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1. INTRODUCTION  

 

Exhibiting remarkable compressive strength and durability, concrete is one of the most widely 

adopted materials for the construction of bridges. The tensile strength of concrete is contrarily 

low and is about 8 to 10 times less than its compressive strength. This inherent weak tensile 

strength of concrete makes it prone to the tensile cracking in tensile and flexural loadings and 

brings numerous problems in application of this material, mainly in its durability [1]. 

 Reinforcement of cementitious materials with short randomly distributed fibers has been 

successfully practiced for more than 40 years [2]. In the Fiber Reinforced Cementitious (FRC) 

materials, reinforcing fibers allow crack bridging, a mechanism that improves the post-cracking 

residual strength of concrete with restraining crack opening [3]. Debonding and pulling out of 

fibers dissipate energy leading to a substantial increase in toughness, which enhances the energy 

absorption and ductility of the concrete composite [4, 5]. 

 

2. TENSILE AND COMPRESSIVE BEHAVIOR OF FRC MATERIALS 

 

Typical tensile stress–strain responses for plain and fiber reinforced concrete registered in 

experimental tensile tests are represented in Fig. 1. Curves obtained after different concrete ages 

are presented on the same diagram in order to show the behavior as a function of the cement 

hydration development. For plain concrete, the stress–strain diagram demonstrates a brittle 

behavior of the material. After peak stress, the residual strength decreases rapidly with increasing 

strain. When the macrocrack is localized, its propagation is very rapid and needs only low 

energy. In the fiber reinforced concrete, however, the stress decay in the post-peak of the stress-
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strain diagram is not so pronounced. In this case, due to the relatively large value of ultimate 

strain, the energy dissipation capacity is increased.  

  

 

 

Fig. 1: Stress-strain relationship in direct tensile test; (a) for plain concrete; (b) for fiber 

reinforced concrete [3]. 

(a) 

(b) 
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In the present report, the moment curvature relationship of FRC material is generated by utilizing 

the stress-strain (-ε) diagrams proposed by Soranakom and Mobasher, represented in Fig. 2 [6, 

7]. 

 

Fig. 2: Fiber reinforced concrete model; (a) Tension model; (b) Compression model [7] 

 

These diagrams are based on an idealized model proposed by Lim et al. [8] for steel fiber 

concrete. The first model represents a bilinear response for tension and compression as shown in 

Fig. 2. According to the Fig. 2a, the tension response increases linearly from origin up to the 

cracking strain ሺߝ௖௥ሻ. After that, tensile stress remains constant at the post peak tensile strength 

 ௖௥ሻ by defining the normalized post-peakߪ) ௣ሻ that can be related to the ultimate tensile strengthߪ)

tensile strength ሺߤሻ. This factor may be a function of fiber volume fraction, geometry, stiffness, 

and bond characteristics of the fibers, and also depends on the properties of the cement past 

surrounding the fibers [7]. The residual stress is assumed constant up to an ultimate strain (ߝ௧௨).  

Fig. 2b describes the compressive response with stress increasing linearly up to the yield point 

,௖௬ߪ)  .(௖௨ߝ) ௖௬) and remains constant until termination point at the ultimate compressive strainߝ
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The elastic modulus in compression is assumed equal to tensile. In this model ߱ is the 

normalized compressive “yield” stress, and  ߚ௧௨ and ߣ௖௨ are normalized ultimate tensile and 

compressive strain, respectively. Both tension and compression models are expressed as [7]: 

௧ሻߝ௧ሺߪ ൌ ቐ

 
௧ߝܧ 0 ൑ ௧ߝ ൑ ௖௥ߝ

௖௥ߝܧߤ ௖௥ߝ  ൏ ௧ߝ ൑ ௧௨ߝ
௧ߝ 0 ൐ ௧௨ߝ

                                                     (1) 

௖ሻߝ௖ሺߪ ൌ ቐ

 
௖ߝܧ 0 ൑ ௖ߝ ൑ ௖௬ߝ

௖௥ߝܧ߱ ௖௬ߝ  ൏ ௖ߝ ൑ ௖௨ߝ

௖ߝ 0 ൐ ௖௨ߝ

                                                    (2) 

where σୡ, σ୲, εୡ and ε୲, are compressive and tensile stresses and strains, respectively. 

