CHARACTERISTIC FUNCTIONS AND AVERAGES

Assis Azevedo¹

Department of Mathematics and Applications, University of Minho Campus de Gualtar, 4710-057 Braga, Portugal assis@math.uminho.pt

Abstract

Let Ω be a set and $\Omega_1, \ldots, \Omega_{m-1}$ subsets of Ω , being m an integer greater than one. For a given function $f = (f_1, \ldots, f_m) : \Omega \to \mathbb{R}^m$, we prove the existence of a unique function $\alpha = (\alpha_1, \ldots, \alpha_m) : \Omega \to \mathbb{R}^m$ such that

 $\begin{cases} \alpha_i = \alpha_{i+1} \text{ on } \Omega_i \\ \alpha_1 + \dots + \alpha_i = f_1 + \dots + f_i \text{ on } \Omega \setminus \Omega_i, \text{ for all } i < m \\ \alpha_1 + \dots + \alpha_m = f_1 + \dots + f_m, \end{cases}$

called the average function of $f: \Omega \to \mathbb{R}^m$ relatively to $(\Omega, \Omega_1, \ldots, \Omega_{m-1})$.

When Ω is a topological space and f is a continuous function, we find necessary and sufficient conditions for the continuity of the average function of f.

We write α_i as a linear combination of characteristic functions of the (coincidence) sets $\bigcap_{j=r}^{s} \Omega_j$, $1 \leq r \leq s \leq m-1$, belonging the coefficients to $\mathbb{Q}[f_1, \ldots, f_m]$.

1. Introduction

The motivation of this paper had its origin in a joint work with J. F. Rodrigues and L. Santos (see [1]). The problem under consideration there, was a variational inequality modelling the problem of equilibrium of N membranes, attached to rigid supports on the boundary, each one under the action of given forces (f_1, \ldots, f_N) and constrained by the other membranes (see Remark 3.2).

Let Ω be a set, m > 1, an integer, Ω_i , $1 \le i \le m - 1$ subsets of Ω . It is easy to characterize the sets

$$\mathcal{A}^{m} = \left\{ \alpha \in \mathcal{F}(\Omega)^{m} : \Omega_{i} \subseteq \{ x \in \Omega : \alpha_{i}(x) = \alpha_{i+1}(x) \}, \text{ for } 1 \leq i \leq m-1 \right\},$$

$$\mathcal{B}^{m} = \left\{ \alpha \in \mathcal{F}(\Omega)^{m} : \Omega_{i} = \{ x \in \Omega : \alpha_{i}(x) = \alpha_{i+1}(x) \}, \text{ for } 1 \leq i \leq m-1 \right\},$$

where $\mathcal{F}(\Omega)$ is the set of real-valued functions with domain Ω .

For instance, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathcal{A}^m$ if and only if there exists f_1, \ldots, f_m such that $\alpha_1 = f_1$ and $\alpha_i = \alpha_{i-1} + f_i h_{i-1}$ where h_i is a function that vanishes on Ω_i , for example the characteristic function of $\Omega \setminus \Omega_i$ or, in the case we are in a

 $^{^1 \}rm Work$ supported by the Research Centre of Mathematics of the University of Minho through the FCT Pluriannual Funding Program.

metric space, the distance function to Ω_i . In both cases it is easy to know when α belongs to \mathcal{B}^m and when it is continuous. But in none of these cases we have $\alpha_1 + \cdots + \alpha_m = f_1 + \cdots + f_m$.

The family $(\Omega_i)_{i=1,\ldots,m-1}$ allows us to define *m* partitions of Ω that are crucial to the construction of the average functions. In what follows we consider $\Omega_0 = \Omega_m = \emptyset$. We also construct partitions to $\Omega \setminus \Omega_i$, for $i = 1, \ldots, m-1$.

Definition 1.1. For $1 \le r \le s \le m$ let

(1)
$$\Omega_{r,s} = \left(\bigcap_{r \le k \le s-1} \Omega_k\right) \setminus (\Omega_{r-1} \cup \Omega_s) \quad if \ 1 \le r \le s \le m.$$

Notice that, with the usual convention about intersections, $\Omega_{r,r} = \Omega \setminus (\Omega_{r-1} \cup \Omega_r)$.

