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ABSTRACT 
 

Non-linear finite element analysis has attracted a lot of attention in last few decades, as 

real life problems dealing with analysis of concrete beams and columns are generally 

non-linear in nature. This project deals with non-linear analysis of beam and columns, 

using Timoshenko beam theory. The Timoshenko beam theory is applied to every 

element, but before applying the theory the element is divided into fibers. The fibers as a 

whole will govern the behavior of element. The section of each element is divided in 

“finite elements”. Each finite element is a fiber along the length of element. Each fiber 

element is independent in terms of the material constitutive laws, which govern the 

behavior, while at the same time they are associated to each other by the relation of 

displacements. The material laws of each fiber deals with the stress-strain relation  

 

The numerical results are compared with the experimental results, which show a 

reasonable correlation, and in turn demonstrate the capability of the proposed model to 

depict the cyclic behavior of concrete elements. 
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INTRODUCTION 
 

Fiber model is one of the robust techniques which can describe the non linear material 

behavior of element as a whole, which may contain various type of material along its 

longitudinal axis. The element can contain various types of materials which are 

characterized by different type of material constitutive laws for stress and strain. This 

method assumes that the element can be divided into longitudinal fibers (like steel or 

concrete). The implementation considered the possibility of using three types of fibers

 (i) concrete fibers,  

 (ii) steel fibers and  

 (iii) linear isotropic fibers. 

The concrete and steel fibers are characterized by the cyclic constitutive laws proposed 

by Chang and Mander (1994).  

The report begins primarily with basic theories and laws which are required for 

implementation of fiber model. The report can be broadly divided in three parts as 

constitutive laws, Timoshenko beam theory and implementation of fiber model. The 

cyclic constitutive laws for concrete and steel are described in the section-1, which is 

followed by the Timoshenko beam theory in section-2 and section-3 illustrates fiber 

model implementation with examples and conclusions. 
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1. CONSTITUTIVE LAWS 

The section below describes the modified cyclic constitutive laws for concrete and steel 

derived from Chang and Mander (1994). The cyclic law described here considers the 

degradation also. 

1.1 CONCRETE CONSTITUTIVE CYCLIC LAWS 

1.1.1) Types of Curves  

The behavior of concrete can be described by three basic components, namely: 

a) Envelope Curves: 

Basically these curves represent the uniaxial monotonic loading of concrete and can be 

considered to be the foundation for the other constitutive laws. As they are scalable and 

shiftable, hence to simulate degradation mainly these two properties are used. In case of 

concrete, compression envelope curve is assumed to be stationary, but at the same time 

the returning point is assumed to be shifted to simulate the degradation. It means that the 

point of return on an envelope curve is different to the point where the last reversal 

occurred from. 

b) Connecting Curves: 

To connect one envelope curve to the other these curves are used. As these curves can 

also characterize pinching (crack closure), and other softening or hardening phenomena 

within the material or structural element, so they cannot be represented by single equation. 

In general more than one equation has to be used to represent this type of curve.  

c) Transition Curves: 

These types of curves are characterized by the connection between two connecting curve. 

Transition curve is not taken directly to the envelope curve, which can make the model 
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unstable presenting unwanted shifting under local looping (common on most 

applications). 

1.1.2) Mathematical representation of Transition Curve:  

Various types of equations are possible to join two points with a smooth transition curve, 

but the equation which is most suitable to predict the behavior is derived briefly below. 

The equation considers six known parameters to find the equation, three for each 

corresponding to initial and final (target) point. The parameters required are coordinate of 

intial point ( , )o ox y with corresponding slope oE and analogous parameters ( ( , )f fx y  

and fE ) for final point.  

( ) ( )B
o o o oy y E x x A x x= + − + −  (1) 

By taking derivative,  

1' ( )B
o oy E AB x x −= + −  (2) 

B is assumed to have a value greater than 1, otherwise at ox x=  the first derivative would 

be indeterminate. Thus, 

 

'( )o oy x E=  (3) 

The derivative at the final point should be fE , then: 

 

1'( ) ( )B
f f o f oy x E E AB x x −= = + −  (4) 

and, 

1( )B
f o f oAB x x E E−− = −  (5) 

By evaluating the equation (1) at the final point, 
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( ) ( )B
f o o f o f oy y E x x A x x= + − + −  (6) 

Or, 

1
sec( ) f oB

f o o o
f o

y y
A x x E E E

x x
− −

− = − = −
−

 (7) 

Using equation (7) and (5),  

sec

f o

o

E E
B

E E
−

=
−

 (8) 

Finally, 

sec
1( )

o
B

f o

E EA
x x −

−
=

−
 (9) 

Where, 

sec
f o

f f

y y
E

x x
−

=
−

 (10) 

The final equation can be written as  

( ) R
o o o oy y x x E A x x⎡ ⎤= + − + −⎣ ⎦  (11) 

Where, 

sec

sec

f

o

E E
R

E E
−

=
−

 (12) 

sec o
R

f o

E EA
x x

−
=

−
 

(13) 

 

and secE is given by equation (10). 

