
NASA Journal of Innovations in Systems and Software Engineering manuscript No.
(will be inserted by the editor)

Deductive Verification of Cryptographic Software

José Bacelar Almeida · Manuel Barbosa · Jorge Sousa Pinto · Bárbara Vieira
E-mail: (jba,mbb,jsp,barbarasv)@di.uminho.pt

November 30, 2009

Abstract We apply state-of-the art deductive verification

tools to check security-relevant properties of cryptographic

software, including safety, absence of error propagation, and

correctness with respect to reference implementations. We

also develop techniques to help us in our task, focusing on

methods oriented towards increased levels of automation, in

scenarios where there are clear obvious limits to such au-

tomation. These techniques allow us to integrate automatic

proof tools with an interactive proof assistant, where the lat-

ter is used off-line to prove once-and-for-all fundamental

lemmas about properties of programs. The techniques devel-

oped have independent interest for practical deductive veri-

fication in general.

Keywords Cryptographic algorithms; program verifica-

tion; program equivalence; self-composition.

1 Introduction

Software implementations of cryptographic algorithms and

protocols are at the core of security functionality in many IT

products. However, the development of this class of software

products is understudied as a domain-specific niche in soft-

ware engineering. The development of cryptographic soft-

ware is clearly distinct from other areas of software engi-

neering due to a combination of factors.

– Firstly, cryptography is an inherently interdisciplinary

subject. The design and implementation of cryptogra-

phic software draws on skills from mathematics, com-

puter science and electrical engineering. The assumption

J.B. Almeida ·M. Barbosa · J.S. Pinto · B. Vieira
CCTC / Departamento de Informática
Universidade do Minho
Campus de Gualtar, 4710-Braga, Portugal

that such a rich body of research can be absorbed and

applied without error is tenuous for even the most expert

software engineer.

– Secondly, security is notoriously difficult to sell as a fea-

ture in software products, even when clear risks such as

identity theft and fraud are evident. An important impli-

cation of this fact is that security needs to be as close to

invisible as possible in terms of computational and com-

munication load. As a result, it is critical that crypto-

graphic software be optimised aggressively, without al-

tering the security semantics.

– Finally, typical software engineers develop systems fo-

cused on desktop class processors within computers in

our offices and homes. The special case of cryptographic

software is implemented on a much wider range of de-

vices, from embedded processors with very limited com-

putational power, memory and autonomy, to high-end

servers, which demand high-performance and low-laten-

cy. Not only must cryptographic software engineers un-

derstand each platform and the related security require-

ments, they must also optimise each algorithm with re-

spect to each platform, since each one will have vastly

different performance characteristics.

Program Verification is the area of Formal Methods that at-

tempts to check properties of software statically, with the

help of an axiomatic semantics of the underlying program-

ming language and a proof tool. Specifically, we are inter-

ested in techniques based on Hoare logic [20], brought to

practice through the use of contracts – specifications con-

sisting of preconditions and postconditions, annotated into

the programs. In recent years verification tools based on con-

tracts have become more and more popular, as their scope

evolved from toy languages to very realistic fragments of

languages like C[18,6], C# [4], or Java[23]. We will use

the expression deductive program verification to distinguish

this approach from other ways of checking properties of pro-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55613884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

grams, such as software model checking [2,19,22]. The goal

of this paper is to apply deductive program verification tech-

niques to prove diverse properties of cryptographic software.

Contributions. We describe results obtained in our explo-

ration of existing verification techniques and tools (used to

construct high-assurance software implementations in other

domains) to the concrete case of cryptographic software. In

doing so we have also developed techniques that are of in-

dependent interest. Our contributions are the following.

– We propose a composition-based methodology for prov-

ing the functional equivalence of programs. This is in-

spired by the self-composition technique [5] that can be

used to prove information flow properties of programs.

Our methodology also enables self-composition proofs,

although it targets the more general problem of proving

the correctness of concrete implementations with respect

to specifications given as reference implementations

– We employ natural invariants as a device to establish

a correspondence between (annotation-level) axiomatic

properties of programs and (a formalisation of) their op-

erational semantics. This device take us beyond the usual

scope of contract-based verification, enabling us to ob-

tain automatic proofs relying on a battery of lemmas

which are interactively proved once-and-for-all.

– We show how natural invariants are useful for reasoning

about pairs of programs with similar control structures.

In particular, this is a useful technique to enable program

equivalence proofs in practice. It also allows for the au-

tomation of the self-composition technique, which has

been identified as a major problem [32].

– We show how these results enable us to use an off-the-

shelf verification tool to reason about functional correct-

ness, safety properties, and security properties of a C im-

plementation of the RC4 encryption scheme, included in

the well-known open-source library openSSL [29].

CACE (Computer Aided Cryptography Engineering [8]) is

an European Project that targets the lack of support cur-

rently offered to cryptographic software engineers. The cen-

tral objective of the project is the development of a tool-box

of domain-specific languages, compilers and libraries, that

supports the production of high quality cryptographic soft-

ware. The aim is that specific components within the tool-

box will address particular software development problems

and processes; and combined use of the constituent tools is

enabled by designed integration between their interfaces. It

is a three-year project that started in 2008.

This article stems from CACE - Work Package 5, which

aims at adding formal methods technology to the tool-box,

as a means to increase the degree of assurance than can be

provided by the development process.

Organisation. Section 2 introduces the area of cryptograph-

ic software implementation, and identifies important secu-

rity properties that deserve attention from a formal verifi-

cation point of view. We then discuss in Section 3 methods

to formalise and verify the validity of these properties us-

ing a deductive verification platform. Section 4 describes the

development of an infrastructure to support the automation

of the proposed approach, and Section 5 shows its appli-

cation to a concrete case study: the verification of the RC4

openSSL implementation. We conclude the paper with a dis-

cussion of related work in Section 6 and some concluding

remarks in Section 7.

2 A Catalogue of Software Properties

2.1 Functional Correctness

The goal of functional correctness verification is to establish

that a program performs according to some intended spec-

ification. More precisely, that the input/output behaviour of

the implementation matches that of the specification. This

is certainly the primary concern in program verification and

the context in which the deductive approach has been most

widely used. Verifying functional correctness within a de-

ductive framework typically involves the following steps:

1. annotating the source code with specification contracts;

2. adding invariant information for loops (and possibly also

variants if total correctness is a concern);

3. producing, with the help of a verification condition gen-

erator tool (VCGen), a set of verification conditions; and

4. discharging them (i.e. proving them) using an automatic

or interactive prover.

The critical points are steps 2 and 4, since the user needs

to identify how certain properties are approximated during

the loop execution – this is where most of the user activ-

ity should be focused, since richer invariants will be harder

to prove, but will simplify the verification of the contract

(by providing a richer set of hypotheses). Indeed, an active

research area is invariant synthesis, which attempts to au-

tomatically generate these invariants by analysing the pro-

gram. However, it should be kept in mind that the problem

is inherently difficult, even if certain approaches seem to be-

have quite well for specific domains.

Correctness with respect to a Reference Implementation.
The standard scenario in deductive verification is that spec-

ifications are written as contracts on the function and pro-

cedure interfaces. This may involve properties of the output

values (typically written in first-order logic), as well as rela-

tions between input and output values.

In this work we take an alternative route. We are inter-

ested in verifying cryptographic software, whose specifica-

tions are typically given as operational descriptions (i.e. as

3

algorithms). This is the case, for example, in symmetric-key

techniques such as ciphers, message authentication codes,

cryptographic hash functions, etc. When implementing such

a technique, the programmer will follow this description, but

is free to improve the code, say by introducing optimisations

or internal reorganisations (e.g. to improve efficiency, main-

tainability, or to satisfy non-functional security properties),

as long as the input-output behaviour is the same as that pre-

scribed by the specification.

To some extent, the specification acts as a reference im-

plementation: verifying functional correctness is reduced to

proving program equivalence. Again, this is a difficult (and

undecidable) problem, although in this concrete application

domain we can rely on the fact that implementation and

specification share most of their internal structure (since the

latter has been adopted as a model for the former). Indeed,

the sort of equivalence proof required for cryptographic soft-

ware corresponds to what is usually known in software en-

gineering as code refactoring.