Lemma 1.2. For each i = 1, ..., m,

a) $(\Omega_{r,s})_{1 \le r \le i \le s \le m}$ is a partition of Ω .

b) $(\Omega_{r,i})_{1 \le r \le i}$, $(\Omega_{i+1,s})_{i < s \le m}$ and $(\Omega_{r,i} \cap \Omega_{i+1,s})_{1 \le r \le i < s \le m}$ are partitions of $\Omega \setminus \Omega_i$.

Proof. Is $x \notin \Omega_{i-1} \cup \Omega_i$ then $x \in \Omega_{i,i}$. If $x \in \Omega_j$, for $j \in \{i-1, i\}$ then $x \in \Omega_{r,s}$ where r is the smaller integer such that $x \in \bigcap \Omega_{k=r}^j$ and s is the biggest integer such that $x \in \bigcap \Omega_{k=j}^{s-1}$. And of course, if $(r,s) \neq (r',s')$ then $\Omega_{r,s} \cap \Omega_{r',s'} = \emptyset$. The other proofs are identical.

The first alinea of the this lemma can be illustrated in the following figure, for m = 4 and i = 2: in the left, we consider Ω and a general situation for Ω_1 , Ω_2 and Ω_3 and in the right, we have the sets $\Omega_{1,2}$, $\Omega_{1,3}$, $\Omega_{1,4}$, $\Omega_{2,3}$ and $\Omega_{2,4}$ that define a decomposition of $\Omega_1 \cup \Omega_2$ (recall that $\Omega_{2,2}$ is $\Omega \setminus (\Omega_1 \cup \Omega_2)$):

FIGURE 1. Decomposition of $\Omega_1 \cup \Omega_2$, if m = 4 and i = 2.

2. Average function

In what follows, given a set $A \subseteq \Omega$, χ_A denotes the characteristic function of A, *i.e.*, $\chi_A(x) = 1$ if $x \in A$ and $\chi_A(x) = 0$ otherwise, and ∂A the boundary of A. If $f_1, \ldots, f_k \in \mathcal{F}(\Omega)$ we denote their average $(\frac{f_1 + \cdots + f_k}{k})$ by $[f_1, \ldots, f_k]$. The average of elements of $\mathcal{F}(\Omega)^m$ are defined component by component.

Definition 2.1. With the notations above, we define the average function of $\mathcal{F}(\Omega)$ relatively to $(\Omega, \Omega_1, \ldots, \Omega_{m-1})$ as $\psi = (\psi_1, \ldots, \psi_m) : \mathcal{F}^m(\Omega) \to \mathcal{F}^m(\Omega)$ where

(2)
$$\forall i \leq m \quad \forall f = (f_1, \dots, f_m) \in \mathcal{F}(\Omega)^n \qquad \psi_i(f) = \sum_{r \leq i \leq s} [f_r, \cdots, f_s] \chi_{\Omega_{r,s}}.$$

Note that, by Lemma 1.2, for $1 \le i \le m$, and using the previous notations

(3)
$$\forall r \leq i \leq s, \ \psi_i(f) = [f_r, \cdots, f_s], \ \text{in } \Omega_{r,s}.$$

and in particular

(4)
$$\psi_i(f) = f_i, \text{ in } \Omega \setminus (\Omega_{i-1} \cup \Omega_i).$$

If, for example, for some $k_0 \leq m-1$, Ω_k is the empty set for all $k \leq k_0$ and is equal to Ω , otherwise, then

$$\psi_i(f) = \begin{cases} f_i & \text{if } i \le k_0 \\ \\ [f_{k_0+1}, \dots, f_m] & \text{if } i > k_0. \end{cases}$$

In particular, if $k_0 = 0$, $\psi_i(f) = [f_1, \ldots, f_m]$ and, if $k_0 = m - 1$, ψ is the identity function.

The average function have some nice (and trivial) properties. In particular it is linear and preserves averages.

