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 In this work, biomimetic smart thin coatings using chitosan and a recombinant 
elastin-like recombinamer (ELR) containing the cell attachment sequence arginine–
glycine–(aspartic acid) (RGD) are fabricated through a layer-by-layer approach. 
The synthetic polymer is characterized for its molecular mass and composition using 
mass spectroscopy and peptide sequencing. The adsorption of each polymeric layer is 
followed in situ at room temperature and pH 5.5 using a quartz-crystal microbalance 
with dissipation monitoring, showing that both polymers can be successfully combined 
to conceive nanostructured, multilayered coatings. The smart properties of the coatings 
are tested for their wettability by contact angle (CA) measurements as a function of 
external stimuli, namely temperature, pH, and ionic strength. Wettability transitions are 
observed from a moderate hydrophobic surface (CAs approximately from 62 °  to 71 ° ) 
to an extremely wettable one (CA considered as 0 ° ) as the temperature, pH, and ionic 
strength are raised above 50  ° C, 11, and 1.25  M , respectively. Atomic force microscopy 
is performed at pH 7.4 and pH 11 to assess the coating topography. In the latter, the 
results reveal the formation of large and compact structures upon the aggregation of 
ELRs at the surface, which increase water affi nity. Cell adhesion tests are conducted 
using a SaOs-2 cell line. Enhanced cell adhesion is observed in the coatings, as 
compared to a coating with a chitosan-ending fi lm and a scrambled arginine–(aspartic 
acid)–glycine (RDG) biopolymer. The results suggest that such fi lms could be used 
in the future as smart biomimetic coatings of biomaterials for different biomedical 
applications, including those in tissue engineering or in controlled delivery systems. 

 DOI: 10.1002/smll.201100875 

   R. R.   Costa ,    C. A.   Custódio ,    Dr. J. F.   Mano   
3B’s Research Group–Biomaterials, Biodegradables and Biomimetics
University of Minho
AvePark, Zona Industrial da Gandra
São Cláudio do Barco
4806-909 Caldas das Taipas, Guimarães, Portugal
 E-mail:  rui.costa@dep.uminho.pt; jmano@dep.uminho.pt    

   R. R.   Costa ,    C. A.   Custódio ,    Dr. J. F.   Mano   
ICVS/3B’s - PT Government Associate Laboratory
Braga/Guimarães, Portugal 

   Dr. F. J.   Arias ,    Dr. J. C.   Rodríguez-Cabello   
G.I.R. Bioforge
University of Valladolid
Edifício I + D, Paseo de Belén, 1, 47011, Valladolid, Spain 

   Dr. F. J.   Arias ,    Dr. J. C.   Rodríguez-Cabello   
Networking Research Center on Bioengineering
Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain 

https://core.ac.uk/display/55614327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Layer-by-Layer Assembly of Chitosan and Recombinant Biopolymers
  1. Introduction 

 The modifi cation of surfaces has been a key aspect in 

biology and biotechnology, including cell expansion, bio-

materials development, and preparation of substrates for 

regenerative medicine. [  1  ]  In the fi eld of implantable devices, 

the surface is the fi rst contact with the organism and dictates 

subsequent biological events, namely the cellular behavior 

and biointegration. Thus, surface engineering is of utmost 

signifi cance for the conception of devices with an improved 

biological performance. [  2  ]  

 Surface modifi cation has also been implemented to pro-

duce stimuli-responsive surfaces for a variety of applications, 

including those in biomineralization control, [  3  ]  cell-sheet engi-

neering, [  4  ]  surfaces with extreme wettability transitions, [  5  ]  and 

microfl uidics, [  6  ]  mostly based on variations of the hydration 

state of deposited polymeric fi lms. Usually, the modifi cation is 

performed by grafting stimuli-responsive polymers onto a sub-

strate, which are typically synthetic and non-biodegradable, 

such as poly( N -isopropylacrylamide) (PNIPAAm). [  7  ]  A good 

example of the latter is the work developed by Okano et al. 

regarding cell-sheet engineering. [  4b  ]  

 In more recent years, emphasis has been given to non-

harmful and versatile techniques to modify polymeric 

substrates: the sequential adsorption of proteins and polysac-

charides, known as layer-by-layer (LbL) adsorption, is one of 

the most promising today. The principle behind LbL adsorp-

tion lies in the existence of multiple intermolecular interac-

tions, such as electrostatic contacts, hydrophobic interactions, 

and hydrogen bonding, where the cooperative effects of 

multipoint attractions play the most important role. It is a 

simple and versatile technique that allows the production of 

robust coatings, even in substrates with complex geometries; 

because it discards the need for organic and harmful solvents, 

it is an attractive technique for tissue engineering applica-

tions. [  8  ]  Multilayer systems have already been proposed 

for different biomedical applications, including biomimetic 

composite-like coatings, the control drug release, or the 

manipulation of adhesion, differentiation, proliferation and 

even function of attached cells. [  9  ]  

 In this work, we plan to conceive coatings using nat-

ural and nature-inspired macromolecules in a multilayered 

fashion using the LbL approach at mild processing condi-

tions. Natural materials are intricate and multifunctional 

structures that often inspire scientists to design novel classes 

of materials. [  10  ]  It is the case of elastin-like recombinamers 

(ELRs), also designated elastin-like polymers (ELPs). This 

family of peptide-based polymers was developed by Urry, 

relying in genetic engineering techniques, and they have their 

basic structure rooted in elastin, the extracellular elastic pro-

tein of higher animals. [  11  ]  In aqueous environment they are 

known to have self-assembly behavior and exhibit a transi-

tion temperature ( T  t ): below  T  t , the free polymer chains 

adopt random coil conformations; above it, they fold into 

an organized structure known as a  β -spiral. Although ELRs 

respond primarily to temperature, the effects of other stimuli, 

such as pH, ionic strength, and concentration, also affect the 

transition phenomenon. [  12  ]  Their recombinant nature is one 

of their attractive properties because it allows tuning their 
© 2011 Wiley-VCH Verlag Gmbsmall 2011, 7, No. 18, 2640–2649
physicochemical properties and introducing sequences to 

extend their functionality, including biologically relevant 

domains. [  13  ]  The work of Girotti et al., who were able to bio-

synthesize an extracellular matrix analogue enclosing the 

cell attachment sequence arginine–(glutamic acid)–(aspartic 

acid)–valine (REDV), is an example of such versatility. [  14  ]  

Thus, ELRs are an attractive option over the most commonly 

used formulations in LbL adsorption. 

