JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE **REVIEW ARTICLE** *J Tissue Eng Regen Med* 2008; **2**: 81–96. Published online 28 March 2008 in Wiley InterScience (www.interscience.wiley.com) **DOI:** 10.1002/term.74

Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery)

P. C. Bessa^{1,2,3}*, M. Casal³ and R. L. Reis^{1,2}

¹3Bs Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

²Institute for Biotechnology and Bioengineering (IBB), PT Government Associated Laboratory, 4710-057 Braga, Portugal ³Molecular and Environmental Biology Centre (CBMA)/Biology Department, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Abstract

Bone morphogenetic proteins (BMPs) are cytokines with a strong effect on bone and cartilage growth and with important roles during embryonic patterning and early skeletal formation. BMPs have promising potential for clinical bone and cartilage repair, working as powerful bone-inducing components in diverse tissue-engineering products. Synthetic polymers, natural origin polymers, inorganic materials and composites may be used as carriers for the delivery of BMPs. Carriers range from nanoparticles to complex three-dimensional (3D) scaffolds, membranes for tissue-guided regeneration, biomimetic surfaces and smart thermosensitive hydrogels. Current clinical uses include spinal fusion, healing of long bone defects and craniofacial and periodontal applications, amongst others. BMP-2 and BMP-7 have recently received approval by the US Food and Drug Administration (FDA) for specific clinical cases, delivered in absorbable collagen sponges. Considering the expanding number of publications in the field of BMPs, there are prospects of a brilliant future in the field of regenerative medicine of bone and cartilage with the use of BMPs. Copyright © 2008 John Wiley & Sons, Ltd.

Received 26 November 2007; Accepted 13 February 2008

Keywords bone morphogenetic proteins; delivery carriers; polymers; biomaterials; clinical uses; tissue engineering

1. Introduction

Every year millions of surgical operations are performed for the healing or repair of an organ. In the past two decades, tissue engineering has emerged as a very promising alternative that circumvents several of the limitations of the existing options of autografting and allografting for the treatment of a malfunction or lost body part. Tissue engineering combines precursor cells from the patient with scaffolding matrices and the stimulus of

Copyright © 2008 John Wiley & Sons, Ltd.

growth factors. Since the advent of tissue engineering, bone has received particular interest, since it is one of the tissues with most regenerative abilities in the human body.

Bone morphogenetic proteins (BMPs) are probably the most important growth factors in bone formation and healing (Reddi, 1998, 2005). These cytokines have been extensively studied during recent decades and, nowadays, recombinant human BMPs (rhBMPs) are widely used in several tissue-engineering products that might serve for the complete regeneration of bone or cartilage. Current applications include rhBMPs loaded in delivery systems made of synthetic or natural polymers and the differentiation of transplanted stem cells from the patient with rhBMPs for later body implantation. The purpose of this review is to cover the latest developments in the research for a BMP delivery carrier involving the

^{*}Correspondence to: P. C. Bessa, 3Bs Research Group – Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: paulo.bessa@dep.uminho.pt; www.3bs.uminho.pt

use of biomaterials science, particularly with the use of natural origin polymers, to the recent preclinical trials and approved products for clinical applications.

2. Delivering BMPs

2.1. BMP carriers – from bench to clinical approval

The main role of a delivery system for BMPs is to retain these growth factors at the site of injury for a prolonged time frame, providing an initial support to which cells attach and form regenerated tissue (Seeherman and Wozney, 2005). The carrier should provoke optimal inflammatory responses, be biodegradable to allow the formation of an interface with the surrounding biological tissue or complete biodegradability for complete invasion of healed tissues, and present adequate porosity to allow the infiltration of cells and formation of blood vessels at the new bone. Furthermore, the carrier should protect the BMPs from degradation and maintain its bioactivity whilst releasing the protein in a time- and space-controlled way to promote the formation of new bone at the treatment site. Finally, carriers should be conveniently sterilizable, easy to handle, stable over time with well-defined storage procedures, as well as suitable for commercial production, allowing scale-up production and approval by regulatory agencies. The type of tissue to be regenerated is also of critical importance, as different mechanical requirements apply for the repair of bone, cartilage or tendon. For example, bone carriers are simplified by the fact that, upon fracture, bone is immobilized, but carriers should allow vascular ingrowth, due to the highly vascularized nature of bone. In cartilage, defects are subject to high compressive and shear stresses, thus making healing more challenging. In tendon, the regenerative ability appears to be intermediate between those of bone and cartilage, so tendons are very difficult to immobilize, needing a carrier that is able to withstand considerable tensile forces. The geometry of the carrier also significantly affects the biophysical process of osteoinduction and capillary penetration (Jin et al., 2000). Taking all these factors into consideration, researchers also have to keep in mind that the carrier is evidently aimed for common usage by surgeons and physicians.

2.2. BMP retention at the orthopaedic site

The delivery of BMP should last for a sufficient period of time to induce a specific amount of bone mass to treat the defect. Retention of BMP at the orthopaedic site of injury is affected by many parameters, such as the interaction between the biomaterial and the BMP, and the influence of pH, temperature, porosity and the influence of salt concentrations. Evidently, retention of the growth factor depends on whether the BMP is immobilized on the carrier during its manufacture or absorbed into the surface of the device.

Immobilization of the BMPs in a delivery system may be performed by different methodologies: via adsorption, entrapment or immobilization, or by covalent binding (Luginbuehl et al., 2004). In case of adsorption, impregnation of the delivery matrix with the BMP is simpler but conformational changes might occur and the release of the protein be less sustained. Furthermore, delivery by adsorbed growth factors often results in initial burst release. With entrapment methodology, hydrophobic polymeric matrices are well known and described to immobilize and release bioactive agents over extended periods of time (Langer and Folkman, 1976). However, difficulty arises over the fact that during processing of certain materials into carriers, pH conditions or temperature conditions often result in denaturation of the protein. Much research nowadays aims to develop specific methods of producing delivery carriers for BMPs that do not cause their loss of activity. Lastly, the BMP may become immobilized by covalent binding to the carrier. This may be performed by production of a fusion BMP protein with a domain of specific binding to a biomaterial (Suzuki et al., 2000). In this regard, recombinant technology offers great versatility for expression of a BMP capable of binding to most natural polymers. Other interesting approaches include exploring the strong affinity of BMPs to the extracellular matrix heparan sulphate/heparin proteoglycans (Blanquaert et al., 1999), ion complexation by binding to charged polymers, as in the cases of chitosan, alginate, hyaluronans or synthetic polyelectrolytes (Yamamoto et al., 1998), and crystallization of growth factors (Jen et al., 2002).

2.3. Pharmacokinetic profiles of released BMPs

It is crucial to consider that release should preferably be sustained over time. Extremes in release profiles, such as long low-amount release of BMPs or initial burst of BMPs, are known not to be beneficial to bone healing. A delicate balance in the concentration of BMPs helps to prevent either insufficient binding to the carrier due to low concentration or precipitation due to high BMP concentration. The time of release may be dependent on the type of fracture or the application in question. It is clear that there is more than one desirable pharmacokinetic profile. The pharmacokinetic profile varies according to the material in consideration, its formulation and the type and amount of BMP in use. By chemical modification of the carrier or the BMP, we may achieve a specific release profile, which is of interest since different BMPs may present different release profiles due to their different amino acid sequences; and different species have different optimal release profiles (Li and Wozney, 2001) and the chances are that the optimal profile may be also site-specific. Depending on the site of injury or on a particular application, various formulations of delivery systems may be designed,

Bone morphogenetic proteins in tissue engineering: part II

from simple nano/microparticles to scaffolds of increased three-dimensional (3D) complexity, such as those that mimic the physical properties of the extracellular matrix, or hydrogels that respond to physiological shifts such as pH or temperature.

3. Carrier BMPs

3.1. Synthetic biodegradable polymers

Synthetic polymers have been widely used in tissueengineering applications (Saito and Takaoka, 2003) (See Table 1). Initially, poly(lactic acid) (PLA) was investigated as a carrier for BMP delivery (Miyamoto et al., 1992) but the material was considered ineffective due the release of acidic degradation by-products. However, novel biodegradable synthetic polymers have attracted attention, since these are free of the risk of disease transmission that occurs with other materials used for bone applications, such as collagen. Biodegradable polymers, such as polylactic acid-*p*-dioxanone-polyethylene glycol (PLA-DX-PEG), allow percutaneous injection after heating, for use as a scaffold and a delivery carrier for BMPs, due to its versatile temperature-dependent liquid-semisolid transition. This plasticity allows the biodegradation of the polymer to be synchronized with the induction of new bone by BMP (Saito et al., 2001), and this type of injectable polymeric delivery system, polymerization

in situ, enables a less invasive approach to bone surgery (Saito et al., 2003b). These scaffolds were tested, as carriers for BMPs, in a variety of models, such as a canine spinal fusion model and in the formation of artificial joints (Saito et al., 2005b), for long bone defects in rabbits (Yoneda et al., 2005) and in dogs (Murakami et al., 2003), and in healing of rat cranial defects (Suzuki et al., 2006). These studies showed that PLA-DX-PEG delivered rhBMP-2 successfully, inducing the repair of bone defects several weeks after implantation. In other reports, composites of PLA-DX-PEG with calcium phosphate were shown to require less rhBMP to induce new bone formation in mice (Matsushita et al., 2004) and in healing femur defects of rabbits (Matsushita et al., 2006). Composites of PLA-PEG with hydroxyapatite were also evaluated for articular cartilage repair in rabbits (Tamai et al., 2005) and in a rabbit radii model (Kaito et al., 2005), showing enhanced tissue repair in the animals treated with rhBMP-2 and hydroxyapatite composites.

Poly(lactic-co-glycolic acid) (PLGA) combines the adsorptive stability of PLA with the mechanical strength of polyglycolic acid (PGA) and has received particular attention (Winet and Hollinger, 1993). Biodegradation of the synthetic composite is achieved by varying the proportion of each of the two component materials (Miller *et al.*, 1977; Grayson *et al.*, 2004). PLGA as a carrier for rhBMP-2 delivery was reported in alveolar cleft repair in dogs (Mayer *et al.*, 1996), in gelatine sponge composites in a rabbit ulna model (Kokubo *et al.*, 2003),

Table 1. Synthetic polymer-based matrices/scaffolds for drug delivery of BMPs for tissue-engineering applications