Proposition 2.2. If $f, g, f^1, \ldots, f^k \in \mathcal{F}(\Omega)^m$ and $h \in \mathcal{F}(\Omega)$ then

a)
$$\psi(f+g) = \psi(f) + \psi(g);$$

b)
$$\psi(hf) = h\psi(f);$$

- c) if $f \leq g$ then $\psi(f) \leq \psi(g)$;
- d) $\psi([f^1, ..., f^k]) = [\psi(f^1), ..., \psi(f^k)];$
- e) if $x \in \Omega$ and $f_1(x) \leq \cdots \leq f_m(x)$ then $\psi_1(f)(x) \leq \cdots \leq \psi_m(f)(x)$.

Proof. The first four alineas are immediate consequences of the definition of the average function. For the last alinea, suppose that $f_1(x) \leq \cdots \leq f_m(x)$ and let $1 \leq i < m$. If $x \in \Omega_i$ then $\psi_i(f)(x) = \psi_{i+1}(f)(x)$. If $x \notin \Omega_i$ then, by Lemma (1.2), $x \in \Omega_{r,i} \cap \Omega_{i+1,s}$ for some $r \leq i < s$ and, in this case $\psi_{i+1}(f)(x) = [f_{i+1}, \ldots, f_s](x) \geq f_{i+1}(x) \geq f_i(x) \geq [f_i, \ldots, f_r](x) = \psi_i(f)(x)$.

Remark 2.3. In fact the function ψ should be denoted by $\psi^{\Omega,\Omega_1,\ldots,\Omega_{m-1}}$. We will use this notation only in the beginning of Section 3 and in the proof of the next result, where the use of an induction argument on m may induce confusion.

As an immediate consequence of the definitions, we have, for $1 \leq j \leq i < m$

(5)
$$\psi_j^{\Omega,\Omega_1,\dots,\Omega_{m-1}}(f_1,\dots,f_m) = \psi_j^{\Omega,\Omega_1,\dots,\Omega_{i-1}}(f_1,\dots,f_i) \quad in \ \Omega \setminus \Omega_i$$

Theorem 2.4. Given $m \ge 2$ and $\Omega_1, \ldots, \Omega_{m-1}$ subsets of Ω , the average function $\psi = (\psi_1, \ldots, \psi_m)$ is the unique function satisfying the following conditions: a) if $1 \le i < m$, $\psi_i(f_1, \ldots, f_m) = \psi_{i+1}(f_1, \ldots, f_m)$ in Ω_i ;

b) if
$$1 \le i \le m$$
, $\sum_{j=1}^{i} \psi_j(f_1, \dots, f_m) = \sum_{j=1}^{i} f_j$ in $\Omega \setminus \Omega_i$ (recall that, $\Omega_m = \emptyset$).

Proof. a) Note that $\psi_{i+1}(f_1, \ldots, f_m) - \psi_i(f_1, \ldots, f_m)$ is equal to

$$\sum_{s=i+1}^{m} [f_r, \cdots, f_s] \chi_{\Omega_{i+1,s}} - \sum_{r=1}^{i} [f_r, \cdots, f_s] \chi_{\Omega_{r,i}}$$

which vanish in Ω_i as $\Omega_{i+1,s} \cap \Omega_i = \Omega_{r,i} \cap \Omega_i = \emptyset$.

b) We will use an induction argument on m. If i = 1 and $m \ge 2$ the result follows from (4). If m = 2 (on the left) or $m \ge 3$ and i = 2 (on the right) we have

$$\begin{cases} \psi_1(f_1, f_2) = f_1 \chi_{\Omega \setminus \Omega_1} + \frac{f_1 + f_2}{2} \chi_{\Omega_1} \\ \psi_2(f_1, f_2) = f_2 \chi_{\Omega \setminus \Omega_1} + \frac{f_1 + f_2}{2} \chi_{\Omega_1} \end{cases} \begin{cases} \psi_1(f_1, \dots, f_m) = f_1 \chi_{\Omega \setminus \Omega_1} + \frac{f_1 + f_2}{2} \chi_{\Omega_1 \setminus \Omega_2} \\ \psi_2(f_1, \dots, f_m) = f_2 \chi_{\Omega \setminus \Omega_1} + \frac{f_1 + f_2}{2} \chi_{\Omega_1 \setminus \Omega_2} \end{cases}$$

