
GamaSlicer: an Online Laboratory for Program

Verification and Analysis∗

Daniela da Cruz, Pedro Rangel Henriques and Jorge Sousa Pinto

Informatics Department, University of Minho
Braga, Portugal

Abstract

In this paper we present the GamaSlicer tool, which is primarily a
semantics-based program slicer that also offers formal verification (gener-
ation of verification conditions) and program visualization functionality.
The tool allows users to obtain slices using a number of different fam-
ilies of slicing algorithms (precondition-based, postcondition-based, and
specification-based), from a correct software component annotated with
pre and postconditions (contracts written in JML-annotated Java). Each
family in turn contains algorithms of different precision (with more pre-
cise algorithms being asymptotically slower). A novelty of our work at the
theoretical level is the inclusion of a new, much more effective algorithm
for specification-based slicing, and in fact other current work at this level
is being progressively incorporated in the tool.

The tool also generates (in a step-by-step fashion) a set of verification
conditions (as formulas written in the SMT-lib language, which enables
the use of different automatic SMT provers). This allows to establish the
initial correctness of the code with respect to their contracts.

1 Introduction

The goal of program verification is to establish that a program performs accord-
ing to some intended specification. Typically, what is meant by this is that the
input/output behavior of the implementation matches that of the specification
(this is usually called the functional behavior of the program), and moreover
the program does not ‘go wrong’, for instance, no errors occur during evaluation
of expressions (the so-called safety behavior).

Modern program verification systems rely on the use of a Verification Con-
ditions Generator (VCGen for short), a program that reads in a piece of code
together with a specification, and produces a set of first-order proof obliga-
tions (called verification conditions) whose validity will imply that the code is

∗This work was supported by project RESCUE, funded by FCT (PTDC/EIA/65862/2006).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55613959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(partially or totally) correct with respect to the specification. The underlying
theoretical framework is some program logic, typically Hoare logic [12] (but
other more recent and sophisticated logics exist, such as separation logic [17]).
Specifications are expressed in terms of preconditions and postconditions, which
are in general formulas of first-order logic.

In this context, the Design by Contract approach to software development [15],
which proposes that a program’s procedures / methods be annotated with con-
tracts that can be checked at runtime, may be fruitfully combined with program
verification, since the notion of contract coincides precisely with the above no-
tion of specification. The idea behind contract-based verification is that a pro-
gram (defined as a set of mutually recursive procedures with contracts) is correct
if all its individual procedures are correct with respect to their own individual
contracts. Thus procedures can be independently verified in a modular way.

The combination of slicing techniques with program verification has been
proposed [11, 5, 4] with a double goal: on one hand, slicing may help in op-
timizing the verification process, allowing one to delete the statements that
do not contribute to the validity of a given specification (the resulting slice is
smaller and thus easier to verify than the original program). On the other hand,
verification inspires a novel, much more powerful way of slicing programs (with
respect to traditional, syntax-based slicing), based on their axiomatic semantics.

In this paper we introduce GamaSlicer, a tool that includes both traditional
program verification functionality (it is a Verification Conditions Generator)
and also a highly parameterizable semantic slicer. It includes all the pub-
lished algorithms (precondition-based slicing [4], postcondition-based slicing [5],
specification-based slicing [4] and their variants) as well as a new, more effective
algorithm that we have developed. The tool is extremely useful for comparing
the effectiveness of slicing algorithms; it also allows users to perform diverse
workflows such as for instance

• First verifying a program with respect to a given specification; then slic-
ing it with respect to that specification to check if there are irrelevant
commands (with respect to that specification).

• Then, from a verified program, producing a specialization by weakening
the specification and slicing the program with respect to the weaker spec.
This may be useful in a program reuse context, in which a weaker contract
is required of a component than the actually implemented contract.

The remainder of this paper is organized as follows. Section 2 briefly in-
troduces the background on program verification and slicing to give theoretical
support to GamaSlicer. Section 3 presents the architecture of GamaSlicer, and
its features. Section 4 discusses applications and usage of GamaSlicer. Section 5
closes the paper with some remarks and future work.

