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Three different thickness dense TiO2 (150 nm, 300 nm and 450 nm respectively) films were
deposited on ITO substrates by dc reactive magnetron sputtering technique. These dense TiO2 films
were used as the blocking layers. After that, TiO2 nanorod films were deposited on these dense
TiO2 films by same technique. Both the dense and nanorod TiO2 films have an anatase phase. The
dense TiO2 films have an orientation along the [101] direction and the TiO2 nanorod films show
a very strong orientation along the [110] direction. These TiO2 materials were sensitized by N719
dye and the DSSCs were assembled using them as photoelectrode. The effect of the blocking layer
on the efficiency of the DSSCs is discussed. The DSSC assembled using TiO2 nanorod film with
300 nm thickness blocking layer shows a high efficiency of 2.07%.
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1. INTRODUCTION

Producing the energy using the fossil materials (petroleum
and coal) will pollute the environment. Since Copenhagen
Climate Summit in 2009, not only the scientists and politi-
cians, but also more and more common people concerns
about the global warming and climate changes. In addi-
tion, these fossil materials are becoming depleted very fast.
Therefore it is necessary to find a new energy source to
replace these traditional sources. For decreasing air pollu-
tion and carbon dioxide emission, solar energy has been
considered as the most important energy source: it is abun-
dant, clean and safe. Dye-sensitized solar cells (DSSCs)
have been attracting a lot of interests because of high
energy conversion efficiency and the possibility of low pro-
duction cost since it has been invented by Gratzel in 1991.1

The principle of the DSSC is based on the injection of the
electrons from the adsorbed dye molecules into the con-
duction band of the nanocrystalline TiO2. These electrons
are transferred to the external load through the nanocrys-
talline TiO2 layer. The dye is regenerated by electron dona-
tion from the redox system of the electrolyte, such as the

∗Author to whom correspondence should be addressed.

iodide/triiodide couple. The iodide is regenerated by the
reduction of triiodide at the platinum layer of the counter
electrode.2 In the DSSC device, nanocrystalline TiO2 layer
plays a very important role. Generally, this nanocrystalline
TiO2 layer is made by chemical methods.1–8 Although the
DSSC devices assembled with nanoporous TiO2 prepared
by chemical methods has achieved conversion efficiency
about 11%,2�8 these chemical methods have some limita-
tions for the industrial production, not only for large area
production but also for the reproduction. Sputtering tech-
nique is a good technique for the industrial production and
has been used for producing the nanocrystalline TiO2 for
DSSC devices.9–13 However, the conversion efficiency of
the DSSC devices assembled with the nanocrystalline TiO2

prepared by sputtering technique is still low comparing
to those by chemical methods. Therefore, more scientific
research work is still needed for improving the conversa-
tion efficiency.
The nanocrystalline TiO2 layers used in DSSC devices

often contain small holes that allow direct contact between
the electrolyte and the conducting electrode and result in
the charge leakage. In order to prevent the carriage leak-
age, a blocking layer has been used between the con-
ducting electrode and the nanocrystalline TiO2 layer. And
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some work have been reported by using different type
of materials as blocking layers and using different thick-
ness of blocking layers.14–22 All these work reported the
effects of the blocking layers on DSSC devices assembled
using nanocrystalline TiO2 prepared by chemical meth-
ods. No reported on the effect of the blocking layers on
TiO2 prepared by sputtering method has been found until
now. In our previous work, we have reported the effect
of dimension of the TiO2 nanorod prepared by sputter-
ing technique on DSSC devices.23 In this work, we report
the blocking layer effect on the DSSC devices assembled
with TiO2 nanorods prepared by sputtering technique. The
structural, optical and the photovoltaic properties of the
DSSC devices with different thickness of the blocking lay-
ers prepared by sputtering technique have been studied.

