EN-CORE/fib Round Robin Testing Initiative Round Robin Tests 1.2 Tensile tests on bars/strip for NSM

J. A. O. Barros I. G. Costa

Report N.º 10-DEC/E-23

LEST-UM – Laboratório de Estruturas da Universidade do Minho, Department of Civil Engineering, University of Minho, Portugal

fib Task Group 9.3

1. RRT administration page

Institution:	University of Minho			
Laboratory:	Laboratório de Estruturas da Universidade do Minho (LEST-UM)			
Adress:	Azurém, 4800-085 Guimarães, Portugal			
Responsible research engineers:				
Inês Costa <u>ines.costa@civil.uminho.pt</u>				
Joaquim Barros		<u>barros@civil.uminho.pt</u>		

Start date of testing:	16 Jan 2010
End date of testing:	17 Jan 2010
Report version date:	08 Feb 2010

Designation ⁽¹⁾	Product name	Supplier	Participated in ⁽²⁾	Date material received		
C–6–SC	Aslan 200	Hughes Brother	х	12 Jan 2009		
B–6–SC	Rockbar	Magmatech	х	5 Mar 2009		
B-8-SC	Rockbar	Magmatech	х	5 Mar 2009		
C-1.4x10-S	CFK strip	S&P	х	7 Oct 2008		
G–8–RB	ComBar	Schoeck	х	24 Oct 2008		
C–2.5x15–S	Sika strip	Sika	х	29 Oct 2008		
C8S	Sika bar	Sika	х	29 Oct 2008		
C-10x10-S	STO bar	STO	х	7 Oct 2008		
G–8–SW	ATP bar	ATP	nr	-		

(1) For the remainder of the report only reference is made to the designation.

(2) Indicated for which products you participated in the RRT (x = participated, - = not participated, nr = intended to participate, but material not received)

FRP Properties (data by manufacturers)								
Name	Туре	Dim. [mm]	Length [mm]	A [mm²]	f _f [MPa]	E _f [GPa]	ε _u [%]	Surface
C–6–SC	Carbon	6	700	29.9	2068	124	1.7	Sand coated
B–6–SC	Basalt	6	700	29.9	-	50	-	Sand coated
B-8-SC	Basalt	8	800	50.2	-	50	-	Sand coated
C-1.4x10–S	Carbon	1.4x10	800	14	1850	165	-	Smooth
G–8–RB	Glass	8	800	50	1500	60	-	Ribbed
C–2.5x15–S	Carbon	2.5x15	800	37.5	3100	165	1.7	Smooth
C8S	Carbon	8	800	50.2	2800	155	1.8	Smooth
C-10x10-S	Carbon	10x10	1000	100	2000	155	1.5	Smooth
G–8–SW	Glass	8	800	29.9	-	-	-	Spirally wound

Bonding Agent for anchorage system property (data by manufacturers)				
Туре	StoPox SK 41			
Property				
Mixing ratio (resin:hardener)	4:1?			
Pot life [min]	<u>ز?</u>			
Density [kg/m ³]	<u>ز؟</u>			
Compressive strength [N/mm ²]	<u>ز?</u>			
Tensile strength [N/mm ²]	<u>;</u> ?			
Modulus of elasticity [N/mm ²]	<u>ز؟</u>			

Bonding Agent for anchorage system property (data by manufacturers)				
Type SikaDur 30 Normal				
Property				
Mixing ratio (resin:hardener)	3:1			
Pot life [min]	90 at 20℃			
Density [kg/m ³]	1650			
Compressive strength [N/mm ²]	7 days: 70-80 (+10 °C); 85-95 (+35 °C)			
Tensile strength [N/mm ²]	7 days: 24-27 (+15 °C); 26-31 (+35 °C)			
Modulus of elasticity [N/mm ²]	12800			

Bonding Agent for anchorage system property (data by manufacturers)				
Type Araldite Hardener 420				
Property				
Mixing ratio (resin:hardener)	10:4			
Pot life [min]	60 at 25ºC			
Density [kg/m ³]	1100 to 1200			
Compressive strength [N/mm ²]	-			
Tensile strength [N/mm ²]	-			
Modulus of elasticity [N/mm ²]	-			

In case different bonding agents have been used for the anchorage, clearly identify name and property