1.1.3) Cyclic Properties of Confined and Unconfined Concrete: 
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Chang and Mander (1994) developed a cyclic model for confined and unconfined 

concrete, using the constitutive model of Tsai (1988) as its envelope curve for monotonic 

loading; which is similar to model proposed by Mander et al(1988a). The model proposed 

by Mander et al. (1988a) used experimental data of Sinha, Gerstle, and Tulin (1964); and 

Karsan and Jirsa (1969) to verify the unconfined concrete in cyclic compression. While 

for confined concrete Mander et al. (1988b) also performed tests to validate the proposed 

model. 

1.1.3.1) Compression Envelope Curve (Rules 1 and 5): 

The compression envelope curve can be represented in non-dimensional form by 

equation described below as shown in Fig. 1. The compression envelope curve is guided 

by initial Young modulus ( cE ), the peak coordinate ( , )cc ccfε ′ ′ , Tsai’s equation factor( r ) 

and non-dimensional critical strain ( 1crx− > ). If the stress and tangent Young modulus is 

written as a function of non-dimensional strain as: 

 

( )c cf f x− −= * (14) 

( )t tE E x− −= * (15) 

where the Eqn (14) and (15) can be described in detail as: 

For  crx x− −<  (Tsai’s equation - Rule 1) 

( )c ccf f y x− −′=   

( )t cE E z x− −=  

 

(16) 

(17) 

For  cr spx x x− − −≤ ≤  (straight line - Rule 1)  
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[ ( ) ( )( )]c cc cr cr crf f y x n z x x x− − − − − −′= + −   

( )t c crE E z x− −=  

(18) 

(19) 

For  spx x− −< (spalled - Rule 5) 

0c tf E− −= =   

 

(20) 

where,  

( )
( )

nxy x
D x

=  and 2

(1 )( )
[ ( )]

rxz x
D x
−

=  (21) 

( ) 1
1 1

rr xD x n x
r r

⎛ ⎞= + − +⎜ ⎟− −⎝ ⎠
 for 1r ≠  

( )1 1 lnn x x= + − +  for 1r =  

(22) 

x − and n − are defined as: c

cc

x ε
ε

−=
′

and c cc

cc

En
f
ε− ′

=
′

 (23) 

The spalling non-dimensional strain ( spx ) can be calculated as : 

( )
( )

cr
sp cr

cr

y xx x
n z x

−
−

− −= −  (24) 

where,  

* - the negative sign (-) refers to parameters related to compression envelope. 

cE = concrete initial Young modulus 

tE = tangent modulus 

εc = concrete strain 

ccε = concrete strain at peak confined stress 

cf = stress in concrete  
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cf
− = concrete stress on the compression envelope 

ccf = confined concrete strength  

n− = n value for the compression curve, assumed to be same as that of unconfined 

concrete. 

x− = non-dimensional strain on the compression envelope  

crx− = non-dimensional critical strain on the compression envelope curve. This strain is 

used to define the tangent line up to the spalling strain. 

spx = non-dimensional spalling strain 

( )y x = non-dimensional tangent modulus function 
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Fig. 1 Representation of rule 1 and rule 5 vital parameters for concrete model. 
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1.1.3.2) Tension Envelope Curve (Rules 2 and 6): 

The shape of tension envelope curve is same as that of the compression envelope curve 

(Chang and Mander (1994)), hence similar equations can be used to define the rule 2 

(Eqn (27-32)) and rule 5 (Eqn (33)) of tension envelope curve. The positive sign (+) 

refers to the parameters related to the tension side. 

To model the degradation on tension side, the curve is shifted to a new origin oε  

(explained in later sections). The non-dimensional parameters n+ , x+ and crkx (cracking 

strain) are given by: 

c o

t

x ε ε
ε

+ −
=  and c t

t

E fn
ε

+ =  (25) 

( )
( )

cr
crk cr

cr

y xx x
n z x

+
+

+ += −  (26) 

 

The stress and tangent modulus for any given strain on the tension envelope curve are 

similarly defined as: 

( )c cf f x+ +=  (27) 

( )t cE E z x+ +=  (28) 

where ( )cf x+ +  and ( )tE x+ +  can be expressed as: 

For crx x+ +<  (Rule 2) 

( )c tf f y x+ +=   

( )t cE E z x+ +=  

 

(29) 

(30) 
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For cr crkx x x+ + +≤ ≤  (Rule 2) 

[ ( ) ( )( )]c t cr cr crf f y x n z x x x+ + + + + += + −   

( )t c crE E z x+ +=  

 

(31) 

(32) 

For crkx x+ +<  (Rule 6) 

0c tf E+ += =   

 

(33) 
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Fig. 2 Representation of rule 2 and rule 6 (not to scale , hypothetical data for 

reprsentation). 

