state electrochromic windows. 

 

EXPERIMENTAL 

SPE films preparation 

Polymer electrolytes were prepared by combining appropriate amounts of poly(ethylene 

oxide-co-propylene oxide), p(EO-PO) (supplied by Zeon Corporation Inc.) and 

poly(methyl methacrylate), pMMA (120,000 gmol
-1

, Aldrich) with a propylene 

carbonate (PC) (Aldrich) plasticizer and known quantities of LiClO4 as guest salt. All 

electrolytes were prepared by solvent casting from THF (Aldrich, anhydrous 99.9%). 

Homogeneous solutions of p(EO-PO), pMMA, PC and lithium perchlorate were 

prepared by stirring known masses of electrolyte components in THF for a period of at 

least 48 hours within a dry argon-filled preparative glovebox. The resulting 

homogeneous viscous solutions were decanted into rings seated on glass plates and the 

solvent was removed slowly in an isolated chamber within the preparative glovebox. 

The atmosphere of this chamber was recirculated through a column of molecular sieves 

to effect a slow evaporation of the casting solvent and form free-standing films. These 

electrolyte films were subjected to a final drying procedure in which the temperature 

was raised from 30oC to 60oC over a period of 3 days. During this period the tube oven 
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was periodically evacuated and purged with dry argon. Solid polymer electrolyte 

compositions were prepared with the compositions indicated in Table 1. 

 

Transparent conductive oxide (TCO) 

Indium doped zinc oxide films (IZO) were deposited on glass substrates by rf 

(13.56 MHz) magnetron sputtering using a ceramic oxide target In2O3:ZnO (92:8 wt%; 

5 cm diameter, Super Conductor Materials, Suffern, NY, USA) with a purity of 99.99%. 

Sputtering was carried out at room temperature, with an argon flow of 20 sccm and an 

oxygen flow of 0.4 sccm. During sputtering the deposition pressure (argon and oxygen) 

was held constant at a value of 0.15 Pa. The distance between the substrate and the 

target was 10 cm and the rf power was maintained at 100 W. 

 

Electrochromic Material 

Tungsten oxide films with thickness of about 300 nm were deposited on 

transparent conductive oxide coated glass substrates by rf magnetron sputtering using a 

WO3 ceramic oxide target from Super Conductor Materials with a purity of 99.99%. 

Sputtering was carried out at room temperature, under an argon and oxygen atmosphere 

with a constant deposition pressure of 2.6 Pa. The distance between the substrate and 

the target was 10 cm and the rf power was maintained at 200 W. 

 

Electrocromic device struture 

Solid-state electrochromic devices were constructed using a four layer sandwich 

structure with the following configuration: glass/IZO/WO3/polymer 

electrolyte/IZO/glass. The layers of active material were deposited by rf magnetron 

sputtering using appropriate targets. Device assembly with electrolytes was carried out 

by direct application of a small volume of the electrolyte, (10%) p(EO-PO) / (39%) 
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pMMA / (40%) PC / (11%) LiClO4, to the surface of a glass plate onto which a 

IZO/WO3 coating had been previously deposited. Typical thicknesses of these layers 

were 170 nm for IZO and 400 nm for WO3. A second glass plate with a IZO coating 

was placed on top of the electrolyte gel sample and the two plates were pressed together 

to spread the electrolyte in a thin film between the electrochromic surfaces. In this 

manner a surface with an area of approximately 2 cm
2
 was formed. The entire assembly 

procedure described was carried out under atmospheric conditions. 

 

Measurements 

2.4.1. DSC and TGA measurements 

Polymer electrolyte sections were removed from cast films and subjected to 

thermal analysis under a flowing argon atmosphere between 25 and 350 oC at a heating 

rate of 5 oC min-1 using a Mettler DSC 821e instrument. All samples were presented for 

analysis in 40 µL aluminium cans with perforated lids to permit the release and removal 

of the decomposition products. Samples for thermogravimetric studies were prepared in 

a similar manner, transferred to open platinum crucibles and analyzed using a 

Rheometric Scientific TG 1000 thermobalance operating under a flowing argon 

atmosphere. A heating rate of 10 oC min-1 was used to analyze all the electrolyte 

samples. 

 

2.4.2. Impedance spectroscopy 

 Total ionic conductivities of electrolyte samples were determined using a 

constant volume support equipped with gold blocking electrodes and located within a 

Buchi TO 50 oven. The sample temperature was evaluated by means of a type K 

thermocouple placed close to the electrolyte film and impedance measurements were 
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carried out at frequencies between 65 kHz and 500 mHz with a Solartron 1250 FRA and 

1286 ECI, over a temperature range from 20 to 90 
o
C. Measurements of conductivity 

were effected during heating cycles. The reproducibility of recorded conductivities was 

confirmed by comparing the results obtained for a sample subjected to two heating-

cooling-heating cycles. This procedure demonstrated the correct operation of the 

support and the mechanical stability of the samples. 