2. RRT test procedure feedback

The RRT prescription (Final draft of FRP RRT spe	ecifications, 13-Aug-08.) was followed				
- Exactly					
 With minor adjustments 	yes				
 With major adjustments 					
- Was not followed					
The free end anchorage length was in some cas	ses adjusted. It was expectable that higher cross				
sections would result in debonding of the FRP, if	the adequate anchorage length was not provided.				
Your opinion about the RRT prescription					
- The testing is feasible to execute and	yes				
the test method can be valuable for					
material characterisation (test					
standards).					
- Valuable but changes needed to make	yes				
testing more feasible					
- Testing feasible but method not very	no				
valuable for material characterisation					
(test standards)					
 Neither feasible and valuable 	no				
Please give further motivation on your opinion:					
The "RRT prescription", according to which the	ne present tests were carried out, follows the				
recommendations available in existing standards					
Other comment and suggestions you want to make:					
The anchorage length adopted in the tests carried out was in the range 200 - 250mm, which is					
higher than the minimum value recommended in the "RRT prescription" (200 mm). However, as it					
will be commented in future sections, it was concl	uded that in certain FRP elements this anchorage				
length would have exceeded the 250 mm. It sho	ould be noted that ACI 440.3R indicates that the				
anchorage length should be function of the diame	ter of the bar.				

3. Test set-up

Test set-up - description:

The anchorage between the specimens and the testing machine was possible using the wedges available in fatigue frame.

Name	Anchorage	Filling material	ID [mm]	OD [mm]	$l_a \text{ or } l_T$ [mm]
C–6–SC	Steel	SikaDur 30 Normal	25	36	200
B–6–SC	Steel	SikaDur 30 Normal	25	36	200
B–8–SC	Steel	SikaDur 30 Normal	25	36	200
C-1.4x10–S	Steel	Araldite Hardener 420	-	-	50
G–8–RB	Steel	SikaDur 30 Normal	25	36	200
C–2.5x15–S	Steel	Araldite Hardener 420	-	-	50
C8S	Steel	SikaDur 30 Normal	25	36	240
C-10x10-S	Steel	StoPox SK 41	28	40	250
G–8–SW	-	-	-	-	-

Where:

ID = the internal diameter of the anchorage

OD= the external diameter of the anchorage

 l_a or l_T = the anchorage length

Specimen preparation:

The anchorage system consists of a steel tube filled with an epoxy resin, or steel tabs glued to the FRP.

Name	1 st Anchorage	2 nd Anchorage	Testing	Days
C–6–SC	23 Oct 2009	26 Oct 2009	17 Jan 2010	83
B–6–SC	26 Oct 2009	27 Oct 2009	17 Jan 2010	82
B-8-SC	22 Oct 2009	23 Oct 2009	17 Jan 2010	86
C-1.4x10–S	22 Jan 2010	22 Jan 2010	3 Feb 2010	12
G–8–RB	20 Oct 2009	21 Oct 2009	17 Jan 2010	88
C-2.5x15-S	22 Jan 2010	22 Jan 2010	3 Feb 2010	12

C-8-S	21 Oct 2009	22 Oct 2009	17 Jan 2010	87
C-10x10-S	19 Oct 2009	20 Oct 2009	16 Jan 2010	88
G-8-SW	-	-	-	-

Testing machine:

Fatigue Frame of +/- 1000 kN. (The geometric characteristics of the wedges adopted to fix the FRP elements to the grips of the machine depended on the type of FRP element.)

Testing machine control:

Displacement control: 2 mm/min.

Instrumentation - representation and locations:

Only a clip-gauge was used, placed on the centre of the specimen. Image previously presented.

Remark: You can add separate rows in the above table if you want to report other aspects not mentioned.

4. Experimental results

Test results for the different specimen series are given as follows:

- Table X.1: test results in terms of nominal diameter, cross section area A, maximum applied load F_u, tensile strength f_f, ultimate strain ϵ_u , tangent modulus of elasticity E_{f(0.1-0.3‰)}, secant modulus of elasticity, E_{f(20%-50%)} as well as the type of failure mode.
- Figure X.1: Photo(s) of the specimens after have been tested, and a short description of the failure mode.
- Figure X.2: Stress-strain diagrams.

being X the section number (4.1 till 4.9), corresponding to the different FRP materials.

4.1. Specimens C-6-SC

Name	D [mm]	F _u [kN]	f _u [MPa]	ε _u [%]	E _(0.1-0.3 ‰) [GPa]	E _(ISO) [GPa]	Failure mode
C-6-SC-1	6.00	95.45	3375.91	1.92	169.85	181.43	Anchorage
C-6-SC-2	6.00	106.06	3751.01	2.00	186.45	188.90	Anchorage
C-6-SC-3	6.00	106.15	3754.30	1.95	197.47	188.68	Anchorage
C-6-SC-4	6.00	99.08	3504.23	1.92	176.13	189.00	Debonding
C-6-SC-5	6.00	93.13	3293.65	1.80	179.46	187.30	Debonding
Mean	-	99.97	3535.82	1.92	181.87	187.06	-
St. deviation	-	5.99	211.69	0.07	10.58	3.22	-

Table 4.1.1 – Tensile proprieties of C-6-SC specimens

Failure aspects:

Anchorage: Failure of the FRP close to the anchorage Debonding: Debonding of the FRP inside the adhesive

Figure 4.1.1 – Tested specimens

Description of failure mode: Since in general a significant slip of the bar inside the anchorage system was verified, a longer anchorage length seems recommended for future tests.