For the induction step consider $m \ge 3$. If $2 \le i < m$ then the results follows by the induction hypothesis using the equality (5). For the case i = m we prove the result on each set $\Omega_{r,m}$ $(r \le m)$ that form a partition of $\Omega \setminus \Omega_m$:

• in $\Omega_{m,m} = \Omega \setminus \Omega_{m-1}$ we have, using (5), with i = m - 1, and the induction hypothesis,

$$\sum_{j=1}^{m} \psi_j(f_1, \dots, f_m) = \sum_{j=1}^{m-1} f_j + \psi_m(f_1, \dots, f_m)$$
$$= \sum_{j=1}^{m} f_j, \quad \text{by (4)}$$

- in $\Omega_{1,m} = \Omega_1 \cap \cdots \cap \Omega_{m-1}$, $\psi_1(f_1, \ldots, f_m) = \cdots = \psi_m(f_1, \ldots, f_m) = [f_1, \ldots, f_m]$ by alinea a) and (3), and the result follows.
- in $\Omega_{r,m} = \Omega_r \cap \cdots \cap \Omega_{m-1} \setminus \Omega_{r-1}$ (for 1 < r < m) we have

$$\sum_{j=1}^{r-1} \psi_j(f_1, \dots, f_m) = \sum_{j=1}^{r-1} f_j$$

using the case already proved. Then

$$\sum_{j=1}^{m} \psi_j(f_1, \dots, f_m) = \sum_{j=1}^{r-1} f_j + \sum_{j=r}^{m} \psi_j(f_1, \dots, f_m)$$

=
$$\sum_{j=1}^{r-1} f_j + (m-r+1)\psi_m(f_1, \dots, f_m) \text{ by alinea a})$$

=
$$\sum_{j=1}^{m} f_j.$$

as, by (3), with $i = s = m, \ \psi_m(f_1, \dots, f_m) = [f_r, \dots, f_m].$

To prove the uniqueness, suppose that $\varphi = (\varphi_1, \ldots, \varphi_m) \in \mathcal{F}(\Omega)^m$ satisfies conditions a) and b) and let us prove that $\varphi_i(f_1, \ldots, f_m) = [f_r, \ldots, f_s]$ in $\Omega_{r,s}$,

In fact, in $\Omega_{r,s}$, $\varphi_r(f_1, \ldots, f_m) = \cdots = \varphi_s(f_1, \ldots, f_m)$ and then

$$\varphi_{i}(f_{1},...,f_{m}) = \frac{1}{s-r+1} \sum_{j=r}^{s} \varphi_{j}(f_{1},...,f_{m})$$

$$= \frac{1}{s-r+1} \left(\sum_{j=1}^{s} \varphi_{j}(f_{1},...,f_{m}) - \sum_{j=1}^{r-1} \varphi_{j}(f_{1},...,f_{m}) \right)$$

$$= \frac{1}{s-r+1} \left(\sum_{j=1}^{s} f_{j} - \sum_{j=1}^{r-1} f_{j} \right) \quad \text{by condition b}$$

$$= \frac{1}{s-r+1} \sum_{j=r}^{s} f_{j} = [f_{r},...,f_{s}]$$

which completes the proof.

for $1 \leq r \leq i \leq s \leq m$.

We are now in conditions to studied when the average function of f belongs to \mathcal{B}^m and, if Ω is a topological space and f is continuous, when this function is continuous.

Theorem 2.5. With the previous notations:

a)
$$\psi \circ \psi = \psi;$$

- b) \mathcal{A}^m is the image of ψ ;
- c) \mathcal{B}^m is the set of all $f = (f_1, \ldots, f_m) \in \mathcal{A}^m$ such that, if

$$1 \le r \le i < s \le m, \ x \in \Omega_{r,i} \cap \Omega_{i+1,s} \implies [f_r, \dots, f_i](x) \ne [f_{i+1}, \dots, f_s](x).$$

d) if Ω is a topological space and $f = (f_1, \ldots, f_m)$ is a continuous functions of \mathcal{A}^m then $\psi(f)$ is continuous if and only if

$$1 \le r, r' \le i < s, s' \le m, \ x \in \partial\Omega_{r,s} \cap \partial\Omega_{r',s'} \implies [f_r, \dots, f_s](x) = [f_{r'}, \dots, f_{s'}](x) = [f_{r'}, \dots, f_{s'}$$