Soranakom and Mobasher [6] in their another model proposed a constitutive model for 

homogenized strain softening and hardening behavior of fiber reinforced concrete as shown in 

figure 3.  

 

Fig. 3: Stress-strain diagrams for modeling the: a) compression and b) tensile behavior of fiber 

reinforced concrete with softening or hardening character [6]. 

As shown in Fig. 3b, the linear portion of an elastic–perfectly plastic compressive stress–strain 

response terminates at yield point (ߝ௖௬, ߪ௖௬) and remains constant at compressive “yield” stress 
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σୡ୷ until the ultimate compressive strain εୡ୳. Compressive modulus of materials ሺܧ௖ሻ is defined 

as a ratio of tensile modulus ሺܧሻ by representing the normalized compressive strain factor ሺߛሻ. As 

shown in Fig. 3a, the tensile behavior is described by a trilinear diagram with an elastic range 

defined by tensile modulus ሺܧሻ, followed by a post-cracking modulus ሺEୡ୰ሻ that can be obtained 

by using a post-crack modulus parameter ሺߟሻ. By setting ߟ to either a negative or a positive 

value, the same model can be used to simulate strain softening or strain hardening materials, 

respectively. At the third region of tensile response, tensile stress remains in a constant stress 

value defined as ߪ௖௦௧. For strain softening materials, ߪ௖௦௧ is equal to the post peak tensile strength 

represented by ߪ௣ in previous model (Fig. 2a). The meaning of the others parameters of this 

model was already introduced. The stress–strain relationship for compression and tension can be 

expressed as [6]: 

௧ሻߝ௧ሺߪ ൌ

ە
ۖ
۔

ۖ
ۓ

 
௧                              0ߝܧ ൑ ௧ߝ ൑  ௖௥ߝ

௖௥ߝܧ ൅ ௧ߝ௖௥ሺܧ െ ௖௥ሻߝ ௖௥ߝ  ൏ ௧ߝ ൑ ௧௥௡ߝ
௧௥௡ߝ                            ௖௥ߝܧߤ ൏ ௧ߝ ൑ ௧௨ߝ
௧ߝ                                     0 ൐              ௧௨ߝ

                                        (3) 

௖ሻߝ௖ሺߪ ൌ ቐ

 
௖ߝ௖ܧ  0 ൑ ௖ߝ ൑ ௖௬ߝ

௖௬ߝ௖ܧ ௖௬ߝ      ൏ ௖ߝ ൑ ௖௨ߝ

௖ߝ       0 ൐        ௖௨ߝ
                                                              (4) 

In the following equations, the model is represented in normalized form with utilizing the first 

cracking tensile strain ሺߝ௖௥ሻ and tensile modulus ሺܧሻ as two inherent parameters of the material 

[6]:  

ఙ೟ሺఉሻ

ாఌ೎ೝ
ൌ

ە
ۖ
۔

ۖ
ۓ

 
0                               ߚ ൑ ߚ ൑ 1        

1 ൅ ߚሺߟ െ 1ሻ                1 ൑ ߚ ൑          ߙ
ߙ                                  ߤ ൑ ߚ ൑       ௧௨ߚ
ߚ                                     0 ൐              ௧௨ߚ

                                  (5) 
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ఙ೎ሺఒሻ

ாఌ೎ೝ
ൌ ൝

0           ߣߛ ൑ ߣ ൑ ߱
߱              ߱ߛ ൑ ߣ ൑ ௖௨ߣ
ߣ                  0 ൐        ௖௨ߣ

                                                        (6) 

where, the dimensionless parameters are represented from the following equations: 

 ߱ ൌ
ఌ೎೤

ఌ೎ೝ
                                                                                                  (7) 

ߙ ൌ ఌ೟ೝ೙

ఌ೎ೝ
                                                                                                 (8) 

௧௨ߚ ൌ
ఌ೟ೠ

ఌ೎ೝ
                                                                                                 (9) 

௖௨ߣ ൌ
ఌ೎ೠ

ఌ೎ೝ
                                                                                                (10) 

ߛ ൌ
ா೎

ா
                                                                                                (11) 

