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Abstract Tetrapods for coastal protection are frequently used in break waters for 
dissipation of wave energy. During their service, these plain concrete elements usually 
exhibit degradation signs with frequent premature rupture of one or more of their legs 
when located in highly aggressive environments subjected to extreme wave action. These 
ruptures tend to decrease the efficiency of breakwaters as a whole, thus diminishing their 
capacity to absorb wave energy. The present paper aims to contribute to a better 
understanding of the stress levels that occur in this kind of mass concrete elements, taking 
into account imposed deformations (associated with heat of hydration) and applied loads. 
A thermo-mechanical numerical simulation tool (3D), based on the finite element method, 
is used for the assessment of heat of hydration induced stresses. After an initial discussion 
of the temperature development inside the tetrapod, the corresponding residual stresses 
are presented and discussed, and conclusions are withdrawn with regard to the available 
capacity of concrete to withstand further applied loads. Finally, the subsequent behaviour 
of the tetrapod is assessed and compared to alternative solutions with internal 
reinforcement of the tetrapod legs, such as reinforced concrete (using stainless steel), 
steel fibre reinforced concrete and reinforced concrete with FRP’s. 
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1. INTRODUCTION 

The use of tetrapods for breakwaters construction has been generalized throughout the world 
for decades. Tetrapods are usually made of plain concrete, having four legs that irradiate from 
a central point, with leg diameters that can increase up to 2m and total tetrapod height over 
4m. During their service life, tetrapods are known to frequently suffer severe degradation 
(mainly cracking) and subsequently premature rupture of its legs. The collapse of tetrapods 
contributes to a decrease in the efficiency of the breakwater system as a whole, and thus leads 
to a reduced capacity for energy absorption. It is therefore essential to ensure the maintenance 
of the geometry of the tetrapods for the longest time possible. In fact, in order to maintain 
adequate levels of hydraulic performance of the breakwater, the removal of loose ends of 
fractured tetrapods, as well as the substitution of the damaged tetrapods is a necessity and 
results in significant maintenance costs that justify the study of solutions that minimize the 
need for this kind of intervention.  
The owner of a breakwater located in the North of Portugal has recently reported the 
occurrence of several ruptures in tetrapods under service conditions, and requested evaluation 
of possible ways to overcome this problem. The present paper regards to a part of the 
developed work performed at the University of Minho, with regards to: (i) the assessment of 
the thermal stresses generated at early ages and their potential to create fragilities in the 
tetrapods; (ii) evaluation of alternate ways of internally reinforcing the tetrapod so that its 
load capacity can be increased. 
To pursue the objective (i) mentioned above, a 3D thermo-mechanical analysis based on the 
finite element method is presented in Section 2, with specific details on the modelling 
approach and detailed discussion of computed temperatures and stresses. 
The analysis of alternative solutions for internal reinforcement of the tetrapod is discussed in 
Section 3, where the study of the following solutions is reported: reinforced concrete (using 
stainless steel), steel fibre reinforced concrete and reinforced concrete with FRP’s. 
 
 

2. THERMO-MECHANICAL ANALYSIS 

2.1. General remarks 

The present section regards to the thermo-mechanical modelling of the tetrapod with the 
finite element method, and a brief description of the modelling options. Specific details 
about the governing equations and background information on the implementation can be 
found in [1]. It is intended to find out whether the self-induced stresses associated to heat 
of hydration release (and consequent temperature variations) are relevant enough to be 
considered partially responsible for the insufficient service-life behaviour usually 
observed in this kind of element. 
The analysed tetrapod is made of plain concrete, with the composition shown in Table 1: 
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The value of 0.2 was adopted for Poisson’s coefficient, neglecting its variation at early 
ages, which has been shown to have negligible influence in thermal stress development 
according to [1]. The thermal dilation coefficient was also considered constant throughout 
the analysis with the value 10×10-6K-1. In order to simulate the creep behaviour of 
concrete, the Double Power Law [5] was used with the following parameters (unit of time: 
days): φ = 0,8; m = 0,2; n = 0,3. 
As drying shrinkage assumes negligible values at early ages (small drying time) and at 
later ages (as this is a structural element that is frequently being partially submerged), and 
bearing in mind the low expectable values for autogenous shrinkage (due to the relatively 
low cement content), it was decided to disregard the effect of shrinkage in the analyses of 
this research. 
As far as mechanical boundary conditions are concerned, three point supports were 
considered in the three legs of the tetrapod that contact with the ground. These point 
supports restrain vertical displacements, but allow the tetrapod to expand or contract 
freely with regards to a horizontal plane: these support conditions intend to simulate the 
placement of the tetrapod over a horizontal surface. This corresponds to a simplification 
of the actual support conditions right after casting, as the tetrapod is supported in all the 
lower surface of three legs (as mentioned above). However, it is considered that this 
support simplification does not affect the accuracy of computed stresses, as the main 
stresses are caused by expansion/contraction of the tetrapod which is not actually hindered 
by the supports. It should also be remarked that the self-weight of the tetrapod is being 
neglected in the analyses, as it causes negligible stress levels in concrete. 
Both thermal and mechanical simulations were conducted for a total period of analysis of 
6 days, divided in 1-hour long steps (total of 144 steps). 

