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Abstract 

Articular cartilage has an inadequate natural rebuilding capacity. Tissue engineering has shown to 

have potential to provide an effective alternative to engineer the damaged cartilage. In this study, an 

integrated porous bi-layered scaffold was developed aiming to mimic the requirements of cartilage 

and underlying subchondral bone. The osteochondral approach explored in this work was to include 

a common polymeric component in both cartilage and bone components, which maximised the 

integration at the interface by mean of a melt-based processing route. A blend of starch and poly(L-

lactic acid),PLLA, was used in the cartilage side, which was found to possess an adequate water 

uptake capability. For the bone region, to induce bioactivity, PLLA had been reinforced with 

hydroxyapatite (HA) and bioactive glass (BG). The surfaces of the constructs were investigated as a 

function of soaking time in a simulated body (SBF) fluid using scanning electron microscopy 

(SEM) and FTIR. The SEM – FTIR indicated a bone-like apatite formation and the surface 

coverage by apatite layer increased with increasing soaking time, whereas the cartilage-layer did not 

exhibit the formation of any apatite like layer. 

 

1. Introduction 

The repair of articular cartilage, as a result of trauma, tumour resection or degeneration, remains an 

intractable problem, due to poor natural healing capacity of this tissue owing to its avascular nature 

[1]. Current clinical approaches to enhance the natural rebuilding of articular surfaces include 

modifications of the damaged surface (chondral shaving with debridement, abrasion arthroplasty, 

subchondral drilling or microfracturing of the subchondral bone) and transplantation of periosteal, 

perichondral [2,3] or osteochondral [4]  autografts. However, none of these currently available 

therapies can provide a long-term solution to refurbish an enduring cartilage healing [5]. 

Tissue engineering approaches have a great potential to lead to the development of strategies for the 

biological and functional regeneration of cartilage and of osteochondral defects. An important 

factor in the fabrication of a porous bi-layered construct is the need of a good integration between 

the two compartments, avoiding the construct delamination and promoting the long-term integrity 

of the articular cartilage surface.  

For the subchondral bone, poly(L-lactic acid), PLLA, may be an adequate choice as matrix material 

because of superior mechanical properties and biodegradability [6]. The use of ceramics, namely 

hydroxyapatite and bioglass,  along with PLLA showed good osteoconductivity and some degree of 

biocompatibility both in-vivo and in-vitro [7,8].  

It was also suggested that PLLA is also a suitable substrate for scaffolding materials for cartilage 

tissue-engineering [9]. In this context, it may be advantageous to associate PLLA with natural-

based materials, as they usually show good interaction with cells and improve the hydrophilic 

Key Engineering Materials Vols. 309-311 (2006) pp. 1109-1112
online at http://www.scientific.net
© 2005 Trans Tech Publications, Switzerland

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the
written permission of the publisher: Trans Tech Publications Ltd, Switzerland, www.ttp.net. (ID: 212.98.47.120-06/06/06,15:36:20)

mailto:jmano@dep.uminho.pt
http://www.scientific.net
http://www.ttp.net


character of the polymer. In this work, the cartilage component of the developed constructs was 

produced with a blend of PLLA and corn starch. It was shown that such blends could exhibit less 

cytotoxicity than pure PLLA, and a comparable adhesion and proliferation of osteoblasts-like cells  

[10]. The bi-layered construct is processed using an organic solvent-free methodology, based on 

compression moulding and salt leaching, and the bioactive character of both layers is investigated. 

 

2. Materials and methods 

2.1. Materials 

The PLLA, used in this work was of high stereoregularity and had Mn = 69,000 and polydispersity 

of 1.73. The blend of PLLA and starch used in this study contained 50 wt% of starch and was 

labelled SPLA50.  

The hydroxyapatite (HA) used in this study was supplied by Plasma Biotal Ltd, U.K. This sintered 

HA had an average particle size of 10 µm. The Bioglass 45S5 (BG) used in this study was from 

Novamin Technology Inc., Florida, USA. The particle sizes was ranging from 3.8 to 5.3 µm  

 

2.2. Fabrication of the scaffolds 

PLLA and SPLA50 were pre-dried at 50 ºC at 100 mbar for 4 hours in a vacuum oven. The 

polymers were cryogenically milled with liquid nitrogen and sieved by a strainer of 500 µm mesh 

size. NaCl particles of 250 to 500 µm and <125 µm particle size were sieved.  

For the bone side, a 70/30 wt% PLLA/HA or PLLA/BG mixture was blended with 70 wt% of NaCl 

(particle size =250 - 500 µm). For the cartilage side, SPLA50 was blended with 80 wt% of NaCl 

(particle size <125 µm). The bi-layered construct was 1:1 wt% proportion of the two components.  

The blends were dried at 50 ºC at 40 mbar for 4 hours in a vacuum oven prior to compression 

moulding. To produce the bi-layered construct, the PLLA-HA-NaCl or PLLA-BG-NaCl mixtures 

were first put into the compression moulding machine, compressed by 5 tons load for 30 seconds 

and after this process the load was removed. The SPPLA50+NaCl mixture was placed on the top of 

the compressed layer and the initial pressure was raised to 10 tons at 180 ºC for 10 minutes. The 

mould was cooled and the discs were taken out of the mould. Square section scaffolds, with 4.5 x 

4.5 mm cross-section and a reference height of 9 mm, were cut from the obtained discs. 

The leaching was performed on round bottomed flask with 20 times (by volume) of distilled water. 