Polymer(s)/carrier/scaffold structure	Formulation	Biological model	References
PLA	Scaffolds	Rabbit ulna	(He et al., 2003)
	Scaffolds	In vitro differentiation of chondrocytes	(Yang et al., 2006)
	Scaffolds	Rat ectopic bone formation	(Chang et al., 2007)
PLA–collagen	Membrane	Rabbit ectopic bone formation	(Tian et al., 2004)
PLA-collagen-HA	Composites	Radius defects in dogs	(Hu et al., 2003)
-	Composites	Mice ectopic bone formation	(Zhang et al., 2005)
PLA-PEG-HA	Composites	Rabbit radius model	(Kaito et al., 2005)
	Composites	Articular cartilage repair rabbits	(Tamai <i>et al.</i> , 2005)
PLA-DX-PEG	Scaffolds	Femoral canine model	(Murakami et al., 2003)
	Scaffolds	Rat cranial defects	(Suzuki et <i>al.</i> , 2006)
	Scaffolds	Mice ectopic bone formation	(Kato et al., 2006)
PLA–DX–PEG–CaP	Composites	Ectopic bone formation in mice	(Matsushita et al., 2004)
	Composites	Spinal fusion in rabbits	(Namikawa et <i>al</i> ., 2005)
	Composites	Femur defects in rabbits	(Yoneda et al., 2005)
	Composites	Femur defects in rabbits	(Matsushita et al., 2006)
PGA	Membrane	Periodontal repair in dogs	(Wikesjo et al., 2003)
	Scaffolds	In vitro cartilage formation	(Blunk et al., 2003)
	Scaffolds	Cervical spinal fusion in goats	(Lippman <i>et al</i> ., 2004)
PLGA	Scaffolds	Alveolar cleft repair in dogs	(Mayer <i>et al</i> ., 1996)
	Scaffolds	Rabbit radius defects	(Hu et al., 2005)
	Scaffolds	Alveolar ridge defects in rats	(Shimazu et al., 2006)
	Scaffolds	Canine mandible defects	(Jones <i>et al</i> ., 2006)
	Scaffolds	Reconstruction of orbital floor defects in sheep	(Zheng <i>et al</i> ., 2006)
PLGA–heparin	Composite	Rat ectopic model	(Jeon <i>et al</i> ., 2007)
PLGA–gelatine	Composites	Rabbit ulna defects	(Kokubo et al., 2003)
	Composites	Tooth defects in dogs	(Kawamoto et <i>al</i> ., 2003)
	Composites	Tibia defects in dogs	(Kokubo et al., 2004)
PEG-based	Hydrogels	Rat cranial defects	(Lutolf et al., 2003a, 2003b)
PEG-based, heparin	Hydrogels	Rat critical-sized calvarial defects	(Pratt et al., 2004)
PEG-based	Hydrogels	Rat critical-sized calvarial defects	(Rizzi et <i>al.</i> , 2006)
Polypropylene fumarate	Hydrogels	Proliferation of chondrocytes	(Fisher <i>et al</i> ., 2004)
Isopropylacrylamide	Hydrogels	Ectopic bone formation	(Gao and Uludag, 2001)

in tooth defects of dogs (Kawamoto et al., 2003) and in combination with bone marrow cells in a rabbit segmental bone defect model (Hu et al., 2005). These studies confirm the good results that are usually obtained with PLGA scaffolds; bone formation was observed successfully when the scaffolds delivered rhBMP, as compared to controls. The dosage of rhBMP was also observed to significantly affect the repair of bone defects. Recently, PLGA scaffolds have been also tested in rats (Shimazu et al., 2006), a canine model (Jones et al., 2006) and sheep (Zheng et al., 2006), showing that delivered BMP induced much higher bone formation than the scaffold alone over the several weeks following implantation. Another report, which involved a PLGA scaffold conjugated to heparin, showed that a much longer sustained release of rhBMP-2 and significantly increased in vivo new formation of bone were achieved (Jeon et al., 2007), indicating the promising potential that heparin has as a stabilizing agent for BMP bioactivity.

Synthetic polymers have been also formulated as hydrogels for the delivery of BMPs. Since hydrogels contain large amounts of water, they are interesting devices for the delivery of therapeutic proteins. Lutolf et al. (2003a, 2003b) reported using synthetic PEGbased hydrogels that mimic the invasive characteristics of extracellular matrices, with integrin-binding sites for cell attachment and substrates for matrix metalloproteinases, in a rat model for rhBMP-2 delivery. The authors demonstrated that cells were able to fully penetrate the hydrogels and bone tissue was formed within 3-4 weeks in the gels that delivered rhBMP-2. Similarly, PEGbased hydrogels were reported by Pratt et al. (2004), showing that cells were able to fully invade the gel networks that were conjugated with peptides that mimic characteristics from extracellular matrix, such as plasmin and a heparin molecule to improve the rhBMP-2 stability. In another study, Fisher et al. (2004) evaluated thermoreversible hydrogels of poly(propylene fumarate-co-ethylene glycol) that mimicked properties of cartilage matrix hydrophilic proteoglycans, for cartilage tissue engineering, using rhBMP-7. The solutions of this polymer were aqueous at 25 °C but readily polymerized into gel above 35 °C. The group proposed the use of these hydrogels for articular cartilage repair. Identically, Gao and Uludag (2001) also reported using rhBMP-2 in Nisopropylacrylamide-based thermoreversible hydrogels in a rat model. The authors studied the effect of different hydrogel compositions on the in vivo retention of rhBMP and conclude that these polymers were very versatile for delivering proteins such as BMPs in more effective and controlled ways. A major disadvantage of the use of synthetic polymers is the risk of an inflammatory response, due to acidic by-products of degradation (Winet and Hollinger, 1993), which may be also detrimental to the stability of the incorporated BMPs. This has led researchers to look forward to other materials, such as collagen and other natural polymers, as alternatives for BMP delivery.

3.2. Collagen

Collagen is the major non-mineral component of bone and also the most abundant protein in connective tissues of mammals. Collagen has received much attention due to having good biocompatibility, degrading into physiologically compatible products and being suitable for interaction with cells and other macromolecules. The large variety of collagen formulations includes collagen gels, demineralized bone matrix, fibril collagen, collagen strips, membranes, absorbable collagen sponges and composites (Kirker-Head, 2000; Geiger et al., 2003). Another advantage is that collagen can be processed in aqueous form. Collagen also has a favourable influence on cell infiltration and wound healing. During the last years, most researchers have focused on the use of absorbable collagen sponges, although several other formulations have been investigated (Kirker-Head, 2000). Collagen sponges are very versatile, easily manipulated and wettable. The manufacture of collagen sponge carrier depends on several factors, including sponge mass, crosslinking methods, sterilization methods, soaking time, protein concentration and buffer composition (Geiger et al., 2003). These steps impact the interaction of the BMP with the collagen carrier and therefore the profile and the efficacy of released protein. For collagen sponges, binding of rhBMP is highly dependent on pH. Studies using modified versions of recombinant BMP led to the conclusion that modification of the isoelectric point could bring up to 100-fold differences in the retention of protein to the collagen carrier (Uludag et al., 1999b). Binding of rhBMP-2 is therefore dependent on the isoelectric point of the two proteins and other factors, such as ionic strength. Collagen sponges have since been tested and evaluated in several animal models and clinical trials for cases of fracture repair, critical size defects, spinal fusion and dental and craniofacial reconstruction (Geiger et al., 2003). The collagen sponge consists of lyophilized rhBMP, which is reconstituted with water prior to injection and impregnates the collagen sponge for several minutes before implantation. Two models using collagen sponges delivering recombinant human BMP-2 or BMP-7 were approved by the FDA for human use as an alternative to bone grafts, for spinal fusion and long bone fractures, after many pre-clinical trials that have been recently reviewed (Gautschi et al., 2007). The collagen sponge holds the BMP and releases it only in the local environment where the surgery was performed, eliminating the need to harvest autologous bone, which causes post-operative pain. Based on the extensive preclinical and clinical trials, the use of collagen sponges delivering BMPs has been revealed to be a safer and superior alternative to autogenous bone grafting. However, although showing success, collagen sponges pose risks of immunogenic reactions, since the collagen used on these applications is derived from animal tissues, creating concerns about the risks of transmission of infectious agents and immunological reactions. For this reason, the development of a superior carrier material

Polymer(s)/carrier	Formulation	Biological model	References
Alginate	Hydrogels	Ectopic bone formation in mice	(Simmons et al., 2004)
	Gels, synthetic BMP-2 oligopeptides	Ectopic bone formation and tibial defects in rats	(Suzuki <i>et al</i> ., 2000; Saito <i>et al</i> ., 2003a, 2004, 2005a)
	Gels	Rabbit radial bone defects	(Saito et al., 2006)
Carboxymethylchitosan	-	In vivo cartilage formation	(Mattioli-Belmonte <i>et al.</i> , 1999)
Chitosan	Nanofibre membranes	Differentiation of osteoblast cells	(Park et al., 2006)
	Chitosan films	Differentiation of C2C12 cell line	(Lopez-Lacomba et al., 2006)
Chitosan–alginate	Gels	Trabecular bone formation in mice	(Park <i>et al.</i> , 2005a)
Chitosan–gelatine	Composites	Differentiation of osteoblasts/myoblasts	(Liang et al., 2005)
Chitosan-PGA	Composites	*	(Hsieh <i>et al</i> ., 2006)
Dextran	Hydrogels	Rat ectopic model	(Maire <i>et al</i> ., 2005)
Fibrin	Sealant	Dental pulp of dogs	(Ren <i>et al</i> ., 2000)
	Gels	Rats, rabbits, dogs and cats;	(Schmoekel <i>et al</i> ., 2004, 2005a,
		different types of bone defects	2005b)
	Sealant	Rat calvarial defects	(Han <i>et al.</i> , 2005)
	Sealant in PCL scattolds	*	(Rai et al., 2005)
	Sealant	Ectopic bone formation in mice	(Zhu et al., 2006a, 2006b)
	– Carlant	Humans, frontal bone defect	(Arnander et al., 2006)
	Sealant	marrow cells	(Cul et al., 2007)
Fibrin–CaP	Sealant	Rat calvarial defects	(Hong <i>et al</i> ., 2006)
Fibrin–collagen	Sealant in collagen sponge	Rat spinal model	(Patel <i>et al</i> ., 2006)
Gelatine	Hydrogels	Rabbit skull defects	(Hong e <i>t al</i> ., 1998)
	Hydrogels	Ectopic bone formation in mice	(Yamamoto e <i>t al</i> ., 2001, 2003)
	Hydrogels	Critical-sized defects in rabbit ulnas	(Yamamoto e <i>t al</i> ., 2006)
	Hydrogels	Skull; non-human primates	(Takahashi et al., 2007)
Gelatine/dextran	Hydrogels	Differentiation on human periodontal ligament cells	(Chen <i>et al</i> ., 2007a, 2007b)
Hyaluronic acid	Hydrogels	Ectopic bone formation in rats	(Bulpitt and Aeschlimann, 1999)
	Sponges	Alveolar ridge defects in dogs	(Hunt <i>et al.</i> , 2001)
	Scaffolds	Differentiation of CH3H10T1/2 cells	(Kim and Valentini, 2002)
	-	Periodontal repair in dogs	(Wikesjo <i>et al</i> ., 2003)
	Gels	Osteotomy in non-human primates	(Seeherman et al., 2004)
	Gels	Non-union tibial defects in rabbits	(Eckardt <i>et al</i> ., 2005)
	Sponges	Rat mandibular defects	(Arosarena and Collins, 2005a, 2005b)
Hyaluronan acrylated	Hydrogels	Rat calvarial defects	(Kim et al., 2007)
Hyaluronic acid–Ti	Composites	Cranial defects in rats	(Itoh <i>et al</i> ., 2001)
Hyaluronic acid-HA	Scaffolds	Osteointegration in cancellous bone in sheen	(Aebli <i>et al</i> ., 2005)
Hyaluronic acid–PLA	Composites	Critical size defect in rat femurs	(Vogelin <i>et al.,</i> 2005)
Silk fibroin	Films	Cranial defects in mice	(Karageorgiou et al., 2004)
	Scaffolds, loaded with human stem cells	Cranial defects in mice	(Karageorgiou et al., 2006)
	Electrospun nanofibres	Differentiation of human bone	(Li et al., 2006)
	•	marrow cells	
	Scaffolds, loaded with human stem cells	Critical size femur defects in rats	(Kirker-Head <i>et al.</i> , 2007)

Table 2.	Natural origin	polymer-based	matrices fo	r delivery	of BMPs fo	or tissue-engineeri	ng applications	. Please refe	r to 1	fable 3 for
micro- a	nd nanoparticle	formulations		-		-				

*These studies involved solely material testing and delivery kinetics, with no in vitro or in vivo bioactivity models

for BMP delivery based on other natural polymers is currently being investigated. Alternatively, other sources of collagen, i.e. of recombinant origin, provides a means of obtaining reliable and chemically defined sources of purified human collagens that are free of animal components (Yang *et al.*, 2004).

