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Summary: Steel fibre reinforced concrete (SFRC) is a cementitious material reinforced 

with discrete fibres. The energy absorption capacity is the main material property benefited 

by fibre reinforcement. Closed-loop servo-controlled equipment should be used to evaluate 

this property. The tests should be carried out using displacement control in order to obtain 

the post-peak force-displacement relationship (tensile strain-softening branch). 

 

To assess the fracture energy of SFRC three point bending tests were carried out using 

displacement control. Series of notched beams reinforced with 30, 60 and 90 kg/m
3
 of 

hooked ends steel fibres were tested. Besides the energy dissipated in fracturing the 

concrete, the energy determined from the force-displacement relationship can also include 

the energy absorbed during non-linear behaviour of concrete in compression. Ductile 

materials, like concrete reinforced with a high content of fibres, develop large deflections 

before exhausting their energy absorption capacity. In these cases, the “fixed” points of the 

bar supporting the displacement transducer may not remain fixed, adding an extra 

deflection into the control displacement transducer, thus, leading to incorrect evaluation of 

the fracture energy. These factors were analysed in the present work in order to assess the 

suitability of the specimen dimensions and the test procedures for evaluating the fracture 

energy of SFRC. 
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1 – INTRODUCTION 

 

In the last two decades efforts have been made in order to achieve a total or a partial 

substitute of the conventional reinforcement for concrete. In this way, several discrete 

fibres were developed for concrete reinforcement, namely, steel, glass, synthetic and 

natural fibres [1,2]. Steel fibres are the most used in concrete applications due to the 

following main reasons: economy, manufacture facilities, reinforcing effects and resistance 

to the environment aggressiveness. Industrial floors, tunnelling lines and prefabrication are 

the main applications of steel fibre reinforced concrete (SFRC), where the conventional 

reinforcement is replaced by a given content of fibres [3,4]. 

 

The concrete property most benefited by fibre reinforcement is the energy absorption 

capacity [1,5,6]. Adding the amount of fibres used in current applications of SFRC, the 

concrete compression, tensile, shear and torsional strength are only marginally increased 

[1,2]. In structures with redundant supports, like slabs on soil and tunnelling lines, the 

increment on the material energy absorption capacity, provided by fibre reinforcement, 

enhances the cracking behaviour and increases the load bearing capacity of these structures 

[7,8]. Due to the relevance of the energy absorption capacity of fibrous concrete, several 

entities have been proposed for evaluating this property [5,9], namely, the toughness 

indices, the equivalent flexural strength and the fracture energy. Among these entities, the 

fracture energy is the most used in the constitutive models for characterizing the concrete 

tensile post-cracking behaviour [10-14]. The other entities have not been used widely in 

numerical simulation of the behaviour of SFRC structures [15]. 
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The accuracy of a numerical simulation of the non-linear behaviour of concrete structures 

depends significantly on the material fracture energy, Gf, which is defined as the amount of 

energy necessary to create one unit area of a crack [16]. The fracture energy can be 

evaluated from uniaxial tensile tests or bending tests using displacement control. The 

uniaxial tensile test is the most appropriate, but the test stability requires a very stiff 

closed-loop servo-controlled testing system [17,18]. Besides the high costs of this 

equipment, the uniaxial tensile test requires very high precision measuring devices, which 

have to be fixed on appropriate locations of the specimen, and should be controlled by a 

sophisticated control unit. Such tests are very time consuming and require skilled technical 

staff [19]. Due to these drawbacks, three- or four-point bending tests on notched beams are 

usually carried out to evaluate the material fracture energy. The three-point bending tests on 

centre-notched beams are less used but are, perhaps, more suitable to characterise the 

fracture parameters of SFRC [20]. 