 

2.4.3 Optical properties 

The optical transmittance measurements were performed with a Shimadzu 

UV/VIS 3100PC double beam spectrophotometer in the wavelength range from 380 to 

800 nm. The thickness of sample films was measured using a surface profilometer 

(Dektak 3D from Solan Tech). 

 

2.4.4. Scanning electron microscopy (SEM) 

X-ray diffraction experiments were carried out using a Bruker-AXS D8 

Discover diffractometer in θ-2θ geometry using Cu K1,2 lines collimated with a Gobel 

mirror, a divergent slit of 0.6x10 mm
2
 and a Ni filter. The data was collected from 10º 

to 80º with a detector slit of 0.2x10 mm
2
, a step size of 0.04º and an acquisition time of 

0.8 s per step. 

 

RESULTS AND DISCUSSION 

Thermal behaviour of electrolytes 

The DSC thermograms of electrolyte samples represented in Figure 1 confirm that 

compositions with high p(EO-PO) content (SPE1-0PC, SPE3-9PC, SPE5-15PC, SPE7-

25PC) show broad melting peaks with onsets  at about 30 ºC. This can be attributed to 
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the fusion of the crystalline phase of the p(EO-PO) component which is generally 

complete by about 45 ºC. The introduction of substantial quantities of the pMMA and 

PC components in the network effectively suppressed crystallization of the (EO-PO) 

components of the electrolytes. 

 The thermal stability of the electrolyte formulations is influenced by the polymer 

components, the presence of stabilizing additives and the guest salt concentration. 

Electrolytes with high pMMA content show a marked tendency to undergo partial 

decomposition at temperatures close to 200ºC. The lowest decomposition temperature 

observed is found with the SPE2-0PC composition (186ºC), a value considered 

acceptable for most foreseeable applications under normal operating conditions. The 

thermal stability of electrolytes apparently improves with an increase in p(EO-PO) and 

PC content. Samples with substantial quantities of the  p(EO-PO) component show a 

major exotehrmic peak at temperatures between about 250 and 325 ºC while electrolyte 

formulations with less p(EO-PO) and more pMMA tend to decompose at slightly higher 

temperatures. 

The evolution of the glass transition temperatures of the electrolyte samples is 

illustrated in Figure 2. The addition of the plasticizing component results in a slight 

decrease of Tg values. For electrolyte compositions with 15 and 25 wt% of PC the onset 

of the Tg is shifted to lower temperatures. Electrolyte samples, SPE1-0PC and SPE3-

9PC, clearly show two glass transitions, denoted Tg1 and Tg2, indicating the coexistence 

of two distinct polymer phases. 

 

Ionic conductivity of electrolytes 

 

Ionic conductivity is an important performance parameter in the development of 

p(EO-PO)/pMMA/LiClO4 electrolyte systems for use as multi-functional components in 

electrochromic devices, such as smart windows. 
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The results of conductivity studies of the electrolyte compositions are illustrated 

in Figure 3 and confirm that the lowest conductivity was registered with compositions 

rich in p(EO-PO) and without plasticizing additive. A significant improvement was 

observed as a result of the addition of pMMA and/or a plasticizing additive. 

Encouraging levels of ionic conductivity were found, particularly at temperatures close 

to ambient, at compositions with higher concentrations of pMMA and plasticizer. The 

most conducting electrolyte of this SPE system is the SPE2-0PC composition (5.01x10
-4

 

S cm
-1

 at about 57 ºC), however electrolytes with moderate plasticizer content also show 

appropriate levels of conductivity and the use of electrolytes with a lower Tg may be 

expected to improve sealing/adhesive functions and electrode/electrolyte interfacial 

contact. In optical devices or displays these aspects of electrolyte behavior may become 

just as relevant as high ionic conductivity. 

 

Scanning electron microscopy (SEM) 

The microphase structure adopted by a blend, and its microscopic appearance, is 

largely determined by the miscibility of the components. The morphology of the SPE3-

9PC polymer electrolyte was studied by scanning electron microscopy (SEM). Some 

typical examples of the SEM micrographs are presented in Fig. 4 and 5. The polymer 

membranes were obtained by evaporating the solvent from the casting solution. In this 

process, the pore morphology of the polymer membrane is determined by the nature of 

the solvent, evaporation rate and environmental humidity. The evaporation rate of 

solvents and the pore size and number can be controlled by adjusting the relative 

volatility of the casting solvents employed, as reported by Huang and Wunder.
[19]

 

Blending p(EO-PO) with pMMA and lithium salt changes the surface 

morphology from rough to smooth and a reduction of wrinkle is also observed in Fig.4. 
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After an appropriate amount of pMMA was incorporated into the p(EO-PO) -LiClO4 

electrolyte matrix, a further significant improvement in surface morphology is apparent. 

This may be related to a reduction of crystallinity in the pEO component as a result of 

blending with Li salt and pMMA. This interpretation is consistent with DSC results. 