 Swierczewska et al. have previously reported the use of 

ELRs for LbL thin fi lms. However, the peptides were modi-

fi ed and conjugated with either polyethyleneimine (PEI) 

or polyacrylic acid (PAA) to provide positive or negative 

charge, respectively. [  15  ]  Our groups have also shown that 

ELRs can be successfully combined with polysaccharides 

to conceive coatings and some may even be applied using 

a multilayer approach. [  16  ]  In order to explore the potential 

of ELR properties and the advantages of LbL, we intend to 

conceive nanostructured thin coatings made from the sequen-

tial adsorption of a polysaccharide and an ELR modifi ed 

with the arginine–glycine–(aspartic acid) (RGD) cell adhe-

sion motif, labeled ELR-RGD. RGD is expected to increase 

the cell adhesion in vitro and prove useful in the design of 

devices with tunable cell attachment or even improved host 

integration. We selected chitosan (CHI) because, aside from 

being a well-known biocompatible material, it is one of the 

few polysaccharides exhibiting positive charge (at acidic con-

ditions), it is abundant, and its production is environmentally 

safe. [  17  ]  

 The proposed system will also allow for expanding the 

concept of multilayered fi lms to a new attractive class of 

peptide-based polymers, making them more robust than 

simple monolayers, and could bring new possibilities in the 

development of nanostructured coatings of materials in tissue 

engineering. The buildup of the multilayers will be monitored 

in real time using a quartz-crystal microbalance with dissipa-

tion monitoring (QCM-D). Distinct techniques, such as con-

tact angle measurements, atomic force microscopy (AFM), 

and cell adhesion tests will be used to characterize it. We 

hypothesized that coatings containing this ELR may exhibit 

changes both in topography and wettability, depending on 

several stimuli, namely temperature, pH, and ionic strength, 

and improved biological in vitro performance.   

 2. Results and Discussion 

  2.1. ELR-RGD Characterization 

 For the past two decades, much work has been done on the 

widely investigated poly(styrene sulfonate)/poly(allylamine 

hydrochloride) (PSS/PAH) system—considered so far as a 

model of multilayered thin fi lms—and CHI/hyaluronan. [  9a  ]  

However, the buildup mechanism is not always straightfor-

ward for every material and distinct forces may infl uence 

the construction. [  18  ]  Furthermore, coatings for tissue engi-

neering applications should ideally contain other materials 

with more relevant features, including biological activity. It is 

the case of the biopolymer used in this work, which contains 

the RGD cell adhesion motif ( Figure    1  a). The ELR-RGD, 
2641H & Co. KGaA, Weinheim www.small-journal.com
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   Table  1.     Amino acid composition of the bioproduced ELR-RGD. ND  =  
not determined. 

Amino acid Predicted Experimental

Asp (D) 2 2.27

Thr (T) 2 1.81

Ser (S) 6 4.7

Pro (P) 71 70.7

Gly (G) 141 141.48

Ala (A) 4 4.31

Val (V) 99 98.65

Ile (I) 40 39.6

Lys (K) 3 3

Arg (R) 2 2.18

Met (M) 1 ND
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    Figure  1 .     Characterization of the ELR-RGD. a) Schematic representation 
of the featured ELR chemical structure; b) MALDI-TOF spectrum of the 
biopolymer, with major peak at 31 229 Da.  

    Figure  2 .     Buildup assessment of CHI/ELR-RGD fi lms. a) QCM-D 
monitoring of normalized frequency ( Δ  F  ν   /  ν  ,  � ) and dissipation 
( Δ  D , �) obtained at the fi fth overtone. Numbers refer to adsorption of 
CHI (1), adsorption of ELR-RGD (3), and rinsing (2 and 4). b) Cumulative 
thickness evolution and thickness increase for the CHI/ELR-RGD fi lm, for 
20 layers, estimated using the Voigt model. Odd numbers correspond 
to fi lms ending in CHI and even numbers to fi lms ending in ELR-RGD. 
Linear fi tting matches well with the cumulative thickness variation 
( r  2   =  0.99824).  

0 100 200 300 400

-40

-30

-20

-10

0

 

a)

4
3

2
1

time /min

ΔF
ν/ ν

 /H
z

0

10

20

30

ΔD
 x

 1
0-6

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

number of layer

th
ic

kn
es

s  
/n

m

0

3

4

5

6
b)

th
ic

kn
es

s 
in

cr
ea

se
 /n

m

with 371 amino acids and a theoretical molecular weight of 

31 371 Da, contains 2 monomers of RGD, 2 aspartic acids, 

and 3 lysines isolated at the amino-terminal and exhibits a 

 T  t  of around 23  ° C in solution at physiological pH (data not 

shown). In contrast to our previous work, this ELR-RGD 

was engineered to allow electrostatic interactions during the 

multilayer buildup. [  16a  ]  In Figure  1 b, a matrix-assisted laser 

desorption/ionization time-of-fl ight (MALDI-TOF) spectrum 

shows a high-intensity peak at 31 229 Da, which is approxi-

mate to the theoretical value for this biopolymer.  