 

The present work describes the three-point bending tests carried out on notched beams of 

SFRC. Based on the data obtained, the bending stress in the notched cross section, the 

energy dissipated and the fracture energy were evaluated. The specimen dimensions and the 

test procedures proposed by RILEM [16] for evaluating the fracture energy of plain 

concrete may not be appropriate for fibrous concrete. Due to the higher deformability of 

SFRC compared with plain concrete, the energy dissipated by concrete in non-linear 

compression behaviour, and the displacements of the “fixed” points of the bar supporting 

the control displacement transducer may not be negligible. The significance of these effects 

on the evaluation of the fracture energy of SFRC is discussed in the present work. 
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2 – MATERIALS AND SPECIMENS 

 

2.1 - Fibres 

 

Steel fibres of 30 mm length, fl , 0.5 mm diameter, fd , with a fibre aspect ratio of 

605.0/30 ==ff dl , with the trademark Dramix ZP305, were used [21]. To avoid fibre 

alignment due to wall effect, the fibre type was chosen taking into account that its length 

should be less than 2.5 times the smaller dimension of the cross section of the bending 

specimens used for evaluating the energy absorption capacity of SFRC [1]. The fibres are 

glued together, side by side, into bundles of about 30 fibres with a water solvable glue in 

order to improve the mix workability and eliminating balling [1]. The main characteristics 

of the fibres are presented in Table 1. 

 

Table 1 – Main characteristics of Dramix ZP30/.50 hooked ends steel fibres. 

Type of fibre 
Density 

(g/cm
3
) 

Tensile strength 

(MPa) 

Elasticity modulus 

(GPa) 

Ultimate strain 

(%) 

ZP30/.50 7.8 1250 200 3 - 4 

 

2.2 - Concrete 

 

The concrete mix is indicated in Table 2. More details about the mix composition and the 

mixing procedures can be found elsewhere [22]. 
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Table 2 – Concrete composition. 

Element 
Content 

(kg/m
3
 of concrete) 

Cement 450 

Sand (0-5 mm) 729 

Coarse aggregates (5-15) 1000 

Water 202.5 

Fibres 0, 30, 60, 90 

 

The uniaxial compression strength, cmf , the tangent modulus of elasticity, ciE , and the 

reduced modulus of elasticity, 1cE , are presented in Table 3 [23]. These results are the 

average values of, at least, five cylinder specimens of 150 mm diameter and 300 mm 

height. The manufacturing of the specimens, the equipment and the test procedures for 

uniaxial compression tests were described elsewhere [22]. 

 

Table 3 – Compression strength and elasticity modulus. 

Property 
Content of fibres (kg/m

3
) 

0 30 60 90 

Age (Days) 
48 40 40 40 

cmf  (MPa) 36.1 33.9 34.4 33.5 

ciE  (GPa) 31.9 25.1 26.0 27.2 

1cE  (GPa) 20.9 16.6 15.4 15.0 

 

2.3 – Bending notched beam specimens 

 

The specimens were compacted on a vibrating table in order to assure a dense mix and a 

uniform distribution of fibres. The specimens for bending tests have the dimensions 
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recommended by RILEM for evaluating the fracture energy of plain concrete [16], namely 

800×100×100 mm
3
. Since the ratio between the compressive and the tensile strength of the 

SFRC tested in this work is in the range of 5 to 10, the aforementioned specimen 

dimensions and the test procedures recommended by RILEM were used to evaluate the 

fracture energy [24]. The suitability of the specimen dimensions and the test procedures for 

evaluating the fracture energy of SFRC will be discussed hereafter. 

 

The curing procedure consisted of the following: The first week in the curing chamber; 

water cured for 28 days and left in a curing chamber until one week before testing. In the 

last week the specimens were prepared for testing. At midspan, in the surface opposite to 

the casting surface, a saw cut of 5 mm wide by 25 mm in height was made with appropriate 

equipment (see Figure 1). The tests were carried out on specimens at the age of 400 to 500 

days. 