2.2 Safety Properties

Due to the inherent difficulty of the verification of func-

tional properties, less ambitious forms of verification are of-

ten used. A widespread verification approach which aims

at increasing the level of assurance that can be placed on

software implementations is to confine the analysis to a re-

stricted class of properties that rule out the occurrence of

some recognisable “bad things”. This is what is called a

safety analysis, which often includes properties associated

with common vulnerabilities arising from coding errors such

as de-referencing invalid pointers, accessing containers with

invalid indexes, calculation errors due to overflows, etc.

The advantage of focusing on such simple properties is

that a significant degree of automation can be achieved, min-

imising user intervention and impact on development time.

The resulting level of assurance, far from being absolute, is

nevertheless sufficient for a wide class of application sce-

narios. In this work, we also briefly review how a deductive

verification tool can be used to perform this sort of analysis.

2.3 Information Flow Security

Information flow security refers to a class of security poli-

cies that constrain the ways in which information can be ma-

nipulated during program execution. These properties can

be formulated in terms of non-interference between high-

confidentiality input variables and low-confidentiality out-

put variables, and are usually verified using a special ex-

tended type system [36,26,3]. A dual formulation permits

capturing security policies that constrain information flow

from non-trustworthy (or low-integrity) inputs, to trusted (or

high-integrity) outputs. In Section 6 we provide an overview

of developments in this area related to the work in this paper.

Consider the more common case of secure information-

flow that aims at preserving data confidentiality. Information

may flow from high-security to low-security variables either

directly via assignment instructions, or indirectly. The fol-

lowing code from Terauchi and Aiken [32] computes in f1
the nth Fibonacci number and then assigns a value to l that

depends on the value of f1.

f1 = 1; f2 = 0;

while (n > 0) {

f1 = f1 + f2;

f2 = f1 - f2;

n--; }

if (f1 > k) l = 1; else l = 0;

Let l be low security and n high security; then clearly there

is an indirect information leakage from n to l, since the as-

signment l = 1 is guarded by a condition that depends on

the value of f1, and assignments to the latter variable are

performed inside a loop that is controlled by the high secu-

rity condition n> 0. The program is thus insecure. If n were

not high security, the program would of course be secure.

Type-based analyses would address the problem by trac-

king assignments to low security variables. Observe, how-

ever, that this fails to capture subtle situations where an ap-

parently insecure program is in fact secure. If the last line of

the program were changed to

if (f1 > k) l = E1; else l = E2;

where E1, E2 are two expressions that evaluate to the same

value, then the program should be classified as high security,

since there is no way to tell from the final value of l anything

about f1. Type-based analyses would typically fail to distin-

guish this from the previous program: both would be conser-

vatively classified as insecure. An alternative approach is to

define a program as secure if different terminating execu-

tions, starting from states that differ only in the values of

high-security variables, result in final states that are equiv-

alent with respect to the values of low-security variables.

This approach, based on the language semantics, avoids the

excessively conservative behaviour of the previous method.

More formally, let VH and VL denote respectively the

sets of high-security and low-security variables of C, and

V ′L = Vars(C) \ VH . We write (C,σ) ⇓ τ to denote the fact

that when executed in state σ , C stops in state τ (states are

functions mapping variables to values; ⇓ is the evaluation

relation in a big-step semantics of the underlying language).

Then the program C is secure if for arbitrary states σ , τ ,

σ
V ′L= τ ∧ (C,σ) ⇓ σ ′ ∧ (C,τ) ⇓ τ ′ =⇒ σ ′ VL= τ ′

where σ X= τ denotes the fact that σ(x) = τ(x) for all x ∈ X ,

i.e. σ and τ are X-indistinguishable.

4

Variants and Other Uses of Non-Interference. Non-interfer-

ence has been recognised to be very strict in the sense that

it excludes any form of information flow between high level

and low level security variables. Most of the times one needs

some mechanism for declassifying data, allowing controlled

flux of information between security levels. In Section 6 we

point to some related work in this direction.

We also point out that non-interference may be useful to

express properties that are not directly concerned with se-

curity, but are nevertheless useful in characterising specific

aspects of cryptographic algorithms. As an example, con-

sider the error-propagation property of stream ciphers such

as RC4, describing how they behave when used to transfer

data over channels which may introduce transmission errors.

The way in which the decryption process reflects a wrong

ciphertext symbol in the resulting plaintext is relevant: de-

pending on the encryption scheme construction, a ciphertext

error may simply lead to a corresponding flip in a plaintext

symbol, or it may affect a significant number of subsequent

symbols. This property, sometimes called error propagation,

is usually taken as a criterion for selecting ciphers for noisy

communication media, where the absence of error propaga-

tion can greatly increase throughput. Note that error prop-

agation can sometimes be seen as a desirable feature, as it

amplifies errors that may be introduced maliciously, making

them easier to detect.

The intuition underlying the formalisation of error-prop-

agation with non-interference is that secure information flow

can be guaranteed by checking that arbitrary changes in low-

integrity input variables cannot be detected by observing

high-integrity output variables. We remark that the notion

of a low-integrity input variable can be naturally associated

with a transmission error over a communications channel.

Hence, we map the ith possibly erroneous ciphertext sym-

bol to a non-trusted low-integrity input (we are looking at

the decryption algorithm that, in the case of RC4, is iden-

tical to the one used for encryption). The definition of non-

interference can then conveniently be used to capture the ab-

sence of error propagation. For this, we associate the output

plaintext symbols starting at position i + 1 to trusted high-

integrity outputs.

More precisely, our formulation captures the following

idea: if an arbitrary change in the ith input ciphertext symbol

cannot be observed in the output plaintext symbols follow-

ing position i, this implies that the stream cipher does not

introduce error propagation in decryption.

3 Proofs by Composition

In this section we first review self-composition, a technique

for proving non-interference based on deductive verifica-

tion, and a generalisation (composition of two programs)

that can be used to prove program equivalences. Our interest

in reasoning about equivalence of programs is motivated by

the notion of “correctness with respect to a reference imple-

mentation”, as explained in Section 2.

The difficulties of applying self-composition in practice

are well-known, and they also apply to proofs of equiva-

lence. In Section 3.3 we will introduce the notion of natu-
ral invariant to overcome these difficulties. The technique

establishes a correspondence between program annotations

and an underlying formalisation of the operational semantics

of the programs. This allows us to prove (interactively) cer-

tain fundamental lemmas that can be used to automatically

prove properties based on the self-composition or composi-

tion techniques.

3.1 Self-Composition

The operational definition of non-interference involves two

executions of the program but, using the self-composition
technique [5], it can be reformulated to consider a single

execution (of a transformed program). Given some (deter-

ministic) program C, let Cs be the program that is equal to

C except that every variable x is renamed to a fresh variable

xs. Non-interference can be formulated considering a sin-

gle execution of the self-composed program C;Cs. Note that

any state σ of C;Cs can be partitioned into two states with

disjoint domains σ = σo ∪ σ s where dom(σo) = Vars(C)
and dom(σ s) = {xs|x ∈ Vars(C)}. C is information-flow se-

cure if any terminating execution of the self-composed pro-

gram C;Cs, starting from a state σ such that σo and σ s differ

only in the values of high-security variables, results in a final

state σ ′ such that σ ′o and σ ′s are equivalent with respect to

the values of low-security variables. This can be formulated

without referring explicitly to the state partition: if σ(x) =
σ(xs) for all x ∈V ′L and (C;Cs,σ) ⇓ σ ′, then σ ′(x) = σ ′(xs)
for all x ∈VL.

Self-composition allows for a shift from an operational

semantics-based to an axiomatic semantics-based definition,

since the former can be written as the following Hoare logic

partial correctness specification:
{∧

x∈V ′L x = xs
}

C;Cs
{∧

x∈VL
x = xs

}

Difficulties of Applying Self-composition. The example of

Section 2.3 would result in the following self-composed pro-

gram F ;Fs.

f1 = 1; f2 = 0;

while (n > 0) {

f1 = f1 + f2; f2 = f1 - f2; n--;

}

if (f1 > k) l = 1; else l = 0;

f1s = 1; f2s = 0;

while (ns > 0) {

5

f1s = f1s + f2s; f2s = f1s - f2s; ns--;

}

if (f1s > ks) ls = 1; else ls = 0;

This example was used in previous work by Terauchi

and Aiken [32] to show the difficulties of mechanising self-

composition using software model checkers. In order to use

a VCGen, one would annotate the self-composed code with

the contract dictated by the following Hoare triple

{n = ns∧ k = ks∧ l = ls} F ;Fs {l = ls}
together with the obvious control invariants for each loop

(regarding the minimum value of the variables n and ns).