Proof.

a) Let $j \in \{1, \ldots, m\}$. Then in $\Omega_{r,s}$, for $r \leq j \leq s$,

$$\begin{aligned} (\psi \circ \psi)_j(f_1, \dots, f_m) &= \psi_j \big(\psi_1(f_1, \dots, f_m), \dots, \psi_m(f_1, \dots, f_m) \big) \\ &= \big[\psi_r(f_1, \dots, f_m), \dots, \psi_s(f_1, \dots, f_m) \big] & \text{by (2)} \\ &= \big[[f_r, \dots, f_s], \dots, [f_r, \dots, f_s] \big] & \text{by (2)} \\ &= [f_r, \dots, f_s] = \psi_j(f_1, \dots, f_m). \end{aligned}$$

b) By Theorem 2.4, the image of ψ is contained in \mathcal{A}^m . For the other inclusion, just note that if $(f_1, \ldots, f_m) \in \mathcal{A}^m$, $1 \leq r \leq i \leq s \leq m$, then $f_r = \cdots = f_s$ in $\Omega_{r,s}$ and by consequence $\psi_i(f_1, \ldots, f_m) = [f_r, \ldots, f_s] = f_i$.

c) Use the definition of ψ and Lemma 1.2, b).

d) Fix $i = 1, \ldots, m$, and $f_1, \ldots, f_m \in \mathcal{F}(\Omega)$. We have a family of continuous functions $f_{r,s}: \Omega \to \mathbb{R}$ (with $1 \le r \le i \le s \le m$), defined by $f_{r,s}(x) = [f_r, \ldots, f_s]$, a partition of Ω , $(\Omega_{r,s})_{1 \le r \le i \le s \le m}$ and $\psi_1(f_1, \ldots, f_m): \Omega \to \mathbb{R}$ that is equal to $f_{r,s}$ in $\Omega_{r,s}$. In these conditions, it is well known that $\psi_1(f_1, \ldots, f_m)$ is continuous if and only if $f_{r,s} = f_{r',s'}$ on $\partial\Omega_{r,s} \cap \partial\Omega_{r',s'}$ for all (r,s), (r',s').

Remark 2.6. If we use average functions with weight we obtain similar results. For instance if $\varepsilon_1, \ldots, \varepsilon_m > 0$ and $\varepsilon_1 + \cdots + \varepsilon_m = 1$ then there exists a unique function $\Phi = (\Phi_1, \ldots, \Phi_m) : \mathcal{F}^m(\Omega) \to \mathcal{F}^m(\Omega)$ such that for $(f_1, \ldots, f_m) \in \mathcal{F}^m(\Omega)$

a) if
$$1 \le i < m$$
, $\varepsilon_i \Phi_i(f_1, \dots, f_m) = \varepsilon_{i+1} \Phi_{i+1}(f_1, \dots, f_m)$ in Ω_i ;

b) if
$$1 \le i \le m$$
, $\sum_{j=1} \varepsilon_i \Phi_j(f_1, \dots, f_m) = \sum_{j=1} \varepsilon_i f_j$ in $\Omega \setminus \Omega_i$

The idea is to consider $\Phi_i(f_1, \ldots, f_m) = \frac{1}{\varepsilon_i} \psi(\varepsilon_1 f_1, \ldots, \varepsilon_m f_m).$

3. The average function using characteristic functions

Now we wish to define ψ in terms of the characteristic functions of the coincidence sets $\bigcap_{j=k}^{n} \Omega_{j}$, with $1 \leq k, n \leq m$, with the convention that this intersection is equal to Ω if k > n. To simplify, we will denote those characteristic functions by $\chi_{k,n}$.

Using the equality $\chi_{A \setminus (B \cup C)} = \chi_A - \chi_{A \cap B} - \chi_{A \cap C} + \chi_{A \cap B \cap C}$, for $A, B, C \subseteq \Omega$, we obtain, for $i \leq m$ and $f_1, \ldots, f_m \in \mathcal{F}(\Omega)$,

(6)
$$\psi_i(f_1, \dots, f_m) = \sum_{r \le i \le s} [f_r, \dots, f_s] (\chi_{r,s-1} - \chi_{r-1,s-1} - \chi_{r,s} + \chi_{r-1,s}),$$

and the following result.