 

40025 25400

75

5

25

Casting direction

(mm)

 

 

Figure 1 – Notched beam for three point bending tests. 
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3 – EQUIPMENT AND TEST PROCEDURES 

 

A closed-loop servo-controlled testing system was developed for static and dynamic tests 

on specimens and structural elements [25]. The control unit of this equipment and the 

displacement, force and strain measurement devices are controlled by the software 

developed, which includes a friendly interface module for defining the test procedures. 

 

The load was applied by a triple actuator of 250 kN maximum load capacity. The triple 

actuator is composed by three cylinders (see Figure 2), two with 100 kN maximum load 

capacity, placed at actuator extremities, named as lateral cylinders here, and one with 

50 kN maximum load capacity, placed at the actuator centre, referred to as central cylinder. 

This actuator can work for loading limits of 250 kN, 200 kN and 50 kN, activating the three 

cylinders, the lateral cylinders or the central cylinder. In this way, the loading level can be 

selected, taking into account the predicted maximum load in the test, which enhances the 

test stability and the test control performance. This triple actuator can carry out stable tests 

on specimens of low bearing capacity, which is the case of the notched beam specimens. 

When the load is applied by the central cylinder (active cylinder), the lateral cylinders can 

introduce a pre-load into the central cylinder (see Figure 3a). Therefore, the null force in 

the active cylinders can be avoided, which contributes for test stability. The pre-load level 

can be selected on the software developed. In the same way, when the load is applied by the 

lateral cylinders (active cylinders), the central cylinder can introduce a pre-load into the 

lateral cylinders (see Figure 3b). 
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Lateral cylinders of
100 kN maximum
load capacity

Central
cylinder of
50 kN
maximum load
capacity

Beam of high rigidity to
uniformize the movement of
the cylinders

 

Lateral cylinders can apply a pre-load

on the central cylinder

(a)

 

Central cylinder can apply a pre-load

on the lateral cylinders

(b)

 

Figure 2 – Triple actuator. Figure 3 – Pre-loads that can be applied to 

the active cylinders. 

 

To obtain the complete load-deflection relationship, the tests were carried out using 

displacement control. In order to avoid extraneous deformations, the middle point 

deflection was measured by a displacement transducer placed on a frame attached to the 

beam, the so-called “Japanese Yok” [5,9], see Figure 4. The displacement transducer has a 

linear branch of 25 mm with 0.06% accuracy of the full scale. 

 

A tension-compression force transducer of 20 kN maximum load capacity and 0.5% 

accuracy was used to measure the force. The load was applied through fixtures which 

allowed for rotational freedom. A steel bar with dimensions of 95×20×20 mm
3
 was placed 

between the actuator and the specimen to distribute the load on the beam’s width (line 

load). 
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Figure 5 shows the structure supporting the test set-up. It consists of HEB 200 steel 

elements, setting up a frame that offers reaction to the actuator. The final configuration of 

the reaction frame was established after some preliminary tests that revealed the need for 

using very stiff reaction frames in order to assure the stability of this type of tests. 

 

During the preliminary tests it was observed that the loop gain of the data acquisition board 

had to be increased when the ratio of the specimen stiffness and that of the supporting 

structure was increased. 

 

The tests were carried out using the following deflection rates: 0.15 mm/minute up to 0.1 

mm of deflection, 0.3 mm/minute between 0.1 and 0.2 mm and 0.6 mm/minute between 0.2 

and 2.3 mm. Among the three loading regimes available on the triple actuator, the lowest 

was selected. In order to enhance the test stability, a pre-load of 16 kN was applied by the 

lateral cylinders to the active central cylinder. The force and the displacement were 

registered every second. The data was saved on a file for post-processing. 

 

Displacement
transducer Force transducer

 

 

Closed-loop
servo-controlled

equipment
 

Figure 4 – Force and displacement measuring 

devices. 

Figure 5 – Equipment and reaction frame. 
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4 – RESULTS 

 

The force-deflection relationships obtained from the specimens reinforced with 30, 60 and 

90 kg/m
3
 of fibres are shown in Figures 6 to 8. The "average” force-deflection relationship 

for each series is depicted in Figure 9. For a given series, this relationship is obtained 

estimating, for each deflection, the average force of the tests in this series. 