2.5. Results of the thermal model 

For illustration of the temperature fields calculated for a set of relevant instants, the 
tetrapod is represented by its cross-section through a vertical plane that intersects the 
longitudinal axis of one of the lower legs. The corresponding temperature maps for 
instants t=10h, t=20h, t=30h, t=36h, t=50h, t=80h, t=120h and t=144h are shown in Figure 
4. 
Before starting to discuss the temperatures that have just been depicted, additional 
information is given in the form of a XY graphic with the plot of calculated temperatures 
throughout the analysis for both the geometrical centre of the tetrapod and a surface point 
(located at mid-height of the vertical leg) – see Figure 5. 
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tensile stresses ended up having low significance; 
- The risk of surface cracking is relevant during the heating phase (until t=36h), 

whereas since then, the tensile surface stresses start diminishing and even revert 
their sign, becoming compressive. Even if surface cracking (or micro-cracking) 
occurs during the heating phase, the cracks should exhibit a tendency to close 
and remain compressed after the whole tetrapod has cooled; 

- In the core areas of the tetrapod (both in its geometrical centre, and in the 
interior zones of the legs), tensile stresses are observed during the cooling 
phase, with a lower cracking risk than the one that had been identified for 
surface areas (bearing in mind that the tensile strength of concrete is higher 
during the cooling phase than during the heating phase); 

- Based on the obtained results, even though there is a non-negligible thermal 
cracking risk of the surface zones of the tetrapod (during the heating phase), it 
is considered that the potential associated cracking could not cause enough 
damage to the tetrapod as to justify many of the ruptures observed in service 
conditions for these elements. Furthermore, it is considered that the sensitivity 
analyses to be presented in Section 4, which focus in alternative solutions for 
internal reinforcement of the tetrapod, may disregard internal stresses 
associated to heat of hydration without affecting the conclusions that can be 
withdrawn for ultimate limit state capacity of the tetrapod; 

- The simplifications adopted in the calculations naturally cause deviations 
between calculated temperatures and stresses, in regard to what actually 
happens for in-situ construction. Nonetheless, based on the accumulated 
experience gathered by the authors, as well as on a set of parametric analyses 
reported in [1], it is considered that the plausibility of the results is not 
jeopardized. It is thus considered that the conclusions which would be obtained 
upon a detailed material characterization and a more realistic modelling of 
boundary conditions, would be quite similar to those presented in this research; 

- A final remark is given with regards to the added value obtained by performing 
a 3D analysis of the tetrapod. In fact, no previous works were found to focus on 
this kind of approach for thermo-mechanical modelling of tetrapods, with most 
works focusing on simplified axisymmetric modelling of one of the legs of the 
tetrapod [6, 7], with special care taken in regard to thermal and mechanical 
boundary conditions. Within the scope of the present research, the 2D analysis 
was also conducted for the same tetrapod (not included in this paper for the 
sake of brevity), leading to a remarkably similar result in terms of calculated 
temperatures. However, the computed stresses with the 2D analysis tend to be 
clearly higher, indicating that the simplified mechanical boundary conditions 
assumed in the 2D modelling cause an overestimation of the restraint to 
deformation of the tetrapod. 
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3. ALTERNATIVES FOR REINFORCEMENT OF THE TETRAPODS 

