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Abstract

In this work the variation of the surface mechanical properties of starch-based biomaterials with immersion time was followed using
microhardness measurements. Two blends with very distinct water uptake capabilities, starch/cellulose acetate (SCA) and starch/poly-
(e-caprolactone) (SPCL), were immersed in a phosphate buffer solution (PBS) at 37.5 �C for various times. The microhardness of the
blends decreased significantly (�50% for SPCL and �94% for SCA), within a time period of 30 days of immersion, reflecting the different
hydrophilic character of the synthetic components of the blends. The dependence of microhardness on the applied loading time and load
was also analysed and showed a power law dependency for SCA. Water uptake and weight loss measurements were performed for the
same immersion times used in the microhardness experiments. The different swelling/degradation behaviour presented by the blends was
related to the respective variation in microhardness. Moreover, complementary characterization of the mechanical properties of SCA
and SPCL was accomplished by dynamic mechanical analysis (DMA) and creep measurements. Microhardness measurements proved
to be a useful technique for characterizing the mechanical behaviour near the surface of polymeric biomaterials, including in simulated
physiological conditions.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The idea of substituting synthetic polymers with natural
polymers in any application and, in this way, using a
renewable source, is extremely appealing. Starch is the
major polysaccharide constituent of photosynthetic tissues
and of many storage organs in plants [1]. Starch-based bio-
materials are totally biodegradable, with an associated low
cost when compared with other biodegradable polymers,
are available in large quantities and, therefore have an
enormous potential for environmental and clinical applica-
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tions. In the last few years these kinds of systems have been
proposed in our research group for different biomedical
applications [2–8] including for replacement materials, con-
trolled delivery systems, hydrophilic cements and, more
recently, for scaffolds in tissue engineering applications.
The proposed systems are blends of starch with ethylene–
vinyl alcohol copolymer (SEVA-C), cellulose acetate
(SCA), poly(e-caprolactone) (SPCL) and poly(lactic acid)
(SPLA) [2–8]. The combination of biocompatibility, suit-
able mechanical and degradation properties constitutes
one of the main advantages of the starch-based blends that
have been developed, showing that they have potential to
be used as scaffolds in tissue engineering [9,10].

Moreover, biomaterials interact with their environment
at the cellular level and it is the surface of the material
that directly interacts with proteins and cells [11–13].
vier Ltd. All rights reserved.
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Consequently, the surface mechanical properties of an
implant are very important in determining cell responses
[11,12] and the implant behaviour will strongly depend
on these properties [13]. For instance, the surface topog-
raphy and surface mechanical strength of an implant
can be critical to its success, because it has been shown
that cell adhesion and spreading depend on these factors
[12]. Being a hydrophilic polysaccharide, starch and its
blends may present considerable water uptake and it is
expected that the mechanical features will be different in
the dry state when compared with the hydrated state,
the latter being obviously more relevant in clinical appli-
cations. Some works have reported the influence of water
on the mechanical properties of biomaterials (see e.g.
Refs. [14,15]). However, in this case the mechanical
behaviour of the surface of the material with which the
cells and tissues will interact may be different from the
bulk properties, especially when the hydration equilibrium
is not achieved. A simple technique such as microhardness
can provide a possible way to measure the actual hardness
of the surface layer, which is difficult to measure by tradi-
tional techniques, such as tensile or flexural tests.

So, the aim of the present work was to use microhard-
ness to evaluate the changes in the surface mechanical
properties of starch-based blends with different swelling
capabilities (SCA and SPCL), when they are immersed in
a solution for different periods of time. Although some
microhardness studies of starch can be found in the litera-
ture [16–18], as far as we know, this is the first time that this
technique is used to characterise starch-based biomaterials
after being immersed in simulated physiological fluids at
body temperature.

In order to complement the characterization of the
mechanical properties of the starch-based blends, their
creep and dynamic mechanical properties were also investi-
gated. Such kinds of tests allow the intrinsic viscoelastic
behaviour of these polymeric systems to be analysed and
could also provide information on whether any correlation
exists between the bulk viscoelastic properties of the mate-
rials and their microhardness.