 

The maximum force and the maximum stress at notched cross section, for the three fibre 

contents are represented in Figures 10 and 11. The maximum stress at notched cross section 

is evaluated using the following expression 

 

 
( )2

max

2

3

ahb

LF
fnet

−
=  (1) 

 

where Fmax is the maximum load, L=800 mm is the specimen span, b=100 mm and h=100 

mm are the width and the height of the specimen and a=25 mm is the depth of the notch. 
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Figure 6 – Force-deflection relationship for series of  

30 kg/m
3
 of fibres. 
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Figure 7 – Force-deflection relationship for series of  

60 kg/m
3
 of fibres. 
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Figure 8 – Force-deflection relationship for series of  

90 kg/m
3
 of fibres. 
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Figure 9 – “Average” force-displacement relationship for 

series of 30, 60 e 90 kg/m
3
 of fibres. 
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Figure 10 – Maximum force. Figure 11 – Maximum stress at notched cross section. 

 

The main results obtained are presented in Table 4. A maximum stress, at notched cross 

section, of 4.6 MPa and an energy of 1690 Nmm were obtained in plain concrete specimens 

of a mix design indicated in Table 2. These specimens were 450×150×150 mm
3
 with a 

notch depth of 75 mm. 

 

Table 4 – Maximum force and stress values obtained. 

Content of fibres 

(kg/m
3
) 

Maximum force 

(N) 

Maximum stress at notched cross section 

(MPa) 

30 2894 6.2 

60 2983 6.4 

90 3935 8.5 

 

From the results obtained, the following can be pointed out: 
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♦ A significant dispersion of the results is observed, mainly in specimens reinforced with 

60 kg/m3 of fibres, which reveals the need for improving the procedures of mixing in 

order to assure a homogeneous distribution of fibres; 

♦ The maximum load in series reinforced with 30 and 60 kg/m
3
 of fibres is almost the 

same; 

♦ The maximum load increases significantly in specimens reinforced with 90 kg/m
3
 of 

fibres; 

♦ The decline of the force after peak load decreases with the increment of fibre content; 

♦ In specimens reinforced with 90 kg/m
3
 of fibres a hardening branch is developed after 

the first crack deflection, due to the high percentage of fibres bridging the crack 

surfaces. 

 

Influence of the movement of the “fixed” points of the bar supporting the displacement 

transducer 

 

In bending tests with specimens that can develop large deflections before exhausting their 

energy absorption capacity, the two “fixed” points of the bar supporting the control 

displacement transducer (see Figure 4) do not remain fixed, as it is schematically illustrated 

in Figure 12. If specimens are supported in rollers, which is the usual practice, these two 

points go upward with the deflection of the specimen, adding a supplementary 

displacement to the control displacement transducer. This supplementary displacement can 

be measured from two displacement transducers placed at these “fixed” points and should 

be deducted from the displacement registered in the control transducer. Otherwise, the 
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energy absorption capacity evaluated from the force-deflection relationship will be larger 

than the real one. 

 

P

 

Figure 12 – The “fixed” points of the bar supporting the control displacement transducer do not remain fixed 

for large deflections. 

 

In the present work the displacement of the “fixed” points of the bar is evaluated assuming 

the specimen as a two rigid blocks rotating in turn of the point P (see Figure 12). This 

displacement is deducted from the deflection registered in the control displacement 

transducer. For specimen dimensions used in the present work the displacement of the 

“fixed” points is 0.164 mm for a deflection of 20 mm, which is only 0.8% of this 

deflection. However, for specimens with dimensions of 450×150×150 mm
3
, currently 

adopted for evaluating the toughness indices [5,9], a displacement of 0.9 mm of the “fixed” 

points was measured for a deflection of 20 mm (4.5%), which should not be neglected [6]. 