 In order to confi rm if the produced ELR matched the 

theoretical amino acid composition, peptide sequencing 

tests were performed. In  Table    1  , it can be confi rmed that 

the produced biopolymer composition matches well with the 

predicted amino acid composition. These results point to the 

bioproduction of a stock of ELR-RGD retaining the desired 

amino acid sequence.    

 2.2. Analysis of CHI/ELR-RGD Film Buildup 

 The ability of CHI and ELR-RGD to adsorb in a sequen-

tial fashion was fi rst monitored by QCM-D. This technique is 

able to detect mass changes in the order of nanograms per 

square centimeter and measure the viscoelastic properties of 

the resulting surface. [  19  ]  Due to the recombinant nature of 

ELRs, it is possible to tune their structure to appropriately 

fi t a multilayer approach and design coatings for tissue engi-

neering substrates.   

 Figure 2  a shows the normalized frequency ( Δ  F  ν   /  ν  , where 

  ν   is the overtone) and dissipation ( Δ  D ) variations for the 

fi fth overtone (25 MHz) after the construction of 20 layers 

onto gold-coated sensors. The  Δ  F  ν   /  ν   decreased upon fl ushing 

the substrate with the sequence of polyelectrolytes, due to 

the deposition of polymer on the surface of the crystal, to 
2 www.small-journal.com © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim small 2011, 7, No. 18, 2640–2649
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    Figure  3 .     Evolution of the contact angle of the fi lms obtained with 
sequential adsorption of CHI and ELR-RGD, up to 10 layers. Odd numbers 
correspond to fi lms ending in CHI and even numbers to fi lms ending 
in ELR-RGD. Error bars represent two standard deviations (number of 
layers,  n , with  n   =  9).  
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an approximate value of 40 Hz. On the other hand, the  Δ  D  

increased, revealing that the fi lm is not rigid and exhibits the 

typical viscoelastic behavior, a common situation when using 

macromolecular systems. [  19b  ,  20  ]   

 At the working pH of 5.5, we relied on the protonation 

state of the ELR-RGD aspartic acids: under such conditions, 

these residues are deprotonated and negatively charged (pK a  

ranging from 3.0 to 4.7). [  21  ]  This would allow them to interact 

by electrostatic self-assembly (ESA) with the positively 

charged amine groups of CHI. Prior to the monitoring, the 

  ζ  -potential of CHI and ELR-RGD solutions was measured 

at working conditions (pH  =  5.5 and ionic strength at 0.15  m ), 

showing a charge of  + 17.0  ±  0.6 mV and –8.4  ±  0.33 mV, 

respectively. ELRs are essentially hydrophobic by nature but 

can be modifi ed to include specifi c charged residues. CHI is 

also insoluble in water and can only be dissolved at acidic 

conditions, below its pK a  (approximately 6). [  22  ]  It has been 

reported that electrostatic deposition demands appropriate 

matching of the charge density of the used polyelectrolyte 

pair, rather than a minimum charge density, [  8a  ,  23  ]  but in this 

case the   ζ  -potential showed no charge balance (i.e., equal 

absolute values). Although ESA was a driving force of con-

struction, other forces, such as hydrophobic interactions, 

are likely to participate in the assembling phenomenon. In 

fact, Figure  2 a shows the successful combination of the used 

pair, at the assembly pH of 5.5, near the pK a  of CHI. We can 

assume that a fraction of already deprotonated amine groups 

interacts with the hydrophobic residues of the ELR-RGD 

structure and allow construction of the coating. 

 The QCM-D data was used to estimate the thickness vari-

ations of the fi lm with each adsorption cycle. Figure  2 b shows 

the results calculated using the Voigt model, implemented in 

the Q-Tools software from Q-Sense. [  24  ]  It can be observed 

that the thickness increased linearly during the buildup, in 

accordance with the evolution of  Δ  F  ν    and  Δ  D  variations. 

After the deposition of 20 layers, the fi lm had a thickness of 

81 nm, corresponding to an approximate total area density 

of 9.6  μ g cm  − 2  (multiplication of thickness by the layer den-

sity, 1200 kg m  − 3 , allowed for the best fi tting). Figure  2 b also 

shows the thickness of each layer (“thickness increase” in the 

graphic). Overall, the increase of thickness is higher for the 

adsorption steps of ELR-RGD. This is the result of the lower 

charge exhibited by the recombinamer, which requires more 

material to overcompensate the charges of the underlying 

CHI ones. The results obtained through QCM-D measure-

ments demonstrate that ELR-RGD can be used successfully 

with CHI to conceive a viscoelastic polymeric coating using 

the LbL approach.   

 2.3. Characterization of the Self-Assembled Coatings 

 When a material adheres to a substrate, it is expected 

that such phenomenon will result in physicochemical changes 

at the surface. [  25  ]  The measurement of contact angles is an 

easy method that allows a quick assessment of the modifi ca-

tion of a surface in terms of wettability. Its usefulness is even 

higher when such wettability is signifi cantly different for each 

layer.  Figure    3   shows the contact angle variation of the CHI/
© 2011 Wiley-VCH Verlag Gmbsmall 2011, 7, No. 18, 2640–2649
ELR-RGD fi lm with the buildup, up to 10 layers. The fi lms 

were adsorbed onto glass (contact angle of (28.6  ±  2.9) ° ). 

Each measurement was performed after 1 h of immersion in 

phosphate buffer saline (PBS) at 37  ° C. While fi lms ending 

in ELR-RGD retained their moderate hydrophobic behavior 

(approximately between 62 °  and 71 ° ), the ones ending in 

CHI increased gradually, from (20.4  ±  4.4) °  in the fi rst layer 

to (40.1  ±  3.9) °  in the fi fth (layer 9).  