ߟ ൌ
ா೎ೝ

ா
                                                                                                (12)     

ߤ  ൌ
ఙ೎ೞ೟

ாఌ೎ೝ
                                                                                               (13) 

The normalized tensile strain at the bottom fiber (ߚ) and compressive strain at the top fiber (ߣ) 

are also defined as (Fig. 4): 

ߚ ൌ
ఌ೟್೚೟

ఌ೎ೝ
                                                                                               (14) 

ߣ ൌ
ఌ೎೟೚೛

ఌ೎ೝ
                                                                                               (15) 

Due to linear variation of strain on the height of section, ߚ and ߣ are linearly related together as 

the following equation: 

ߣ ൌ ௞

ଵି௞
 (16)                                                                                         ߚ

where, k is the neutral axis depth ratio obtained by dividing the neutral axis depth by depth of 

section.  
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3. MOMENT-CURVATURE RESPONSE 

 

When a bending moment is applied on a section of a beam, the curvature of section can be 

determined by dividing the top compressive strain by the depth of neutral axis. Representing 

relation between applied moment and established curvature for any stage of loading generates the 

moment-curvature diagram of the cross section. Representing the relation of moment-curvature 

of a cross section is a method for demonstrating strength, ductility, energy dissipation capacity, 

and the rigidity of the section under investigation. If a complete moment-curvature relationship is 

available, one can also observe strength reduction beyond the peak bending moment, as well as 

the influence of having a strain softening or strain hardening material [10].  

However, the most fundamental requirement in predicting the moment curvature relationship of a 

flexural member is the knowledge of the behavior of its constituents in both tensile and 

compression loading.  

 

4. CLOSE FORM SOLUTIONS FOR MOMENT-CURVATURE 

 

 By applying the Kirchhoff hypothesis, which assumes that a plane section remains plane after 

bending, and shear deformation of the section can be ignored, the moment curvature diagram for 

a rectangular cross section of a width b and a depth d, and composed of FRC materials, can be 

derived in accordance with the Fig. 4. The distribution of tensile and compressive stresses in this 

figure is in accordance with the model proposed by Soranakom and Mobasher [6]. The three 

possible stages of tensile strain at bottom fiber, 0 ൑ ߚ ൑ 1, 1 ൏ ߚ ൑ ߙ and ,ߙ ൏ ߚ ൑  ௧௨, areߚ

represented in Fig. 4a, 4b, and 4c, respectively. Each of Stage 2 and 3 has two possible conditions 

due to the value of compressive strain at top fiber in either elastic ሺ0 ൏ ߣ ൑ ߱ሻ or plastic 
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ሺ߱ ൏ ߣ ൑  ௖௨ሻ behavior in compression. Table 1 and 2, represent the normalized heights ofߣ

compression and tension zones with respect to beam depth d and the normalized magnitudes of 

stress at the vertices with respect to the first cracking stress ሺߝܧ௖௥ሻ, respectively. The deduction 

of the expressions in Tables 1 and 2 can be found elsewhere [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Stress-strain diagram at different stages of normalized tensile strain at the bottom fiber 

0 (a) :(ߚ) ൑ ߚ ൑ 1 and 0 ൏ ߣ ൑ ߱; (b.1) 1 ൏ ߚ ൑ and 0 ߙ ൏ ߣ ൑ ߱; (b.2) 1 ൏ ߚ ൑  and ߙ

߱ ൏ ߣ ൑ ߙ ௖௨; (c.1)ߣ ൏ ߚ ൑ ௧௨ and 0ߚ ൏ ߣ ൑ ߱; (c.2) ߙ ൏ ߚ ൑ ߱ ௧௨ andߚ ൏ ߣ ൑  .௖௨ [6]ߣ

(a) Stage 1 

(b1) Stage 2.1  (b2) STage 2.2 

(c1) Stage 3.1 (c2) Stage 3.2 
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Table 1: Normalized height of compression and tension zones for each stage of normalized 

tensile strain at bottom fiber (ߚ) [9 ,6]. 