3.3. Natural origin polymers

The materials for tissue engineering applications should ideally mimic the natural environment of tissues and, in this regard, natural polymers can send signals to guide cells at the various stages of their development and thus accelerate healing (Mano and Reis, 2007). There are several natural polymers that may be used as carriers for BMP delivery (See Table 2). These include collagen, starch-based polymers, chitin and chitosan, hyaluronans, alginate, silk, agarose, soy- and alga-derived materials, and poly(hydroxyalkanoates) (Mano et al., 2007). Several of these polymers are derived from substances occurring in bone, cartilage or the extracellular matrix. For this reason, these materials often present excellent properties for use in regenerative medicine applications, such as being biodegradable, bioresorbable and versatile, as they may be processed into different formulations (Malafaya et al., 2003; Gomes et al., 2004). Natural polymers may present risks of immunogenic reactions and disease transmission, and disadvantages such as the sourcing and processing of the materials. Nevertheless, researchers have been looking for materials from plant origin and produced by microorganisms and/or from recombinant technology which may overcome these concerns.

Alginate is a generally safe polysaccharide, known to support the proliferation of chondrocytes *in vitro* (Park *et al.*, 2005b). Very interesting work has been developed by Saito and colleagues with small synthetic peptides corresponding to BMP-2 regions binding to cell receptors, incorporated in cross-linked alginate gels, showing *in vitro* osteogenic differentiation and success in repairing bone defects in rats (Saito *et al.*, 2003a, 2004, 2005a) and in rabbit radial bone defects (Saito *et al.*, 2006). The use of alginate seems to be particularly appealing for cartilage tissue-engineering applications, since alginate is a major component of cartilage tissue. Alginate hydrogels were also reported for the delivery of rhBMP-2 in rats (Simmons *et al.*, 2004) with the use of bone marrow cells with RGD peptide for improving cell adhesion.

Chitosan is another natural degradable polymer, obtained by alkaline deacetylation of chitin, extracted from the exoskeletons of arthoropods. Chitosan has been formulated in many forms, such as hydrogels (Baran et al., 2004) and fibre meshes (Tuzlakoglu et al., 2004), that showed potential for use in osteochondral tissue engineering, making it suitable for BMP delivery (Prabaharan and Mano, 2005). Several studies have reported the use of chitosan for delivering BMPs, particularly in composites with synthetic polymers or with other natural polymers. A chitosan-alginate composite gel, loaded with mesenchymal stem cells and rhBMP-2, was evaluated as an injectable tissue-engineering construct in mice and induced new trabecular bone formation over a period of 12 weeks (Park et al., 2005a). Liang and colleagues described a chitosan-gelatine scaffold with incorporated rhBMP-2 (Liang et al., 2005) which demonstrated increased expression of bone-marker osteocalcin in osteoblast and myoblast cell lines. In another report, a chitosan blend with PGA was studied as a novel delivery carrier for rhBMP-2 (Hsieh et al., 2006). Derivatives of chitosan are also reported. Chemical modification of chitosan may enhance certain bioactive properties and increase its solubility in water, thus aiding in the incorporation of rhBMPs, such as in the case of carboxymethyl chitosan. Mattioli-Belmonte et al. (1999) reported the use of N,N-dicarboxymethyl chitosan, with delivery of rhBMP, for enhancing cell proliferation and healing in articular cartilage lesions. Recently, rhBMP-2 was immobilized directly on a guided bone-regenerative membrane surface, made of chitosan nanofibres, that functioned as a bioactive surface to enhance bone-healing (Park et al., 2006). The BMP-2-conjugated membrane surface retained bioactivity for up to 4 weeks of incubation, as well as holding over 50% of the initial BMP-2 attached, promoting cell attachment, proliferation, ALP activity and calcification, when compared with BMP-2 absorbed to the membrane. In two other studies, dextran/gelatine-based microspheres, containing rhBMP-2, were adhered to chitosan films for guidedtissue regeneration (Chen et al., 2005a) and chitosan membranes activated with BMP-2 were also reported to successfully differentiate C2C12 cells (Lopez-Lacomba et al., 2006).

Fibrin is derived from blood cots and can be formulated into an adhesive glue-like delivery system (Hattori, 1990). Fibrin has been used as a delivery system for BMPs in a variety of animal models, including the use of a fibrin-fibronectin sealing system for rat calvarial defects as a carrier for rhBMP-4 (Han et al., 2005) and for rhBMP-2 (Hong et al., 2006), and a fibrin sealant with rhBMP-2 in the healing of dental pulp of dogs (Ren et al., 2000). In these reports, bone formation was much higher when the fibrin carrier was loaded with the rhBMP, as compared to controls. Fibrin glue might be also a great aid in limiting the diffusion of BMPs into the surrounding tissues, which could cause undesirable biological effects. In a rat spinal model, fibrin glue significantly limited the diffusion of rhBMP-2 that was loaded into a collagen sponge, preventing the BMP from inducing bone growth in the surrounding spinal cord and nerves (Patel et al., 2006). Interesting research has been developed by the Hubbell group with the use of fibrin matrices for the delivery of rhBMPs (Schmoekel et al., 2004, 2005a, 2005b). The group studied the influence of a non-glycosylated form of rhBMP-2 (Schmoekel et al., 2004) in fibrin. Since nonglycosylated rhBMP-2 is less soluble, retention into the fibrin scaffold was enhanced. The fibrin matrices were used to treat critical-size defects and non-unions in rats, dogs and cats. In these studies, bridging of bone defects showed more successful percentages of tissue healing when compared to controls. The group has also reported the use of a fusion BMP protein with an affinity domain to fibrin to increase binding to the carrier (Schmoekel et al., 2005b). Recently, a study using fibrin constructs to deliver rhBMP-2, vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2), combined with hyaluronic acid or collagen, dramatically improved the ability of blood vessels to directly invade the fibrinbased scaffolds (Smith et al., 2007). Finally, a human trial was reported showing partial reconstruction of a frontal bone defect using heparin together with bovine collagen, hyaluronic acid and fibrin as vehicles for rhBMP-2 (Arnander et al., 2006). Altogether, fibrin glue certainly seems to be a very useful addition to a bone tissueengineering scaffold using BMPs, considering that it aids in promoting osteoinduction (Schwarz et al., 1993) and retention of growth factors (Hubbell, 2006).

Hyaluronans are present in the extracellular matrix and can be formulated into gels, sponges and pads. Hyaluronans have been used in a variety of trials as a delivery vehicle for rhBMPs, including in sponge form in the treatment of alveolar ridge defects in dogs (Hunt *et al.*, 2001), periodontal repair in dogs (Wikesjo *et al.*, 2003), tibial defects of rabbits (Eckardt *et al.*, 2005), in sheep in combination with hydroxyapatite (Aebli *et al.*, 2005), in the healing of critical size defect in rats in composites with polylactic acid (Vogelin *et al.*, 2005), and in gel and paste forms in non-human primates (Seeherman *et al.*, 2004). Kim and Valentini (2002) evaluated the kinetics of hyaluronic acid as a delivery system for rhBMP-2 *in vitro* and demonstrated that hyaluronan-based carriers retained more BMP than collagen gels. In two other studies, hyaluronic acid was used to deliver BMPS for treating mandibular defecs of rats (Arosarena and Collins, 2005a, 2005b). Significantly more bone was formed in presence of rhBMP-2 and, although not significant, the volumes of new bone were larger for the hyaluronic acid carrier. Recently, a acrylated hyaluronic acid hydrogel was used with human mesenchymal stem cells and rhBMP-2 for healing of rat calvarial defects (Kim et al., 2007). Higher levels of osteocalcin expression and bone formation occurred when the BMP-2 and stem cells were tested. Diverse hydrogel formulations of hyaluronic acid were also evaluated by Bulppit and Aeschlimann (1999), showing excellent cell infiltration and osteochondral differentiation when loaded with BMP-2 in combination with either insulin growth factor-1 or transforming growth factor beta, implanted into rats. Hyaluronans are observed to interfere positively with BMP cascade (Zou et al., 2004) and, since these are part of the extracellular matrix, they may well be priority choices as scaffolds for the delivery of BMPs in regenerative medicine of bone.

Gelatine has been used mostly in form of hydrogels for delivery of BMPs. Gelatine is an irreversibly hydrolysed form derived from collagen that is usually cross-linked or hardened through thermal treatment to reduce its high water solubility and enhance the retention of protein to achieve a long-term release. Gelatine hydrogels delivering rhBMP-2 were studied in rabbit skulls (Hong et al., 1998), in mice (Yamamoto et al., 2003) and recently in the skulls of non-human primates (Takahashi et al., 2007). Gelatine hydrogels delivering rhBMP-2 were observed to show higher levels of ALP and osteocalcin in comparison with rhBMP-2 delivered in collagen sponges (Yamamoto et al., 2003). Recently, thermomechanical hydrogels based on methacrylated dextran in combination with gelatine have been reported by Chen et al. (2007a, 2007b). The group used rhBMP-2 encapsulated in microspheres of the same materials, loaded into the hydrogels, which delivered the growth factor over a period of 18-28 days. Their work is discussed below in the section on nanoparticles.

Dextran is another natural polysaccharide, synthesized by some bacteria, that has attracted attention for use as a BMP delivery system, because of its excellent hydrophilic nature and biocompatibility. Dextran has been particularly used in the form of nanospheres for delivery of rhBMPs, which is detailed in a later section. Dextran hydrogels has been evaluated for rhBMP-2 delivery, both *in vitro* and *in vivo*, in a rat ectopic model, showing formation of new bone (Maire *et al.*, 2005). The possibility of using natural polymers for designing intelligent hydrogel systems for BMP delivery is also an interesting and very attractive option. However, no studies have been reported with the use of these systems.

Starch-based polymers are another interesting alternative for delivering BMPs that was proposed by Reis as materials with high potential for tissue engineering of bone and cartilage, due to their interesting mechanical properties (Malafaya *et al.*, 2001; Elvira *et al.*, 2002). These starch-based polymers are used in composites with different synthetic polymers and have been formulated into a variety of forms, such as hydrogels (Pereira *et al.*, 1998), nanofibres (Tuzlakoglu *et al.*, 2005), microparticles (Silva *et al.*, 2004) or 3D scaffolds (Gomes *et al.*, 2002). The wide variety of formulations and composites make these polymers suitable scaffolds for bone tissue engineering and controlled release of BMPs. In general, composites of natural polymers with synthetic polymers may become the future option of choice for bone tissue engineering, since they combine the specificities of synthetic and natural polymers to produce superior materials.