 The increasing values of contact angles obtained for CHI-

ending fi lms can be explained by the infl uence of the under-

lying adsorbed layers on the coating interface. When using 

weak polyelectrolytes, the most charged polymer tends to be 

adsorbed as a thinner layer with a fl at chain conformation, 

while the less charged polymer tends to adsorb as a thicker 

layer, forming loopier-type structures. [  26  ]  Since ELR-RGD 

is a modifi ed version of the basic repeating block of elastin 

with charged amino acids, CHI appears as the most charged 

polymer, as already presented by the   ζ  -potential measure-

ments. Furthermore, the thickness increase of each layer dis-

played in Figure  2 b helps to demonstrate that the ELR-RGD 

layers are overall thicker than the ones of CHI. Thus, the sur-

face properties of the CHI layer may refl ect the effect of the 

underlying ELR one, even in terms of wettability, while the 

opposite does not occur. 

 The featured fi lms were conceived using a recombinant 

ELR, a biomaterial exhibiting stimuli-responsive properties 

in solution. It would be interesting to observe how the wet-

tability of the fi lms behaves when they are exposed to several 

stimuli. To achieve this goal, we measured the contact angles at 

different values of temperature, pH, and ionic strength (using 

NaCl as the ionic component) of 5 pairs of layers ending in 

ELR-RGD, labeled (CHI/ELR-RGD) 5 , assembled in glass 

substrates. After the assembly, the coatings were placed at 

different conditions of each studied stimulus (taking 25  ° C, 

pH 7.4, and an ionic strength of 0.15  m  as starting values), 

in order to determine if their variation triggered a transition 
2643H & Co. KGaA, Weinheim www.small-journal.com
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    Figure  4 .     Contact angle measurements as a function of temperature 
(red), pH (purple), and ionic strength (green) in a (CHI/ELR-RGD) 5  
fi lm. Three cycles are represented. Error bars represent two standard 
deviations ( n   =  9).  

25 50 25 50 25 50
0

10

20

30

40

50

60

70

0.15      1.25     0.15      1.25      0.15     1.25
7.4        11        7.4        11         7.4       11pH

ionic strength /M

co
nt

ac
t a

ng
le

 /º

temperature /ºC
0

10

60

70

0

10

60

70

    Figure  5 .     Map of the wettability of (CHI/ELR-RGD)5 fi lms as a function 
of condition arrays of temperature, pH, and ionic strength stimuli. Open 
symbols stand for a moderate hydrophobic surface (contact angle of 
about 67 ° ) and closed ones for a superhydrophilic surface. The blue 
squares represent measurements performed at 25 and 37  ° C and the 
red circles measurements at 50  ° C.  
that could be detected by differences in wettability.  Figure    4   

shows the contact angle values measured upon cyclic varia-

tions of temperature (25 to 50  ° C), pH (7.4 to 11) and ionic 

strength (0.15 to 1.25  m ).  

 Taking the case of the temperature at 25  ° C, an initial 

wettability exhibiting values of 67.1  ±  4.7 was measured, cor-

responding to a moderate hydrophobic surface. However, 

upon increasing the temperature to 50  ° C, the contact angle 

values decreased to those of a superhydrophilic surface, cor-

responding to a totally wettable surface. ELRs show a phase 

transition in solution above  T  t  similar to the transition of 

other temperature-sensitive polymers with lower critical 

solution temperature (LCST). However, the hydrophobicity 

of such a surface did not increase with the switch to high tem-

peratures. In fact, while the hydrophobicity of surfaces modi-

fi ed with LCST polymers increases, [  4b  ]  the behavior of ELRs 

when adsorbed onto a surface is opposite to the expected. 

This result is in accordance to the case of polymers with an 

upper critical solution temperature (UCST), which become 

more hydrophilic. [  27  ]  Such atypical wettability behavior of 

ELR-RGD temperature-responsive coatings has been pre-

viously observed in a thin ELR monolayer adsorbed onto 

CHI substrates. [  16b  ]  We have shown that upon the transi-

tion, the collapsed biopolymer aggregates into micelle-like 

structures, as suggested by topography measurements. They 

assume a conformation where the hydrophobic chains are 

directed to the inside and the charged residues to the outside 

of such organizations. Additionally, while the properties of 

such surfaces change at 50  ° C, the polymer in solution shows 

a transition at 23  ° C, where the association is much more 

facilitated than at the surface, to which the polymer is tightly 

connected. 

 Similar results to that of temperature were obtained for 

pH and ionic strength, even exhibiting similar contact angle 

values. In the case of pH, ELR-RGD has lysines in its struc-

ture, which amine groups are protonated below the pK a  

values ranging from 9.4 to 10.6. [  21  ]  Above the pK a , the amine 

groups are deprotonated and the hydrophobicity of ELR-

RGD increases. It is known that the more hydrophobic the 

ELR, the lower the  T  t  in solution is. [  28  ]  Thus, with the increase 

of pH the mean hydrophobicity of ELR-RGD also increases, 
4 www.small-journal.com © 2011 Wiley-VCH Verlag Gm
up to a pH of 11. At this value, the transition to superhy-

drophilicity was detected, as depicted in Figure  4 . In the case 

of ionic strength, Reguera et al. suggested that an increase 

in the salt concentration increases the polarity of the solvent. 

This creates a higher difference in polarity with respect to the 

hydrophobic moieties of the polymer, causing more and more 

ordered structures surrounding the polymer chains. [  29  ]  As 

observed, a transition was detected upon the increase of ionic 

strength to 1.25  m , which is in accordance with the behavior 

of this family of polymers. These results show that the wet-

tability of (CHI/ELR-RGD) 5  fi lms is strongly dependent 

not only on temperature, but also on pH and ionic strength, 

which infl uence the  T  t  of ELRs in aqueous solutions as well. 