Normalized 

stress 

Stage 1 

0 ൑ ߚ ൑ 1 

0 ൑ ߣ ൑ ߱ 

Stage 2.1  

1 ൑ ߚ ൑  ߙ

0 ൑ ߣ ൑ ߱ 

Stage 2.2 

1 ൑ ߚ ൑  ߙ

߱ ൏ ߣ ൑  ௖௨ߣ

Stage 3.1 

ߚ ൐  ߙ

0 ൑ ߣ ൑ ߱ 

Stage 3.2 

ߚ ൐  ߙ

߱ ൏ ߣ ൑  ௖௨ߣ

݄௖ଶ

݀
 _ _ 

ߚ݇ െ ߱ሺ1 െ ݇ሻ
ߚ

 _ 
ߚ݇ െ ߱ሺ1 െ ݇ሻ

ߚ
 

݄௖ଵ

݀
 k k 

߱ሺ1 െ ݇ሻ
ߚ

 k 
߱ሺ1 െ ݇ሻ

ߚ
 

݄௧ଵ

݀
 1-k 

1 െ ݇
ߚ

 
1 െ ݇

ߚ
 

1 െ ݇
ߚ

 
1 െ ݇

ߚ
 

݄௧ଶ

݀
 _ 

ሺ1 െ ݇ሻሺߚ െ 1ሻ
ߚ

 
ሺ1 െ ݇ሻሺߚ െ 1ሻ

ߚ
 

ሺ1 െ ݇ሻሺߙ െ 1ሻ
ߚ

 
ሺ1 െ ݇ሻሺߙ െ 1ሻ

ߚ
 

݄௧ଷ

݀
 _ _ _ 

ሺ1 െ ݇ሻሺߚ െ ሻߙ
ߚ

 
ሺ1 െ ݇ሻሺߚ െ ሻߙ

ߚ
 

 

 

Table 2: Normalized stress at vertices in the stress diagram for each stage of normalized tensile 

strain at bottom fiber (ߚ) [9 ,6]. 

Normalized stress 

Stage 1 

0 ൑ ߚ ൑ 1 

0 ൑ ߣ ൑ ߱ 

Stage 2.1  

1 ൑ ߚ ൑  ߙ

0 ൑ ߣ ൑ ߱ 

Stage 2.2 

1 ൑ ߚ ൑  ߙ

߱ ൏ ߣ ൑  ௖௨ߣ

Stage 3.1 

ߚ ൐  ߙ

0 ൑ ߣ ൑ ߱ 

Stage 3.2 

ߚ ൐  ߙ

߱ ൏ ߣ ൑  ௖௨ߣ

௖݂ଶ

௖௥ߝܧ
 sߛ߱ _ ߛ߱ _ _ 

௖݂ଵ

௖௥ߝܧ
 

݇ߚߛ
1 െ ݇

 
݇ߚߛ

1 െ ݇
 ߛ߱ 

݇ߚߛ
1 െ ݇

 ߛ߱ 

௧݂ଵ

௖௥ߝܧ
 1 1 1 1 ߚ 

௧݂ଶ

௖௥ߝܧ
 _ 1 ൅ ߟ ሺߚ െ 1ሻ 1 ൅ ߟ ሺߚ െ 1ሻ 1 ൅ ߟ ሺߙ െ 1ሻ 1 ൅ ߙሺ ߟ െ 1ሻ 

௧݂ଷ

௖௥ߝܧ
 ߤ ߤ _ _ _ 
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The force components and their lines of action shown in Fig. 4 are obtained from the area and 

centroid of stress in each zone. The normalized values with respect to cracking tensile force 

ሺܾ݀ߝܧ௖௥ሻ and beam depth ݀ are presented in Tables 3 and 4, respectively. The deduction of the 

expressions in Tables 1 and 2 can be found elsewhere [9]. At each stage of applied tensile strain, 

 the net force is obtained as the difference between the tensile and compression forces ,ߚ

calculated from Table 3, equated to zero for internal equilibrium in accordance with the fourth 

column of Table 5, and solved for the neutral axis depth ratio ݇. It is notable that the expressions 

for net force in Stage 2.1 and 3 are in the quadratic forms and result in two acceptable solutions 

for ݇. With a large scale of numerical tests covering a practical range of material parameters, only 

one solution of ݇ yields the valid value in the range 0 ൏  ݇ ൏  1 [6]. These values are presented 

in Table 6. After achieving the correct value of ݇ in each stage, internal moment is obtained by 

operating on the force components and their distance from neutral axis as the equations 

represented in the fifth column of the Table 5. Related curvature also is determined as the ratio of 

compressive strain at top fiber to the depth of neutral axis. 