Analysis of Figures 4 and 5 suggests that electrolyte sample SPE3-9PC includes 

spherulites, symmetric arrays of lamellar crystals immersed in the amorphous 

material.
[3]

 The formation of these spherulites is directly related to the synthetic 

procedure used to prepare polymer electrolytes (the nature of the solvent, the rate of 

solvent removal, etc). Figure 5 also shows that this electrolyte composition is of high 

density and low porosity. 

 

Optical Properties 

Polymer electrolyte films prepared for application in optical devices must meet 

various pre-requisites. One of these is that the film must exhibit high optical 

transmission. If this condition is not fulfilled the electrolyte will reduce the color 

contrast of the device.
[20]

 

Figure 6 illustrates the optical transmittance in the wavelength range 400-800 

nm for the prototype electrochromic assembly. Various electrolyte configurations were 

employed as ionic conducting layers in devices. The objective of this study was to 

evaluate the influence of the wt% of PC on the performance of the electrochromic 

device.  Coloring and bleaching voltages of 4 V and -4 V respectively were applied for 

20 s intervals. Table 2 summarizes the average transmittance and the optical density 

exhibited by devices. The transmittance in the visible region of the spectrum was above 

41% for all the samples analyzed. After coloration the device assembled with 71 wt% 
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PC presented a transmittance of 15.71% and an optical density at 550nm of 0.61. Figure 

7 illustrates the optical density at 550 nm for all electrochromic devices. 

Figure 8 demonstrates the transparency of the electrolytes produced and shows a 

prototype solid-state electrochromic device in the coloured state. Prototype 

electrochromic devices were constructed using a four layer sandwich structure with the 

following configuration: glass/IZO/WO3/polymer electrolyte/IZO/glass. The active 

layer of the assembled device changed from almost transparent to a blue colour 

associated with WO3 reduction and simultaneous Li
+
 insertion as a result of the 

application of a positive voltage. Inversion of the applied voltage resulted in WO3 

oxidation and the device returned to its initial state. Cycling tests were performed on all 

the electrochromic cells, and each cell was cycled (bleached-colored-bleached) 25 

times. 

 

CONCLUSIONS 

 

The preliminary results obtained with combined p(EO-PO) with pMMA host matrices 

and lithium perchlorate are promising. These electrolytes showed good mechanical and 

electrochemical properties that were improved with the addition of a plasticizer, 

propylene carbonate. The pMMA and p(EO-PO) blend network was found to reduce the 

tendency of the electrolyte to adsorb moisture and provide good adhesion to a glass 

substrate. The results obtained with prototype electrochromic devices based on this SPE 

formulation were encouraging and suggest that polymer electrolytes with these 

components may, with further development, find application in commercial optical 

devices. 
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Table 1 – Electrolyte compositions based on p(EO-PO), pMMA, PC and LiClO4. 

(wt%) p(EO-PO) (wt%) pMMA (wt%) PC (wt%) LiClO4 Sample 

80 9 0 11 SPE1-0PC 

9 80 0 11 SPE2-0PC 

62 18 9 11 SPE3-9PC 

18 62 9 11 SPE4-9PC 

59 15 15 11 SPE5-15PC 

15 59 15 11 SPE6-15PC 

54 10 25 11 SPE7-25PC 

10 54 25 11 SPE8-25PC 
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Table 2 - Average transmittance and optical density exhibited by electrochromic devices. 

 

 

 

 

 

 

 

(wt%) PC 
Transmittance in 

bleached state (%) 

Transmittance in 

colored state (%) 

Optical density 

(550 nm) 

0 54.19 16.57 0.49 

9 52.59 24.21 0.34 

15 47.09 17.88 0.35 

20 41.49 16.96 0.36 

40 61.59 19.58 0.46 

71 73.44 15.71 0.61 
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Figure 1. DSC thermograms of p(EO-PO)/pMMA/LiClO4 electrolytes. 
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Figure 2. Tg of p(EO-PO)/pMMA/LiClO4 electrolytes. 
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Figure 3. Variation of conductivity of p(EO-PO)/pMMA/LiClO4 electrolytes with 

temperature. 
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Figure 4. Selected SEM photographs of morphology of upper surface of SPE3-9PC 

(x50) (1) and two magnifications (x2000) of the areas identified as (2) and (3). 
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Figure 5. Scanning electron microscope (SEM) images of SPE3-9PC, cross-sectional 

view, (x100) (1) and two images at different locations of the observed area (x500) (2) 

and (x2000) (3). 
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Figure 6. Optical transmittance as a function of wavelength for the electrochromic 

device assembly in bleached and colored states using (a) 0 wt% PC; (b) 9 wt % PC; (c) 

15 wt % PC; (d) 20 wt % PC; (e) 40 wt % PC; (f) 71 wt % PC. 
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Figure 7. Optical density versus wt% PC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 21 

 

 

 

 

Figure 8. a) p(EO-PO)/pMMA/PC/LiClO4 electrolyte; b)Prototype electrochromic 

device based on (10%) p(EO-PO) / (39%) pMMA / (40%) PC / (11%) LiClO4 

electrolyte, in the colored state. 

 

 

 

 

 

 

 

 

 