Parallel swelling and weight loss measurements were
performed in order to study how the degradation of these
starch-based biomaterials is affected by the hydrophobic
or hydrophilic character of the other component and how
this influences the respective mechanical properties. As
reported in the literature [19,20], hydrophilicity is a deter-
mining parameter in the degradation behaviour of starch-
based materials.

2. Experimental section

Two different starch-based biomaterials were studied: a
50/50 wt.% corn starch/cellulose acetate blend (SCA) and
a 30/70 wt.% corn starch/poly(e-caprolactone) blend
(SPCL). All the materials were processed into disk samples
(/ = 1 cm, thickness = 2 mm), by injection moulding.
Samples of both materials were immersed in a phosphate
buffer solution (PBS) and kept at 37.5 �C (pH = 7.4), for
different times (from 1 min to 30 days) in order to roughly
simulate the hydration conditions in the human body,
when the materials are implanted.

A Leica VMHT30 equipment was used to measure the
microhardness of the samples at �20 �C after being
immersed for different times, using a Vickers diamond
pyramid indenter (included angle a = 136 �C). The microh-
ardness, H, was calculated from the residual projected
diagonal impression by applying H = 1.854F/d2 [21], where
d is the mean diagonal length of the indentation in mm and
F is the applied force in N.

For the immersed samples a loading time of 5 s and an
indentation load of 49.03 mN were used. For the non-
immersed samples and in order to evaluate the dependence
of H on time and load, measurements were made at two
different indentation loads (9.807 and 49.03 mN) and for
each load several loading times (from 5 to 60 s) were used.
The length of the resulting indentation was measured
immediately after load release in order to avoid complica-
tions associated with viscoelastic recovery. At least five
imprints were made in each test at randomly chosen places
of the samples.

At the end of each degradation time, the samples were
removed from solution, rinsed with distilled water and
weighed, to determine the water uptake. The water uptake
of the samples after being immersed for different times was
evaluated as [(Mf �Mi)/Mi] · 100, where Mi is the weight
of the dry sample at time t = 0 s and Mf is the weight of
the wet sample at immersion time t.

For every degradation time, the samples were dried until
the weight remained constant in order to determine the
weight loss. The weight loss corresponding to distinct
immersion times was calculated as [(Mi �Md)/Mi] · 100,
where Mi is the initial weight of the sample and Mf is the
weight of the degraded (and dry) sample at time t.

Complementary characterization of the solid-state rhe-
ological properties of the starch blends was accomplished
by creep and dynamic mechanical analysis (DMA). Non-
degraded samples were analysed in the dry state. These
experiments were performed using a Perkin Elmer
DMA7 analyser with a controlling cooling accessory and
using helium as a purge gas. The three-point bending
mode was chosen: the samples, with rectangular geometry
and dimensions 15 · 4.3 · 2 mm, were placed in a 15 mm
platform and a 5-mm knife-edge probe tip provided the
mechanical excitation. Sufficiently low force values were
applied in all the experiments to ensure that the resultant
strain was within the linear viscoelastic regime. Creep
measurements were performed at 20 �C for 48 h. The
creep stress was 3.33 MPa for SCA and 1.21 MPa for
SPCL. After this time period the stress was removed
and the samples were allowed to recover for 24 h.
Dynamic mechanical measurements were conducted
between �70 and 60 �C at 2 �C/min and 1 Hz. Prior to
the experiments all the necessary thermal and mechanical
calibrations were performed.