Some of the generated proof-obligations would not how-

ever be discharged by an automatic prover. Admittedly, the

control invariants do not sufficiently describe what the loops

do (in particular, the fact that they are calculating Fibonacci

numbers), and for this reason the post-condition cannot be

proved, whether n==ns is included in the precondition (stat-

ing that n is not considered high-security) or not. The ver-

ification thus fails to recognize a secure program, even for

such an apparently trivial example.

3.2 Equivalence by Composition

The above method can be extended to handle program equi-

valence. Suppose we have two programs C1 and C2, and

that we are interested in proving their equivalence. Let V be

the set of variables occurring in both programs (we assume

both use the same set of variables, otherwise we may let

V = Vars(C1)∩Vars(C2)). The idea that we want to capture

is that if the programs are executed from indistinguishable

states with respect to V , they terminate in states that are also

indistinguishable. C1 and C2 will be defined as equivalent

if every execution of the composed program C1;Cs
2, starting

from a state in which the values of corresponding variables

are equal, terminates in a state with the same property. This

can be expressed as the following Hoare logic total correct-

ness specification:

[
∧

x∈V x = xs] C1;Cs
2 [

∧
x∈V x = xs]

Weaker notions of equivalence can be handled by taking V
to be a subset of Vars(C1)∩ Vars(C2). In fact, we are not

restricted to equivalence relations – arbitrary relations can

be considered between the two partitions of the state:

[R1(σ ,σ s)] C1;Cs
2 [R2(σ ,σ s)]

where σ and σ s denote the state partitions associated with

C1 and Cs
2 respectively.

The verification of such assertions leads to similar diffi-

culties to those already mentioned for self-composition: in

general there is no means to relate the outcomes of both

programs, and automatic verification fails. This was to be

expected, since establishing program equivalence is in gen-

eral as undecidable problem.

3.3 Natural Invariants

In both scenarios identified above, the most evident diffi-

culty of carrying out the verification comes from the absence

of appropriate loop invariants. Of course, after finding these

loop invariants we still need to establish the intended proper-

ties (ideally, with reasonable levels of automation). In what

follows we propose a general approach to this problem. In

short, it consists of the following steps:

1. Extracting a specification of each program from its re-

lational semantics. We focus on the critical point of the

verification process, which is the construction of appro-

priate loop invariants, and propose to construct them au-

tomatically. The invariants we extract constitute the nat-
ural specification of each program, guaranteed to be sat-

isfied by it. Each invariant is named and turned into an

predicate, which is then used to annotate the correspond-

ing loop in the source code.

2. Identifying and interactively proving additional facts in-

volving the named invariant predicates. The critical ob-

servation is that such lemmas correspond to basic refac-
toring steps that are recurrently used in the development

of cryptographic software. Their purpose is to relate the

specifications of the composed programs, capturing the

non-trivial parts of the proofs required for verification.

3. Augmenting the source file with the previous facts (writ-

ten as lemmas), which have been justified once-and-for-

all by interactive proofs. The availability of these lem-

mas will allow automatic provers to carry out the ver-

ification process, validating the verification conditions

generated by a potentially large number of (self-) com-

position proofs.

We recall that we are primarily interested in tackling self-

composition, as well as program equivalences when both

programs share much of the underlying control structure.

This makes it reasonable to assume that the user may easily

guide the interactive verification process by providing hints

regarding the exploited code refactorings. This will allow

them to take advantage of the high degree of automation

that can be deployed to handle the remaining parts of the

verification process.

Relational Specification. For concreteness, we consider a

simple While language with integer expressions and arrays.

Its syntax is given by:

P ::= {P} | skip | P1;P2

|V := Eint | A[Eint] := Eint

| if (Ebool) then P1 else P2

| while (Ebool) P

Eint ::= Constint | Eint op Eint | A[Eint] op ∈ {+,−,∗,/, ...}
Ebool ::= true | false | ¬Ebool | Ebool ∧Ebool | Ebool ∨Ebool

| Eint opRel Eint opRel ∈ {=,<,>, ...}

6

We do not adopt any form of variable declaration. Instead,

we consider a fixed State type that keeps track of all the

variable values during the execution of the program. Integer

variables are interpreted as (unbound) integers, and arrays

as functions from integers to integers (no size / range check-

ing). Array operations are axiomatised as usual:

acc : (Z → Z)×Z → Z

upd : (Z → Z)×Z×Z → (Z → Z)

acc(upd(a,k,x),k) = x

acc(upd(a,k′,x),k) = acc(a,k) if k �= k′.

The State type is defined as the cartesian product of the

corresponding interpretation domains (each variable is asso-

ciated to a particular position). We also consider an equiva-

lence relation ≡ that captures equality on states. Integer and

boolean expressions are interpreted in a particular state, that

is [[eInt]] : State→ Z, [[eBool]] : State→ B. We take the stan-

dard definition for the big-step semantics of a program as its

natural specification. For states σ and σ ′ we define:

specskip(σ ,σ ′) = σ ≡ σ ′

spec{P}(σ ,σ ′) = specP(σ ,σ ′)

specP1;P2
(σ ,σ ′) = ∃σ ′′, specP1

(σ ,σ ′′)∧ specP2
(σ ′′,σ ′)

specv:=E(σ ,σ ′) = σ ′ ≡ σ{v← [[E]](σ)}
speca[E1]=E2

(σ ,σ ′) = σ ′ ≡ σ{a← upd(a, [[E1]](σ), [[E2]](σ))}
specif C then P1 else P2

(σ ,σ ′) = ([[C]]σ ∧ specP1
(σ ,σ ′))∨

(¬[[C]]σ ∧ specP2
(σ ,σ ′))

specwhile (C) P(σ ,σ ′) = ∃n, loopn
C,specP(σ ,σ ′)(σ ,σ ′)∧¬[[C]](σ ′)

where loopn
C,R(σ ,σ ′) is the inductively defined relation

loop0
C,R(σ ,σ ′)⇐= σ ≡ σ ′

loop
S(n)
C,R (σ ,σ ′)⇐= ∃σ ′′, loopn

C,R(σ ,σ ′′)∧ [[C]](σ ′′)∧R(σ ′′,σ ′)

The relation loopn
C,R(σ ,σ ′) denotes the loop specification

for the body R under condition C. We call such a relation

the natural invariant for the loop (strictly speaking, this is

in fact a relation that provides a natural choice for a loop’s

invariant). In this definition we have made explicit the it-
eration rank (iteration count) in superscript – in fact, we

will see that it is often convenient to consider it explicitly

in the proofs. Nevertheless, when omitted, it should be con-

sidered as existentially quantified. Also, we will omit sub-

scripts (both in loop and spec) when the corresponding pro-

grams are clear from the context.

Expressiveness and Relative Completeness. Natural invari-

ants capture the input-output relational semantics of pro-

grams at the logical level. Naturally, they depend on a suffi-

ciently expressive assertion language, as it should allow for

the definition of new inductive relations. This corresponds

essentially to Cook’s expressiveness criteria in his relative

completeness result for Hoare Logic [12]. In fact, from nat-

ural invariants we can easily recover the strongest liberal
predicate as

slp(S,P) = {σ ′ | P(σ)∧ specS(σ ,σ ′)}
An immediate consequence is that the verification of an ar-

bitrary Hoare triple could be conducted logically, as follows

{P}S{Q} iff slp(S,P)⊇ Q

iff ∀σσ ′, P(σ)∧ specS(σ ,σ ′)⇒ Q(σ ′).

However, we note that the presence of loops immediately

forces the use of full-fledged inductive reasoning, compro-

mising the aim of relying on automatic provers to conduct

significant parts of the proof. We will thus confine such a

general use of induction to general lemmas that will justify

specific program transformations (refactorings).

Verifying Trivial Equivalences. Let us focus for a moment

on the verification of the trivial equivalence by self-compo-

sition (any program is equivalent to itself). By construction,

spec enjoys the following properties.

Lemma 1 Let R(σ ,σ ′) be a deterministic relation on states,
and C a boolean condition. Then, loopC,R(σ ,σ ′) is deter-
ministic whenever ¬[[C]](σ ′), i.e.

loop synchronisation: ∀n1 n2 σ1 σ2 σ ′1 σ ′2,
σ1 ≡ σ2∧ loop

n1
C,R(σ1,σ ′1)∧¬[[C]](σ ′1)∧ loop

n2
C,R(σ2,σ ′2)∧¬[[C]](σ ′2)

=⇒ n1 = n2;

loop determinism: ∀n σ1 σ2 σ ′1 σ ′2,
σ1 ≡ σ2∧ loopn

C,R(σ ,σ ′1)∧ loopn
C,R(σ ,σ ′2) =⇒ σ ′1 ≡ σ ′2.