Furthermore, the fi lms were submitted to three cycles of vari-

ations and still retained full reversibility and similar contact 

angle values, showing that the fi lms are robust and capable 

of withstanding sharp changes of the environment, while 

retaining functionality. 

 The results presented so far refl ect the nature of the 

studied ELR, and characterize the conceived fi lm as a 

stimuli-sensitive coating that could prove to be useful in the 

development of controlled release systems and in surfaces 

capable of controlling cell behavior. In order to fully under-

stand this behavior, the wettability was further studied for 

several arrays of conditions, consisting of different combina-

tions of pH and ionic strength at three relevant temperatures: 

25  ° C (room temperature), 37  ° C (temperature of the body), 

and 50  ° C (determined to be the temperature of transition 

of ELR-RGD at the surface). The diagram of  Figure    5   is the 

graphical representation of the measurements performed in 

(CHI/ELR-RGD) 5 , in an attempt to characterize the coating 

wettability and to defi ne a processing window for these fi lms.  

 To our knowledge, this is the fi rst time that ELR-

adsorbed surfaces are extensively characterized for their 

responsive character towards external stimuli. There are 
bH & Co. KGaA, Weinheim small 2011, 7, No. 18, 2640–2649
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    Figure  6 .     Root mean square (RMS)-roughness of 5 pairs of CHI/ELR-RGD layers, ending in CHI 
(grey) and ELR-RGD (white). Error bars represent two standard deviations ( n   =  3). The insets 
are AFM images at pH 7.4 and 11, for the fi fth pair of layers, ending in ELR-RGD, in a 1  μ m  ×  
1  μ m area. Data are means  ±  standard deviation (SD) ( n   =  3;  p   <  0.05).  ∗  are samples at the 
same pH, # are samples at different pH.  
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squares and full circles. Blue squares stand 

for 25  ° C/37  ° C, while red circles stand for 

50  ° C. Open and full symbols stand for a 

moderate hydrophobic (characteristic CA 

of (66.8  ±  3.5) ° ) or a completely wettable 

surface, respectively. The measurements 

performed have revealed the conditions 

of wettability transition for temperature, 

pH, and ionic strength: 50  ° C, 11, and 

1.25  m , respectively. The transition was 

also revealed to be rapid and independent 

of the contribution of the other stimuli: an 

“all-or-nothing” response towards external 

stimuli. In other words, the wettability of 

these systems shifts from moderate hydro-

phobicity to superhydrophilicity only when 

a stimulus equals or exceeds the above-

mentioned values, and there is no evidence 
of cross-dependencies between the three variables. Therefore, 

observing Figure  5 , one can easily identify the parameters of 

transition at room temperature and 50  ° C. In the former, the 

wettability shifts at pH 11 or ionic strength 1.25  m , as previ-

ously stated; in the latter, 50  ° C is already the temperature at 

which the wettability shifts, so any combination of the other 

two stimuli can be disregarded. 

 The measurements performed at 37  ° C are of particular 

interest for biomedical applications, since ultimately these 

coatings are intended to be used in a biological environ-

ment. In the graphic, the wettability of the surfaces at 37  ° C 

is similar to the case at room temperature, showing transi-

tions dependent on pH and ionic strength at 11 and 1.25  m , 

respectively. However, our measurements showed that in the 

range of pH 10–11 and of ionic strength 1–1.25  m , interme-

diate values could be observed (CAs of (30.5  ±  20.6) ° ). Such 

behavior is an interesting one: upon heating an ELR in 

solution above the  T  t , aggregation occurs and the solution 

becomes cloudy; given a few hours, or further increasing the 

temperature, the aggregates gradually settle and the result is 

a clean phase separation of solvent and polymer. [  30  ]  At the 

studied surfaces, the equivalent to this “cloudy point” could 

only be observed for this small range of values and the wetta-

bility shift is only fully achieved—and quickly, not gradually 

as in solution—for pH 11 and ionic strength 1.25  m , as is the 

case at room temperature. Thus, the diagram summarizes the 

response of the fi lms ending in ELR-RGD as a function of 

three distinct variables, showing an independent and imme-

diate effect of three of the parameters infl uencing the confor-

mation of ELRs. 

 The molecular organization of a surface may give valu-

able information about the physical properties of a sub-

strate.  Figure    6   shows the surface roughness for the fi fth pair 

of layers assembled in glass, ending in either CHI (layer 9) 

or ELR-RGD (layer 10), and AFM images of (CHI/ELR-

RGD) 5  fi lms at physiological and transition pH values. An 

approach similar to that of contact angle measurements was 

followed: the samples were placed at room temperature in 
© 2011 Wiley-VCH Verlag Gmbsmall 2011, 7, No. 18, 2640–2649
PBS buffered at two distinct pHs, 7.4 and 11, and withdrawn 

for immediate topography image acquisition.  

 We expected that with increasing pH the surface rough-

ness would increase as well, due to the triggering mechanism 

of CHI and ELR-RGD transitions above each pK a . The AFM 

images in Figure  6  show the topography changes of (CHI/

ELR-RGD) 5  and reveal the formation of large and compact 

structures upon the aggregation of ELRs at the surface—

“micelle-like” structures which increases the water affi nity at 

the interface by the exposure of hydrophilic groups. In fact, 

such organization is predicted even by the earliest theories of 

the natural elastin conformation. [  31  ]  