N.M. Alves et al. / Acta Biomaterialia 3 (2007) 69–76 71
3. Results and discussion

3.1. Microhardness results

In this study microhardness tests were performed with
SCA and SPCL in order to evaluate the changes occurring
when these polymers are immersed in an aqueous medium
for distinct periods of time; see Figs. 1 and 2. For SPCL it
was found that microhardness decreased from �29.8 MPa
for a non-immersed sample to approximately 15.1 MPa
after 30 days of immersion (see Fig. 1). Fig. 2 expands
the data for the first 100 min, where it can be noted that
the main decrease of the microhardness value happens in
this short period of time. For SCA the microhardness
decreased even more than for SPCL for the same immer-
sion periods (Fig. 1): it decreased from �33.3 MPa for a
non-immersed sample to �1.9 MPa after 30 days of immer-
sion. As for SPCL, the main decrease occurred after a very
short immersion time, less than 100 min (see Fig. 2).

It is known that the mechanical properties change
with time due to different factors, such as swelling or
degradation. In the case of SCA the variation is more
dramatic essentially because the ability for water uptake of
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Fig. 1. Microhardness against immersion time for SPCL and SCA
between 0 and 30 days. Loading time = 5 s and applied force = 49.03 mN.
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Fig. 2. Microhardness against immersion time for SPCL and SCA
between 0 and 100 min. Loading time = 5 s and applied force = 49.03 mN.
SCA is much higher than for SPCL, as shown in the next
section.

Previous microhardness studies on non-dried starch
reported that for this material the hardness is greatly influ-
enced by the amount of water present in the sample, with
the hardness values increasing with decreasing water con-
tent [16,17]. Water reduces the hydrogen bonding between
molecules, decreasing the intermolecular forces, and hence
reducing the resistance to plastic deformation [17]. The
blending of starch with less hydrophilic polymers may be
a way to reduce this effect, providing more mechanical
integrity of the material in hydrated environments. This
is the case for SPCL, where PCL has a low water uptake
ability, as can be seen in the next section. For example,
regarding the surface mechanical properties of PCL, it
was shown that for pure microporous PCL samples the
indentation resistance was virtually unchanged after 45
months of immersion in PBS [22]. This behaviour was
attributed to the hydrolytic stability of PCL [22].

As pointed out in the introduction, the mechanical prop-
erties of biomaterials may change significantly when they
are investigated under a simulated physiological environ-
ment [14]. The microhardness technique used in our work
allows the variations in the surface mechanical properties
of the analysed starch blends to be measured after being
immersed and therefore these changes can be detected after
a period shorter than the time needed to detect variations
in the bulk properties in the dry state: in this case after only
30 days of immersion. This happens because the water
uptake process, due to the absorption gradient, starts at
the surface of the sample.

It should be noted that the surface for the microindenta-
tion tests was not modified because we wanted to study a
surface similar to the surface of these biomaterials when
implanted. However, from the SEM images of these sam-
ples (not shown), it was confirmed that the surface
morphology, namely the roughness before and after
immersion in PBS, did not change significantly for both
materials. So the decrease in microhardness measured for
the immersed samples could not be just an effect of different
surface topographies.

The microhardness of SCA and SPCL dry samples was
also measured in order to analyse its dependence on load
and loading time; see Fig. 3. When the loading time is fixed,
it can be seen that the measured hardness is load dependent
for the two materials and for all the loading times. Usually
for brittle materials, such as silica glass and alumina, the
hardness is virtually independent of load [23]. For metals
the measured hardness typically decreases with increasing
load due to the indentation size effect, which has been
extensively discussed in the literature [24]. However, a ten-
dency opposite to the one previously referred to for metals
is observed in Fig. 3. We believe that this behaviour could
be related to the skin-core morphology developed during
the injection moulding process of the samples. As the cool-
ing rate of the skin layer is higher than the one correspond-
ing to the core region, its degree of crystallinity and,
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Fig. 3. Microhardness against loading time, for two different applied
forces (indicated in the graphics) measured for dry (a) SPCL and (b) SCA.
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Fig. 4. Water uptake ability of SPCL and SCA for immersion times
between (a) 0 and 30 days and (b) 0 and 100 min.
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consequently, its microhardness, should be lower. In fact,
this behaviour was already reported [25]. When the load
is higher we are increasing the penetration depth of the
experiment and, due to the skin-core morphology, the
microhardness should increase as seen in Fig. 3.