Figure 4.1.2

4.2. Specimens B-6-SC

Name	D [mm]	F _u [kN]	f _u [MPa]	ε _u [%]	E _(0.1-0.3 ‰) [GPa]	E _(ISO) [GPa]	Failure aspect
B-6-SC-1	6.00	48.66	1720.86	3.13	56.79	53.43	LS
B-6-SC-2	6.00	51.26	1812.99	3.33	54.81	53.97	LS
B-6-SC-3	6.00	49.77	1760.34	3.15	57.34	54.58	LS
B-6-SC-4	6.00	46.98	1661.63	3.13	52.66	53.56	LS
B-6-SC-5	6.00	45.77	1618.86	2.93	55.16	55.26	LS
Mean	-	48.49	1714.93	3.13	55.35	54.16	-
St. deviation	-	2.18	77.11	0.14	1.84	0.76	-

Table 4.2.1 – Tensile proprieties of B-6-SC specimens

Failure aspects: LS: longitudinal splitting and fibre fracture PO: Pull-out bars

Figure 4.2.1 – Tested specimens

Description of failure mode: Explosive.

Figure 4.2.2

4.3. Specimens B-8-SC

Name	D [mm]	F _u [kN]	f _u [MPa]	ε _u [%]	E _(0.1-0.3 ‰) [GPa]	E _(ISO) [GPa]	Failure aspect
B-8-SC-1	8.00	71.08	1414.03	2.61	55.39	52.95	LS
B-8-SC-2	8.00	75.36	1499.17	2.93	50.23	52.28	LS
B-8-SC-3	8.00	80.10	1593.56	3.01	53.27	52.49	LS
B-8-SC-4	8.00	77.59	1543.59	2.99	50.68	52.58	LS
B-8-SC-5	8.00	70.98	1412.18	2.64	54.49	52.71	LS
Mean	-	75.02	1492.51	2.84	52.81	52.60	-
St. deviation	-	4.01	79.81	0.20	2.29	0.25	-

Table 4.3.1 – Tensile proprieties of B-8-SC specimens

Failure aspects:

LS: longitudinal splitting and fibre fracture PO: Pull-out bars

Figure 4.3.1 – Tested specimens

Description of failure mode: Explosive, although less than the corresponding bars of lower diameter.

Figure 4.3.2

4.4. Specimens C-1.4x10-S

Name	D	Fu	f _u	ε _u	E _(0.1-0.3 ‰)	E _(ISO)	Failure aspect
	[mm]	[kN]	[MPa]	[%]	[GPa]	[GPa]	
C-1.4x10-S-1	1.4x10	43.41	3100.41	1.84	168.09	-	LS
C-1.4x10-S-2	1.4x10	42.39	3028.20	1.83	155.73	176.33	LS
C-1.4x10-S-3	1.4x10	41.79	2984.97	1.80	160.46	172.37	LS
C-1.4x10-S-4	1.4x10	41.82	2986.87	1.74	166.92	175.64	LS
C-1.4x10-S-5	1.4x10	44.22	3158.85	1.86	163.40	177.45	LS
C-1.4x10-S-6	1.4x10	42.33	3023.45	1.77	165.56	175.70	LS
Mean	-	42.66	3047.12	1.81	163.36	175.50	-
St. deviation	-	0.96	68.90	0.04	4.61	1.89	-

Table 4.4.1 – Tensile proprieties of C-1.4x10-S specimens

Failure aspects: LS: longitudinal splitting and fibre fracture PO: Pull-out bars

Figure 4.4.1 – Tested specimens

Description of failure mode: Noisy, but not so pronounced as occurred in the other FRP bars.

Figure 4.4.2

4.5. Specimens G-8-RB

Name	D	Fu	f _u	ε _u	E _(0.1-0.3 %)	E _(ISO)	Failure aspect
	[mm]	[kN]	[MPa]	[%]	[GPa]	[GPa]	
G-8-RB-1	8.00	87.92	1749.03	2.54	69.08	68.59	LS
G-8-RB-2	8.00	92.29	1836.02	2.79	68.50	63.34	LS
G-8-RB-3	8.00	91.64	1823.06	2.77	68.21	63.37	LS
G-8-RB-4	8.00	87.73	1745.33	2.50	76.61	64.32	LS
G-8-RB-5	8.00	86.71	1724.97	2.58	70.06	63.95	LS
Mean	-	89.26	1775.68	2.64	70.49	64.71	-
St. deviation	-	2.52	50.22	0.14	3.49	2.20	-

Table 4.5.1 – Tensile proprieties of G-8-RB specimens

Failure aspects:

LS: longitudinal splitting and fibre fracture PO: Pull-out bars

Figure 4.5.1 – Tested specimens

Description of failure mode: Explosive followed by small fibres all around.