Theorem 3.1. If $m \in \mathbb{N}$, $1 \leq i \leq m$ and $f_1, \ldots, f_m \in \mathcal{F}$ then

(7)
$$\psi_i(f_1, \dots, f_m) = f_i + \sum_{1 \le r < s \le m, r \le i \le s} b(r, s, i) \chi_{r, s-1}$$

where

$$b(r,s,i) = \begin{cases} [f_r, \dots, f_s] - [f_r, \dots, f_{s-1}] & \text{if } i = r \\ [f_r, \dots, f_s] - [f_{r+1}, \dots, f_s] & \text{if } i = s \\ \frac{2}{(s-r)(s-r+1)} \Big\{ [f_{r+1}, \dots, f_{s-1}] - [f_r, f_s] \Big\} & \text{if } r < i < s \end{cases}$$

Proof. From equality (6) we obtain that $\psi_i(f_1, \ldots, f_m)$ is equal to

$$\sum_{r \le i \le s} \left\{ [f_r, \cdots, f_s] - [f_{r+1}, \cdots, f_s] - [f_r, \cdots, f_{s-1}] + [f_{r+1}, \cdots, f_{s-1}] \right\} \chi_{r,s-1}$$

The only non trivial part is the one with r < i < s. In this case, if we multiply $[f_r, \dots, f_s] - [f_{r+1}, \dots, f_s] - [f_r, \dots, f_{s-1}] + [f_{r+1}, \dots, f_{s-1}]$ by (s-r)(s-r+1)we obtain, successively

$$\begin{split} (s-r)\sum_{k=r}^{s} f_k - (s-r+1) \left[\sum_{k=r+1}^{s} f_k + \sum_{k=r}^{s-1} f_k \right] + \frac{(s-r)(s-r+1)}{s-r-1} \sum_{k=r+1}^{s-1} f_k \\ -(f_r + f_s) + \left[(s-r) - 2(s-r+1) + \frac{(s-r)(s-r+1)}{s-r-1} \right] \sum_{k=r+1}^{s-1} f_k \\ -(f_r + f_s) + \left[-(s-r+2) + \frac{(s-r)(s-r+1)}{s-r-1} \right] \sum_{k=r+1}^{s-1} f_k \\ -(f_r + f_s) + \frac{2}{s-r-1} \sum_{k=r+1}^{s-1} f_k \\ 2\left([f_{r+1}, \dots, f_{s-1}] - [f_r, f_s] \right), \end{split}$$
which completes the proof.

which completes the proof.

Remark 3.2. The problem we considered in ([1]) was the following: given Ω a bounded open subset of \mathbb{R}^N , E a Banach space contained in $\mathcal{F}(\Omega; \mathbb{R})$, having some additional properties, a closed convex subset of E^N

$$\mathbb{K} = \{ (v_1, \dots, v_N) \in E^N : v_1 \ge \dots \ge v_N \},\$$

 $f_1, \ldots, f_N \in E'$ and a given (not necessarily linear) operator $A : E \longrightarrow E'$, we wanted to prove existence of $(u_1, \ldots, u_N) \in \mathbb{K}$ satisfying

(8)
$$\sum_{j=1}^{N} \langle Au_j, v_j - u_j \rangle \ge \sum_{j=1}^{N} \langle f_j, v_j - u_j \rangle$$

and to study some properties of this solution. With additional assumption on the $f_j, j = 1, ..., N$, our aim was to prove that the inequality (8) could be rewritten as a system of equations, using the coincidence sets $\Omega_i = \{x \in \Omega : u_i(x) = u_{i+1}(x)\}$ and their characteristic functions. This characterization of the inequality by an equality had a decisive importance in the proof of the stability of these coincidence sets under small variations of the given functions f_j , j = 1, ..., N.

References

[1] Azevedo, A. and Rodrigues, J. F. and Santos, L., *The N-membranes problem for quasilinear degenerate systems*, Interfaces and Free Boundaries, **7** (2005), 319-317.