An important aspect concerning the surface indentation
mechanism is the creep effect shown by polymeric materials
[21]. The so-called creep curves, i.e. the microhardness vs.

loading time plots (Fig. 3), are typically characterized by
a decreasing strain rate. For many polymers this behaviour
is successfully described by a power law,H = H0 t�k, where
H0 is a coefficient that, for a given morphology, depends on
temperature and loading stress, k gives a measure of the
creep rate of the material and t is the loading time.

For SPCL it was not possible to fit the experimental
data (Fig. 3a) to the previous equation. In fact it can be
seen that, in the range of loading times used, the variation
of microhardness with loading time is almost negligible, an
opposite behaviour to the one commonly observed for sev-
eral polymers [21]. On the contrary, for SCA the experi-
mental data shown in Fig. 3b were successfully fitted to a
power law. The creep constant k was calculated from the
previous data, by using a conventional non-linear least
squares curve fitting algorithm. A value of k = 0.2 was
obtained, independent of the applied load. For pure starch,
the hardness was also shown to decrease with loading time,
following a power law function [18]. A creep constant
k = 6.7 · 10�2 was obtained in this case [18]. This value
is comparable, for instance, to the ones reported for PET
(k between 5 · 10�2 and 6 · 10�3 were obtained in the work
of Baltá Calleja et al. [26]). By comparing the k values of
SCA and pure starch it can be seen that the creep rate of
SCA is much higher than that of pure starch.

3.2. Swelling and degradation results

The water uptake and the weight loss of both starch
blends were measured for distinct immersion times; see
Figs. 4 and 5. The period of time between 1 and 100 min was
investigated in detail because, as shown in Section 3.1, the
change in microhardness for both materials occurs especially
in this short period of time. The water uptake was �9% for
SPCL and �45% for SCA, after 30 days of immersion
(Fig. 4a). For SCA a water uptake of �14% was measured
after only 100 min, whereas for SPCL the water uptake
was just �4% for the same time period (Fig. 4b). The
observed differences in the water uptake ability of the mate-
rials are mainly due to the synthetic component present in the
blends. Cellulose acetate has a much higher hydrophilic
character and can take up much more water than PCL. It
must be pointed out that the water uptake measured in this
work for both samples should be considerably higher than
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the values that would be obtained if the same measurements
were conducted in a confined environment. In fact, a bioma-
terial when implanted is confined by the surrounding tissue
and the water uptake and swelling of the implant would be
limited by this factor. This effect was already investigated
in vitro for starch-based materials [27].

The weight loss was �7% for SPCL and �16% for SCA,
after 30 days of immersion (Fig. 5a). The lower weight loss
associated with SPCL is also related to the previously men-
tioned properties of this material. In fact, it has been shown
that pure PCL is stable when immersed in PBS at pH 7.2
for �1 year [28]. The major weight loss occurs in the first
week for both materials and after 7 days the weight loss
of SCA is higher than for SPCL. The weight of SPCL
remained approximately constant after that time period.
The weight loss for short times is almost negligible
(Fig. 5b). After 100 min the measured weight loss values
were �1.1% for SCA and �0.8% for SPCL. Similar weight
loss values and degradation rates have been found for
SPCL and SCA elsewhere [29–31].

The hydrolytic degradation behaviour of starch based
blends has been analysed in several works [3,29,30,32,33].
It was reported that in the first stage of degradation of
the starch-based blends a loss of plasticizers occurs, mostly
glycerol, which are used in the blends to enable the materi-
als processing. Then the elimination of low molecular
weight chains is observed resulting from the thermo-oxida-
tive degradation that occurred during the processing
stages. For longer times, i.e. substantially longer than 30
days [3,29,30,32,33], the chemical degradation of the starch
and synthetic phases occurs with backbone scission and
leaching of low molecular weight chains to the solution.
So, the weight loss measured for both blends in our work,
after 30 days of immersion, is associated with the above
described degradation behaviour, and after that time per-
iod it is expected that the first stage of degradation should
play the main role [3,29,30,32,33].