 

Table 5: Equilibrium of force, moment and curvature for each stage of normalized tensile strain 

at bottom fiber (ߚ) [9 ,6]. 

Stage Tension Compression Force equilibrium Internal moment 

1 0 ൑ ߚ ൑ 1 0 ൑ ߣ ൑ ߱ െܨ௖ଵ ൅ ௖ଵݕ௖ଵܨ ௧ଵܨ ൅  ௧ଵݕ௧ଵܨ

2.1 1 ൏ ߚ ൑ 0 ߙ ൑ ߣ ൑ ߱ െܨ௖ଵ ൅ ௧ଵܨ ൅ ௖ଵݕ௖ଵܨ ௧ଶܨ ൅  ௧ଶݕ௧ଶܨ+௧ଵݕ௧ଵܨ

2.2 1 ൏ ߚ ൑ ߱ ߙ ൏ ߣ ൑ ௖ଵܨ௖௨ െߣ െ ௖ଶܨ ൅ ௧ଵܨ ൅ ௖ଵݕ௖ଵܨ ௧ଶܨ ൅ ௖ଶݕ௖ଶܨ ൅  ௧ଶݕ௧ଶܨ+௧ଵݕ௧ଵܨ

ߚ 3.1 ൐ 0 ߙ ൑ ߣ ൑ ߱ െܨ௖ଵ ൅ ௧ଵܨ ൅ ௧ଶܨ ൅ ௖ଵݕ௖ଵܨ ௧ଷܨ ൅ ௧ଶݕ௧ଶܨ+௧ଵݕ௧ଵܨ ൅  ௧ଷݕ௧ଷܨ

ߚ 3.2 ൐ ߱ ߙ ൏ ߣ ൑ ௖ଵܨ௖௨ െߣ െ ௖ଶܨ ൅ ௧ଵܨ ൅ ௧ଶܨ ൅ ௖ଵݕ௖ଵܨ ௧ଷܨ ൅ ௖ଶݕ௖ଶܨ ൅ ௧ଶݕ௧ଶܨ+௧ଵݕ௧ଵܨ ൅  ௧ଷݕ௧ଷܨ
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At stag i of loading, the moment and curvature ሺܯ௜  , ߶௜ ሻ, are obtained from the following 

equation: 

௜ܯ ൌ ௜ܯ 
′  ௖௥                                                                                       (17)ܯ 

߶௜ ൌ  ߶௜
′  ߶௖௥                                                                                        (18) 

where, ܯ௜
′ and ߶௜

′  are normalized moment and curvature at stage i obtained from Table 6. ܯ௖௥ 

and ߶௖௥  are also cracking moment and curvature calculated for a rectangular section from the 

following equations:  

௖௥ܯ ൌ
ଵ

଺
ܾ݀ଶሺߝܧ௖௥ሻ                                                                                (19) 

߶௖௥ ൌ
ଶఌ೎ೝ

ௗ
                                                                                              (20) 

 

 

5. ALGORITHM TO PREDICT MOMENT-CURVATURE RESPONSE OF FRC 

MATERIALS   

 

To generate computer software for calculating moment-curvature response of bending members 

made from fiber reinforced concrete, an algorithm is illustrated based on Soranakom and 

Mobasher model proposed for behavior of FRC in tensile and compression. Inherent mechanical 

properties of material obtained according to the conventional standard tests and used with 

geometrical details of section to achieve parameters ߱, ,ߙ ,௧௨ߚ , ௖௨ߣ ,ߛ -by using Eq. 7 ߤ  and ,ߟ

13, respectively. The procedure used for obtaining the complete moment-curvature relationship 

for a rectangular cross section is given bellow: 

1. The normalized ultimate tensile strain ሺߚ௧௨ሻ is divided in discrete values obtained from 

the following equation: 
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Δߚ ൌ
ఉ೟ೠ

Α
                                                                                        (21) 

where, A is accuracy index of calculation and can be represented by operator at the 

beginning of calculation.  