2. EXPERIMENTAL DETAILS

The TiO2 dense films were prepared on the commercial
ITO (sheet resistance of 20 � per square and thickness
of 100 nm) substrates by dc reactive magnetron sputtering
technique using a commercial sputtering system equipped
with a turbo molecular pumping system. After that the
TiO2 nanorod films were prepared on these dense TiO2

films by same system. A titanium metal disk (60 mm in
diameter and 3 mm in thickness) with a purity of 99.99%
was used as the target. After pumping down to 1×10−3 Pa,
the oxygen and argon gases (99.99% purities) were intro-
duced into the chamber through the mass flow controllers.
For the dense TiO2 films, the oxygen partial pressure and
the total sputtering pressure were 4�5×10−2 Pa and 0.3 Pa,
respectively. The target-substrate distance was 50 mm. The
deposition times were 15, 30 and 45 minutes, respec-
tively. The sputtering was carried out using a constant
current mode. The sputtering current was kept at 0.5 A
and the sputtering power was about 185 W. In order to
remove surface contaminants of the target, pre-sputtering
was done for 20 minutes with a shutter covering the sub-
strate. After that, the TiO2 nanorod films were deposited on
these dense TiO2 films with following conditions: the oxy-
gen partial pressure and the total sputtering pressure were
0.3 Pa and 1.5 Pa, respectively. The target-substrate dis-
tance was 50 mm. The deposition time was 180 minutes.
The sputtering was carried out using a constant current
mode. The sputtering current was kept at 0.5 A and the
sputtering power was about 215 W. The transmittance of
the films was measured using a Jasco V-550 UV-Vis spec-
trophotometer. The XRD measurements have been done
using Rigaku miniflex goniometer (30 kV, 15 mA). The
morphologies of the nanorods were studied using field
emission scanning electron microscope (FE-SEM). Raman
scattering measurements have been done using a semicon-
ductor laser and a 532 nm laser line is used as exciting
light. The laser line is focused on the sample surface in a
strict 180� backscattering geometry.

The TiO2 films were sensitized with N719
(Ru(II)L2(NCS)2:2TBA, where L = 2�2′-bipyridyl-4,4′-
dicarboxylic acid) dye by soaking the films in an ethanolic
solution of N719 dye (0.5 mM) of for 24 hours at
room temperature. The counter-electrode was made by
sputtering Pt on an FTO glass and the electrolyte is
composed of 0.1 M I2, 0.1 M LiI, 0.6 M 1-hexyl-3-
methylimidazolium iodide, and 0.5 M 4-tert-butylpyridine
in 3-methoxypropionitrile. The photocurrent–voltage mea-
surements were carried out with a Princeton 2273 applied
research electrochemical system, a 500 W Xenon lamp
under AM 1.5 G illumination with a water filter was used.
The light intensity was adjusted to 100 mW/cm2. Cells
with an active area of 0.15 cm2 were tested.

3. RESULTS AND DISCUSSION

SEM analysis showed that the TiO2 blocking layer has a
very compact structure as shown in Figure 1(a). The struc-
tures of the TiO2 nanorods deposited on ITO substrate and
on TiO2 blocking layer are shown in Figures 1(b and c).
It can be seen that the TiO2 nanorods deposited directly
on ITO substrate or on TiO2 blocking layer have the

Fig. 1. (a) Dense TiO2 film on ITO substrate; (b) TiO2 nanorods on
ITO substrate; (c) TiO2 nanorods on 150 nm thickness dense TiO2 film.
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same structures. It also can be seen from the SEM
images that the length of the TiO2 nanorods are about
1200 nm. Figure 2 shows the XRD patterns of TiO2 block-
ing layer deposited on ITO substrate (a), TiO2 nanorods
deposited on ITO substrate (b), and on different thick-
nesses of TiO2 blocking layers (c, d, e). Both the TiO2

blocking layer and the TiO2 nanorods show only anatase
phase, no rutile phase has been observed. Rutile phase has
been observed for sputtered TiO2 blocking layer in some
reported work.14�21 In those reported work, the substrate
were heated and may result in the formation of the rutile
phase. In this work, the substrates were not heated and
only anatase phase is formed. It can be seen that the TiO2

blocking layer deposited on ITO substrate has an orien-
tation along the [101] direction and the TiO2 nanorods
deposited on ITO substrate has an orientation along the
[110] direction. The TiO2 nanorods deposited on blocking
layers with different thicknesses still have the preferred
orientation along the [110] direction. It means that the
blocking layer does not modify the orientation and the
structure of the TiO2 nanorods.
The optical transmission spectra of the TiO2 block-

ing layer deposited on the glass substrate and the TiO2

nanorods deposited on the glass and 300 nm thickness
blocking layer substrates are given in Figure 3. From the
interference fringe it can be concluded that the TiO2 block-
ing layer has a high refractive index than TiO2 nanorods.
As it can be seen from the SEM images that the block-
ing layer has a very compact structure, it means a high
packing density and then a high refractive index. And
TiO2 nanorods have many voids between the nanorods, it
means a low packing density and then a low refractive
index. It can be seen from the transmittance that the opti-
cal bandgap has a red shift for TiO2 nanorod film com-
paring to the TiO2 blocking layer. Generally, the bandgap
of the nano-structural TiO2 has a blue shift because of