Silk fibroin is a protein derived from cocoons made by the larvae of silkworms. Silk has been proposed and widely investigated as a delivery carrier for BMPs in some contributions reported by the Kaplan group. In one study, rhBMP-2 was directly immobilized on silk fibroin films and the effect of the delivery system studied in human bone marrow stromal cells and in critical-sized cranial defects in mice (Karageorgiou et al., 2004). The rhBMP retained its biological activity. In another report, silk scaffold fibres, prepared by electrospinning, were used to deliver rhBMP-2 and hydroxyapatite nanoparticles for in vitro bone formation (Li et al., 2006). The rhBMP-2 survived the aqueous-based electrospinning process in bioactive form and induced osteogenesis in cultures of human mesenchymal stem cells. The group also tested BMP-2 delivered via silk fibroin scaffolds in critical size defects in mice (Karageorgiou et al., 2006). In both studies, the delivered rhBMP-2 increased levels of ALP activity and calcium deposition and transcript levels for bone sialoprotein, osteopontin, osteocalcin and runx2. In recent years Meinel and co-workers have evaluated the use of silk for tissue engineering constructs with silk-RGD covalently bound matrices, in human mesenchymal cells (Meinel et al., 2004), but not with use of BMPs. Meinel et al. (2006) tested human stem cells loaded in silk fibroin scaffolds, in combination with rhBMP-2, and compared stem cells transfected with BMP-2 via an adenovirus with exogenous protein. The expression of osteogenic markers was induced but the BMP was not studied when delivered directly on the silk scaffolds. Recently, rhBMP-2 delivered via silk fibroin scaffolds in combination with human mesenchymal stem cells was reported, with promising results, in the healing of critical-sized defects of femurs in rats (Kirker-Head et al., 2007). Compared with other protein-based materials, such as collagen, silks have distinguishable mechanical properties, presenting slower degradation times and thus allowing adequate time for proper bone remodelling. For this reason, silk is a feasible and potential option as a carrier for the controlled delivery of BMPs and, in general, for generating diverse bone tissue-engineering constructs for clinical applications (Meinel et al., 2005). Other possible sources of natural polymers for BMP delivery include soy, casein, polyhydroxyalkanoate, polyhydroxybutyrate, corals, carrageenan, gellan gum, agarose and other fibrous proteins, such as keratin and elastin (Kirker-Head et al., 2007).

3.4. Ceramics

Many studies have been dedicated to the understanding of the processes of bone mineralization and it was concluded that ceramic materials, such as hydroxyapatite (HA) and other types of calcium phosphates, can, when implanted, promote the formation of a bone-like mineral surface layer that leads to an increased interface between the materials and the surrounding bone. Calcium phosphate for tissue engineering of bone includes the use of calcium phosphate layers, films or coatings to promote bone ingrowth, and the use of calcium phosphate fillers to replace fractured or damaged bone. Hydroxyapatite (HA) is a form of calcium phosphate mineral that comprises 70% of bone and can be formulated as a powder, granules, disks or blocks (Tsuruga et al., 1997). However, for bone tissueengineering applications, specific formulations work better than others, dependent on the geometric structure of the carrier (Kuboki et al., 1998). Hydroxyapatite is a fairly osteoconductive material, and has been used for BMP delivery alone (Noshi et al., 2001) or in composites with natural or with synthetic polymers, as previously detailed. Hydroxyapatite has been used in combination with collagen for rabbit spinal fusion (Kraiwattanapong et al., 2005), with natural origin polymers (Aebli et al., 2005), with tricalcium phosphate in a rabbit calvarial model delivering rhBMP-2 (Schopper et al., 2007), for differentiating mesenchymal stem cells with BMP-14/GDF-5 (Shimaoka et al., 2004), or for lumbar spinal fusion in non-human primates (Boden et al., 1999). Based on these and other studies, hydroxyapatite has proved to be a suitable carrier for BMP delivery, not only enhancing the delivery of the growth factor but also in aiding its retention to the carrier and the osteoconductivity of the scaffold (Uludag et al., 1999a).

Calcium phosphates for delivery of BMPs include calcium phosphate (Ca-P) cements and ceramics and calcium phosphate coatings. Ca-P cements have been extensively investigated, as they are osteoconductive, biocompatible and show fast deposition of new bone at the cement surface (Driessens et al., 1998). The BMP may be incorporated into low-temperature Ca-P cements by adding the protein in lyophilized form, or in aqueous phase prior to formation of cement, without any risk of denaturation of the growth factor. In high-temperature cements, the BMP is generally only adsorbed onto the surface. A porous structure can be fabricated to mimic the structure of trabecular bone (Dutta Roy et al., 2003). Trials for rhBMP-2 delivery have included studies in rabbit ulnas (He et al., 2003) and femurs (Cao et al., 2006) and a canine tibial defect model (Edwards et al., 2004). These studies have demonstrated that the use of Ca-P cements accelerates bone healing. Trials are have also demonstrated the efficacy of calcium phosphate matrices in some nonhuman primates trials, such as in alveolar ridge surgery using a composite of Ca-P, hydroxyapatite and a collagen sponge (Miranda et al., 2005), in osteotomy sites with a single percutaneous injection of rhBMP-2 loaded into Ca-P cements (Seeherman *et al.*, 2006a), and in posterolateral fusion, where Ca-P functioned as a bulking agent to improve the osteogenic potential of rhBMP-2 loaded onto an absorbable collagen sponge (Barnes *et al.*, 2005). Seeherman *et al.* (2006b) also reported achieving bridging of critical-sized defects in rabbits using the same minimally invasive injectable Ca-P cements. Ruhé *et al.* (2005, 2006) also reported several *in vivo* studies with the use of calcium phosphate cements loaded with rhBMP-2. A main advantage of the use of calcium phosphates compared to other carriers is that, in general, high doses of rhBMPs are not required (Yuan *et al.*, 2001).

Calcium phosphate coatings are another elegant approach for delivering BMPs, by incorporating these growth factors into the lattice-work of these mineral layers that may be used to coat specific scaffold materials. The BMP is biomimetically deposited during the formation of the calcium phosphate film that is formed when the material is immersed in a solution of simulated body fluid that mimics the human blood plasma (Liu et al., 2004). The de Groot group has used calcium phosphate-coated titanium disks for delivery of rhBMP-2 in a rat model, showing that much lower concentrations of BMP are required in comparison with collagen matrices (Liu et al., 2004, 2005). Alternatively, bioactive glass (45S5 - Bioglass[®]), a synthetic surface reactive glass that is commonly used as a filler for damaged or fractured bone, may be also used to form biomimetic calcium phosphate-coated scaffolds (Leonor et al., 2003). The biomimetic layers, similar to bone apatite, may be used in combination with BMPs to guide the attachment and differentiation of bone precursor cells, given that the coatings have been shown to promote osteointegration and osteoinduction. Silva et al. (2004) proposed using blends of starch with polylactic acid and bioglass microspheres for the delivery of BMPs. Promising potential arises from the fact that bioglass is osteoconductive and osteoinductive, stimulating the recruitment and differentiation of osteoblasts, which produce new bone and completely resorb the material.

3.5. Microparticles and nanoparticles for BMP delivery

The search for efficient, simple and cheap delivery systems for drug targeting has led to great investment in the area of nanoparticles and microparticles for drug delivery. Most common materials for the design of nanodevices to deliver BMPs include synthetic materials, natural polymers and hydroxyapatite-based particles. Both nano-scale (up to 100 nm) and microspheres are reported (See Table 3).

Polylactic acid and polylactic-co-glycolic acid have been used as materials for nanoparticle-based delivery systems for BMPs. PLA was initially studied as a carrier for BMPs in a rat ectopic bone formation model (Saitoh *et al.*, 1994), showing formation of new bone at 4 weeks after implantation and mature bone after 24 weeks. However, by blending PLA with polyglycolic

Carrier	Formulation/size	Biological models	References		
PLGA	Microparticles	Rat calvarial bone defects	(Kenley et al., 1994)		
	Microparticles (247–430 μm)	Rat femurs	(Lee <i>et al</i> ., 1994)		
	Microparticles	In vitro differentiation of osteoblasts	(Oldham et al., 2000)		
	Microparticles	Rabbit calvarial bone defects	(Schrier <i>et al.</i> , 2001)		
	Microparticles	Sheep vertebrae	(Phillips et al., 2006)		
	Nanoparticles (300 nm)	Rat ectopic model	(Wei et al., 2007)		
PLGA/Ca-P	Microparticles (66 μm)	Rat ectopic model/cranial model	(Ruhe et al., 2005)		
PLA	Microparticles	Rat ectopic bone formation	(Saitoh et <i>al</i> ., 1994)		
Collagen–HA	Microparticles	Rabbit femoral bone defects	(Wang et al., 2003)		
	Nanocrystals/fibres	Dogs, spinal fusion/tibial fractures	(Itoh et al., 2004)		
Chitosan–alginate	Microparticles	In vitro differentiation of rabbit bone marrow stem cells	(Qin et al., 2003)		
Dextran	Nanoparticles (20 nm)	In vitro differentiation of rabbit bone marrow stem cells	(Chen et al., 2005b)		
Dextran-PEG	Microparticles (20–40 µm)	In vitro differentiation of human periodontal ligament cells	(Chen et al., 2006)		
Dextran-gelatine	Microparticles (20–40 µm)	Canine defects	(Chen et al., 2005a)		
5.000	Microparticles (0.5–1.5 µm)	Periodontal regeneration in dogs	(Chen et al., 2007b)		

Table 3. Micro and nanoscale drug delivery systems based on synthetic and natural-origin polymers. The average size or size range of the particles is noted on the formulation

acid in copolymer polylactic-co-glycolic acid (PLGA), biodegradation is controlled by changing the proportions of each of the two materials, since PLA degrades much more slowly than PGA. Microspheres of PLGA have since then been evaluated in diverse animal models, such as in rat calvarial bone defects (Kenley et al., 1994), rat femurs (Lee et al., 1994) and in calvarial defects in rabbits (Schrier et al., 2001), forming much more bone when BMPs were delivered via the PLGA particles. Interesting work has been developed by Ruhé and colleagues, using microspheres of PLGA in combination with Ca-P cement, as carriers for rhBMP-2 delivery (Ruhe et al., 2005). The release of rhBMP-2 was observed to be dependent on composite composition and nanostructure, as well as on the pH of the release medium. Sustained slow release was observed, possibly due to the interaction of rhBMP-2 with the calcium phosphate cement. Delivery of rhBMP-7 was evaluated in PLGA nanospheres encapsulated in PLA scaffolds, with interconnected macroporous and nano-fibrous architectures (Wei et al., 2007). The group concluded that the carrier delivered rhBMP-7 in a time-controlled manner and induced significant bone formation.

Diverse natural origin materials were also proposed as carriers at a nano- and micro-scale for delivering BMPs. Collagen-hydroxyapatite microspheres were evaluated for rhBMP-4 delivery in femoral defects of rabbits (Wang et al., 2003). Regeneration occurred in the animal group treated with BMP-4 particles, while with the carrier alone the defects were filled with fibrous tissue and inflammatory cells. Microspheres based on blends of chitosan with sodium alginate were reported in vitro in bone marrow-derived cells, showing an increased in the levels of ALP (Qin et al., 2003). During recent years, dextran-based microspheres and nanospheres were extensively evaluated by Chen and colleagues for the delivery of BMPs. In 2005, the group reported delivering BMP-2 with dextran-based microparticles (20-40 µm) in canine defects (Chen et al., 2005a) and nanoparticles (20 nm) in the differentiation of rabbit bone marrow cells (Chen et al., 2005b). One year later, the authors studied a

novel class of methacrylate dextran–PEG microspheres in periodontal ligament cells (Chen *et al.*, 2006). Recently, the group reported dextran–gelatine microspheres loaded into thermomechanical dextran/gelatine hydrogels to deliver rhBMP-2 for periodontal regeneration in dogs (Chen *et al.*, 2007b). The group studied the kinetics of release and demonstrated that, by changing the ratio of components, the rhBMP release could be varied from 18 to more than 28 days (Chen *et al.*, 2007a).

Nanoparticle technology seems definitely one of the most promising approaches for the future of bone tissue engineering, by overcoming some fundamental issues in the methods applied for tissue regeneration such as the insufficient mechanical strength of scaffolds and the lack of stability or bioactivity of growth factors such as BMPs at the defect site (Kim and Fisher, 2007). Major nanotechnology areas of research, such as the fabrication of scaffold–nanoparticle composites and the design of nano-patterned materials, are some of the areas we found with the greatest potential for the delivery of BMPs in orthopaedic regenerative science.

