Comparative genomics of commercial Saccharomyces cerevisiae isolates recovered from vineyard environments

XXXVI Jornadas Portuguesas de Genética

Coimbra, 1st June, 2011

R. Franco-Duarte¹, L. Carreto², B. Cambon³, S. Dequin³, M. Santos², M. Casal¹, <u>D. Schuller</u>¹

- 1 Centre of Molecular and Environmental Biology (CBMA), Braga, Portugal
- 2 RNA Biology Laboratory, CESAM, Aveiro, Portugal
- 3 UMR Sciences pour l'Oenologie, Microbiologie, INRA, Montpellier, France

The population structure of Saccharomyces cerevisiae

Liti et al., Nature, 2009

235,127 SNPs 14,051 nucleotide insertions or deletions

Schacherer et al., Nature, 2009

1.89 x 10⁶ SNP (30,097 SNPs per strain) 3,985 deletios (200 bp length)

few well-defined, geographically isolated lineages many different mosaics of these lineages

The population structure of Saccharomyces cerevisiae

Consensus tree of S. cerevisiae populations based on F_{st} genetic distances

Intraspecific genome diversity of S. cerevisiae

S. cerevisiae winemaking strains

S. cerevisiae clinical strains

Nacional Facility for DNA Microarrays

Carreto et al. 2008 BMC Genomics

S. cerevisiae commercial winemaking strains

- Extensive use of commercial Saccharomyces cerevisiae wine strains
- Such strains are disseminated from the winery and can be recovered from locations in close proximity (10-200m)

Valero et al., 2005

 Re-isolation of 100 isolates of the commercial strain VL1 from vineyards close to the winery where this strain has been used during many years Schuller and Casal, 2007

Evaluation of genome variations among isogenic isolates of the commercial strain *S. cerevisiae* Zymaflore VL1 that were re-isolated from vineyards surrounding the wineries where this industrial strain was applied, using Comparative Genome Hybridization on array (aCGH);

Conclude about possible adaptive mechanisms that occur during the strain's permanence in vineyard environments

Materials and Methods – S. cerevisiae isolates

Materials and Methods - Array Chromosome Genome Hybridization (aCGH)

Graphical displays of log ratios and visual representation of data Significance Analysis for Microarrays

Results – Clustering of aCGH profiles

(Hierarchical clustering, Pearson correlation, average linkage)

No clear separation between VL1 isolates obtained from nature () and an isolate derived from the "mother" strain ()

Results – Gene Copy number alterations – SAM analysis

Results – Gene Copy number alterations – SAM analysis

Results – Phenotypic characterization

- Wine must + compound
- 30 °C
- 200 rpm
- quadriplicate

	Phenotypic tests																			
Strain	30°C	18°C	40°C	pH 2	pH 8	KCI 0.75M	NaCI 1.5M	CuSO4 5mM	SDS 0.01%	Etanol 6%	Etanol 10%	Etanol 14%	lprodion (0.05mg/mL)	Iprodion (0.1mg/mL)	Procymidon (0.05mg/mL)	Procymidon (0.1mg/mL)	KHSO3 (150 mg/l)	KHSO ₃ (300 mg/l)	Vinho + glucose 0.5%	Vinho + glucose 1%
VL1 018	3	1	3	0	2	2	1	0	0	3	2	1	3	3	3	3	3	1	1	1
VL1 020	3	1	3	0	2	3	1	0	0	3	2	1	3	3	3	3	3	1	1	1
VL1 099	3	1	3	0	2	2	1	0	0	3	2	1	3	3	3	3	3	2	0	0
VL1 108	3	1	3	0	2	2	0	0	0	3	2	1	3	3	3	3	3	2	0	0
VM06	3	1	3	0	2	2	1	0	0	3	2	1	3	3	3	3	3	2	1	1
"Mother" strain	3	0	3	0	2	2	1	1	1	3	2	1	3	3	3	3	3	2	0	1
																	0 - /	Abs ₆₄₀	_{nm} 0.1	