Figure 4.5.2

4.6. Specimens C-2.5x15-S

Name	D	F	f	c	F(a, t, a, a, a')	F ₍₁₀₀₎	Failure aspect
Name	D	• u	'u	ε _u	└ (0.1-0.3 ‰)	L(ISO)	r andre aspeet
	[mm]	[kN]	[MPa]	[%]	[GPa]	[GPa]	
C-2.5x15-S-1	2.5x15	71.39	1903.66	1.10	173.83	171.46	LS
C-2.5x15-S-2	2.5x15	74.95	1998.73	1.18	167.14	172.08	LS
C-2.5x15-S-3	2.5x15	71.87	1916.43	1.11	171.11	173.33	LS
C-2.5x15-S-4	2.5x15	62.45	1665.46	0.97	170.72	171.00	LS
C-2.5x15-S-5	2.5x15	55.30	1474.79	0.88	168.00	168.36	LS
C-2.5x15-S-6	2.5x15	72.05	1921.22	1.12	170.59	171.94	LS
Mean	-	68.00	1813.38	1.06	170.23	171.36	-
St. deviation	-	7.52	200.64	0.11	2.40	1.67	-

Table 4.6.1 – Tensile proprieties of C-2.5x15-S specimens

Failure aspects:

LS: longitudinal splitting and fibre fracture

PO: Pull-out bars

Figure 4.6.1 – Tested specimens

Description of failure mode: Not much explosive, and not too messy. However, the type of failure occurred did not correspond exactly to the one expected. The fibres split longitudinally but fractured too close to the end tabs.

Figure 4.6.2

4.7. Specimens C-8-S

Name	D	Fu	f _u	ε _u	E _(0.1-0.3 %)	E _(ISO)	Failure aspect
	[mm]	[kN]	[MPa]	[%]	[GPa]	[GPa]	
C-8-S-1	8.00	33.68	670.00	-	-	-	LS
C-8-S-2	8.00	88.10	1752.73	1.23	140.40	144.58	PO
C-8-S-3	8.00	84.38	1678.70	1.06	155.46	160.42	PO
C-8-S-4	8.00	82.33	1637.98	1.02	159.75	162.62	PO
C-8-S-5	8.00	82.33	1637.98	1.06	150.55	158.51	PO
Mean	-	74.17	1475.48	1.09	151.54	156.53	-
St. deviation	-	22.76	452.71	0.09	8.32	8.14	-

Table 4.7.1 – Tensile proprieties of C-8-S specimens

Failure aspects:

LS: longitudinal splitting and fibre fracture

PO: Pull-out bars

Figure 4.7.1 – Tested specimens

Description of failure mode: The first specimen only failed because it was accidentally precompressed. In all other cases, the anchorage length was insufficient. In most of the specimens the bar was debonded from the adhesive.

Figure 4.7.2

4.8. Specimens C-10x10-S

Name	D	Fu	f _u	ε _u	E _(0.1-0.3 ‰)	E _(ISO)	Failure aspect
	[mm]	[kN]	[MPa]	[%]	[GPa]	[GPa]	
C-10x10-S-1	10x10	158.90	1589.00	0.91	172.54	176.27	PO
C-10x10-S-2	10x10	107.82	1078.25	0.61	175.19	175.69	PO
C-10x10-S-3	10x10	148.48	1484.80	0.84	176.10	179.54	PO
C-10x10-S-4	10x10	177.41	1774.13	0.97	182.74	183.27	LS
C-10x10-S-5	10x10	160.11	1601.09	0.89	179.45	181.52	PO
Mean	-	150.55	1505.45	0.84	177.20	179.26	-
St. deviation	-	26.04	260.41	0.14	3.96	3.28	-

Table 4.8.1 – Tensile proprieties of C-10X10-S specimens

Failure aspects:

LS: longitudinal splitting and fibre fracture

PO: Pull-out bars

Figure 4.8.1 – Tested specimens

Description of failure mode: Only one specimen has ruptured. In spite of using an anchorage length of 250 mm in these specimens (the maximum in all test program), the other four did not fail. It seems that with a little higher anchorage length the rupture of these bars can be attained.

Figure 4.8.2

5. Acknowledgements

The study reported in this paper forms a part of the research program "CUTINEMO" supported by FCT, PTDC/ECM/73099/2006. The authors wish to acknowledge the support also provided by the Casais, S&P, SECIL and Artecanter Companies. The second Author acknowledges the grant under the aforementioned research project (SFRH/BD/61756/2009).