 The analysis of the roughness showed that it increased 

with pH, from 3.6  ±  0.3 to 4.9  ±  0.3 nm (root-mean-square 

(RMS) roughness), showing that the topography of the fi lms 

responded to pH changes, regardless of the last adsorbed 

layer. As a side note, the corresponding contact angle of the 

(CHI/ELR-RGD) 4 CHI fi lms displayed a value of (64.3  ±  

3.6) °  upon increasing the pH, higher than the value obtained 

for layer 9 due to the deprotonation of CHI. Such a result 

reinforces the fact that the properties of a modifi ed surface 

refl ect mainly those of the material present at the interface, 

as is often expected after such an approach. The effect of pH 

on roughness was greater when the last layer was composed 

of ELR-RGD, as evidenced by the higher values displayed 

at each condition. Such structural changes were more vis-

ible when the ELR-RGD was deposited as the last layer, 

since the macromolecular segments exhibit more degrees of 

freedom for conformational rearrangements. pH and ionic 

strength may infl uence the electrostatic interactions between 

each layer, but similar results were obtained for temperature 

changes. We suggest that such similar results evidence that 

the aggregation of the ELR is the factor that contributes the 

most to the increase of roughness. Similar results were also 

obtained in previous studies. [  16b  ]  

 The rough character of the surface also contributes to the 

atypical extreme hydrophilic nature of the substrate, based 

on a simple lotus effect. In fact, the Wenzel model predicts 
2645H & Co. KGaA, Weinheim www.small-journal.com
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    Figure  7 .     In vitro tests on fi lms ending in CHI, ELR-RGD, and ELR-RDG (-) . 
a) Cell viability of SaOs-2 cells for 4 h, 24 h, and 3 days. b) ALP assays 
on the studied fi lms for 24 h and 3 days. Data are means  ±  SD ( n   =  3; 
 ∗  p   <  0.05).  
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that the change from a hydrophobic surface towards a more 

hydrophilic one is amplifi ed in substrates exhibiting nano-/

microscale roughness. [  32  ]    

 2.4. Cell Culture Studies of SaOS-2 Osteoblast-Like Cells 

 Smart surfaces have been used in different fi elds in situ-

ations where it is relevant to control the adhesion of cells 

or micro-organisms, protein adsorption or transport proper-

ties for the release of bioactive agents. In many cases, it is 

desirable that the substrate interacts favorably with cells. 

It has been reported that the RGD sequence is the min-

imal sequence required for recognition by cell membrane 

integrins, such as   α  5  β  1 and   α  V  β  3 integrins. [  33  ]  The affi nity of 

cells for materials should be improved with the incorporation 

of a peptide having this sequence. 

 So far, we have been able to expand the concept of 

LbL to a class of materials that is not commonly used 

in literature. We also presented results showing that the 

films display distinct properties for different conditions 

of temperature, pH, and ionic strength. This feature could 

be exploited to modulate protein and cell adhesion by 

playing with one of the mentioned stimuli. Unfortunately, 

the presented transition values are simply not suitable for 

most biological applications. We expect to take advantage 

of the recombinant nature of ELRs in the near future 

to produce films that could be triggered at lower values. 

Nonetheless, the biological performance of the current 

films was analyzed in order to determine if this kind of 

multilayer film is suitable for future tissue engineering 

devices with good response from cells, without any haz-

ardous reaction. 

 In vitro studies were performed using SaOs-2 osteoblast-

like cells. Although other possibilities could be explored, 

one of the uses we envisaged for these coatings is in ortho-

pedic applications in order to improve host integration. To 

prove that the superior cell attachment was due to a spe-

cifi c interaction with RGD, the cell behavior was compared 

to surfaces with a negative control of ELR containing a 

scrambled RDG sequence, labeled RDG (-) , in the form of 

5 bilayers with CHI, (CHI/ELR-RDG (-) ) 5 . The scrambled 

RDG sequence has been previously shown to have signifi -

cantly less cellular adhesion [  34  ]  and is similar to ELR-RGD 

in all aspects, except for the position of the G and D amino 

acids. 

 The SaOs-2 cell viability on ELR-RGD- and CHI-ending 

fi lms—(CHI/ELR-RGD) 5  and (CHI/ELR-RGD) 4 /CHI 

respectively—was assessed at different time points. Independ-

ently of the wettability changes of the coatings, cell culture 

was performed at 37  ° C, at which the surface is moderately 

hydrophobic (see Figure  5 ), under serum-free conditions. Cell 

viability and activity was assessed through (3-(4,5-dimethyl-

thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium) (MTS) and alkaline phosphatase (ALP) 

assays. A qualitative evaluation of the cell number attached 

to the surfaces was performed using fl uorescence microscopy 

and with 4 ′ ,6-diamidino-2-phenylindol (DAPI) and phalloidin 

staining of cells.   
www.small-journal.com © 2011 Wiley-VCH Verlag Gm
 Figure 7  a shows the MTS assay in the different surfaces 

after 4 h, 24 h, and 3 days (note: contact angles showed that 

the fi lms still retain their properties during the studied time-

frame). The results show that, for every time point, all tested 

samples were noncytotoxic towards the SaOs-2 cell line, and 

therefore the materials used to construct the multilayers did 

not cause any toxicity problems to the attached cells nor to 

the cells suspended in culture. Among the various biological 

functions of osteoblasts, secretion of ALP is an important 

indicator determining the activity of the cells. The statistical 

analysis of the data (Figure  2 b) shows that ALP activity was 

stimulated by (CHI/ELR-RGD) 5  coatings after 24 h in cul-

ture. After 3 days, the differences in cell activity became more 

evident in the surface with ELR-RGD in comparison to fi lms 

ending in ELR-RDG (-)  or CHI.  