2

wp (skip, Q) = Q
wp (x := e, Q) = Q[x 7→ e]
wp (C1; C2, Q) = wp (C1, wp (C2, Q))

wp (if b then Ct else Cf , Q) = (b → wp (Ct, Q)) && (!b → wp (Cf , Q))
wp (while b do {I}C, Q) = I

wp (call p, Q) = Forall xf .
(
pre(p) → post(p)

[
x/x ,̃ xf /x

])
→ Q[xf /x]

VC(skip, Q) = true
VC(x := e, Q) = true
VC(C1; C2, Q) = VC(C1, wp (C2, Q)) && VC(C2, Q)

VC(if b then Ct else Cf , Q) = VC(Ct, Q) && VC(Cf , Q)
VC(while b do {I}C, Q) = (I && b) → wp (C, I) && VC(C, I) && (I && !b) → Q

VC(call p, Q) = ∅

Figure 1: VCGen algorithm: weakest precondition and verification conditions.
The operator N (·) returns a sequence of the variables occurring free in its argument
assertion.
Given a sequence of variables x = x1, . . . , xn, we let xf = x1f , . . . , xnf and x˜ =
x1 ,̃ . . . , xn .̃

2 Theoretical Background

We give here a brief overview of the theoretical framework underlying GamaSlicer,
but we omit formal definitions and proofs. The reader is directed to [10, 7] for
more details.

Program Verification. The verification infrastructure consists of a program
logic used to assert the partial correctness of individual procedures, from which
a VCGen algorithm is derived (Figure 1). The VCGen is proved correct, i.e. it is
guaranteed to generate, from a Hoare triple {P}C {Q}, a set of proof obligations
whose validity is sufficient for the triple to be valid, i.e. for the program C to
be correct with respect to precondition P and postcondition Q (technically, the
correctness result states that there must exist a Hoare logic derivation having
the triple as conclusion).

The standard method for generating verification conditions relies on an al-
gorithm that uses the weakest precondition strategy. Our VCGen algorithm is
based on the usual function wp (C, Q) that calculates, from a command C and
a postcondition Q, the weakest precondition required to grant the truth of Q
after terminating executions of C; the auxiliary function VC(C, Q) returns a
set of verification conditions sufficient to ensure the validity of the Hoare triple
{wp (C, Q)}C {Q}. Notice that determining weakest preconditions of loops is
straightforward in our context, since all loops are annotated with invariants that
are taken into account.

For a given Hoare triple, the VCGen simply collects the verification condi-
tions generated for each procedure and function with the VC function using the
contract’s postcondition, with an additional condition stating that the contract
precondition must be stronger than the calculated weakest precondition. Let Π

3

be a program consisting of procedures Ci with i ∈ {1, . . . , n}, each annotated
with a contract consisting of precondition Pi and postcondition Qi. Then the
verification conditions for Π are given as⋃

i=1...n

{Pi → wp (Ci, Qi)} ∪ VC(Ci, Qi)

Thus the validity of the verification conditions generated from Π implies the
correctness of all the procedures in Π with respect to their contracts.

A final note with respect to establishing the validity of first-order logic formu-
las: the VCGen produces verification conditions whose validity must be checked
by some external proof tool; the slicing algorithms described next also require
the use of an external proof tool. GamaSlicer uses SMT-solvers for this purpose.

Program Slicing. The basic idea of slicing – a code analysis technique in-
troduced by Weiser [18] – is to isolate a subset of program statements, either
those (directly or indirectly) contributing to the value of a set of variables Vs at
a program location p, or those influenced by the value of that set of variables at
location p. These two forms are known as backward slicing and forward slicing
respectively; C(p, Vs) is called a slicing criterion. Statements not interfering
with the set of variables isolated are removed, enabling software engineers to
concentrate on the statements that are relevant for the task at hand.

Comuzzi et al [5] and Chung et al [4] have provided algorithms for code anal-
ysis enabling to identify spurious commands (commands that do not contribute
to the validity of the postcondition). The former paper presents a variant of
program slicing, called p-slice or predicate slice, using Dijkstra’s weakest precon-
ditions to determine which statements will affect a specific predicate. The latter
argues that the information present in the annotations helps to produce more
precise slices by removing statements that are not relevant to that specification.