20 30 40 50 60 70

In
te

ns
ity

 (
a.

u.
)

Diffraction angle (2θ)

(a)

(b)

(c)

(d)

(e)

(1
01

)

(2
20

)

Fig. 2. XRD patterns of different samples. (a) Blocking layer on ITO
substrate; (b) TiO2 nanorods on ITO substrate; (c) TiO2 nanorods on
150 nm thickness blocking layer; (d) TiO2 nanorods on 300 nm thickness
blocking layer; (e) TiO2 nanorods on 450 nm thickness blocking layer.
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Fig. 3. Transmission spectra: (a) Glass substrate; (b) Blocking layer on
glass; (c) TiO2 nanorods on glass; (d) TiO2 nanorods on 300 nm thickness
blocking layer.

the contribution of quantum size effect.24�25 However, the
results given in Figure 3 do not agree with these general
results. It is suggest that the red shift of the bandgap is
mainly due to the difference of the thickness. As it has
been well known that the optical bandgap has a red shift
as the thickness is increasing. From the SEM images it
can be seen that the thickness of the dense TiO2 film is
about 700 nm and the thickness of the TiO2 nanorod film
is about 1200 nm. In addition, it has been reported that a
large bandgap can be caused by an axial strain effect from
lattice deformation.26 In this work, the dense TiO2 block-
ing layers were deposited at low sputtering pressure, and
the TiO2 nanorod films were deposited at high sputtering
pressure. Our previous work27 has shown that TiO2 films
prepared at high sputtering are subject to a low residual
stress and may result in the red shift of the band gap.
Figure 4 shows the Raman spectra of the dense TiO2

film deposited on ITO substrate and the TiO2 nanorod
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Fig. 4. Raman spectra of different samples: (a) Blocking layer on ITO
substrate; (b) TiO2 nanorod on ITO substrate; (c) TiO2 nanorod on
150 nm thickness blocking layer; (d) TiO2 nanorod on 300 nm thickness
blocking layer; (e) TiO2 nanorod on 450 nm thickness blocking layer.
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films deposited both on ITO and dense TiO2 substrates.
The five Raman peaks located at 144 cm−1, 197 cm−1,
399 cm−1, 519 cm−1 and 639 cm−1 can be assigned as the
Eg, B1g, A1g or B1g, and Eg modes of the anatase phase
respectively. No rutile phase has been observed which
is consistent with the XRD measurements as shown in
Figure 2. Although the dense TiO2 film and TiO2 nanorod
film have different growth orientations, Raman is not sen-
sitive to this difference. However, the Raman peak inten-
sity of dense TiO2 film is much stronger than TiO2 nanorod
films. It means TiO2 nanorod structure will result in the
decrease of the lattice vibration intensity.
Photocurrent–voltage characteristics of DSSCs without

and with different thicknesses of blocking layers are com-
pared in Figure 5. Measured solar cell parameters are sum-
marized in Table I. It can be seen from the Table I that the
photocurrents of the DSSC devices with 150 nm thickness
blocking layer are increased by more than 40%, compared
to those of the devices without the blocking layer. In addi-
tion, the photocurrent is increased further as the thickness
of the blocking layer is increased. Generally, dye load-
ing in TiO2 photoelectrode and the charge recombination
at photoanode are two key influences on the photocurrent
of DSSC devices. Although the dye loading amounts are
not calculated for these work, from the measurements of
the XRD and SEM it can be seen that the structures of
these TiO2 nanorod films are not modified by introduc-
ing the blocking layers. It can be suggested that the dye
loading amounts will not be influenced by the blocking
layer. Therefore, the increase of the photocurrent is mainly
due to the improvement of the charge recombination at
ITO/electrolyte interfaces. As it can be seen from SEM
images that the blocking layer has a very compact struc-
ture, the bare ITO recombination places will be reduced by
introducing this blocking layer between the ITO substrate
and TiO2 nanorod films. The charge recombination in the
DSSC devices is effectively suppressed and results in an
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Fig. 5. J–V curves: the thickness of the blocking layer is 150 nm,
300 nm and 450 nm for (a), (b) and (c) respectively. (d) without blocking
layer.