4. Human clinics and the future of bone tissue engineering

In the Western world, an estimated 5–10% of all bone fractures show deficient healing, leading to delayed union or non-union, causing significant morbidity and psychological stress to the patients and bringing elevated costs to society (Westerhuis *et al.*, 2005). Fortunately, the current advances in bone tissue engineering have led researchers to find new strategies and devices with the use of BMPs for accelerating the healing of bone tissues in the orthopaedic field. In fact, by the end of 2007, nearly 1 million patients worldwide were projected to have been treated with BMPs for diverse bone-related problems and diseases (Pecina and Vukicevic, 2007). The clinical uses of BMPs include spinal fusion, treatment of long bone defects and non-unions, dental and periodontal tissue engineering, craniofacial defects and diseases, fracture repair, the improvement of osteointegration with metallic implants, musculoskeletal reconstructive surgery and tendon and ligament reconstruction. There are currently two main collagen-based products containing BMP-2 or BMP-7 that were approved by the FDA in recent years for human clinical use: Infuse[™] Bone Graft (Medtronik, US; Wyeth, UK), containing rhBMP-2, and Osigraft[™] (Stryker Biotech), containing rhBMP-7, known by the designation of OP-1 (osteogenic protein-1). BMP-2 Infuse[™] bone graft was approved for certain interbody fusion procedures in 2002, for open tibial fractures in 2004, and for alveolar ridge and sinus augmentations in 2007 (McKay et al., 2007). BMP-7 Osigraft[™] was approved for long bone fractures and as an alternative to autografts in patients requiring posterolateral lumbar spinal fusion. There has been also an increasing number of trials that provide supporting evidence for the use of rhBMP-7/OP-1 in the treatment of open tibial fractures, distal tibial fractures, tibial non-unions, scaphoid non-unions and atrophic long bone non-unions (White et al., 2007).

4.1. Spinal fusion

Spinal fusion applications are an important part of currently ongoing clinical trials (Carlisle and Fischgrund, 2005). Spinal fusions consist of nearly half of all grafting surgery. Furthermore, failure rates of up to 35% have been reported. The interest is in the use of rhBMPs to accelerate healing in patients with disk degenerative disease, removing the need for autograft harvesting and reducing morbidity. Degenerative disc disease is defined as back pain caused by degeneration of the discs, as confirmed by clinical data and symptoms. The common approach is to use a collagen or other carriers soaked with rhBMP and place these within titanium spacers called cages which are implanted into the spine. There are two types of fusion approaches: posterolateral fusion, involving placing the bone graft between the transverse processes in the back of the spine, and interbody fusion, which involves placing the bone graft between the vertebrae in the area occupied by the intervertebral disk. In interbody fusion of lumbar vertebrae, based in the success of previous trials, a prospective study for rhBMP-2 was performed by McKay and Sandhu (2002) involving 279 patients with disk degenerative disease, from which 143 patients received tapered lumbar cages filled with rhBMP-2 and 136 patients received the device filled with autologous bone from iliac crest. Since, at the conclusion of the study, higher rates of spinal fusion were observed for the rhBMP-2 group and less operative time and morbidity were reported, the FDA granted approval for the use of rhBMP-2 in the treatment of single-level lumbar degenerative disc disease. Posterolateral spinal fusions are common for treating spondylolisthesis but require distinct mechanical and biological properties of the carrier. Boden et al. (2002), using rhBMP-2 delivered via a biphasic carrier of tricalcium phosphate and hydroxyapatite, reported achieving complete fusion in all patients treated with rhBMP-2 as compared with the control group. Although the carrier did not obtain approval from FDA, there are several other trials currently ongoing in humans, such as with collagen sponges (Glassman *et al.*, 2007).

The efficacy of use of rhBMP-7/OP-1 as a replacement for iliac crest autograft was first evaluated by Johnsson *et al.* (2002), showing higher rates of fusion in posterolateral spinal fusions with application of rhBMP-7, which were confirmed by further studies (Vaccaro *et al.*, 2004; Kanayama *et al.*, 2006). With no adverse effects, OP-1 was considered a viable alternative to autograft and, as a result, FDA gave approval of rhBMP-7 for patients who have failed a posterolateral fusion and are at risk for repeated pseudarthrosis. At present there is little focus on human trials involving either the use of other BMPs or the use of natural polymers as delivery carriers, but is to be expected that these options will be soon evaluated clinically, in the next few years, considering the current state of biomaterials research.

4.2. Long bone fractures

In most cases where rhBMPs are applied to fractures, these consist in non-unions of long bones. It is estimated as an example that in the UK, 42% of these fractures are of tibias, 20% are femurs and the rest are of other bones (Giannoudis and Tzioupis, 2005). RhBMP-2 has received FDA approval for use in treating open tibial fractures. Initially, Govender et al. (2002) performed a randomized trial with 450 patients having open tibial fractures. The patients were randomized to receive different doses of rhBMP-2, 0.75 mg/ml (total dose of 6 mg), 1.50 mg/ml (total dose of 12 mg) or no rhBMP-2, in collagen sponges. After 12 months, analysis showed accelerated healing and reduced infection with increasing dosing of rhBMP-2. There are numerous studies in the literature suggesting that rhBMP-7/OP-1 is also a safe and effective alternative for the treatment of diverse long-bone fractures and nonunions. In tibial non-unions, a trial that led to multiple regulatory approvals worldwide concluded that OP-1 delivered in a collagen sponge was a safe and effective alternative to bone grafting (Friedlaender et al., 2001). In scaphoid non-unions, Bilic et al. (2006) concluded that OP-1 could allow successful use of allograft, eliminating the donor site morbidity of an iliac crest autograft. In another curious trial, McKee and colleagues assessed the efficacy of OP-1 on treating diverse long bone non-unions on 62 patients that failed previous autograft operations. The bones involved included 16 tibiae, 18 clavicles, 11 humeri, 10 femora, four ulnae and three radii. At the end of the study, 54 of 61 non-unions (89%) had healed, indicating that rhBMP-7 was an effective treatment (White et al., 2007).

4.3. Dental tissue engineering

In periodontal and dental tissue engineering, rhBMPs find their place in inducing pulp stem cells to differentiate into odontoblasts and promoting the regeneration of pulp and teeth. Since the pulp is an organ known to have tremendous regenerative abilities, during recent years tissue engineering has been considered as a promising approach for diverse clinical cases, such as caries, pulpitis and apical periodontitis (Nakashima and Akamine, 2005). Particularly interesting is the fact that human pulp stem cells have self-renewal ability and that tubular dentine is formed after the transplantation of these stem cells with hydroxyapatite power in mice (Gronthos et al., 2002). Recombinant BMPs have been noted to induce dentine formation in vivo when delivered with a collagen scaffold (Nakashima, 1994). The ultimate goal in dental tissue engineering using BMPs is in achieving a complete restoration of the physiological, structural and mechanical integrity of the native dentine-pulp complex, including nerve and vascular regeneration (Nakashima and Akamine, 2005).

4.4. Future challenges, a global perspective

Bone repair and regeneration with BMPs are ushering in a new era in orthopaedics. The past 10 years have seen practical demonstration of bone repair in a series of animal studies and subsequently in clinical trials. The expected value of BMPs in the treatment of bone defects, spinal fusion applications and other types of related applications is enormous. Extensive research in preclinical models has led to the approval of restricted use for human trials. However, despite the significant evidence of potential for bone healing demonstrated in animal models, future clinical investigations will be needed to better define variables such as dose, scaffold and route of administration. The impressive results of animal models are difficult to replicate in humans. It is unclear why these differences occur. Some insight is provided by the clear species-specific dose response, ranging from 25 µg/ml in rodents to 50 µg/ml in dogs, 100 µg/ml in non-human primates and 800 µg/ml in humans (Luginbuehl et al., 2004). The recruitment of bone precursor cells and bone turnover may occur differently in rodents, small animals and large mammals. Likewise, the dosing may not yet be optimal. In fact, the concentrations of BMP in use are supraphysiological and a million times higher (milligrams in assays as compared to the nanogram range in vivo). BMP inhibitors such as noggin or sclerotin, which are upregulated by BMP presence, may be interfering and providing a negative feedback effect on the bodily healing mechanisms (Westerhuis et al., 2005). Understanding the regulation between BMPs and BMP-inhibitors might be a key issue. Moreover, different fractures may require different dosages (Schmitt et al., 1999). Critical issues to consider include the potential risk of BMPs inducing heterotopic bone formation, especially when implanted adjacent to neural tissues (Paramore et al., 1999), and the serious issue of reported antibody formation, noted in up to 38% of patients in some trials with BMPs (Walker and Wright, 2002).

Clearly, the use of BMPs in orthopaedics is still in its early days, but the latest trials in humans suggest that an exciting and promising future will unfold in the development of novel tissue-engineering products for a wide range of clinical situations, with the use of BMPs. To date, clinical trials have focused mostly on rhBMP-2 and -7 and with the use of collagen as delivery materials. However, given the intricate network of molecules interplaying during bone regeneration, it is possible that a 'cocktail' of different BMPs with simultaneous or sequential release would be the most desirable approach to clinical uses, instead of a single stimulus or molecule (Hadjiargyrou et al., 2002). Raiche and Puleo (2004a, 2004b) have already explored the sequential release of rhBMP-2 in combination with insulin-like growth factor-1 (IGF-1). However, the development of such a cocktail for clinical cases may encounter difficulties, since the commercial rights of the two currently approved rhBMPs are for restricted use and owned by different companies (Westerhuis et al., 2005). Nevertheless, in the near future, the emergent advances with recombinant production of BMPs (Klosch et al., 2005; Schmoekel et al., 2005b; Bessa et al., 2007) will aid researchers in obtaining larger amounts of bioactive rhBMPs which could be used for tissue-engineering research and the development of novel products.

With the excitement over the potential of other naturalorigin polymers as novel delivery systems for BMPs, there is little doubt that these will also find relevant places in regenerative medicine of bone and traumatology, and may be soon approaching clinical trials in humans. Diverse natural-origin polymers have shown promising success for bone tissue engineering, such as fibrin, hyaluronic acid, chitosan, silk fibroin and starch-based composites. Furthermore, these overcome limitations and disadvantages from the use of synthetic polymers and the risks of disease transmission inherent to the use of collagen from bovine sources. The recent advances in biomaterials science will certainly boost the number of tissue-engineering approaches for the healing of bone with the use of BMPs. Novel strategies will possibly involve the specific targeting of BMPs, in injectable systems and stimulus-responsive hydrogels, the use of nano-scale patterning or encapsulated particles, or with the use of molecules combined with the BMP, mimicking the extracellular matrix, all of which allow restricted and site-specific delivery of these growth factors. Additionally, the design of 3D specific-architecture scaffolds by methods such as rapid prototyping or the design of bilayered scaffolds surely ensures that the carrier for delivering the BMP will closely mimic the bone structure. Guided tissue-engineering delivery systems, which would deliver not only BMPs but also angiogenic factors, would, for instance, prompt the recruitment and distribution of blood vessel precursor cells, which is necessary for the formation of mature bone. Finally, the use of Ca-P cements and biomimetic coatings is a very promising approach, since it furthers mimics the bone mineral make-up and aids in retaining the BMP and improving

tissue-material integration. The expanding variety of options for biomedical use of BMPs gives the promise that the future of clinical regenerative medicine. and that of BMPs, particularly for bone applications, will be certainly be a bright one in the coming decades for millions of people.

Acknowledgements

The authors wish to thank Isabel Leonor, Simone Silva, João Mano and Johan Benesch for critically reviewing the manuscript. This work was supported by Fundação para a Ciência e Tecnologia (PhD grant SFRH/BD/17049/2004) and carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283). This study was performed according to ethical guidelines. No conflicts of interest were declared.