 Differences in the number of cells attached to the different 

surfaces were also observed, as seen in  Figure    8  . Comparing 

the microscopy images, after 4 h of incubation, ELR-

RGD surfaces show a signifi cant attached number of cells, 
bH & Co. KGaA, Weinheim small 2011, 7, No. 18, 2640–2649
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    Figure  8 .     DAPI (blue) and phalloidin (red) staining of the studied cells cultured for distinct 
times on the studied multilayer substrates, ending in CHI, ELR-RGD, and ELR-RDG (-) . Tests 
performed at 4 h, 24 h, and 3 days. Scale bar: 100  μ m.  
compared with nonmodifi ed surfaces or the negative analog 

RDG. Based on the cell densities of the samples at 24 h and 

3 days, it is possible to verify that (CHI/ELR-RGD) 5  coatings 

demonstrated a very signifi cant cell proliferation in compar-

ison to the coatings ending in CHI and in (RDG) (-) . Besides 

the higher number of cells on the surfaces with RGD, cells 

seeded on those substrates spread signifi cantly more than the 

ones on chitosan or the negative control. Thicker and well-

organized fi lamentous actin bundles were observed in cells 

growing on RGD surfaces.  

 From our results, adsorption of ELR-RGD has shown 

to enhance cell adhesion and activity when compared to 

the CHI-ending fi lms substrates and the scrambled RDG 

sequence, showing good in vitro performance of the pre-

sented fi lms.    

 3. Conclusion 

 Our results show that ELRs containing biologically rel-

evant peptide sequences can be successfully combined with 

CHI in a sequential multilayer approach based on electro-

static and hydrophobic interactions. QCM-D results allowed 

us to study the construction of the polymeric fi lms and 

its properties, showing the buildup of a fi lm with a linear 

growth. Although glass was used to assemble such coatings, 

it is expected in the future that such straightforward surface 

modifi cation techniques will allow us to coat other substrates 

with more complex geometries, including scaffolds or par-

ticles. The stimuli-responsive properties of the fi lms were 

extensively studied, showing acute and independent cyclic 

response towards temperature, pH, and ionic strength; the 

values of transition for each stimulus were identifi ed: 50  ° C, 
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheimsmall 2011, 7, No. 18, 2640–2649
11, and 1.25  m , respectively. Below each 

critical transition point, the surfaces were 

more hydrophobic. Above those, the sur-

face acquired a very hydrophilic character 

due to the biopolymer chain collapse and 

subsequent exposure of charged residues 

to the outer region of the coating. The 

transition was also evident in the changes 

in the topography of the surfaces as we 

increased the pH of the fi lm above the 

transition values, increasing their rough-

ness due to the aggregation of ELR chains 

on the top layer. 

 SaOs-2 osteoblast-like cells were used 

to test the biological performance of 

the multilayered system studied in vitro 

of the fi lms. The cells showed increased 

adhesion and activity with ELR-RGD 

ending coatings, in comparison to the 

ones ending with both CHI and the non-

bioactive ELR-RDG (-) . This work dem-

onstrates the potential to use natural 

and nature-inspired macromolecules to 

modify surfaces taking advantage of a 

simple layer-by-layer technique, which can 

be further extrapolated to more complex 
devices. The potential of this technology can further stimulate 

the development of other similar biomedical products in the 

near future, such as devices entirely processed through layer-

by-layer for the delivery of pharmaceuticals, cell culture, or 

structures for tissue engineering.   

 4. Experimental Section 

  ELR-RGD Expression and Purifi cation : Expression conditions 
and purifi cation protocols for ELR-RGD were adapted from Meyer 
and Chilkoti [  35  ]  and Girotti et al. [  28  ]  Gene expression of a recom-
binant  Escherichia coli  strain BLR (DE3) containing the expressing 
gene of ELR-RGD was induced in a 12 L Applikon fermenter, in ter-
rifi c broth medium (TB) with carbenicilin (0.1% v/v) and glucose 
(0.1% v/v), under controlled conditions of temperature (37  ° C) 
and pH (7.00). The fermentation was stopped after registering an 
optical density variation at 600 nm inferior to 0.25, in a time frame 
of 1 h. Subsequent to fermentation, the culture was harvested by 
centrifugation, resuspended, and lysed by ultrasonic disruption. 
Insoluble debris was removed by centrifugation and the cleared 
lysate was subjected to several cycles of cold and warm centrifuga-
tions, of 4 and 40  ° C, respectively. All the purifi cation steps were 
carried out in a sodium chloride solution (0.5  M ). The polymer in 
solution was then frozen at –24  ° C and freeze-dried. 

  ELR-RGD Characterization : Differential Scanning Calorimetry 
(DSC) experiments were performed on a Mettler Toledo 822e 
(United States) with a liquid nitrogen cooler accessory. Both tem-
perature and enthalpy were calibrated with an indium standard at 
the same experimental conditions used for the studied materials. 
Water solutions of H-RGD6 (50 mg mL  − 1 ) were prepared at dif-
ferent values of pH. In a typical DSC run, a small volume of solution 
(20  μ L) was placed inside a standard aluminum pan hermetically 
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sealed (40  μ L). The same volume of water was placed in the refer-
ence pan. All samples were equilibrated for 5 min at 5  ° C inside 
the sample chamber just before the beginning of each experiment. 
A heating rate of 5  ° C min  − 1  was used. Transition temperatures and 
enthalpy values were measured as a function of pH. To assess the 
biopolymer molecular weight, MALDI-TOF mass spectroscopy was 
performed in a Voyager STR, from Applied Biosystems, in linear 
mode and with an external calibration using bovine serum albumin 
(BSA). Amino acid composition determination was previously used 
to assess the composition of ELRs. [  14  ]   