The variations in the mechanical properties when the
materials are immersed, namely the observed decrease in
microhardness, can be related to the different hydration
degree/degradation behaviour of each material. For short
periods of time, less than 100 min, a negligible weight loss
is associated with both blends, which means that the water
uptake was responsible for the decrease in microhardness
reported for both materials in the previous section. In the
case of SCA, which presents a relatively high water uptake
ability even for short immersion times, as shown in Fig. 4a,
the decrease of microhardness is more accentuated. After
an immersion period of 30 days the microhardness decrease
could be attributed to a combination of both factors:
weight loss and hydration degree. Again, SCA presents a
much higher weight loss and water content than SPCL,
leading to a much more pronounced decrease in its microh-
ardness. However, even after this immersion period the
hydration degree plays the main role in the variation of
microhardness because it is not expected that the loss of
plasticizers associated with the weight loss would contrib-
ute significantly to a decrease in microhardness.

So, the above mentioned results suggest that the water
uptake is the major factor that will determine the time-
dependent microhardness properties in the studied samples.
In another study the time variation of the loss modulus in a
starch-based blend, as measured by DMA with samples
immersed in a simulated physiological solution, was
also correlated with swelling [15]. Such kinds of studies
demonstrate the importance of the hydration effect on the
mechanical behaviour of biomaterials.

3.3. DMA and creep results

The results of Fig. 3 clearly show the time-dependency
on the microhardness behaviour in the dry SCA samples.
It should be also interesting in this context to evaluate
the time-dependent mechanical behaviour of the bulk
materials. DMA was used in this work to characterise the
viscoelastic properties of SPCL and SCA. Both materials
were subjected to static (creep) and cyclic experiments.

The flexural storage modulus (E 0) and loss factor (tand)
vs. temperature at 1 Hz are presented in Fig. 6. E 0 charac-
terises the ability of the polymer to store energy (elastic
behaviour) and it is a measure of the stiffness of the mate-
rial. Tand is a measure of energy dissipation (damping)
independent of a sample’s dimensions.
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The dynamic mechanical behaviour of SPCL and SCA
has been described elsewhere [29,34,35]. Essentially, a
strong decrease of E 0 and a tand increase is detected in
SPCL at �50 �C due to the melting of the PCL fraction.
Pure PCL exhibits a low glass transition temperature Tg

of approximately �60 �C [36], which can be observed in
Fig. 6, which imparts a rubbery characteristic to the blend
at body temperature. This means that although SPCL is
not suitable for load bearing applications due to low E 0 val-
ues (E 0 = 0.47 GPa at room temperature), it may be used in
small defects and in areas where flexibility and good impact
properties are needed. On the other side, CA is an organic
ester characterized by its hardness [37], which makes SCA a
more rigid material than SPCL: E 0 = 1.59 GPa at room
temperature. Besides the transition regions where a
decrease in E 0 with increasing temperature is expected, this
property presents a continuous decrease with temperature
in the analysed temperature range for both materials. This
behaviour was also found in thermoplastic proteins plasti-
cized with glycerol [38] and assigned to a ‘‘molecular
lubricant’’ effect of the plasticizer.

The glass transition of starch was not detected in the tem-
perature scans of the blends. As the starch is extruded in wet
conditions before the injection moulding, the final material
already underwent gelatinisation and the glass transition of
starch may appear at temperatures above 60 �C [39], i.e.,
higher than the final temperature of our scans. The glass
transition of CA was also not detected because its Tg is typ-
ically higher than the final temperature of the scan: Tg val-
ues between 147 �C and 220 �C have been reported [40,41],
depending mainly on the acetyl content [42].

The values of the loss factor at body temperature were
tand = 0.067 for SCA and tand = 0.107 for SPCL. These
values are in agreement with the ones previously reported
for these blends [34,35] and indicate that such systems,
especially SPCL, are able to dissipate a significant fraction
of imposed mechanical energy.