References

- Aebli N, Stich H, Schawalder P, et al. 2005; Effects of bone morphogenetic protein-2 and hyaluronic acid on the osseointegration of hydroxyapatite-coated implants: an experimental study in sheep. J Biomed Mater Res A 73: 295–302.
- Arnander C, Westermark A, Veltheim R, et al. 2006; Threedimensional technology and bone morphogenetic protein in frontal bone reconstruction. J Craniofac Surg 17: 275–279.
- Arosarena O, Collins W. 2005a; Comparison of BMP-2 and -4 for rat mandibular bone regeneration at various doses. Orthod Craniofac Res 8: 267–276.
- Arosarena OA, Collins WL. 2005b; Bone regeneration in the rat mandible with bone morphogenetic protein-2: a comparison of two carriers. *Otolaryngol Head Neck Surg* 132: 592–597.
- Baran ET, Mano JF, Reis RL. 2004; Starch-chitosan hydrogels prepared by reductive alkylation cross-linking. J Mater Sci Mater Med 15: 759–765.
- Barnes B, Boden SD, Louis-Ugbo J, et al. 2005; Lower dose of rhBMP-2 achieves spine fusion when combined with an osteoconductive bulking agent in non-human primates. Spine **30**: 1127–1133.
- Bessa PC, Pedro AJ, Klosch B, *et al.* 2007; Osteoinduction in human fat-derived stem cells by recombinant human bone morphogenetic protein-2 produced in *Escherichia coli*. *Biotechnol Lett* (in press).
- Bilic R, Simic P, Jelic M, et al. 2006; Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis. Int Orthop 30: 128–134.
- Blanquaert F, Barritault D, Caruelle JP. 1999; Effects of heparanlike polymers associated with growth factors on osteoblast proliferation and phenotype expression. *J Biomed Mater Res* **44**: 63–72.
- Blunk T, Sieminski AL, Appel B, et al. 2003; Bone morphogenetic protein 9: a potent modulator of cartilage development in vitro. Growth Factors 21: 71–77.
- Boden SD, Kang J, Sandhu H, *et al.* 2002; Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. *Spine* **27**: 2662–2673.
- Boden SD, Martin GJ Jr, Morone MA, *et al.* 1999; Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. *Spine* **24**: 1179–1185.
- Bulpitt P, Aeschlimann D. 1999; New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. *J Biomed Mater Res* **47**: 152–169.
- Cao X, Liu C, Chen J. 2006; [Experimental studies on the porous calcium phosphate cement combined with recombinant human bone morphogenetic protein 2 for bone defects repair]. *Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi*, **20**: 916–9.
- Carlisle E, Fischgrund JS. 2005; Bone morphogenetic proteins for spinal fusion. *Spine J* **5**: 240–249S.

- Chang PC, Liu BY, Liu CM, *et al.* 2007; Bone tissue engineering with novel rhBMP2–PLLA composite scaffolds. *J Biomed Mater Res A* **81**: 771–780.
- Chen F, Wu Z, Wang Q, *et al.* 2005a; Preparation and biological characteristics of recombinant human bone morphogenetic protein-2-loaded dextran-co-gelatin hydrogel microspheres, *in vitro* and *in vivo* studies. *Pharmacology* **75**: 133–144.
- Chen FM, Wu ZF, Jin Y, *et al.* 2005b; [Preparation and properties of recombinant human bone morphogenetic protein-2 loaded hydrogel nanospheres and their biological effects on the proliferation and differentiation of bone mesenchymal stem cells]. *Shanghai Kou Qiang Yi Xue* **14**: 485–489.
- Chen FM, Wu ZF, Sun HH, *et al.* 2006; Release of bioactive BMP from dextran-derived microspheres: a novel delivery concept. *Int J Pharm* **307**: 23–32.
- Chen FM, Zhao YM, Sun HH, et al. 2007a; Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. J Control Release 118: 65–77.
- Chen FM, Zhao YM, Zhang R, *et al.* 2007b; Periodontal regeneration using novel glycidyl methacrylated dextran (Dex-GMA)/gelatin scaffolds containing microspheres loaded with bone morphogenetic proteins. *J Control Release* **121**: 81–90.
- Cui G, Li J, Lei W. 2007; [Effect of injectable fibrin sealant compounded with bone morphogenetic protein on proliferation and differentiation of marrow stromal cells towards osteoblasts in rabbits]. *Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi* 21: 70–75.
- Driessens FC, Planell JA, Boltong MG, et al. 1998; Osteotransductive bone cements. Proc Inst Mech Eng H **212**: 427–435.
- Dutta Roy T, Simon JL, Ricci JL, et al. 2003; Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J Biomed Mater Res A 67: 1228–1237.
- Eckardt H, Christensen KS, Lind M, *et al.* 2005; Recombinant human bone morphogenetic protein 2 enhances bone healing in an experimental model of fractures at risk of non-union. *Injury* **36**: 489–494.
- Edwards RB III, Seeherman HJ, Bogdanske JJ, *et al.* 2004; Percutaneous injection of recombinant human bone morphogenetic protein-2 in a calcium phosphate paste accelerates healing of a canine tibial osteotomy. *J Bone Joint Surg Am* **86A**: 1425–1438.
- Elvira C, Mano JF, San Roman J, et al. 2002; Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. *Biomaterials* 23: 1955–1966.
- Fisher JP, Jo S, Mikos AG, et al. 2004; Thermoreversible hydrogel scaffolds for articular cartilage engineering. J Biomed Mater Res A 71: 268–274.
- Friedlaender GE, Perry CR, Cole JD, *et al.* 2001; Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial non-unions. *J Bone Joint Surg Am* **83A**(suppl 1): S151–158.
- Gao T, Uludag H. 2001; Effect of molecular weight of thermoreversible polymer on *in vivo* retention of rhBMP-2. J Biomed Mater Res 57: 92–100.
- Gautschi OP, Frey SP, Zellweger R. 2007; Bone morphogenetic proteins in clinical applications. *A NZ J Surg* **77**: 626–631.
- Geiger M, Li RH, Friess W. 2003; Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55: 1613–1629.
- Giannoudis PV, Tzioupis C. 2005; Clinical applications of BMP-7: the UK perspective. *Injury* 36(suppl 3): S47–50.
- Glassman SD, Carreon L, Djurasovic M, et al. 2007; Posterolateral lumbar spine fusion with INFUSE bone graft. Spine J 7: 44–49.
- Gomes ME, Godinho JS, Tchalamov D, *et al.* 2002; Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. *Mater Sci Eng C Biomimet Supramol Syst* **20**: 19–26.
- Gomes ME, Malafaya PB, Reis RL. 2004; Methodologies for processing biodegradable and natural origin scaffolds for bone and cartilage tissue-engineering applications. *Methods Mol Biol* 238: 65–76.
- Govender S, Csimma C, Genant HK, *et al.* 2002; Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. *J Bone Joint Surg Am* **84A**: 2123–2134.
- Grayson AC, Voskerician G, Lynn A, *et al.* 2004; Differential degradation rates *in vivo* and *in vitro* of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. *J Biomater Sci Polym Ed* **15**: 1281–1304.

Bone morphogenetic proteins in tissue engineering: part II

- Gronthos S, Brahim J, Li W, et al. 2002; Stem cell properties of human dental pulp stem cells. J Dent Res 81: 531-535.
- Hadjiargyrou M, Lombardo F, Zhao S, et al. 2002; Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 277: 30177–30182.
- Han DK, Kim CS, Jung UW, et al. 2005; Effect of a fibrin-fibronectin sealing system as a carrier for recombinant human bone morphogenetic protein-4 on bone formation in rat calvarial defects. J Periodontol 76: 2216-2222.
- Hattori T. 1990; [Experimental investigations of osteogenesis and chondrogenesis by implant of BMP-fibrin glue mixture]. Nippon Seikeigeka Gakkai Zasshi 64: 824–834.
- He XB, Lu WZ, Tang KL, et al. 2003; [Effects of bone morphogenetic protein and transforming growth fractor-beta on biomechanical property for fracture healing in rabbit ulna]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 17: 185–188.
- Hong L, Tabata Y, Yamamoto M, et al. 1998; Comparison of bone regeneration in a rabbit skull defect by recombinant human BMP-2 incorporated in biodegradable hydrogel and in solution. J Biomater *Sci* **9**: (polymer edn): 1001–1014.
- Hong SJ, Kim CS, Han DK, et al. 2006: The effect of a fibrin-fibronectin/*β*-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects. Biomaterials 27: 3810-3816.
- Hsieh CY, Hsieh HJ, Liu HC, et al. 2006; Fabrication and release behavior of a novel freeze-gelled chitosan/ γ -PGA scaffold as a carrier for rhBMP-2. Dent Mater 22: 622-629.
- Hu JJ, Jin D, Quan DP, et al. 2005; [Bone defect repair with a new tissue-engineered bone carrying bone morphogenetic protein in rabbits]. Di Yi Jun Yi Da Xue Xue Bao 25: 1369-1374.
- Hu YY, Zhang C, Lu R, et al. 2003; Repair of radius defect with bonemorphogenetic-protein loaded hydroxyapatite/collagen-poly(Llactic acid) composite. Chin J Traumatol 6: 67–74.
- Hubbell J. 2006; Matrix-bound growth factors in tissue repair. Swiss Med Wkly 136: 387-391.
- Hunt DR, Jovanovic SA, Wikesjo UM, et al. 2001; Hyaluronan supports recombinant human bone morphogenetic protein-2 induced bone reconstruction of advanced alveolar ridge defects in dogs. A pilot study. J Periodontol 72: 651-658.
- Itoh S, Kikuchi M, Koyama Y, et al. 2004; Development of a hydroxyapatite/collagen nanocomposite as a medical device. Cell Transpl 13: 451-461.
- Itoh S, Matubara M, Kawauchi T, et al. 2001; Enhancement of bone ingrowth in a titanium fiber mesh implant by rhBMP-2 and hyaluronic acid. J Mater Sci Mater Med 12: 575-581.
- Jen A, Madorin K, Vosbeck K, et al. 2002; Transforming growth factor beta-3 crystals as reservoirs for slow release of active TGF- β 3. J Control Release 78: 25–34.
- Jeon O, Song SJ, Kang SW, et al. 2007; Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Biomaterials 28: 2763-2771.
- Jin QM, Takita H, Kohgo T, et al. 2000; Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. J Biomed Mater Res 51: 491-499.
- Stromqvist B, Aspenberg P. 2002; Randomized Johnsson R. radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in Clinical Studies. Spine 27: 2654-2661.
- Jones AA, Buser D, Schenk R, et al. 2006; The effect of rhBMP-2 around endosseous implants with and without membranes in the canine model. J Periodontol 77: 1184-1193.
- Kaito T, Myoui A, Takaoka K, et al. 2005; Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite. Biomaterials 26: 73-79.
- Kanayama M, Hashimoto T, Shigenobu K, et al. 2006; A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine 31: 1067-1074.
- Karageorgiou V, Meinel L, Hofmann S, et al. 2004: Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A 71: 528-537.
- Karageorgiou V, Tomkins M, Fajardo R, et al. 2006; Porous silk fibroin 3D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo. J Biomed Mater Res A 78: 324-334.