Proof Both statements are proved by a simple induction (on

max(n1,n2) in the first case, and n in the second). ��
Proposition 1 For every program fragment P and states σ1,

σ2,σ ′1,σ
′
2,

– spec is a morphism that preserves ≡. More precisely, if
σ1 ≡ σ2, σ ′1 ≡ σ ′2 and specP(σ1,σ ′1) then specP(σ2,σ ′2).

– spec is deterministic. More precisely, if specP(σ ,σ ′1) and
specP(σ ,σ ′2) then σ ′1 ≡ σ ′2.

Proof By induction on the structure of P using Lemma 1.

Lemma 1 enables a fully automatic proof of equivalence

of the self-composed program: it can be proved once-and-

for-all and then included in the annotations provided to the

verification platform, allowing all other proof obligations to

be discharged. Indeed, our strategy for reasoning about mul-

tiple executions of the same (or related) program(s) is based

on this observation: it is possible to identify a set of general

lemmas that can be proven once-and-for-all, and that allow

us to reason about self-composition assertions or to justify

interesting refactorings (e.g. loop refactorings).

7

Self-composition Lemmas. The determinism property is not

relevant to reason about a non-interference property by self-

composition: it merely states that the two instances of the

program will produce the same outputs when all of their in-

puts are equal. What is needed is a rephrasing of that prop-

erty using an equality relation on low-security variables. If

the control structure of the program does not depend on

high-security variables, the determinism property proof can

be carried over to non-interference lemmas. More explicitly,

we recast each loop synchronisation lemma as follows

∀n1 n2 σ1 σ2 σ ′1 σ ′2,

πC(σ1)≡ πC(σ2)∧ loop
n1
C,R(σ1,σ ′1)

∧¬[[C]](σ ′1)∧ loop
n2
C,R(σ2,σ ′2)∧¬[[C]](σ ′2) =⇒ n1 = n2

where πC projects the fragment of the state that influences

the control state (i.e. the loop conditions) – note that this can

be obtained by a simple (syntactical) dependency analysis

that collects all variables accessed by C and all variables

that may interfere on the values of the latter through the loop

body. Then, a non-interference result for each loop follows

easily from non-interference in its body:

(∀σ1,σ2,σ ′1,σ
′
2, σ1 ≡L σ2∧R(σ1,σ ′1)∧R(σ2,σ ′2)⇒ σ ′1 ≡L σ ′2)

⇒ ∀σ1,σ2,σ ′1,σ
′
2, σ1 ≡L σ2∧ loop

n1
C,R(σ1,σ ′1)∧¬[[C]](σ ′1)

∧ loop
n2
C,R(σ2,σ ′2)∧¬[[C]](σ ′2)⇒ σ ′1 ≡L σ ′2

We observe that proving non-interference for loop-free pro-

grams by self-composition can be easily automated. The pre-

condition for this lemma can be seen as an additional proof-

obligation that must be verified.

Justifying Loop Refactorings. The main difficulty of justify-

ing code refactorings comes up when the refactorings affect

loops. For the sake of presentation, we restrict our attention

to specifications obtained from single loops with loop-free

bodies. That is, we consider natural invariants of the form

loopC,spec(P)(σ ,σ ′) where P contains no loops. This case is

sufficient to cover the program refactorings needed for es-

tablishing correctness of the RC4 openSSL implementation

addressed in Section 5.

The simplest loop refactoring that can be addressed us-

ing our technique is loop unrolling, in which we detach in-

stances of the loop body. This sort of transformation is justi-

fied by the following property that results from direct inver-

sion of the definition of loop:

∀n σ σ ′,

loop
S(n)
C,R (σ ,σ ′) =⇒∃σ ′′, loopn

C,R(σ ,σ ′′)∧ [[C]](σ ′′)∧R(σ ′′,σ ′).

or, in iterated form:

∀n n′ σ σ ′,

loopn(σ ,σ ′1)∧n′ < n =⇒∃σ ′′, loopn′ (σ ,σ ′′)∧ loopn−n′ (σ ′′,σ ′).

Simple transformations like these are in fact better handled

directly at the annotation level, rather than through explicit

lemmas. Let us illustrate this by a small example that mim-

ics an optimising transformation for the real-world example

presented in Section 5. Consider the program

i := 0;

while (i<N) {

x := x + y;

i := i + 1

}

To implement it, the programmer chooses to unfold two co-

pies of the original loop body in each iteration, yielding

N2 := N/2;

i := 0;

if (i<N2) then {

while (i<N2) {

x := x + y;

x := x + y;

i := i + 1

};

if (2*N2 <> N) then x := x + y else skip

}

else skip

To verify the equivalence between this implementation and

the original program it suffices to identify the second loop

invariant in the second program as the following,

loop2∗i(\old(x,y, i∗2),(x,y, i∗2))

where \old(x) evaluates x in the pre-state of the loop, and

loop(−) refers to the natural invariant of the loop in the first

program. By providing the invariant, we are making explicit

the correspondence between both loop executions. This kind

of guidance is reasonable to expect from someone intending

to prove correctness of the target implementation.

Alternatively, one could establish that both programs are

equivalent using direct logical arguments, as will now be

explained. This would be the only option for more complex

refactorings.

General Loop Fusions. To justify more significant code re-

factorings such as loop fusions (i.e. combining the bodies of

two consecutive loops with the same control structure), we

need to rely on an explicit lemma. Consider the equivalence

between two consecutive loops (loops 1 and 2) and one sin-

gle fused loop (loop 3). This is reminiscent of another real-

world code refactoring that will occur in our case-study in

Section 5.

Let us denote the natural invariants of these loops by

loop1, loop2 and loop3, respectively. Since we assume that

8

all the loops share the same control structure (loop condition

and associated state), it is possible to prove mixed synchro-

nisation lemmas such as

∀n1 n2 σ1 σ2 σ ′1 σ ′2,

πC(σ1)≡ πC(σ2)∧ loop
n1
1 (σ1,σ ′1)∧¬[[C]](σ ′1)

∧ loop
n2
2 (σ2,σ ′2)∧¬[[C]](σ ′2) =⇒ n1 = n2.

The proof is a straightforward generalisation of the single

loop version. Once this result has been established, one can

prove the following main lemma that can be used to justify

the fusion refactoring:

∀n σ1 σ2 σ ′1 σ ′′1 σ ′2,
BodyFusion(body1,body2,body3)∧BodySwap(body1,body2)⇒

σ1 ≡ σ2∧ loopn
1(σ1,σ ′′1)∧ loopn

2(σ
′′
1 ,σ ′1)∧ loopn

3(σ2,σ ′2)
=⇒ σ ′1 ≡ σ ′2,

where

BodyFusion(R1,R2,R3) = ∀k, Rk
3 ≡ (Rk

2 ◦Rk
1)

BodySwap(R1,R2) = ∀kk′, k′ < k⇒ (Rk
2 ◦Rk′

1)≡ (Rk′
1 ◦Rk

2)

BodyFusion and BodySwap denote simple properties con-

cerning the loop bodies which, as was the case with the self-

composition lemmas, are all non-recursive and can thus be

regarded as additional proof-obligations, easily discharged

by automatic provers.

4 Verification Infrastructure

In this work, we have used Frama-c [6], a tool for the static

analysis of C programs that contains a multi-prover verifi-

cation condition generator [18]. We also employed a set of

proof tools that included the Coq proof assistant [33], and

the Simplify [15], Alt-Ergo [11], and Z3 [13] automatic

theorem provers. C programs are annotated using the ANSI-

C Specification Language (ACSL [6]). Both Frama-c and

ACSL are work in progress; we have used the Lithium re-

lease of Frama-c.

Frama-c contains the gwhy graphical front-end that al-

lows to monitor individual verification conditions. This is

particularly useful when combined with the possibility of

exporting the conditions to various proof tools, which allows

users to first try discharging conditions with one or more au-

tomatic provers, leaving the harder conditions to be studied

with the help of an interactive proof assistant. An additional

feature of Frama-c that we have found useful is the declara-

tion of Lemmas. Like axioms, lemmas can be used to prove

goals, but unlike axioms, which require no proof, lemmas

originate themselves new goals. In the proofs we developed,

it was often the case that once an appropriate lemma was

provided (and proved interactively with Coq), all the verifi-

cation conditions could be automatically discharged.