 

Table 5 includes the energy due to the displacement of the “fixed” points of the “Japanese 

Yok” bar. It can be concluded that, for the specimen dimensions and notch depth adopted, 

this energy is small. Since the approach used for evaluating the displacements of the 

“fixed” points gives an upper bound value, this energy will be even smaller. 
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Table 5 – The influence of the energy evaluated from the movement of the “fixed” points of the bar. 

Content of fibres 

(kg/m
3
) 

LU (1)
 

(N.mm) 

RU  (2)
 

(N.mm) 

100×
−

R

RL

U

UU

 

(%) 

30 18300 18180 0.84 

60 34050 33770 0.82 

90 49350 49000 0.72 

(1) 
LU  - Energy evaluated from the registered force-deflection relationship 

(2) 
RU  - Energy evaluated from the force-corrected deflection relationship 

 

Figure 13 depicts the energy dissipated for the series tested. This energy is evaluated from 

the force-corrected deflection relationship up to a corrected deflection of about 23 mm. It is 

observed that, for fibre contents between 30 and 90 kg/m
3
 the increment on the energy is 

almost linear. This tendency has already been observed in a previous work [13]. The 

dispersion of the results is also remarkable, mainly in series reinforced with 60 kg/m
3
 of 

fibres. 
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Figure 13 – Energy dissipated. 
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Influence of the concrete in non-linear compression behaviour 

 

For large deflections the compression strain in the concrete volume, near the loaded area, 

may be greater than the linear elastic compression strain limit of SFRC. For ductile fibrous 

concrete specimens, the energy dissipated in non-linear compression behaviour can be 

significant, mainly, when the notch depth is less than half the height of the specimen [26]. 

This energy should be evaluated and deducted from the energy estimated using the 

force-deflection relationship. The energy dissipated by concrete in non-linear compression 

behaviour can be evaluated by the use of experimental or numerical tools. Adopting an 

experimental approach, displacement transducers should be placed in the upper one third of 

the specimen height, and the volume of concrete in non-linear compression behaviour 

should be also measured. In the numerical approach the energy dissipated by concrete in 

compression can be evaluated using a model that accounts for the material constitutive 

laws. This procedure was adopted in the present work and is described in the next section. 

 

5 – EVALUATING THE FRACTURE ENERGY 

 

To evaluate the fracture energy from the force-deflection relationship obtained in bending 

tests, the energy dissipated by concrete in non-linear compression behaviour should be 

determined. In order to estimate this energy the cross sectional layer model, schematically 

represented in Figure 14, was applied. According to this model, a cross section is 

discretized into concrete layers and a moment-curvature relationship is obtained, imposing 

cinematic and equilibrium equations, and considering the compression and tension 

constitutive laws developed for SFRC [13]. A full description of the model can be found 

elsewhere [14]. 
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Figure 14 – Cross section discretization and assumed strain and stress diagrams. 

 

In the approach adopted, the beam is assumed as two linear elastic blocks (zones of intact 

concrete) connected by a damaged zone, ahead of the notch (see Figure 15). The damaged 

zone is the volume of concrete where the energy is dissipated by the concrete cracking 

process and by the non-linear behaviour of concrete in compression. The width of the 

damaged zone is determined using the cross sectional layer model, fitting the experimental 

force-deflection data (see Figure 17). To calculate the width of the damaged zone it was 

assumed that it has constant width, dzL . However, for evaluating the energy dissipated by 

concrete in non-linear compression behaviour a more realistic shape of the damage zone, 

represented in Figure 16, was adopted. According to this assumption the width of the 

damaged zone increases linearly from the mouth of the notch to the upper surface, and has 

the value of 
dzL  at the middle height of the net section. 