3.1. General remarks 

There are several ways of reinforcing/strengthening plain concrete structures, mainly by the 
use of internal reinforcements, prestressing, jacketing or by the use of cementicious 
composites with high post-cracking tensile strength. In terms of the internal reinforcements, 
stainless steel or Fibre Reinforced Polymer (FRP’s) are the more suitable materials, due the 
severe exposure conditions of the tetrapods. However, in spite of its the excellent corrosion 
resistance, solid stainless steel reinforcing rebar can sustain pitting corrosion and therefore the 
effectiveness of its use raises some doubts. On the other side, FRP’s are identified as 
corrosion resistant materials [8]. In general, prestressing yields to excellent serviceability 
behaviour. However, the use of this technique for the present structural system is not 
recommended due to technical limitations and levels of prestress required. Jacketing can be 
applied by the use of either reinforced concrete layers or steel plates or FRP sheets. In the 
present analysis this retrofitting technique was not considered due to tremendous difficulties 
in applying the reinforcing materials to such complex geometry. Finally, the fiber reinforced 
concrete (FRC) can be suitable in this type of structures, since ductility, high post-cracking 
tensile strength, high compressive stiffness and strength can be achieved. 
The quantification of the actions acting on the tetrapods is quite complex. In addition, 
according to the search performed by the authors of the present work, no specific standard 
was found for defining the actions on this type of structures. For these reasons the numerical 
analysis presented herein is based on a cross-sectional study of different alternatives for 
reinforcement of the tetrapods. 

3.3. Numerical modelling 

With the aim of evaluating the efficiency of different reinforcing techniques in order to 
increase the load carrying capacity of tetrapods, a numerical study was carried out. For this 
purpose each leg of the tetrapods was assumed as a cantilever beam. The fixed end section 
was analysed with DOCROS section-sectional layer model [9]. 
The numerical tool DOCROS has been developed at the University of Minho. Based on 
Bernoulli theory this software analyses cross-sections and the following assumptions are 
taken into account: (i) the plane section remains plane after deformation; and, (ii) perfect bond 
between materials (e.g. steel and concrete) is assumed. The section is divided in layers 
parallel to the direction of bending moment axis. Each thickness and width layer is user-
defined and depends on the geometrical cross-section. DOCROS can analyze sections of 
irregular shape and size, composed of different material type, submitted to an axial force and 
a curvature increment following the x-axis. Each layer can have an initial non-null stress. The 
software can also analyze sections by phases as can be the case of retrofitting and 
strengthening, where additional material is active in later phases. A wide library of material 
constitutive laws is available for the simulation of distinct materials [9]. 
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In the present study the following scenarios were analysed:  
i) Plain concrete (PC) – reference case; 
ii) Reinforced concrete with stainless steel rebars (RC-STEEL); 
iii) Reinforced concrete with carbon fibre reinforced polymer (CFRP) rods (RC-

CFRP); 
iv) Steel fibre reinforced concrete (RC-SF); 
v) Steel fibre and reinforced concrete (RC-SF+STEEL). 

Thus, the cross section of the fixed end section of a leg of the tetrapod, with a diameter of 
1840 mm was discretized by 20 layers with constant thickness.  
For the simulation of plain concrete under compression the uniaxial constitutive law proposed 
by CEB-FIP Model Code 1990 [10] was adopted. For the case of PC, RC-STEEL and RC-
CFRP the tensile pre- and post-peak behaviour of the concrete was also modelled with the 
proposal of CEB-FIP Model Code 1990 [10]. The following mechanical properties of 
concrete (grade C25/30) were assumed: 

- Average compressive strength of concrete, fcm = 33 MPa; 
- Initial modulus of elasticity of concrete, Ecm = 31 GPa; 
- Average value of tensile strength of concrete, fctm = 2.6 MPa; 
- Fracture energy, Gf = 0.1338 N/mm. 

The simulation of stainless rebars followed the constitutive laws proposed by the standard 
NP EP 1992-1-1:2010 [11], with the following mechanical properties: 

- Yielding tensile stress of steel, fy = 500 MPa; 
- Modulus of elasticity of steel, Es = 200 GPa. 

Three distinct cases were analysed in terms of number of stainless rebars: 36φ16, 36φ20 and 
36φ25. The first case corresponds to the minimum amount of reinforcement to control 
cracking in areas where tension is expected. The two other cases were considered with higher 
amounts of reinforcement. 
Two hypotheses were studied for the case of the tetrapods reinforced with CFRP rods: 36 and 
72 rods of CFRP with 13 mm of diameter. Linear-elastic behaviour up to the failure was 
assumed for the CFRP with a modulus of elasticity equal to 124 GPa and a tensile strength of 
1724 MPa [12]. 
For the cases of RC-STEEL, RC-CFRP and RC-SF+STEEL a concrete cover of 70 mm was 
assumed. 
In the simulation of the RC-SF and RC-SF+STEEL cases, the steel fiber reinforced concrete 
(SFRC) under compression was assumed to be equal to that of plain concrete, i.e. using the 
uniaxial law proposed by the CEB-FIP Model Code 1990 [10]. However, for the case of the 
SFRC material under tension, a strain hardening behavior was assumed [13]. The simulation 
of this behavior was materialized by a bi-linear law, where the first branch corresponds to the 
linear elastic branch followed by a horizontal top branch with a tensile strength equal to 
2.6 MPa. 
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3.3. Results 