In this section we describe our use of these tools to sup-

port the approach proposed in Section 3.

4.1 Specification Generation

The first step is to extract a relational specification from the

program code. This process proceeds by recursion on the

program structure (Section 3.3) and produces the specifica-

tion as a logical formula.

In practice, it is convenient to produce the intended for-

mula in prenex-form. This is easily accommodated introduc-

ing new fresh state variables in each elementary statement:

specS1;S2;...;Sn (x1,x2) = ∃w0 . . .wn,

w0 = x1∧w1 = PS1
(w0)∧ . . .∧wn = PSn (wn−1)∧ x2 = wn

where PS(σ) is the atomic state transformation associated

with statement S. The extracted specification is then used

according to the proof goal factoring method described in

the previous section:

1. It is encoded in the Coq proof assistant to provide the

context in which the required specific lemmas can sub-

sequently be proved interactively;

2. It is included as ACSL loop invariant annotations in the

C source code, to be fed to the Frama-c VCGen. For

each loop specification the corresponding invariant is in-

cluded in the ACSL code. In this step the lemmas proved

in step 1 are also provided as ACSL lemmas in the an-

notated code, which should allow the remaining proof

goals to be discharged automatically.

In the case study presented in Section 5 the specification was

extracted by hand (see Appendix B), but we remark that the

process is certainly amenable to mechanisation. Such a spec-

ification extraction tool will be developed for the domain-

specific crypto language CAO [17] as a deliverable of the

CACE project.

The Coq proofs mentioned in the first step above are

constructed with support from a library that will now be de-

scribed. Section 4.3 describes the second step above in more

detail.

4.2 Coq Library

A Coq library was developed to support the proof of lemmas

such as those introduced in Section 3. The library consists

of several layers:

9

– Frama-c interface, which includes the logical theory ex-

ported by Frama-c and basic definitions/facts for rea-

soning with the theory inside Coq;

– Basic loop support, for basic treatment of loops (deriva-

tion of determinism and synchronisation lemmas);

– Refactoring lemmas: derivation of self-composition lem-

mas and loop-fusion lemmas;

– Demos and applications, which includes the RC4 exam-

ple discussed in Section 5.

We have made extensive use of Coq’s module system [9]

in order to structure the development. As a rule, we embed

each lemma and respective proof in a functor parameterised

by basic facts it depends on. Concretely, we have defined the

following.

– BuildLoopFun: functor that builds the inductive defi-

nitions for loops and derives the corresponding deter-

minism lemmas. It is parameterised by two modules de-

scribing the loop state (the portion that affects the loop

condition and its complement) and the specification of

the loop body. These modules define the intended exten-

sional equivalence on states and assert the determinism

of the loop-body relation.

– BuildSyncFun: functor that establishes the synchroni-

sation of two loops that share the same boolean condi-

tion. It is used, in particular, to derive a self-synchroni-

sation lemma for each loop.

– BuildSelfComp: generates and proves the self-compo-

sition lemma. It is parameterised by the self-composi-

tion property and the proof that the loop body satisfies

that property.

– BuildFusionFun: generates and proves the fusion lem-

ma for two loops. This accepts the description of three

loops (the loops to be fused and the resulting loop) to-

gether with the following properties:

– body-fusion property – asserts that the body of the

third loop behaves as the composition of the bodies

of the first two loops;

– body-shift property – asserts that iteration k of the

first loop commutes with any of the first k−1 itera-

tions of the second loop.

Note that all the results needed as inputs for the func-

tors are non-recursive (they concern the loop body only) and

can be expected to be proved successfully by an automatic

prover.

4.3 Frama-c Usage

Frama-c takes as input annotated C programs in the form

of ACSL files. In particular, loop invariants are mandatory

for the verification to succeed. This means that in order to

verify a property by composition, it is not enough to prop-

erly construct the composed program and to specify the in-

tended contract (pre- and post-conditions) – this would cer-

tainly generate unprovable verification conditions. It is also

required to complement the ACSL file with definitions and

annotations. The following steps detail the procedure needed

to perform the verification:

1. Including ACSL definitions corresponding to the induc-

tive properties associated to each loop (see Section 4.1);

2. For each loop specification, annotating the program with

a loop-invariant of the form

Invloop(σ) = loopC,R(σ@Init,σ)

where C and R are the loop’s condition and body, and

σ@Init denotes the snapshot of the loop’s initial state

(Frama-c supports this notion through the use of ex-

plicit state labels in annotations).

3. Augmenting the ACSL file with specific lemmas (proved

in Coq with the support of the library of Section 4.2);

4. Generating proof obligations with Frama-c;

5. Using an automatic prover (e.g. Simplify) to discard the

generated obligations.

The choice of the required lemma is based on the specific

property under scrutiny (e.g. a self-composition lemma for

a non-interference property). We remark that this user-de-

pendent choice is an important ingredient for the success of

the verification process. The goal of our method is to allow

the user to concentrate on this critical part of the verification

process by providing assistance in dealing with the remain-

ing tasks, which are tedious but luckily prone to automation.

5 Case Study: openSSL implementation of RC4

RC4 is a symmetric cipher designed by Ron Rivest at RSA

labs in 1987. It is a proprietary algorithm, and its definition

was never officially released. Source code that allegedly im-

plements the RC4 cipher was leaked on the Internet in 1994,

and this is commonly known as ARC4 due to trademark re-

strictions. In this work we will use the RC4 denomination

to denote the definition adopted in literature [31]. RC4 is

widely used in commercial products, as it is included as one

of the recommended encryption schemes in standards such

as TLS, WEP and WPA. In particular, an implementation of

RC4 is provided in the pervasively used open-source library

openSSL, which we selected as the case study for this paper.

In cryptographic terms, RC4 is a synchronous stream

cipher, which means that it is structured as two indepen-

dent blocks, as shown in Figure 1. The security of the RC4

cipher resides in the strength of the key stream generator,

which is initialized with a secret key SK. The key stream

output is a byte sequence kt that approximates a perfectly

10

Key Stream Generator
SK

x

y

t

tkt

Fig. 1 Block diagram of the RC4 cipher

random bit string, and is independent of plaintext and ci-

phertext (we adopt the most widely used version of RC4,

implemented in openSSL, which operates over byte-sized

words). The encryption operation consists simply of XOR-

ing each plaintext byte xt with a fresh key stream byte kt . De-

cryption operates in an identical way. The key stream gen-

erator operates over a state which includes a permutation ta-

ble S = (S[l])l=255
l=0 of (unsigned) byte-sized values, and two

(unsigned) byte-sized indices i and j. We denote the values

of these variables at time t by St , it and jt . The state and

output of the key stream generator at time t (for t ≥ 1) are

calculated according to the following recurrence, in which

all additions are carried out modulo 256.

it = it−1 +1

jt = jt−1 +St−1[it]

St [it] = St−1[jt]

St [jt] = St−1[it]

kt = St [St [it]+St [jt]]

The initial values of the indices i0 and j0 are set to 0, and the

initial value of the permutation table S0 is derived from the

secret key SK. The details of this initialisation are immate-

rial for the purpose of this paper, as they are excluded from

the analysis.

We present in Appendix A the C implementation of RC4

included in the openSSL open-source. The function receives

the current state of the RC4 key stream generator (key), and

two arrays whose length is provided in parameter len. The

first array contains the plaintext (indata), and the second

array will be used to return the ciphertext (outdata). The

same function can be used for decryption by providing the

ciphertext in the indata buffer. We note that this implemen-

tation is much less readable than the concise description pro-

vided above, as it has been optimised for speed using various

tricks, including macro inlining and loop unrolling. In the

rest of this section we briefly present the verification activi-

ties performed on this case-study. Full details of it, including

all the annotated source files used, can be found in [1].

5.1 Verification of Safety Properties

The Frama-c VCGen allows users to perform a safety anal-

ysis of C code, which may be run independently of func-

tional verification (see Section 2.2). This produces a special

class of verification conditions (called safety conditions) that

are not generated from contracts. Their validity implies that

the program will execute safely with respect to a restricted

set of common programming errors that may result in incor-

rect or unreliable implementations, or even with respect to

security vulnerabilities. These comprise memory safety, in-

cluding the absence of buffer overflows, and also absence of

numeric errors due to overflows in integer calculations.