These two papers lay the foundations of slicing based on preconditions (a
semantic form of forward slicing) or on postconditions (a semantic form of back-
ward slicing). Both notions can be implemented at different levels of precision
(more precision requires slower execution times; for this reason GamaSlicer al-
lows the user to select between linear-time and quadratic time algorithms on
the length of the program). The notion of specification-based slicing, also in-
troduced by Chung, can be informally described as follows: given a program
C which is correct with respect to precondition P and postcondition Q, it is
safe (in the sense that the resulting program will still be correct with respect
to the same specification) to remove from C all the statements that will never
be executed (because P precludes that execution), as well as all the statements
whose execution does not affect the truth of Q in the final state of the program.

The algorithm proposed [4] for implementing specification-based slicing con-
sists of first slicing the program with respect to the precondition (ignoring the
postcondition), and then with respect to the postcondition (ignoring the pre-
condition). In our theoretical work we have found that a much more precise
specification-base slice is obtained by algorithms that use simultaneously the

4

precondition and postcondition. The trade-off between execution time and pre-
cision is still present, so different algorithms can be given based on this principle.

Examples comparing all these notions of slicing and the algorithms used
to calculate them, together with the definition of our own specification-based
slicing, can be found in [7]. Note that since semantic slicing relies on first-order
logic (a given statement is sliced off if some first-order formula can be proved),
it is of course a conservative transformation – if some formula (possibly valid)
cannot be proved, then the corresponding command will not be sliced off.

Visualization. The problem of visualizing program slices is a part of the
larger problem of program visualization – the relevant question here is how to
display the interdependencies and relationships among program components in
an user-friendly way, that effectively helps understanding programs. As slicing
removes non-relevant statements from the source code, it is important that the
visual representation clearly distinguishes sliced statements from other, remain-
ing statements. This is a challenge.

The visualization of a program, using a System Dependency Graph (SDG)
actually helps in perceiving the relationships holding among program compo-
nents, and has been widely used by many other tools [13, 3, 1, 2]. However, as we
are dealing with programs with contracts, we felt the need to extend this notion
of SDG. We call this extension Annotated System Dependence Graph, SDGa for
short. Essentially, an SDGa is an SDG in which some nodes are annotated. An
annotated node is a block composed by a statement or a predicate (a control
statement or entry node) and one or more annotations (a precondition, a post-
condition, or an invariant). We are currently supporting the CFGa in order to
visualize assertion-annotated programs as well as calculated program slices. We
are now looking for a suitable way to exhibit the SDGa.

3 GamaSlicer, an Overview

GamaSlicer is an online laboratory1 that includes a VCGen, a parameterizable
slicer with a choice of algorithms, and visualization functionality (not present
in the current version). It works on Java programs with JML annotations (the
standard specification language for Java [14]). Instead of programs consisting of
sets of procedures, one has classes with their methods, sharing a set of class/in-
stance variables instead of global variables. The fundamental idea remains the
same: the verification task concerns a set of mutually recursive methods.

The architecture of GamaSlicer, inspired by that of a compiler (or generally
speaking a language processor), is depicted in Figure 2. It is composed by the
following blocks: a Java/JML front-end (a parser and an attribute evaluator);
a verification conditions generator; a proof obligations generator; a theorem-
prover (not included in Figure 2, as we call an external one instead of building
our own); a slicer; and an annotated control flow graph (CFGa) visualizer.

1Current version available at http://gamaepl.di.uminho.pt/gamaslicer

5

Figure 2: GamaSlicer architecture

Although the GamaSlicer works with Java/JML programs to take advantage
from a previous project2, the tool was developed under .NET environment in
C# due to its easiness of web programming and because we intend to extend
GamaSlicer to work also with Spec# programs.

The tool outputs proof obligations written in the SMT-Lib (Satisfiability
Modulo Theories library) language. We chose SMT-Lib since it is nowadays
the language employed by most provers used in program verification, including,
among many others, Z3 [8], Alt-Ergo [6], and Yices [9].

After uploading a file containing a piece of Java code together with a JML
specification, the code is recognized by the front-end (a C# analyzer produced
automatically from an attribute grammar with the help of the ANTLR parser
generator [16]), and is transformed into an AST. During this first step also an
identifiers table is built.