2. The normalized tensile strain at bottom fiber ሺߚሻ is increased uniformly from ߚ߂  to ߚ௧௨.  

3. For selected value of ߚ, parameter ݇ is calculated by trial and error. At each loading 

stage, according to the value of ߚ, the stage of loading is detected and base on it, one of 

the expressions given in Table 6 for stages 1, 2.1, 2.2, 3.1, or 3.2 is utilized periodically to 

obtain ݇. According to the value obtained for ݇, the net force of section obtained as the 

difference between the tensile and compression forces is calculated from Table 3. If the 

net force was little or equal than a constant value represented as acceptable tolerance, the 

correct value of ݇ is obtained. Otherwise parameter ݇ is calculated by using the next 

expression. At the end of this step, the stage of load bearing of section is also represented. 

4. After achieving the correct value neutral axis depth ratio ሺ݇ሻ and the stage of loading, 

normalized moment ൫ܯ௜
′൯  and curvature ൫߶௜

′൯ are obtained from expressions given in 

Table 6.  

5. Moment and curvature of each stage are obtained from Eq. 17 and 18, respectively. The 

value of cracking moment and curvature in these equations can be calculated in 

accordance with the material properties that are represented by user in primary step of 

calculation.  

6. Steps 3-5 are repeated to calculate another point of moment-curvature diagram. 

7. Algorithm is terminated when normalized tensile strain at bottom fiber achieves it 

ultimate value and the ultimate tensile strain is governed.  
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6. MODEL APPRAISAL 

To evaluate the accuracy of proposed algorithm mentioned earlier, the results of the software 

developed according to the algorithm were compared to the results obtained from the DOCROS 

software. According to the model implemented in DOCROS, a cross section is discretized in 

layers that can have distinct constitutive laws for the characterization of the behavior of the 

material that constitute these layers. A cross section can be composed of plain concrete and FRC 

layers, and can include steel bars and fiber reinforced polymer reinforcing elements. The cross 

section can be subjected to axial load and increase bending curvature. The position of the neutral 

axis is determined from the equilibrium of the axial force. Detailed description can be found [11]. 

This appraisal was done for a beam made with fiber reinforced concrete failing in bending. The 

cross section has a width of 300 mm and a depth of 400 mm. The stress-strain relationship 

adopted to simulate the compression behavior of the FRP is represented in Fig. 5, while the two 

stress-strain diagrams depicted in Fig. 6 were considered for modeling its tensile behavior, one 

assuming that the FRC presents a strain-softening response, and the other considering this 

composite has a strain-stiffening behavior.  

 

Fig. 5: Compression response of FRC material 
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Fig. 6: Tensile modeling of FRC material; (a) strain softening, (b) strain hardening 

 

Tensile behavior of FRC material is assumed in both strain softening and strain hardening as 

shown in Fig. 6a and 6b, respectively. 

 

Fig. 7: Moment-curvature response of strain softening behavior of FRC 
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 Fig. 8: Moment-curvature response of strain hardening behavior of FRC 

 

The moment-curvature relationships obtained from proposed algorithm and DOCROS software 

are compared in the Fig. 7 and 8 for strain softening and strain hardening behavior of FRC, 

respectively.  According to the Fig. 7 and 8, the results of proposed algorithm has a good 

agreement with those obtained from DOCROS software in both strain softening and strain 

hardening behavior of FRC. As shown Fig. 7, the moment-curvature relationship of a FRC 

material with strain softening has a sharply drop, right after achieving the cracking moment of 

section that is calculated 29 kN.m for studied beam section. This value is about 1.8 times greater 

than the cracking moment of the section.  However in the case of strain hardening behavior, the 

moment-curvature relationship continues to increase up to the ultimate point. Moment capacity 

obtained in this kind of behavior is higher than the last one, and is calculated 45 kN.m for the 

case of studied beam section. This value is about 2.8 times greater than the cracking moment of 

the section. 
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7. APPLICATION OF THE MODEL TO PROJECT PONTALUMIS 

 

The proposed algorithm can be utilized in the PONTALUMIS project which is developing a 

prototype of a pedestrian bridge to be installed over any type of transportation axes. A graphical 

view of the bridge is shown in the Fig. 9. The bride has a hybrid cross-section constituted by a 

Glass Fiber Reinforced Polymer (GFRP) tubular profile connected, at the level of the top flange, 

to a compressive layer of Fiber Reinforced Concrete (FRC).      