- Kato M, Namikawa T, Terai H, et al. 2006; Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Biomaterials **27**: 3927-3933.
- Kawamoto T, Motohashi N, Kitamura A, et al. 2003; Experimental tooth movement into bone induced by recombinant human bone morphogenetic protein-2. Cleft Palate Craniofac J 40: 538-543.
- Kenley R, Marden L, Turek T, et al. 1994; Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). J Biomed Mater Res 28: 1139-1147.
- Kim HD, Valentini RF. 2002; Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res 59: 573 - 584
- Kim J, Kim IS, Cho TH, et al. 2007; Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28: 1830-1837.
- Kim K, Fisher JP. 2007; Nanoparticle technology in bone tissue engineering. J Drug Target 15: 241-252.
- Kirker-Head C, Karageorgiou V, Hofmann S, et al. 2007; BMP-silk composite matrices heal critically sized femoral defects. Bone 41: 247-255.
- Kirker-Head CA. 2000; Potential applications and delivery strategies for bone morphogenetic proteins. Adv Drug Deliv Rev 43: 65-92.
- Klosch B, Furst W, Kneidinger R, et al. 2005; Expression and purification of biologically active rat bone morphogenetic protein-4 produced as inclusion bodies in recombinant Escherichia coli. Biotechnol Lett 27: 1559-1564.
- Kokubo S, Fujimoto R, Yokota S, et al. 2003; Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model. Biomaterials 24: 1643-1651.
- Kokubo S, Mochizuki M, Fukushima S, et al. 2004; Long-term stability of bone tissues induced by an osteoinductive biomaterial, recombinant human bone morphogenetic protein-2 and a biodegradable carrier. Biomaterials 25: 1795-1803.
- Kraiwattanapong C, Boden SD, Louis-Ugbo J, et al. 2005 Comparison of Healos/bone marrow to INFUSE(rhBMP-2/ACS) with a collagen–ceramic sponge bulking agent as graft substitutes for lumbar spine fusion. Spine 30: 1001–1007; discussion, 1007.
- Kuboki Y, Takita H, Kobayashi D, et al. 1998; BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res 39: 190-199.
- Langer R, Folkman J. 1976; Polymers for the sustained release of proteins and other macromolecules. Nature 263: 797-800.
- Lee SC, Shea M, Battle MA, et al. 1994; Healing of large segmental defects in rat femurs is aided by RhBMP-2 in PLGA matrix. J Biomed Mater Res 28: 1149-1156.
- Leonor IB, Ito A, Onuma K, et al. 2003; In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: an in situ study using atomic force microscopy. Biomaterials 24: 579-585.
- Li C, Vepari C, Jin HJ, et al. 2006; Electrospun silk-BMP-2 scaffolds for bone tissue engineering. *Biomaterials* **27**: 3115–3124. Li RH, Wozney JM. 2001; Delivering on the promise of bone
- morphogenetic proteins. Trends Biotechnol 19: 255-265.
- Liang D, Zuo A, Wang B, et al. 2005; [In vitro osteogenesis of the compound of chitosan and recombinant human bone morphogenetic protein 2]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 19: 721-724.
- Lippman CR, Hajjar M, Abshire B, et al. 2004; Cervical spine fusion with bioabsorbable cages. Neurosurg Focus 16: E4.
- Liu Y, de Groot K, Hunziker EB. 2005; BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone 36: 745-757.
- Liu Y, Hunziker EB, Layrolle P, et al. 2004; Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity. Tissue Eng 10: 101-108.
- Lopez-Lacomba JL, Garcia-Cantalejo JM, Casado JVS, et al. 2006; Use of rhBMP-2 activated chitosan films osseointegration. *Biomacromolecules* **7**: 792–798. to improve
- Luginbuehl V, Meinel L, Merkle HP, et al. 2004; Localized delivery of growth factors for bone repair. Eur J Pharm Biopharm 58: 197 - 208
- Lutolf MP, Lauer-Fields JL, Schmoekel HG, et al. 2003a; Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100: 5413-5418.

- Lutolf MP, Weber FE, Schmoekel HG, et al. 2003b; Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21: 513–518.
- Maire M, Chaubet F, Mary P, *et al.* 2005; Bovine BMP osteoinductive potential enhanced by functionalized dextran-derived hydrogels. *Biomaterials* **26**: 5085–5092.
- Malafaya PB, Elvira C, Gallardo A, *et al.* 2001; Porous starch-based drug delivery systems processed by a microwave route. *J Biomater Sci Polym Ed* 12: 1227–1241.
 Malafaya PB, Gomes ME, Salgado AJ, *et al.* 2003; Polymer based
- Malafaya PB, Gomes ME, Salgado AJ, *et al.* 2003; Polymer based scaffolds and carriers for bioactive agents from different natural origin materials. *Adv Exp Med Biol* **534**: 201–233.
- Mano J, Reis RL. 2007; Osteochondral defects: present situation and tissue engineering approaches. *J Tissue Eng Regen Med* 1: 261–273.
- Mano JF, Silva GA, Azevedo HS, *et al.* 2007; Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. *J R Soc Interface* **4**: 999–1030.
- Matsushita N, Terai H, Okada T, et al. 2004; A new bone-inducing biodegradable porous beta-tricalcium phosphate. J Biomed Mater Res A 70: 450–458.
- Matsushita N, Terai H, Okada T, *et al.* 2006; Accelerated repair of a bone defect with a synthetic biodegradable bone-inducing implant. *J Orthop Sci* **11**: 505–511.
- Mattioli-Belmonte M, Gigante A, Muzzarelli RA, *et al.* 1999; *N*,*N*-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. *Med Biol Eng Comput* **37**: 130–134.
- Mayer M, Hollinger J, Ron E, et al. 1996; Maxillary alveolar cleft repair in dogs using recombinant human bone morphogenetic protein-2 and a polymer carrier. Plast Reconstr Surg 98: 247–259.
- McKay B, Sandhu HS. 2002; Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine 27: S66-85.
- McKay WF, Peckham SM and Badura JM. 2007; A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE[®] Bone Graft). *Int Orthop* (in press).
- Meinel L, Fajardo R, Hofmann S, et al. 2005; Silk implants for the healing of critical size bone defects. Bone 37: 688–698.
- Meinel L, Hofmann S, Betz O, *et al.* 2006; Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. *Biomaterials* 27: 4993–5002.
- Meinel L, Karageorgiou V, Hofmann S, *et al.* 2004; Engineering bone-like tissue *in vitro* using human bone marrow stem cells and silk scaffolds. *J Biomed Mater Res A* **71**: 25–34.
- Miller RA, Brady JM, Cutright DE. 1977; Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. *J Biomed Mater Res* **11**: 711–719.
- Miranda DA, Blumenthal NM, Sorensen RG, *et al.* 2005; Evaluation of recombinant human bone morphogenetic protein-2 on the repair of alveolar ridge defects in baboons. *J Periodontol* **76**: 210–220.
- Miyamoto S, Takaoka K, Okada T, et al. 1992; Evaluation of polylactic acid homopolymers as carriers for bone morphogenetic protein. Clin Orthop Relat Res 278: 274–285.
- Murakami N, Saito N, Takahashi J, *et al.* 2003; Repair of a proximal femoral bone defect in dogs using a porous surfaced prosthesis in combination with recombinant BMP-2 and a synthetic polymer carrier. *Biomaterials* **24**: 2153–2159.
- Nakashima M. 1994; Induction of dentine formation on canine amputated pulp by recombinant human bone morphogenetic proteins (Bmp)-2 and (Bmp)-4. *J Dent Res* **73**: 1515–1522.
- Nakashima M, Akamine A. 2005; The application of tissue engineering to regeneration of pulp and dentin in endodontics. *J Endod* **31**: 711–718.
- Namikawa T, Terai H, Suzuki E, *et al.* 2005; Experimental spinal fusion with recombinant human bone morphogenetic protein-2 delivered by a synthetic polymer and β -tricalcium phosphate in a rabbit model. *Spine* **30**: 1717–1722.
- Noshi T, Yoshikawa T, Dohi Y, et al. 2001; Recombinant human bone morphogenetic protein-2 potentiates the *in vivo* osteogenic ability of marrow/hydroxyapatite composites. Artif Organs 25: 201–208.
 Oldham JB, Lu L, Zhu X, et al. 2000; Biological activity of rhBMP-2
- released from PLGA microspheres. J Biomech Eng **122**: 289–292.
- Paramore CG, Lauryssen C, Rauzzino MJ, et al. 1999; The safety of OP-1 for lumbar fusion with decompression – a canine study. *Neurosurgery* 44: 1151–1155; discussion, 1155–1156.

- Park DJ, Choi BH, Zhu SJ, *et al.* 2005a; Injectable bone using chitosan–alginate gel/mesenchymal stem cells/BMP-2 composites. *J Craniomaxillofac Surg* **33**: 50–54.
- Park Y, Sugimoto M, Watrin A, *et al.* 2005b; BMP-2 induces the expression of chondrocyte-specific genes in bovine synoviumderived progenitor cells cultured in three-dimensional alginate hydrogel. *Osteoarthr Cartilage* **13**: 527–536.
- Park YJ, Kim KH, Lee JY, *et al.* 2006; Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. *Biotechnol Appl Biochem* **43**: 17–24.
- Patel VV, Zhao L, Wong P, *et al.* 2006; Controlling bone morphogenetic protein diffusion and bone morphogenetic protein-stimulated bone growth using fibrin glue. *Spine* **31**: 1201–1206.
- Pecina M, Vukicevic S. 2007; Biological aspects of bone, cartilage and tendon regeneration. *Int Orthop* (in press).
- Pereira CS, Cunha AM, Reis RL, *et al.* 1998; New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. *J Mater Sci Mater Med* **9**: 825–833.
- Phillips FM, Turner AS, Seim HB III, et al. 2006; In vivo BMP-7 (OP-1) enhancement of osteoporotic vertebral bodies in an ovine model. Spine J 6: 500–506.
- Prabaharan M and Mano JF. 2005; Chitosan-based particles as controlled drug delivery systems. *Drug Deliv* **12**: 41–57.
- Pratt AB, Weber FE, Schmoekel HG, *et al.* 2004; Synthetic extracellular matrices for *in situ* tissue engineering. *Biotechnol Bioeng* **86**: 27–36.
- Qin Y, Pei GX, Xie DM, et al. 2003; [Effect of bone morphogenetic protein microspheres on biological behavior of rabbit bone marrow stem cells]. Di Yi Jun Yi Da Xue Xue Bao 23: 1021–1024.
- Rai B, Teoh SH, Hutmacher DW, *et al.* 2005; Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. *Biomaterials* **26**: 3739–3748.
- Raiche AT, Puleo DA. 2004a; Cell responses to BMP-2 and IGF-I released with different time-dependent profiles. *J Biomed Mater Res A* **69**: 342–350.
- Raiche AT, Puleo DA. 2004b; *In vitro* effects of combined and sequential delivery of two bone growth factors. *Biomaterials* **25**: 677–685.
- Reddi AH. 1998; Role of morphogenetic proteins in skeletal tissue engineering and regeneration. *Nat Biotechnol* **16**: 247–252.
- Reddi AH. 2005; BMPs: from bone morphogenetic proteins to body morphogenetic proteins. Cytokine Growth Factor Rev 16: 249–250.
- Ren W, Yang L, Dong S. 2000; [The effects of the complex of rhBMP2 and fibrin sealant on dental pulp]. *Zhonghua Kou Qiang Yi Xue Za Zhi* 35: 18–20.
- Rizzi SC, Ehrbar M, Halstenberg S, *et al.* 2006; Recombinant protein–co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics. *Biomacromolecules* 7: 3019–3029.
- Ruhe PQ, Boerman OC, Russel FG, *et al.* 2006; *In vivo* release of rhBMP-2 loaded porous calcium phosphate cement pretreated with albumin. *J Mater Sci Mater Med* **17**: 919–927.
- Ruhe PQ, Boerman OC, Russel FG, *et al.* 2005; Controlled release of rhBMP-2 loaded poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composites *in vivo*. *J Control Release* **106**: 162–171.
- Saito A, Suzuki Y, Kitamura M, *et al.* 2006; Repair of 20 mm long rabbit radial bone defects using BMP-derived peptide combined with an α -tricalcium phosphate scaffold. *J Biomed Mater Res A* 77: 700–706.
- Saito A, Suzuki Y, Ogata S, *et al.* 2003a; Activation of osteoprogenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. *Biochim Biophys Acta* **1651**: 60–67.
- Saito A, Suzuki Y, Ogata S, *et al.* 2004; Prolonged ectopic calcification induced by BMP-2-derived synthetic peptide. *J Biomed Mater Res A* **70**: 115–121.
- Saito A, Suzuki Y, Ogata S, *et al.* 2005a; Accelerated bone repair with the use of a synthetic BMP-2-derived peptide and bone-marrow stromal cells. *J Biomed Mater Res A* **72**: 77–82.
- Saito N, Murakami N, Takahashi J, et al. 2005b; Synthetic biodegradable polymers as drug delivery systems for bone morphogenetic proteins. *Adv Drug Deliv Rev* 57: 1037–1048.
 Saito N, Okada T, Horiuchi H, et al. 2001; Biodegradable poly-D,L-
- Saito N, Okada T, Horiuchi H, *et al.* 2001; Biodegradable poly-D,Llactic acid–polyethylene glycol block copolymers as a BMP delivery system for inducing bone. *J Bone Joint Surg Am* **83A**(suppl 1): S92–98.