In the next step, the VCGen, implemented in C# as a tree-walker evaluator,
traverses the AST to generate the verification conditions, using a kind of tree-
pattern matching strategy (represented in Figure 2); each time a tree matches a
pattern (corresponding to the eight cases identified in the algorithm of Figure 1),
it is transformed and marked as visited. Before this operation is performed, a
tree traversal is done to look for methods with contracts; this search returns a
set of subtrees, and the VCGen algorithm is applied to each one.

In a third step, the new AST (now with verification conditions attached
to the nodes) is traversed by the SMT code generator (another C# tree-walker
evaluator) to produce SMT proof obligations. If selected by the user, an external
automatic Theorem-Prover is then called to prove the generated SMT formulae.
Actually, when this facility is activated, three theorem provers are called, to

2An existing Java/JML grammar for ANTLR that simultaneously outputs C#.

6

allow for results and performances to be compared.
Alternatively to step three, a fourth step can be performed. Using the AST

to derive the SDGa for the Java/JML class under analysis, the contract-based
slicer applies the user-selected algorithm in order to detect and remove a set of
statements that are not relevant with respect to the specification annotated in
the program, following the discussion in the previous section.

The fifth step is a graphical add-on, that is currently being developed; it
takes the SDGa, before or after slicing, and exhibits the data and control flow
inside the methods and inside the class. Statements deleted by the (contract-
based) slicer are illustrated on the SDGa graphical representation – although
implemented and tested separately, this visualizer is not yet integrated in the
publicly available version of GamaSlicer.

Figure 3: Tab 1: Source Program and VCGen Rules applied

The intermediate information that becomes available after each of the above
steps is displayed in an internet browser window distributed by six main tabs:

• Tab 1 : contains the Java/JML source program to be verified and also the
rules applied along the verification conditions generation process; some
statistical information is also displayed at the top of the window, describ-
ing the program size and annotation complexity (see Figure 3).

7

Figure 4: Tab 5: Sliced Program

• Tab 2 : contains the syntax tree (AST) generated by the front-end.

• Tab 3 : contains the identifiers table built during the analysis phase (also
at step one).

• Tab 4 : contains the generated SMT code; it will also display a table with
the verification status of each formula (sat, unsat, unknown) after calling
a theorem-prover; for each prover invoked, the time consumed to prove
the formulae is also displayed.

• Tab 5 : contains the new program produced by the slicer (applying the
specification-based slicing techniques to the original program); notice that
useless statements identified by the slicer are not actually removed, but
shown in red and strike-out style (see Figure 4).

• Tab 6 : displays the CFGa as the visual representation of the program,
giving an immediate and clear perception of the program complexity, with
its procedures and the relationships among them; nodes in the program’s
graph that were sliced away are marked in red (helping to understand
quickly which statements were removed / preserved). As navigation ca-
pabilities over the visual representation, GamaSlicer allows to expand and
collapse nodes, and to jump into the source code by clicking a node.

8

4 GamaSlicer, Usage and Applications

The first motivation for the design and development of this online laboratory
was to make available a tool that implements semantic slicing algorithms, with
the well-known applications made possible by the combination of verification
and slicing technology, while at the same time allowing us to test our improved
slicing algorithms.

We now list some applications of the tool. Note that in a properly annotated
program, slicing should leave the code intact, thus one first application is to
remove useless code. Other applications involve slicing the program using to
weaker specifications (with respect to the original satisfied by the program).

An obvious one is program comprehension: slicing a method according to
different contracts (by weakening the original contract) allows one to understand
the relation between each code section and each part of the initial contract, and
also to slice programs for reuse or specialization purposes.

GamaSlicer can also be used to help in detecting and fixing errors, both in
annotations and in the methods’ code, since it exhibits in a versatile and user-
friendly tree fashion all the rules used to generate the proof obligations; this
output can optionally be obtained by executing the VCGen algorithm step-by-
step. The proof obligations, written in the SMT-Lib language, are also dis-
played, allowing the user to analyze the formulae and their verification status.

Due to the outputs delivered and the interaction modes, we have found
that GamaSlicer can assist programmers with the improvement of their skills to
annotate programs. A simple way to explore that idea is to take as input a simple
and well-known procedure and then play with different annotations observing
the consequences on proving process. This application trend is clearly reinforced
by the slicer, which detects and displays statements that do not contribute to
the specification.