The flasks were placed onto a mechanical shaker at 37 ºC. The water was replaced every 4 hours. 

NaCl content was checked by aqueous silver nitrate solution. The leaching was continued until no 

precipitate by silver nitrate was detected. 

 

2.3. Characterisation of the scaffolds 

2.3.1. SEM analysis- A LEICA Cambridge S-360 (UK) scanning electron microscopy (SEM) 

analysis at 15 kV was performed on scaffolds with all the components alone and the bi-layered 

scaffolds, before and after putting into simulated body fluid (SBF). Prior to analysis, each sample 

was gold coated. 

 

2.3.2. Measurement of water uptake- Amount of water uptake of the scaffolds was investigated in 

by means of incubating the sliced scaffolds in distilled water at 37 ºC. The samples were taken out 

at predetermined time intervals, blotted all the six sides of the cubes for 20 minutes and then 

weighted with an electronic balance. The wet specimens were dried in vacuum at 40 ºC for 24 hours. 

The water uptake percentage was calculated as (Ww – Wd) / Wd x 100, where Wd was the mass of 

dried cube and Ww was the mass of the wet cube after blotting for 20 minutes. 

 

2.3.3. FTIR analysis- The FTIR spectra were recorded on a Perkin Elmer System 1600 FTIR with 

an attenuated total reflectance device from SPECAC (MKII Golden Gate, diamond crystal, 

penetration depth 20 µm, active area 0.8mm
2
). Spectra were taken with a resolution of 2 cm

-1
 and 

were averaged over 24 scans. 
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2.3.4. Bioactivity Test - The simulated body fluid (SBF) was prepared as the protocol described in 

the literature [11]. The SBF has been used for the in vitro assessment of bioactivity of synthetic 

materials by examining their apatite-forming ability. All the scaffolds were fish hooked and 

immersed in 50 ml SBF solution put in polypropylene tubes. These polypropylene tubes were 

placed in a water bath at 37 ºC for 1, 3, 7, 14 and 30 days. After removing the samples for the 

predetermined time periods, the specimens were thoroughly cleaned by distilled water and dried at 

23 ºC at 50% relative humidity. 

 

3. Results and discussion 

The method employed allowed to produce bi-layered constructs (Fig. 1) with independent and 

controllable porosity being essentially dependent on the amount and size of NaCl particles.  

As expected, the porosity is higher on the cartilage-side (left) and 

the pore sizes are smaller. Moreover, the pores appear to be 

interconnected. On the other hand, the bone-side (right) exhibits 

larger pores but the interconnectivity is not quite evident. The 

densities of PLLA, PLLA/HA and PLLA/BG, SPLA50 were 0.38 

± 0.03, 0.38 ± .03, 0.33 ± 0.05 and 0.48 ± 0.03 g.cm
-3
 respectively.  

 

Water up-take capability porous scaffolds of PLLA, PLLA/HA, PPLA/BG and SPLA50, bi-layered 

(PLLA/HA and SPLA50) and bi-layered (PLLA/BG and SPLA50) were 71±9, 55±-6, 62±-8, 

250±25, 150±6, 145±7 respectively. PLLA is a hydrophobic polymer; consequently the water 

uptake is low. As starch is strongly hydrophilic, the cartilage-side will absorb much more water. 

The water uptake after blotting was 250% in the SPLA50 layer resembling the natural hydration of 

cartilage. The bi-layered constructs had intermediate water uptake capabilities. 

 

Fig. 2(a) and (b) – SEM images of 

PLLA/HA and PLLA/BG after 

incubation to SBF for 1 day. The 

inserts show the porous construct 

at lower magnification. 

 

 

 

Both the porous construct of PLLA/HA and PLLA/BG showed no sign of apatite layer without 

incubation to SBF although 30 wt% of HA and BG were incorporated in the PLLA matrix. The 

apatite content over the surface of both constructs appeared to be increased from one to three days 

of incubation. However, the nature of apatite formation is dependent on the type of inorganic filler 

incorporated. PLLA/BG showed the complete coverage of the surface and a cauliflower like 

structure on day one. There is no sign of apatite formation on pure PLLA. SLA50 layer does not 

exhibit the formation of any Ca-P layer, being a positive result, as one should avoid any 

calcification in the cartilage region of the scaffold. 

Fig. 3 shows the FTIR spectra of the developed mono-layered scaffolds and for pure HA.  

For pure HA, the phosphate peak appeared near to 1000 cm
-1
.  Pure PLLA did not show any sign of 

phosphate on surface in the incubation process.  For PLLA/HA, there is a feeble sign of phosphate 

without incubation and phosphate is more prominent on day 3. These results are consistent with the 

SEM observations. Fig. 3(c) shows little sign of phosphate on day zero but strong presence were 

revealed on day one and day three. So, it is evident from the results that the presence of HA and 

especially of BG induces in-vitro bioactivity to porous PLLA constructs that is in accordance with 

previously reported data for PLLA/BG layer [12]. 
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Fig. 3 – Representative FTIR spectra for (a) PLLA, (b) PLLA/HA and (c) PLLA/BG porous 

scaffolds after incubation to SBF for 0, 1 and 3 days. 

 

Conclusions 

The developed constructs comprised two well integrated layers where the cartilage-like is composed 

by a blend of PLLA and starch, exhibiting swelling characteristics similar to human articular 

cartilage. Both composites, PLLA/HA and PLLA/BG exhibited a bioactive behaviour, being 

adequate for the bone-side.  
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