Table I. Photovoltaic performances of the DSSC based on TiO2 elec-
trodes with different thickness of blocking layers.

Thickness of Integral Open circuit
blocking layer photocurrent voltage Fill factor Efficiency �

(nm) Jsc (mA/cm2� Voc (V) FF (%)

0 3.60 0.69 0.58 1.45
150 5.14 0.65 0.49 1.63
300 5.80 0.69 0.52 2.07
450 6.10 0.67 0.43 1.75

increase of the photocurrent. In addition, as the block-
ing layer has a dense compact structure and also a large
contact area with ITO substrate comparing to the nanorod
films, more effective electron pathways will be generated
via the blocking layer to improve electron transportation.
Therefore, more electrons can be collected at the con-
duction band of the photoanode and transferred to exter-
nal circuit, resulting in an increase of the photocurrent of
the DSSC devices. The possibility of the charge recom-
bination at ITO/electrolyte interfaces will decrease as the
thickness of the blocking layer is increased and results in
an increase of the photocurrent with the thickness of the
blocking layer.
From Table I it can be seen that though the DSSC

devices with the 450 nm thickness of the blocking layer
has the highest photocurrent, the maxima conversion effi-
ciency is achieved for DSSC devices with the 300 nm
thickness of the blocking layers. This variation can be
related to the variations of the fill factor and the open-
circuit voltage. The DSSCs with blocking layers show a
low fill factor and a low open-circuit voltage, comparing
to those without blocking layer. However, the DSSC with
300 nm thickness blocking layer shows the relative high
fill factor and open-circuit voltage comparing to DSSCs
with 150 nm and 450 nm thickness blocking layers and
results in high conversation efficiency.
The fill factor �FF � is defined by

FF = ImaxVmax

IscVoc

= Pmax

IscVoc

(1)

where Pmax is the maximum power generated by solar cell
at a voltage Vmax and current Imax; Isc is the short-circuit
current and Voc is the open-circuit voltage. The fill factor
depends on the shunt resistance Rsh which is given by the
slope of the tangent line at Isc and the series resistance
Rs which is given by the slope of the tangent line at Voc.
Both of these resistances are internal, and represent energy
dissipation mechanisms in the cell. Ideally, one would like
zero series resistance and infinite shunt resistance in order
to dissipate the generated power at the external circuit, and
then, to maximize the fill factor up to unity. Parallel current
paths such as electron back transfer and charge recombina-
tion within the device are possible cause of poor fill factor.
An ideal cell should offer high internal resistance (shunt
resistance) to these parallel currents. Another possible rea-
son for poor fill factor is the high series resistance at the
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cell–external circuit junction. High sheet resistance of the
ITO plate and/or high resistance at this junction developed
during processing of DSC are possible reason for this high
series resistance.
From the Figure 5 it can be seen that the introduction

of the blocking layer improves the series resistance but
worsens the shunt resistance. The DSSCs with different
thickness blocking layers have a similar series resistance.
The series resistance of dye-sensitized solar cells consists
of three resistance elements, namely, sheet resistance of
the transparent conducting substrate, resistance of ionic
diffusion in the electrolyte, and resistance of the interface
between the counter electrode and the electrolyte.8 It can
be seen that the thickness of the blocking layer will not
have influences on these resistance as it can be seen in
Figure 5 that the DSSCs with different thickness of the
blocking layers show the similar series resistance. How-
ever, the DSSC with 300 nm thickness blocking layer show
a good shunt resistance. That means the variation of the fill
factor results from the variation of the shunt resistance. It
has been mentioned before that the shunt resistance results
from the electron back transfer and charge recombination
within the device, the thickness of the blocking layer will
have influences on these parameters and results in a differ-
ence of the fill factor and then the conversion efficiency.

4. CONCLUSIONS

The different thickness of TiO2 blocking layers prepared
by sputtering technique have been introduced between ITO
substrate and sputtered TiO2 nanorod films. The introduc-
tion of these blocking layers does not show a clear influ-
ence on TiO2 nanorod films structure. The photocurrent
of the DSSCs has been great improved by introducing
the blocking layers. The maximum conversion efficiency
(about 2.07%) has been achieved by introducing a 300 nm
thickness blocking layer, a 40% improvement comparing
to the DSSC without any blocking layer.
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