Note that, even though the proof obligations generated

for the safety analysis do not result from explicit assertions

made by the programmer, it is usually necessary to anno-

tate the code with preconditions that permit justifying the

proof goals. These preconditions limit the analysis to func-

tion executions for which the caller has provided valid in-

puts. For example, in RC4 one must assume that the indata
and outdata arrays have a valid addressable range between

0 and len-1 for the safety conditions to be valid. The inclu-

sion of simple loop invariants to enable reasoning about the

program state before, during and after each loop execution

is also required. Finally, and given that cryptographic code

tends to make use of some arithmetic operators that are not

commonly used in other application domains, we noted that

Frama-c lacked appropriate support in some cases, namely

for bit-wise operators. To overcome this difficulty we added

some very simple axioms to the annotated RC4 code.

Running the Frama-c VCGen on the annotated source

code RC4 gave rise to 869 verification conditions. All of

these were automatically discharged using a set of automatic

provers that included Simplify, Alt-Ergo, and Z3.

5.2 Error-propagation Property

We have used the self-composition technique described in

Section 2.3 to verify whether the RC4 implementation in

openSSL indeed satisfies a property which is common to all

synchronous stream ciphers: the absence of error propaga-

tion. Recall that this amounts to verifying that an erroneous

(possibly tampered) input symbol, which will unavoidably

result in a corresponding erroneous output symbol in the

same position, will not affect subsequent outputs. Formally,

following the notation introduced in Section 2.3 that asso-

ciates VH with the set of low-integrity input variables and

VL with the set of high-integrity outputs, we have for some

i ∈ [0, len[:

VH = {indata[i]},
VL = {outdata[j] | i < j < len}.

We have extracted natural invariants from the code and

annotated the source file according to the procedure pre-

sented in Section 4. The verification with Frama-c resulted

in the generation of 17 proof obligations, all of which were

11

unsigned char RC4NextKeySymbol(RC4_KEY *key) {

unsigned char *d,x,y,tx,ty;

x=key->x; y=key->y; d=key->data;

x=((x+1)&0xff); tx=d[x];

y=(tx+y)&0xff; d[x]=ty=d[y];

d[y]=tx; key->x=x; key->y=y;

return d[(tx+ty)&0xff];

}

void RC4(RC4_KEY *key, const unsigned long len,

const unsigned char *indata,

unsigned char *outdata) {

int i=0;

while(i<len) {

outdata[i] = indata[i] ^ RC4NextKeySymbol(key);

i++;

}

}

Fig. 2 RC4 reference implementation

automatically discharged by Simplify. This was made pos-

sible by the inclusion of a helper lemma in the ACSL annota-

tions (proved offline in Coq by instantiating the appropriate

functor from the developed library).

5.3 Correctness of RC4 Openssl Implementation

A direct transcription to a C implementation of the RC4

specification presented at the beginning of this section could

look something like the code in Figure 2. Although this im-

plementation is quite readable, and arguably verifiable by

inspection, it was created without the slightest consideration

for efficiency. This stands in contrast with the openSSL im-

plementation of RC4 (see Appendix A) where readability

(and the inherent assurance of correctness) was sacrificed to

achieve better performance.

This example supports the domain-specific motivation

for the discussion presented in this section: the natural way

to obtain assurance that an implementation of a cryptogra-

phic algorithm is correct is to verify that it is functionally

equivalent to another (more readable) implementation of the

same algorithm. We have investigated how this goal can be

achieved for the particular case of RC4, by identifying refac-

toring steps that may require a proof of equivalence in order

to establish the correctness of different implementations.

A simple refactoring to capture key pre-processing. The first

example we present of a possible refactoring of the RC4

specification in Figure 2 is suggested by a common opti-

misation performed when using stream ciphers. Indeed, one

of the ways to speed up the throughput of stream cipher pro-

cessing is to compute (a portion of) the key stream before the

plaintext is available (or the ciphertext if one is decrypting).

This means that the encryption operation to be performed

void RC4(RC4_KEY *key, const unsigned long len,

const unsigned char *indata,

unsigned char *outdata)

{

unsigned char keystream[len];

int i=0;

while (i<len) {

keystream[i] = RC4NextKeySymbol(key);

i++;

}

i=0;

while (i<len) {

outdata[i] = indata[i] ^ keystream[i];

i++;

}

}

Fig. 3 RC4 implementation with key pre-processing

on-the-fly is then reduced to simple masking using an XOR
operation, which can be done extremely fast.

For synchronous ciphers such as RC4, the number of

bits in the key stream that can be pre-computed can be arbi-

trarily large, as this is totally independent of the encrypted

data. The version of RC4 shown in Figure 3 moves in this

direction by separating the key stream generation process

from the plaintext masking (or ciphertext unmasking) pro-

cess. This is an instance of the loop-fusion refactoring of

Section 3.3. The infrastructure described in Section 4 was

used to prove equivalence beween the programs in Figures 2

and 3. Appendix B shows an example of how the deductive

verification tool is interfaced in this case.

A sequence of refactorings leading to the openssl imple-
mentation. We discuss a more elaborate sequence of refac-

toring steps that permit reaching the openSSL implementa-

tion of RC4 in Appendix A, departing from the reference

implementation in Figure 2. The first refactoring step, lead-

ing to the RC4 function in Figure 4, top, is not very interest-

ing from a verification point of view. It consists of a number

of simple transformations: (1) removing the auxiliary func-

tion by inlining the corresponding code in the main function

body; (2) rearranging local variables to match those in the

openSSL implementation; (3) applying the transitivity prop-

erty of assignments in C to combine two statements; and (4)

replacing modular operations by equivalent bit-wise opera-

tions. A macro is also introduced to improve readability.

The next refactoring steps, leading to the version shown

in Figure 4, bottom, are more interesting examples of trans-

formations involving loop refactorings. Concretely, the main

loop is first separated into two loops with the same body,

which are sequentially composed to realise the original num-

ber of iterations. The first loop is then modified by explicitly

composing the original body with itself 8 times, and altering

the increments accordingly.

12

void RC4(RC4_KEY *key, const unsigned long len,

const unsigned char *indata,

unsigned char *outdata)

{

unsigned char x,y,tx,ty, *d;

int i;

x = key->x; y = key->y; d = key-> data;

i=0;

while(i<len) { RC4LOOP(indata,outdata,i); i++; }

key->x=x; key->y=y;

}

void RC4(RC4_KEY *key, const unsigned long len,

const unsigned char *indata,

unsigned char *outdata)

{

unsigned char x,y,tx,ty, *d;

int i;

x = key->x; y = key->y; d = key-> data;

i = (int)(len>>3L);

while(i>0) {

RC4LOOP(indata,outdata,0);

RC4LOOP(indata,outdata,1);

RC4LOOP(indata,outdata,2);

RC4LOOP(indata,outdata,3);

RC4LOOP(indata,outdata,4);

RC4LOOP(indata,outdata,5);

RC4LOOP(indata,outdata,6);

RC4LOOP(indata,outdata,7);

indata+=8; outdata+=8; i--;

}

i=(int)(len&0x07);

while(i>0) {RC4LOOP(indata,outdata,i); i--; }

key->x=x; key->y=y;

}

Fig. 4 RC4 refactoring steps 1 (top) and 2 (bottom).

The final refactoring steps, leading to the openssl ver-

sion of RC4 in Appendix A, are introduced to achieve ad-

ditional speed-ups. Firstly, pointer arithmetic is used to re-

duce the range of indexing operations, and loop counting

is inverted. Then, different control flow constructions are

applied: all while loops are reformulated using the break
statement to remove the final backward jump, and if con-

structions are introduced to detect termination cases. Equiv-

alence checking for these low-level refactorings was per-

formed directly in Frama-c.

6 Related Work

A good survey of language-based information flow security

can be found in [30]. A good general view of self-composi-

tion can be found in [10]. Information flow policies were

first introduced by Denning et. al [14] and tend to be for-

malised as noninterference properties. Information flow type

systems, have been used to enforce noninterference in differ-

ent contexts [36,27,26,34,35]. The main challenge in de-

signing these systems is that they are often too conservative

in practice, so that secure programs may be rejected. Leino

and Joshi [24] were the first to propose a semantic approach

to checking secure information flow, with several desirable

features: a more precise characterisation of security; it ap-

plies to all programming constructs whose semantics are

well-defined; and it can be used to reason about indirect in-

formation leakage through variations in program behaviour

(e.g., whether or not the program terminates). An attempt to

capture this property in program logics using the Java Mod-
elling Language (JML) [23] was presented by Warnier et

al. [37], who proposed an algorithm, based on the strongest

postcondition calculus, that generates an annotated source

file with specification patterns for confidentiality in JML.