 

Using the cross sectional layer model and discretizing the damaged zone in ten layers of 

equal thickness, a damaged zone width of 70 mm for the three series of tests was obtained. 
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Figure 15 – Specimen idealisation for model use. Figure 16 – Damaged zone 

discretized in ten concrete layers. 
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Figure 17 – Comparison between the results obtained with the cross sectional layer model and the 

experimental data. 
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Figure 18 represents schematically the procedure used to evaluate the energy dissipated by 

concrete in non-linear compression behaviour, and Table 6 includes the values obtained. 

 

Energy dissipated in compression

σ c,max
l

cσ

c,minσ un

c,minε un l
c,maxε ε c

Ε ci

Ε ci

c,maxσ l - Maximum stress in loading

- Maximum strain in loadingc,max
lε

- Minimum strain in loading

- Minimum stress in loading

ε un
c,min

c,min
unσ

 

Figure 18 – Procedure to evaluate the energy dissipated by concrete in non-linear compression behaviour. 

 

It is shown that, even for the series reinforced with the higher content of fibres, the energy 

dissipated by concrete in compression is less than 1% of the total energy, revealing that the 

specimen dimensions are adequate for evaluating the fracture energy of the fibrous 

composites studied. 

 

Table 6 – Energy dissipated by concrete in non-linear compression behaviour. 

Content of fibres 

(kg/m
3
) 

cU (1)
 

(N.mm) 

100×
R

c

U

U (2)
 

(%) 

FS

cR
f

L

UU
G

−
=

(3)
 

(N/mm) 

30 40 0.22 2.419 

60 160 0.47 4.481 

90 450 0.92 6.473 

(1): Energy dissipated in compression 

(2): 
RU  is the total energy (see table 5) 

(3): Fracture energy (
FSL  is the fracture surface) 
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The fracture energy also presented in Table 6 is determined using the following expression 

 

 
FS

cr

FS

cR
f

L

U

L

UU
G =

−
=  (2) 

 

where 
crU  is the energy dissipated in fracturing the concrete and 

FSL  is the fracture surface 

of 75×100 mm
2
. Figure 19 represents the fracture energy for the series tested. 
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Figure 19 – Fracture energy. 

 

Between 30 and 90 kg/m
3
 of fibres, the fracture energy increases linearly with the fibre 

content, which is in agreement with previous results [13]. 
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7 – CONCLUSIONS 

 

Three point bending tests were performed for assessing the fracture energy of steel fibre 

reinforced concrete (SFRC). Series of notched beams of concrete reinforced with 30, 60 

and 90 kg/m
3
 of hooked-ends steel fibres were carried out using a closed-loop 

servo-controlled testing system. The main aspects influencing the evaluation of the fracture 

energy were discussed, namely, the mobility of the “fixed” points of the bar supporting the 

control displacement transducer and the energy dissipated by the concrete in non-linear 

compression behaviour. 

 

From the results obtained, a significant increase in the maximum stress at the notched cross 

section was only observed on specimens reinforced with 90 kg/m
3
 of fibres. The energy 

absorption capacity increased almost linearly with the fibre content, in agreement with 

results already published. The difficulties in assuring a homogeneous fibre distribution in 

concrete were highlighted by the dispersion of the results obtained. 

 

Using specimens of 800×100×100 mm3 and a notch of 25 mm in depth it was noted that the 

maximum displacement of the “fixed” points of the bar supporting the displacement 

transducer was less than 1.0% of the ultimate deflection. Due to the displacement of these 

“fixed” points, an extra deflection is added to the deflection measured by the control 

displacement transducer, which introduces parasite energy. However, for the specimen 

proposed, this energy is less than 1.0% of the energy estimated from the force-deflection 

relationship. 
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A cross sectional layer model was applied for evaluating the energy dissipated by concrete 

in non-linear compression behaviour. It was noted that, for the specimen used, this energy 

was less than 1% of the total energy determined from the force-deflection relationship. It 

can be concluded that the specimen dimensions and the test procedures adopted in the 

present work are suitable for evaluating the fracture energy in concrete of normal strength, 

reinforced with the type of fibre used, and in contents less than 100 kg/m
3
. 
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