 Buildup and Characterization of the Self-Assembled Coatings : 
Medium-molecular-weight grade CHI was purchased from Sigma 
and purifi ed. Solutions of purifi ed CHI and ELR-RGD (0.1 mg mL  − 1 ) 
containing NaCl (0.15  M ) were prepared. The pH of the solutions 
was adjusted to 5.5. The   ζ  -potential of each solution was deter-
mined using a Nano-ZS from Malvern (United Kingdom), at 25  ° C. 
A Q-Sense E4 quartz-crystal microbalance (Q-Sense AB, Sweden) 
with dissipation monitoring system was used for monitoring in situ 
the deposition of CHI/ELR-RGD multilayers at the surface of gold-
coated crystals. This technique has previously been extensively 
described. [  19  ]  Very briefl y, AT cut quartz crystal can be excited at 
its fundamental frequency (5 MHz) and at several overtones: 25, 
35, and 45 MHz (fi fth, seventh, and ninth overtones, respec-
tively). When a thin fi lm is deposited onto the sensor crystal the 
frequency decreases. If the fi lm is thin and rigid the decrease in 
frequency ( Δ  F ) is proportional to the mass of the fi lm. However, 
when using polymers, the adsorbed fi lm is not rigid and this rela-
tion is not valid: there is a loss of energy stored in each vibra-
tional cycle and the fi lm exhibits the typical viscoelastic behavior, 
which is evident by the change in the dissipation ( Δ  D ). The crystals 
were fi rst cleaned in an ultrasound bath at 30  ° C, and immersed 
successively in acetone, ethanol, and isopropanol. Adsorption 
took place at 25  ° C and pH 5.5 and at a constant fl ow rate of 
50 mL min  − 1 . Starting with the CHI solution, each one was pumped 
into the system for 10 min. Each deposition cycle was followed by 
a rinsing step (NaCl, 0.15  M ) at pH 5.5, for 10 min, and  Δ  F  ν    and  Δ  D  
were monitored in real time. The frequency of each overtone was 
normalized to the fundamental resonant frequency of the quartz 
crystal, by dividing it by   ν   (where   ν    =  5; 7; 9). The thickness of 
the fi lms was estimated using the Voigt model through the Q-Tools 
software, from Q-Sense. [  24  ]  The area density was calculated by 
multiplying the thickness by the layer density (1200 kg m  − 3  led to 
the best fi t). 

  Contact-Angle Measurements : PBS contact angles were meas-
ured in a DataPhysics OCA15 system. The coatings were prepared 
at the surface of regular glass microscopy slides, from Marienfeld 
(Germany). The glass was cleaned using the same protocol to which 
QCM-D crystals were submitted. Coatings up to 10 layers—5 pairs 
of CHI and ELR-RGD—were characterized for their wettability for 
each layer assembled, at 37  ° C and pH 7.4. An approach described 
by Park, Draper, and Flynn was used to measure contact angles 
dependent on several temperature, pH, and ionic strength condi-
tions. [  36  ]  The measurements were performed for a pH range from 
4 to 12, ionic strength from 0 to 1.5  M  of NaCl, and three relevant 
temperatures: 25, 37, and 50  ° C. The samples were immersed in a 
beaker of PBS placed under each condition. After 1 h, the samples 
were withdrawn and contact angles were measured. The time of 
1 h was determined to be enough to have a stable surface. Upon 
determining the wettability transition parameters, three cycles 
www.small-journal.com © 2011 Wiley-VCH Verlag Gm
were performed by changing the transition values above and below 
each transition value. 

  Atomic Force Microscopy Measurements : AFM measurements 
were performed in a MultiMode STM microscope controlled by the 
NanoScope III from Digital Instruments system, operating in tap-
ping mode at a frequency of 1 Hz. Glass slides were cut into pieces 
of 1 cm  ×  1 cm and used as substrates for multilayer adsorption. 
Surfaces coated with 5 pairs of CHI/ELR-RGD were immersed in a 
PBS for 30 min. To assess the infl uence of pH in the coatings, a 
similar protocol to the contact angle measurements was followed. 
The samples were immersed in PBS at two pH values: 7.4 and 11. 
To avoid the formation of crystals during the acquisition, the sam-
ples were immersed shortly in ultrapure water for removing excess 
of saline solution. The samples were then retrieved and introduced 
in the device. The analyzed area was 1  μ m  ×  1  μ m. 

  Cell Culture Studies of SaOS-2 Osteoblast-Like Cells : Cell 
studies were performed onto coatings of 5 pairs of layers, ending 
in ELR-RGD, CHI, or ELR-RDG (-)  (negative control), assembled at the 
surface of glass coverslips with 1 cm of diameter. Tissue culture 
polystyrene (TCPS) was used as a positive control. Cell adhesion 
was studied using the SaOs-2 osteoblast-like osteosarcoma cell 
line. Cells were seeded on the surfaces (5  ×  10 4  cell mL  − 1 ) and 
incubated in serum-free Dulbecco’s Modifi ed Eagle’s medium 
(DMEM), loaded antibiotics/antimicotics (1%) at 37  ° C, 5% CO 2 . 
The substrates were analyzed at different time points: 4 h, 24 h, 
and 3 days. At each time point, cells on the coated surfaces were 
washed with PBS twice, they were fi xed in formalin (3.7%), the 
nuclei of the cells stained with DAPI, and the actin was stained 
with phalloidin. 

 For ALP assays, samples collected on each time point, were 
washed with PBS and immersed in 1 mL of ultrapure water to lyse 
the cells. To each well of a 96-well plate were added the sample 
(20  μ L) plus substrate solution (60  μ L, 0.2% (w/v)  p -nitrophenyl 
(pNP) phosphate/1  M  diethanolamine HCl, at pH 9.8) The plate was 
then incubated in the dark for 45 min at 37  ° C. After the incubation 
period, a stop solution (80  μ L, 2  M  NaOH/0.2 m M  EDTA (ethylenedi-
aminetetraacetic acid)), was added to each well. The absorbance 
was then measured at 405 nm using  p -nitrophenol as standard. For 
each experiment, a standard curve was constructed from reference 
suspensions at known cell concentrations. To access cell viability 
was performed MTS assay. MTS is bioreduced by cells. The values 
for absorbance of this reduced product at 490 nm are directly pro-
portional to the number of living cells in the substrates.  
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