The characterization of the creep phenomenon is impor-
tant from the point of view of long-term performance of
products. For instance it can be used for predicting the life
of a product as defined by an excessive creep deformation
[43]. Fig. 7 shows the creep curves obtained for both sam-
ples at 20 �C, where the strain is represented as a function
of time. A detailed creep analysis of starch/PCL blends
with different compositions in the extension mode can be
found in the work of Sen et al. [36].

During the creep period the compliance (D) of SPCL is
significantly higher than that corresponding to SCA; by
calculating the ratio between the deformation values and
the corresponding applied stress it was found that
DSPCL = 3.7DSCA (see inset graphics of Fig. 7). High values
of compliance for starch/PCL blends were reported before
by Sen et al. [36]. The higher compliance exhibited by
SPCL when compared to SCA is due to the different syn-
thetic component of the blends. PCL has a significantly
lower Tg than that of CA, as previously mentioned when
the DMA results were discussed. At room or body temper-
atures PCL chains are above Tg, hence, they are free to
relax when a constant stress is applied, whereas the CA
chains are still below its Tg and behave as stiff chains.

Also, the slope of the compliance vs. log time curve
(Fig. 7-inset graphics) is about 4.9 times higher for SPCL.
Such higher time-dependence found in SPCL in creep data
is consistent with the higher tand values at room tempera-
ture also found in the same material, indicating a higher
viscoelastic behaviour, with respect to the more elastic fea-
tures of SCA. It is interesting to note that, in contrast, the
time-dependency on the microhardness results is more pro-
nounced for SCA (Fig. 3), indicating that other factors,
rather than linear viscoelasticity, are involved in the varia-
tion of microhardness with loading time.

4. Conclusions

Microhardness was used for the first time to evaluate the
mechanical properties of starch based blends after being
immersed in a physiological simulated fluid at body tem-
perature. The main change in the mechanical properties
at the surface of starch-based biomaterials under in vitro

conditions occurs at time scales of a few minutes, being
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highly mediated by swelling. SCA exhibited a microhard-
ness decrease more pronounced than PCL for the same
immersion periods due to its higher hydrophilicity and
higher water uptake ability.

The dependence of microhardness with loading time and
load was analysed for dry SCA and SPCL. The measured
microhardness was found to be load dependent and, for
a given load, decreases with increasing loading time. The
creep curves of SCA were successfully described by a power
law.

Regarding the viscoelastic behaviour of the blends, the
elastic modulus values at room temperature revealed
the higher flexibility of SPCL when compared to SCA.
The tand values obtained indicated that both systems are
able to dissipate a significant fraction of mechanical
energy, especially SPCL. The more viscoelastic behaviour
of SPCL was also observed from creep experiments, where
it was found that the strain rate is higher for SPCL than for
SCA. The compliance is about 3.7 higher in SPCL at room
temperature reflecting also the higher stiffness of SCA.

The results found in this work showed that microhard-
ness is an adequate and useful technique to monitor the
mechanical properties at the surface of biomaterials upon
immersion in physiological-like fluids in order to predict
the mechanical performance of an implant region in con-
tact with the tissue.
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[21] Baltá Calleja FJ, Fakirov S. Microhardness of polymers. Cam-
bridge: Cambridge University Press; 2000.

[22] Coombes AGA, Rizzi SC, Williamson M, Barralet JE, Downes S,
Wallace WA. Precipitation casting of polycaprolactone for applications
in tissue engineering and drug delivery. Biomaterials 2004;25:315–25.

[23] McColm IJ. Ceramic hardness. New York, NY: Plenun Press; 1990.
[24] Sangwal K, Surowska B, Blaziak P. Relationship between indentation

size effect and material properties in the microhardness measurement
of some cobalt-based alloys. Mater Chem Phys 2003;80:428–37.

[25] Aurrekoetxea J, Sarrionandia MA, Urrutibeascoa I, Maspoch MLI.
Effects of injection moulding induced morphology on the fracture
behaviour of virgin and recycled polypropylene. Polymer 2003;44:
6959–64.
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