1 – Abs_{640nm} 0.2-0.4

2 – Abs_{640nm} 0.5-1.2 **3** – Abs_{640nm} ≥1.3

Summary and conclusions

• Isogenic isolates of the commercial wine yeast strain Zymaflore VL1 recovered from nature show genetic differences in comparison with the "mother" strain:

Ty element amplifications Other gene amplifications Apparent stochastic distribution

o Mechanisms could be involved in the generation of intra-strain phenotypic variability

The transition from nutrient-rich musts to nutritionally scarce natural environments is correlated with microevolutionary changes promoted by Ty elements that may reflect adaptative responses

Acknowledgements

- João Drumonde
- Elza Fonseca
- **Ricardo Duarte**
- Inês Mendes
- Nuno Fonseca
- Eugénia Vieira

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

UNIÃO EUROPEIA FUNDOS ESTRUTURAIS

GOVERNO DA REPÚBLICA PORTUGU

Significant altered genes

Strain	Systematic Name	Classical Name	Description C				
	YBL031W	SHE1	Mitotic spindle protein that interacts with components of the Dam1 (DASH) complex, its effector Sli15p, and microtubule-associate protein Bim1p; also localizes to nuclear microtubules and to the bud neck in a ring-shaped structure				
	YOR019W	NA	Protein of unknown function that may interact with ribosomes, based on co-purification experiments	15			
020	YGL251C	HFM1/MER3	Meiosis specific DNA helicase involved in the conversion of double-stranded breaks to later recombination intermediates and in crossover control; catalyzes the unwinding of Holliday junctions; has ssDNA and dsDNA stimulated ATPase activity	7			
	YOR155C	ISN1	Inosine 5'-monophosphate (IMP)-specific 5'-nucleotidase, catalyzes the breakdown of IMP to inosine, does not show similarity to k 5'-nucleotidases from other organisms				
	YDR034C	LYS14	Transcriptional activator involved in regulation of genes of the lysine biosynthesis pathway; requires 2-aminoadipate semialdehyde as co-inducer	4			
	YBR020W	GAL1	Galactokinase, phosphorylates alpha-D-galactose to alpha-D-galactose-1-phosphate in the first step of galactose catabolism; expression regulated by Gal4p	2			
	YDR120C	TRM1	tRNA methyltransferase; two forms of the protein are made by alternative translation starts; localizes to both the nucleus and mitochondrion to produce the modified base N2,N2-dimethylguanosine in tRNAs in both compartments	4			
	YLR407W	NA	Putative protein of unknown function; null mutant displays elongated buds and a large fraction of budded cells have only one nucleus	12			
099	YOR260W	GCD1/TRA3	Gamma subunit of the translation initiation factor eIF2B, the guanine-nucleotide exchange factor for eIF2; activity subsequently regulated by phosphorylated eIF2; first identified as a negative regulator of GCN4 expression	15			
077	YKL102C	NA	Dubious open reading frame unlikely to encode a functional protein; deletion confers sensitivity to citric acid; predicted protein would include a thiol-disulfide oxidoreductase active site	11			
	YOR257W	CDC31/DSK1	Calcium-binding component of the spindle pole body (SPB) half-bridge, required for SPB duplication in mitosis and meiosis II; homolog of mammalian centrin; binds multiubiquitinated proteins and is involved in proteasomal protein degradatio	15			
	YHR212C	NA	Dubious open reading frame unlikely to encode a functional protein, based on available experimental and comparative sequence data	8			
	YLR157C	ASP3-2	Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non- coding RNA that enhances expression of full-length gene; reference strain \$288C has four copies of ASP3	12			
	YPL218W	SAR1	GTPase, GTP-binding protein of the ARF family, component of COPII coat of vesicles; required for transport vesicle formation during ER to Golgi protein transport	16			

RESULTS

Significant altered genes

Ty elements:

Strain	Systematic Name	Chromosome	Fold Change
018	YMR046C	13	1.6474975
099	YHL009W-A	8	1.5785116
	YHL009W-B	8	1.646452
	YGR161C-C	7	1.4855264
108	YBL005W-A	2	1.5453535
	YDR210C-C	4	1.4554093
	YDR170W-A	4	1.7406232
	YNL284C-A	14	1.7531929
	YMR046C	13	1.7273986