From our experience, this system can also be a useful teaching tool, since
it allows students to observe step-by-step how verification conditions are gener-
ated. For example, since loop invariants and procedure contracts are annotated
into the code, the only arbitrary choice is in the rule for the sequence command
C1 ; C2, in which an intermediate assertion R must be guessed. This is the
motivation for introducing a strategy for the construction of proof trees, based
on the notion of weakest precondition. The result is a mechanical method for
constructing derivations, which is inbuilt in the VCGen. This transition from
program logic to VCGen is not trivial to understand, and this tool clearly helps
in that process. In an advanced course, it is also useful that students can easily
modify the underlying algorithms (both VCGen and slicing).

5 Conclusion

In this paper we propose a demonstration of a tool that is intended, primarily,
as a development laboratory to test ideas and algorithms in the context of
verification condition generation and semantics-based slicing ; even so, it is, to

9

our knowledge, the only available tool that implements semantic slicing based
on contracts, as well as integration of verification and slicing capabilities. The
tool is web-based, which means that everyone can use it without having to
download any source or executable code. Its interface is very simple and its
usage completely intuitive. A repository of Java/JML example programs is
available from our online Laboratory.

As future work, we intend to work on the scalability of the tool to handle
real-size code, as well as improving the visualizer component and including other
slicing algorithms which are currently being developed.

References

[1] Paul Anderson and Tim Teitelbaum. Software inspection using Codesurfer. In
Workshop on Inspection in Software Engineering, 2001.

[2] Giuliano Antoniol, Roberto Fiutem, G. Lutteri, Paolo Tonella, S. Zanfei, and
Ettore Merlo. Program understanding and maintenance with the CANTO envi-
ronment. In ICSM ’97: Proceedings of the International Conference on Software
Maintenance, page 72, Washington, DC, USA, 1997. IEEE Computer Society.

[3] FranCcoise Balmas. Displaying dependence graphs: a hierarchical approach. J.
Softw. Maint. Evol., 16(3):151–185, 2004.

[4] I. S. Chung, W. K. Lee, G. S. Yoon, and Y. R. Kwon. Program slicing based on
specification. In SAC ’01: Proceedings of the 2001 ACM symposium on Applied
computing, pages 605–609, New York, NY, USA, 2001. ACM.

[5] Joseph J. Comuzzi and Johnson M. Hart. Program slicing using weakest pre-
conditions. In FME ’96: Proceedings of the Third International Symposium of
Formal Methods Europe on Industrial Benefit and Advances in Formal Methods,
pages 557–575, London, UK, 1996. Springer-Verlag.

[6] Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. Ergo : a theorem
prover for polymorphic first-order logic modulo theories, 2006.

[7] Daniela da Cruz, Jorge Sousa Pinto, and Pedro Rangel Henriques. Specification-
based slicing and slice graphs. http://alfa.di.uminho.pt/~danieladacruz/

techReportCPH09b.pdf, October 2009.

[8] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver, volume
4963/2008 of Lecture Notes in Computer Science, pages 337–340. Springer Berlin,
April 2008.

[9] Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, August 2006.

[10] Maria João Frade and Jorge Sousa Pinto. Verification conditions for source-level
imperative programs. Technical Report DI-CCTC-08-01, Universidade do Minho,
2008.

[11] Mark Harman, Rob Hierons, Chris Fox, Sebastian Danicic, and John Howroyd.
Pre/post conditioned slicing. icsm, 00:138, 2001.

[12] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–580, 1969.

10

[13] Jens Krinke. Visualization of program dependence and slices. In ICSM ’04:
Proceedings of the 20th IEEE International Conference on Software Maintenance,
pages 168–177, Washington, DC, USA, 2004. IEEE Computer Society.

[14] Gary T. Leavens and Yoonsik Cheon. Design by Contract with JML, 2004.

[15] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.

[16] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Lan-
guages. Pragmatic Programmers. Pragmatic Bookshelf, first edition, May 2007.

[17] John Reynolds. Separation logic: A logic for shared mutable data structures.
pages 55–74. IEEE Computer Society, 2002.

[18] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international
conference on Software engineering, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

11