Bone morphogenetic proteins in tissue engineering: part II

- Saito N, Okada T, Horiuchi H, et al. 2003b; Local bone formation by injection of recombinant human bone morphogenetic protein-2 contained in polymer carriers. Bone 32: 381–386.
- Saito N and Takaoka K. 2003; New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. *Biomaterials* 24: 2287–2293.
- Saitoh H, Takata T, Nikai H, et al. 1994; Effect of polylactic acid on osteoinduction of demineralized bone: preliminary study of the usefulness of polylactic acid as a carrier of bone morphogenetic protein. J Oral Rehabil 21: 431–438.
- Schmitt JM, Hwang K, Winn SR, et al. 1999; Bone morphogenetic proteins: an update on basic biology and clinical relevance. J Orthop Res 17: 269–278.
- Schmoekel H, Schense JC, Weber FE, *et al.* 2004; Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices. *J Orthop Res* **22**: 376–381.
- Schmoekel HG, Weber FE, Hurter K, *et al.* 2005a; Enhancement of bone healing using non-glycosylated rhBMP-2 released from a fibrin matrix in dogs and cats. *J Small Anim Pract* **46**: 17–21.
- Schmoekel HG, Weber FE, Schense JC, et al. 2005b; Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. *Biotechnol Bioeng* 89: 253–262.
- Schopper C, Moser D, Spassova E, *et al.* 2007; Bone regeneration using a naturally grown HA/TCP carrier loaded with rh BMP-2 is independent of barrier-membrane effects. *J Biomed Mater Res A* (in press).
- Schrier JA, Fink BF, Rodgers JB, et al. 2001; Effect of a freeze-dried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing. AAPS PharmSciTech 2: E18.
- Schwarz N, Redl H, Zeng L, et al. 1993; Early osteoinduction in rats is not altered by fibrin sealant. *Clin Orthop Relat Res* **293**: 353–359.
- Seeherman H, Li R, Bouxsein M, et al. 2006a; rhBMP-2/calcium phosphate matrix accelerates osteotomy-site healing in a nonhuman primate model at multiple treatment times and concentrations. J Bone Joint Surg Am 88: 144–160.
- Seeherman H and Wozney JM. 2005; Delivery of bone morphogenetic proteins for orthopaedic tissue regeneration. *Cytokine Growth Factor Rev* 16: 329–345.
- Seeherman HJ, Azari K, Bidic S, *et al.* 2006b; rhBMP-2 delivered in a calcium phosphate cement accelerates bridging of critical-sized defects in rabbit radii. *J Bone Joint Surg Am* **88**: 1553–1565.
- Seeherman HJ, Bouxsein M, Kim H, *et al.* 2004; Recombinant human bone morphogenetic protein-2 delivered in an injectable calcium phosphate paste accelerates osteotomy-site healing in a nonhuman primate model. *J Bone Joint Surg Am* **86A**: 1961–1972.
- Shimaoka H, Dohi Y, Ohgushi H, et al. 2004; Recombinant growth/differentiation factor-5 (GDF-5) stimulates osteogenic differentiation of marrow mesenchymal stem cells in porous hydroxyapatite ceramic. J Biomed Mater Res A 68: 168–176.
- Shimazu C, Hara T, Kinuta Y, et al. 2006; Enhanced vertical alveolar bone augmentation by recombinant human bone morphogenetic protein-2 with a carrier in rats. J Oral Rehabil 33: 609–618.
- Silva GA, Costa FJ, Coutinho OP, *et al.* 2004; Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles. *J Biomed Mater Res A* **70**: 442–449.
- Simmons CA, Alsberg E, Hsiong S, et al. 2004; Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35: 562–569.
- Smith JD, Melhem ME, Magge KT, *et al.* 2007; Improved growth factor directed vascularization into fibrin constructs through inclusion of additional extracellular molecules. *Microvasc Res* **73**: 84–94.
- Suzuki A, Terai H, Toyoda H, *et al.* 2006; A biodegradable delivery system for antibiotics and recombinant human bone morphogenetic protein-2: a potential treatment for infected bone defects. *J Orthop Res* **24**: 327–332.
- Suzuki Y, Tanihara M, Suzuki K, et al. 2000; Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res 50: 405–409.
- Takahashi Y, Yamamoto M, Yamada K, *et al.* 2007; Skull bone regeneration in nonhuman primates by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. *Tissue Eng* **13**: 293–300.
- Tamai N, Myoui A, Hirao M, et al. 2005; A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA–PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthr Cartilage 13: 405–417.

- Tian W, Bao C, Liu L, *et al.* 2004; [Experimental study on the fabrication of bioactive membrane for inducing bone regeneration]. *Sheng Wu Yi Xue Gong Cheng Xue Za Zhi* **21**: 844–847.
- Tsuruga E, Takita H, Itoh H, *et al.* 1997; Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. *J Biochem (Tokyo)* **121**: 317–324.
- Tuzlakoglu K, Alves CM, Mano JF, et al. 2004; Production and characterization of chitosan fibers and 3D fiber mesh scaffolds for tissue engineering applications, *Macromol Biosci* 4: 811–819.
- Tuzlakoglu K, Bolgen N, Salgado AJ, et al. 2005; Nano- and microfiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med 16: 1099–1104.
- Uludag H, D'Augusta D, Palmer R, *et al.* 1999a; Characterization of rhBMP-2 pharmacokinetics implanted with biomaterial carriers in the rat ectopic model. *J Biomed Mater Res* **46**: 193–202.
- Uludag H, Friess W, Williams D, *et al.* 1999b; rhBMP–collagen sponges as osteoinductive devices: effects of *in vitro* sponge characteristics and protein pI on *in vivo* rhBMP pharmacokinetics. *Ann N Y Acad Sci* **875**: 369–378.
- Vaccaro AR, Patel T, Fischgrund J, *et al.* 2004; A pilot study evaluating the safety and efficacy of OP-1 putty (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. *Spine* **29**: 1885–1892.
- Vogelin E, Jones NF, Huang JI, et al. 2005; Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein. J Bone Joint Surg Am 87: 1323–1331.
- Walker DH, Wright NM. 2002; Bone morphogenetic proteins and spinal fusion. *Neurosurg Focus* 13: e3.
- Wang YJ, Lin FH, Sun JS, et al. 2003; Collagen-hydroxyapatite microspheres as carriers for bone morphogenic protein-4. Artif Organs 27: 162–168.
- Wei G, Jin Q, Giannobile WV, et al. 2007; The enhancement of osteogenesis by nanofibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 28: 2087–2096.
- Westerhuis RJ, van Bezooijen RL, Kloen P. 2005; Use of bone morphogenetic proteins in traumatology, *Injury-International Journal of the Care of the Injured*, 36: 1405–1412.
- White AP, Vaccaro AR, Hall JA, *et al.* 2007; Clinical applications of BMP-7/OP-1 in fractures, non-unions and spinal fusion. *Int Orthop* (in press).
- Wikesjo UM, Lim WH, Thomson RC, et al. 2003; Periodontal repair in dogs: evaluation of a bioabsorbable space-providing macroporous membrane with recombinant human bone morphogenetic protein-2. J Periodontol 74: 635–647.
- Winet H, Hollinger JO. 1993; Incorporation of polylactidepolyglycolide in a cortical defect: neoosteogenesis in a bone chamber. J Biomed Mater Res 27: 667–676.
- Yamamoto M, Ikada Y, Tabata Y. 2001; Controlled release of growth factors based on biodegradation of gelatin hydrogel. *J Biomater Sci* **12**(polymer edn): 77–88.
- Yamamoto M, Tabata Y, Ikada Y. 1998; Ectopic bone formation induced by biodegradable hydrogels incorporating bone morphogenetic protein. J Biomater Sci Polym Ed 9: (polymer edn): 439–458.
- Yamamoto M, Takahashi Y, Tabata Y. 2003; Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. *Biomaterials* 24: 4375–4383.
- Yamamoto M, Takahashi Y, Tabata Y. 2006; Enhanced bone regeneration at a segmental bone defect by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. *Tissue Eng* **12**: 1305–1311.
- Yang C, Hillas PJ, Baez JA, et al. 2004; The application of recombinant human collagen in tissue engineering. BioDrugs 18: 103-119.
- Yang W, Gomes RR, Brown AJ, *et al.* 2006; Chondrogenic differentiation on perlecan domain I, collagen II, and bone morphogenetic protein-2-based matrices. *Tissue Eng* **12**: 2009–2024.
- Yoneda M, Terai H, Imai Y, et al. 2005; Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant. Biomaterials 26: 5145–5152.
- Yuan H, De Bruijn JD, Zhang X, et al. 2001; Use of an osteoinductive biomaterial as a bone morphogenetic protein carrier. J Mater Sci Mater Med 12: 761–766.
- Zhang C, Hu Y, Xiong Z, *et al.* 2005; [Tissue engineered bone regeneration of periosteal cells using recombinant human bone

morphogenetic protein 2 induce]. *Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi* **19**: 100–104. Zheng YX, Zhao HY, Jing XB, *et al.* 2006; [Reconstruction of orbital

- Zheng YX, Zhao HY, Jing XB, et al. 2006; [Reconstruction of orbital floor defect with polylacticglycolide acid/recombinant human bone morphogenetic protein 2 compound implanted material in sheep]. Zhonghua Yan Ke Za Zhi 42: 535–539.
 Zhu SJ, Choi BH, Huh JY, et al. 2006a; A comparative qualitative bias for an environment of the protein sheep of th
- Zhu SJ, Choi BH, Huh JY, *et al.* 2006a; A comparative qualitative histological analysis of tissue-engineered bone using bone marrow mesenchymal stem cells, alveolar bone cells, and periosteal cells.

Oral Surg Oral Med Oral Pathol Oral Radiol Endodont 101: 166–171.

- Zhu SJ, Choi BH, Jung JH, *et al.* 2006b; A comparative histologic analysis of tissue-engineered bone using platelet-rich plasma and platelet-enriched fibrin glue. *Oral Surg Oral Med Oral Pathol Oral Radiol Endodont* **102**: 175–179.
- Zou X, Li H, Chen L, *et al.* 2004; Stimulation of porcine bone marrow stromal cells by hyaluronan, dexamethasone and rhBMP-2. *Biomaterials* **25**: 5375–5385.