Figure 9 shows the relationship in terms of bending moment versus curvature for the case of 
plain concrete (PC) and reinforced concrete with stainless rebars (RC-STEEL). From this 
figure it can be concluded that the solution 36φ16 corresponds to the minimum amount of 
reinforcement to transfer the tensile stresses from concrete to the reinforcement. For the case 
of 36φ25 the ultimate resistance is 2.8 higher. 
Figure 10 depicts the response obtained by the use of CFRP rods (RC-CFRP). When 
compared with the RC-STEEL cases, the present ones yield to higher deformations due to the 
low value of the modulus of elasticity of the CFRP. When 36φ13 and 72φ13 of CFRP are 
used, a flexural strength of 6881 kN⋅m and 9244 kN⋅m are obtained, respectively. Despite of 
the RC-CFRP solutions yielded to higher carrying capacity, a significant loss of ductility can 
be observed, when compared with the RC-STEEL cases. 
 

 

Figure 9. Moment vs. curvature for PC and RC-
STEEL cases. 

Figure 10. Moment vs. curvature for PC and RC-
CFRP cases. 

The analysis of the steel fibre reinforced concrete is presented in Figure 11. In this case the 
post-cracking behaviour is significantly changed by the addition of the steel fibres, where an 
increase of 1.7 was obtained when compared with the PC solution. 
Finally, the last case analyzed is shown in Figure 12. In this case the response in terms of 
moment versus curvature for PC and RC-SF and RC-STEEL cases is studied. The 
simultaneous addition of steel fibres and stainless rebars increases in ultimate load at a factor 
of about 4.1. 
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Figure 11. Moment vs. curvature for PC and RC-SF 
cases. 

Figure 12. Moment vs. curvature for PC and RC-SF 
and RC-STEEL cases. 

Table 2 summarizes the main results obtained in terms of load carrying capacity (Mmax) of 
each solution and the ratio Mmax/Mref, where Mref is equal to Mmax obtained with plain concrete 
case. This table shows, from the analyzed cases, that the most efficient one is the case when 
the steel fibers and stainless rods are simultaneously used. 

 
Solution Mmáx (kN) Mmáx/Mref

PC 3039.9 1.0 
RC-STEEL – 36φ16 3701.2 1.2 
RC-STEEL – 36φ20 5590.0 1.8 
RC-STEEL – 36φ25 8433.1 2.8 
RC-CFRP – 36φ13 6881.0 2.3 
RC-CFRP – 72φ13 9244.0 3.0 

RC-SF 5294.2 1.7 
RC-SF+STEEL 12501.5 4.1 

Table 2. Main results obtained for the load carrying capacity of the tetrapod’s leg. 

4. CONCLUSIONS 

This paper initially comprised an in-depth analysis of the heat of hydration induced 
stresses that occur in a 40t SOTRAMER concrete tetrapod, leading to the conclusion that 
the cracking risk of this element is mainly relevant at the surface regions, during the 
heating stage of concrete. The cracking risk of core areas of the tetrapod is considered 
quite small. In the worst case scenario, some surface cracking of the tetrapod is expected 
during early ages, but with small depths. Even if this cracking occurs, it should tend to 
close during the cooling stage of concrete (with possible self-healing of the crack), so, this 
cracking cannot expectably be held responsible for damaging the tetrapods to an extent 
that justify the premature ruptures that are frequently observed in breakwaters. It is further 
considered that the sensitivity analyses for alternative internal reinforcement solutions for 
the tetrapod need not consider these internal stresses associated to heat of hydration, 
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without limiting the applicability of the analyses.  
Distinct reinforcing techniques were analysed in order to increase the carrying capacity of 
the plain concrete tetrapods, mainly by the use of reinforced concrete with stainless rebars 
(RC-STEEL), reinforced concrete with CFRP rods (RC-CFRP), steel fibre reinforced concrete 
(RC-SF) and steel fibre and reinforced concrete (RC-SF+STEEL). In general, all the 
techniques yielded to a significant increment in terms of the ultimate load, being the RC-
CFRP and RC-SF+STEEL solutions with superior performance, not only in terms of strength 
but also in terms of ductility. 
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