 

 
Fig. 9:  Pedestrian bridge in PONTALUMIS project 

 

 

Fig. 10: Cross section of bridge  
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The cross-section detail of bridge is shown in Fig. 10. In order to estimate the strength of FRC 

materials that will be used in the slab, the GRFP profiles can be assumed as simple supports for 

the slab and , however, it is possible to design the slab as a simple beam  as shown in Fig. 11.    
 

 

Fig. 11: Assumption the slab as a simple beam  

 

 ௦ௗ in the above figure is design surface load for unite length of slab and can be calculated by theݍ

following equation:  

௦ௗݍ ൌ ஽௅ߣ ீܹ ൅  ௅                                                       (22)ݍ௅௅ߣ

where, ீܹ  is the self-weigh of slab and is about 1.0 kN/m, ݍ௅ is the live load and is equal to 5 

kN/m, ߣ஽௅ and ߣ௅௅ are the safety factor for died and live load variations and are equal to 1.35 and 

1.5 respectively. In accordance with this definition, ݍ௦ௗ is obtained equal to 8.25 kN/m and 

relatively, the maximum value of bending moment is equal to 0.836 kN.m.      

For this study, the tensile behavior of concrete is conservatively assumed a strain softening 

behavior as shown in Fig. 12a. The compression response of concrete can also be a bilinear 

elastic-perfectly plastic diagram shown in Fig. 12b.  The design compressive strength and design 

tensile strength of concrete are considered 20 MPa and 2 MPa, respectively. The modulus of 

elasticity of concrete can be considered 30 GPa in both tensile and compressive behavior [12]. In 

the considered model for FRC materials parameters ߣ௖௨ and  ߚ௧௨ are assumed 30 and 150, 

respectively.  
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Fig. 12: Typical stress-strain diagram assumed for FRC material in PONTALUMIS project 

 

The main purpose is calculating the value of the post peak tensile strength (ߪ௣) to achieve 

required capacity in related to the applied bending moment. The proposed algorithm can be used 

periodically for a variation of normalized post-peak tensile strength (ߤ) from 0.0 to 1.0. In each 

step, the bending capacity of section can be calculated from the algorithm. By this process, the 

relationship between the post peak tensile strength and bending capacity of section can be 

developed as shown in Fig. 13. This relationship can be utilized to obtain an optimum value of 

the post peak tensile strength of FRC material, when a special bending moment is applied to the 

section. Instance, for the case of applying 0.836 kN.m on the section in present study, a post peak 

tensile strength of 1.10 MPa is obtained from Fig. 13.  
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Fig. 13: Bending moment and compressive strength of concrete for the slab section of bridge 

( ௖݂ௗ ൌ 20 MPa, ௖݂௧ௗ ൌ 2 MPa, ܧ ൌ 30 GPa, ܾ ൌ 40 mm, ݀ ൌ 1000 mm) 

 

8. CONCLUSION  

 

Using reinforcement fibers in concrete is an effective method for improving the tensile behavior 

of concrete. Fiber reinforced concrete (FRC) represents noticeable capacity of bending load 

bearing and ductility in comparing with plain concrete. To study bending behavior of a bending 

member made from FRC, the model proposed by Soranakom and Mobasher is selected. 

Normalized expressions of this model also presented to facilitate calculations. At each of loading 

step, a trial and error method is used to obtain the correct value of neutral axis depth by 

equalizing tensile and compression force in the section. Bending moment and curvature are 

obtained due to the position of neutral axis depth for each stage of loading. The algorithm is 

terminated when the ultimate tensile strain is governed. To insure the accuracy of algorithm 
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results, an appraisal has been done by using DOCROS software. This Evaluation showed that the 

moment-curvature response estimated from proposed algorithm has a good agreement with ones 

that obtained from DOCROS software in both strain softening and strain hardening behavior of 

FRC. Finally the proposed algorithm is utilized to estimate the required tensile and compressive 

strength of FRC material used in the bridge of PONTALUMIS project.             
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