Dufay et al. [16] have proposed an extension to JML to

enforce non-interference through self-composition. This ex-

tended annotation language allows for a simple definition of

non-interference for Java programs. However, the generated

proof obligations are complex, which limits the general ap-

plicability of the approach.

Terauchi and Aiken [32] identified problems in the self-

composition approach, arguing that automatic tools (soft-

ware model checkers like SLAM [2] and BLAST [19]) are

not powerful enough to verify this property over programs of

realistic size. To compensate for this, the authors propose a

program transformation technique for an extended version

of the self-composition approach. Rather than replicating

the original code, the renamed version is interleaved and

partially merged with it. Naumann[28] extended Terauchi

and Aiken’s work to encompass heap objects, presented a

systematic method to validate the transformations proposed

in [32], and reported on the experience of using these tech-

niques with the Spec# [4] and ESC/JAVA2 [21] tools.

Natural Invariants provide an explicit rendition of pro-

gram semantics. In [25] a similar encoding of program se-

mantics in logical form can be found, which advocates the

use of second-order logic as appropriate to reason about pro-

grams, since it allows to capture the inductive nature of the

input-output relations for iterative programs. To some ex-

tent, our use of Coq’s higher-order logic may be seen as an

endorsement of that view. However, we have made an ef-

fort to combine the strengths of higher-order logic reasoning

with facilities provided by automatic first-order provers.

Relational Hoare Logic [7] has been used to prove the

soundness of program analyses and optimising transforma-

tions. Its scope is thus similar to our proofs-by-composition

setting. The main difference is the fact that we do not need

to move away from traditional Hoare Logic, which allows

us to rely on standard available verification tools.

13

7 Conclusion

We have used an off-the-shelf verification platform to check

several classes of properties of a real-world example of a

cryptographic software implementation: the widely used C
implementation of the RC4 stream cipher available in the

openSSL library. Our results focus on three security-relevant

properties of this implementation, with increasing degrees

of verification complexity: (1) safety properties such as the

absence of numeric errors and memory safety; (2) absence

of error propagation formalised as non-interference; and (3)

functional equivalence with respect to a reference imple-

mentation.

In more concrete terms, we have used Frama-c to prove

that the RC4 implementation does not cause null pointer de-

referencing exceptions, and always performs array accesses

with valid indices. In other words, the implementation is

secure against buffer overflow attacks. Additionally, we de-

monstrated that the limited ranges of numeric variables used

in the RC4 implementation are guaranteed not to introduce

calculation errors for particular input values.

An important property of stream ciphers such as RC4 is

their behaviour when a bit in the ciphertext is flipped over a

communication channel. The behaviour of RC4 is common

to other synchronous ciphers: bit errors are not propagated

in any way, i.e. if a ciphertext bit is flipped during transmis-

sion, then only the corresponding plaintext bit is affected.

We have formalised this property as a novel application of

the non-interference concept, widely used in the formalisa-

tion and verification of secure information flow properties,

and subsequently proved that the RC4 implementation in-

deed enjoys this property.

Finally, we have also shown how the method introduced

to prove non-interference can be applied to the more gen-

eral case of equivalence proofs, to prove the correctness of

real implementations with respect to reference implemen-

tations. Cryptography is a prime candidate for equivalence

proofs, since specifications are usually given as reference

implementations rather then using some high level model or

language. In concrete terms we have proved the equivalence

between a reference implementation of RC4 and the realistic

implementation included in openSSL.

Program equivalences are difficult verification challen-

ges by nature, and automatic proof is of little help. Resort-

ing to an interactive proof tool to conduct inductive proofs

involving loops is inevitable. Our approach can be summed

up as follows

1. Program equivalences in general can be expressed as

Hoare triples using a composition technique that simu-

lates the execution of two programs by a single program.

Such triples can be written in an interface specification

language like ACSL and fed to a standard VCGen like

Frama-c.

2. Natural invariants are good candidates for establishing

the connection between the interface specification lan-

guage and the proof assistant: the ACSL specification

language admits inductively defined predicates, thus the

natural invariants annotated into the specification files

(fed to the VCGen) can make use of them, and lemmas

can also be included in these files, to be (i) used by au-

tomatic provers and (ii) exported to Coq for interactive

proof. These predicates / invariants (and some standard

lemmas) can be generated mechanically. Note that since

the typical first-order prover does not support inductive

predicates, Frama-c will replace them by uninterpreted

predicates in the verification conditions generated for

these provers (with axioms corresponding to the inter-

actively proved properties). This allows to capture the

program semantics through purely first-order assertions.

3. Concluding the verification process is then a matter of

establishing and proving interactively a small number

of adequate lemmas that concentrate the more creative

parts of the proofs required in the verification process.

To assist users in this more demanding task, we have de-

veloped a dedicated Coq library. Once a lemma has been

proved in Coq and annotated into the composed specifi-

cation of the refactoring step, all the proof obligations

generated by Frama-c are discharged automatically.

In addition to showing that deductive verification meth-

ods are increasingly more amenable to practical use with

reasonable degrees of automation, our work answers some

open questions raised by previous work, which seemed to

indicate that proofs by (self-)composition were not directly

applicable in real-world situations. Our results are promis-

ing in that we have been able to achieve our goal using only

off-the-shelf verification tools.

What is more, we believe that our technique has a high

potential for mechanisation. For instance, it is likely that the

procedure referred in Section 4.3 may itself be partially au-

tomated. Speculating a bit, it is conceivable to extend ACSL

with constructs that mechanise some of the steps:

\\@ lemma self_comp_lemma : \SelfCompLemma(loop1, ...);

...

loop1:

\\@ loop invariant \natural_invariant(loop1);

...

An advantage of such an integration is that these annotations

might trigger the generation of auxiliary proof obligations,

such as those required by the functor that generates the self-

composition lemma.

Acknowledgements This work was partially supported by the Euro-
pean Union under the FP7 project CACE (Project Number 216499),
and by the FCT-funded RESCUE project (PTDC/EIA/65862/ 2006).

14

References

1. José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and
Bárbara Vieira. Deductive verification of cryptographic software.
Technical Report DI-CCTC-09-03, CCTC, Univ. Minho, 2009.
Available from http://cctc.uminho.pt/publications?year=

2009.
2. Thomas Ball and Sriram K. Rajamani. The SLAM project: debug-

ging system software via static analysis. In POPL ’02: Proceed-
ings of the 29th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 1–3, New York, NY, USA,
2002. ACM.

3. Anindya Banerjee and David A. Naumann. Stack-based ac-
cess control and secure information flow. J. Funct. Program.,
15(2):131–177, 2005.

4. Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte. The
Spec# programming system: An overview. In Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices, pages
49–69. Springer, 2004.

5. Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure in-
formation flow by self-composition. In CSFW, pages 100–114.
IEEE Computer Society, 2004.

6. Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Ben-
jamin Monate, Yannick Moy, and Virgile Prevosto. ACSL:
ANSI/ISO C Specfication Language. CEA LIST and INRIA, 2008.
Preliminary design (version 1.4, December 12, 2008).

7. Nick Benton. Simple relational correctness proofs for static anal-
yses and program transformations. In Neil D. Jones and Xavier
Leroy, editors, POPL, pages 14–25. ACM, 2004.

8. Computer Aided Cryptography Engineering. EU FP7. http://
www.cace-project.eu/.

9. Jacek Chrzaszcz. Implementation of modules in the Coq sys-
tem. In David Basin and Burkhart Wolff, editors, Proceedings of
the Theorem Proving in Higher Order Logics 16th International
Conference, volume 2758 of LNCS, pages 270–286, Rome, Italy,
September 2003. Springer.

10. Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In
CSF, pages 51–65. IEEE Computer Society, 2008.

11. Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. Ergo
: a theorem prover for polymorphic first-order logic modulo theo-
ries, 2006.

12. Stephen A. Cook. Soundness and completeness of an axiom sys-
tem for program verification. SIAM J. Comput., 7(1):70–90, 1978.

13. Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver, volume 4963/2008 of Lecture Notes in Computer Science,
pages 337–340. Springer Berlin, April 2008.

14. Dorothy E. Denning and Peter J. Denning. Certification of pro-
grams for secure information flow. Commun. ACM, 20(7):504–
513, 1977.

15. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theo-
rem prover for program checking. J. ACM, 52(3):365–473, 2005.

16. Guillaume Dufay, Amy Felty, and Stan Matwin. Privacy-sensitive
information flow with JML. In Automated Deduction - CADE-20,
pages 116–130. Springer Berlin / Heidelberg, August 2005.

17. Dan Page (editor). CACE Deliverable D1.1: Complete CAO
and qhasm specifications, 2009. Available from http://www.

cace-project.eu.
18. Jean-Christophe Filliâtre and Claude Marché. The

Why/Krakatoa/Caduceus platform for deductive program
verification. In Werner Damm and Holger Hermanns, editors,
CAV, volume 4590 of Lecture Notes in Computer Science, pages
173–177. Springer, 2007.

19. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and
Grégoire Sutre. Lazy abstraction. In POPL ’02: Proceedings
of the 29th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 58–70, New York, NY, USA,
2002. ACM.

20. C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576–580, 1969.

21. B. P. F. Jacobs, J. R. Kiniry, M. E. Warnier, Bart Jacobs, Joseph
Kiniry, and Martijn Warnier. Java program verification challenges.
In FMCO 2002: Formal Methods for Component Objects, Pro-
ceedings, volume 2852 of Lecture Notes in Computer Science,
pages 202–219. Springer, 2003.

22. Ranjit Jhala and Rupak Majumdar. Software model checking.
ACM Computing Surveys, 41(4):1–54, 2009.

23. Gary T. Leavens, Clyde Ruby, K. Rustan M. Leino, Erik Poll, and
Bart Jacobs. JML (poster session): notations and tools support-
ing detailed design in Java. In OOPSLA ’00: Addendum to the
2000 proceedings of the conference on Object-oriented program-
ming, systems, languages, and applications (Addendum), pages
105–106, New York, NY, USA, 2000. ACM.

24. K. Rustan M. Leino and Rajeev Joshi. A semantic approach to
secure information flow. Lecture Notes in Computer Science,
1422:254–271, 1998.

25. Daniel Leivant. Logical and mathematical reasoning about imper-
ative programs. In POPL, pages 132–140, 1985.

26. Andrew C. Myers. Jflow: Practical mostly-static information flow
control. In POPL, pages 228–241, 1999.

27. Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. En-
forcing robust declassification and qualified robustness. Journal
of Computer Security, 14(2):157–196, 2006.

28. David A. Naumann. From coupling relations to mated invariants
for checking information flow. In Computer Security - ESORICS
2006, volume 4189 of LNCS, pages 279– 296, 2006.

29. The OpenSSL Project. http://www.openssl.org.
30. A. Sabelfeld and A. Myers. Language-based information-flow se-

curity. IEEE Journal on Selected Areas in Communications, 21(1),
2003.

31. Bruce Schneier. Applied cryptography: protocols, algorithms, and
source code in C. Wiley, New York, 2nd edition, 1996.

32. Tachio Terauchi and Alexander Aiken. Secure information flow
as a safety problem. In Chris Hankin and Igor Siveroni, editors,
SAS, volume 3672 of Lecture Notes in Computer Science, pages
352–367. Springer, 2005.

33. The Coq Development Team. The Coq Proof Assistant Reference
Manual – Version V8.2, 2008. http://coq.inria.fr.

34. Stephen Tse and Steve Zdancewic. A design for a security-typed
language with certificate-based declassification. In Shmuel Sagiv,
editor, ESOP, volume 3444 of Lecture Notes in Computer Science,
pages 279–294. Springer, 2005.

35. Jeffrey A. Vaughan and Steve Zdancewic. A cryptographic decen-
tralized label model. In IEEE Symposium on Security and Privacy,
pages 192–206. IEEE Computer Society, 2007.

36. Dennis M. Volpano and Geoffrey Smith. A type-based approach
to program security. In Michel Bidoit and Max Dauchet, editors,
TAPSOFT, volume 1214 of Lecture Notes in Computer Science,
pages 607–621. Springer, 1997.

37. Martijn Warnier and Martijn Oostdijk. Non-interference in JML.
Technical Report ICIS-R05034, Nijmegen Institute for Computing
and Information Sciences, 2005.

15

A openSSL implementation of RC4

typedef struct rc4_key_st

{

unsigned char x,y;

unsigned char data[256];

} RC4_KEY;

void RC4(RC4_KEY *key,const unsigned long len,

unsigned char *indata,

unsigned char *outdata)

{

register unsigned char *d;

register unsigned char x,y,tx,ty;

int i;

x=key->x;

y=key->y;

d=key->data;

#define LOOP(in,out) \

x=((x+1)&0xff); \

tx=d[x]; \

y=((tx+y)&0xff); \

d[x]=ty=d[y]; \

d[y]=tx; \

(out) = d[((tx+ty)&0xff)]^ (in);

#define RC4_LOOP(a,b,i) LOOP(a[i],b[i])

i=(int)(len>>3L);

if (i)

{

while(1)

{

RC4_LOOP(indata,outdata,0);

RC4_LOOP(indata,outdata,1);

RC4_LOOP(indata,outdata,2);

RC4_LOOP(indata,outdata,3);

RC4_LOOP(indata,outdata,4);

RC4_LOOP(indata,outdata,5);

RC4_LOOP(indata,outdata,6);

RC4_LOOP(indata,outdata,7);

indata+=8;

outdata+=8;

if (--i == 0) break;

}

}

i=(int)(len&0x07);

if(i)

{

while(1)

{

RC4_LOOP(indata,outdata,0); if (--i == 0) break;

RC4_LOOP(indata,outdata,1); if (--i == 0) break;

RC4_LOOP(indata,outdata,2); if (--i == 0) break;

RC4_LOOP(indata,outdata,3); if (--i == 0) break;

RC4_LOOP(indata,outdata,4); if (--i == 0) break;

RC4_LOOP(indata,outdata,5); if (--i == 0) break;

RC4_LOOP(indata,outdata,6); if (--i == 0) break;

}

}

key->x=x;

key->y=y;

}

B ACSL loop specification

/*@ predicate eqAk{L1,L2}(integer k,

@ unsigned char u1[],

@ unsigned char u2[]) =

@ \forall integer l;

@ l!=k ==> \at(u1[l],L1)==\at(u2[l],L2);

@*/

/*@ predicate eqA{L1,L2}(unsigned char u1[],

@ unsigned char u2[]) =

@ \forall integer l; \at(u1[l],L1)==\at(u2[l],L2);

@*/

/*@ predicate RC4NextKeySymbol{L1,L2}(unsigned char *x,

@ unsigned char *y,

@ unsigned char d[],

@ unsigned char k) =

@ \exists unsigned char tx, unsigned char ty;

@ \at(*x,L2) == ((\at(*x,L1) + 1) & 0xff) ==>

@ tx == \at(d[\at(*x,L2)],L1) ==>

@ \at(*y,L2) == ((tx+\at(*y,L1)) & 0xff) ==>

@ ty == \at(d[\at(*y,L2)],L1) ==>

@ \at(d[\at(*x,L2)],L2) == ty ==>

@ \at(d[\at(*y,L2)],L2) == tx ==>

@ k == (\at(d[(tx+ty)&0xff],L1);

@*/

/*

* spec1{L,Here}((int)0,i,key,&(x),&(y),d);

* Invariant for the first loop in Fig.3.

*/

/*@

@ inductive spec1{L1,L2}(integer i1,integer i2,

@ unsigned char key[],

@ unsigned char *x,

@ unsigned char *y,

@ unsigned char d[]) {

@ case spec1_base{L} :

@ \forall integer i1,integer i2,

@ unsigned char key[],

@ unsigned char *x,

@ unsigned char *y,

@ unsigned char d[];

@ i1 == i2 ==> spec1{L,L}(i1,i2,key,x,y,d);

@ case spec1_step{L1,L2,L3} :

@ \forall integer i1,integer i2,integer i3,

@ unsigned char key[],

@ unsigned char *x,

@ unsigned char *y,

@ unsigned char d[],

@ unsigned char k;

@ spec1{L1,L2}(i1,i2,key,x,y,d) ==>

@ eqAk{L2,L3}(i2,key,key) ==>

@ RCNextSymbolKey{L2,L3}(x,y,d,k) ==>

@ \at(key[i2],L3) == k ==>

@ i3 == i2 +1 ==>

@ spec1{L1,L3}(i1,i3,key,x,y,d);

@ }

@*/