 

 

tε = strain at peak tension stress 

tf = concrete tension strength 

x+ = non-dimensional strain in the tension envelope curve 



10 

n+ = n  value for the tension envelope curve 

crx+ = critical strain on the tension envelope curve. This factor is used to define the 

cracking strain.  

 
Where functions y  and z  are defined by Eqn (21). When the concrete has cracked it is 

assumed that it will be having no tension resistance capacity, as a result of crack opening; 

but on the other hand a gradual crack closure can lead to compressive stress. 

 

1.1.3.3) Intermediate Parameters: 

The current section deals with the intermediate parameters required for the hysteretic 

laws. The Eqn 11 is used for the transition curve described in the coming sections in the 

form represented as: 

( )[ ]R
c i c i i c if f E Aε ε ε ε= + − + −  (34) 

where  

sec

-
=

-
f i

f i

y y
E

x x
, sec

sec

-
-

f

i

E E
R

E E
=  and sec i

R

f i

E EA
x x

−
=

−
  

subscripts i , f  and sec  indicate initial, final and secant respectively. 

The hysteretic parameters required for cyclic compression are described by: 

sec

0.57

0.57

un

c cc
c

un

cc

f
E

E E
ε
ε
ε

−

−
−

⎛ ⎞
+⎜ ⎟′⎜ ⎟= ⎜ ⎟
+⎜ ⎟⎜ ⎟′⎝ ⎠

 (35) 

0.1 exp 2 un
pl c

cc

E E ε
ε

−
− ⎛ ⎞
= −⎜ ⎟⎜ ⎟′⎝ ⎠

 
(36) 
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1.15 2.75

un

un

cc

εε
ε
ε

−
−

−
=

+
′

�  
(37) 

0.09 un
un

cc

f f ε
ε

−
− −∆ =

′
 

(38) 

sec

un
pl un

f
E

ε ε
−

− −
−= −  

(39) 

new unf f f− − −= −∆  (40) 

new
new

un pl

fE
ε ε

−
−

− −=
−

 
(41) 

re unε ε ε− − −= +∆  (42) 

re
re

cc

f f ε
ε

−
− − ⎛ ⎞
= ⎜ ⎟⎜ ⎟′⎝ ⎠

 
(43) 

re
re

cc

E E ε
ε

−
− − ⎛ ⎞
= ⎜ ⎟⎜ ⎟′⎝ ⎠

 
(44) 

 

Similarly the parameters required for cyclic tension are given by: 

sec

0.67

0.67

un

c t
c

un o

t

f
E

E E
ε

ε ε
ε

+

+
+

⎛ ⎞
+⎜ ⎟

⎜ ⎟= ⎜ ⎟−
+⎜ ⎟⎜ ⎟

⎝ ⎠

 (45) 

1.1

1

c
pl

un o

t

EE
ε ε
ε

+

+
=

−
+

 
(46) 

0.22 unε ε+ +=�  (47) 
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0.15 unf f+ +∆ =  (48) 

sec

un
pl un

f
E

ε ε
+

+ +
+= −  

(49) 

new unf f f+ + += −∆  (50) 

new
new

un pl

fE
ε ε

+
+

+ +=
−

 
(51) 

re unε ε ε+ + += +∆  (52) 

re o
re

t

f f ε ε
ε

+
+ + ⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

(53) 

re o
re

t

E E ε ε
ε

+
+ + ⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

(54) 

where, 

unε = unloading strain from an envelope curve 

unf = unloading stress 

plε = plastic strain 

plE = tangent modulus when the stress is released 

newf = new stress at the unloading strain 

newE = tangent modulus at the new stress point 

reε = strain at the returning point to the envelope curve 

ref = stress at the returning point 

reE = tangent modulus at the returning point 

1.1.3.4) Calculation of shift for Tension envelope curve: 
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The shift in tension envelope curve is calculated as described in following steps: 

(a) Calculate compression and tension strain ductility as: 

un
u

cc

x ε
ε

−
− =

′
 and un o

u
t

x ε ε
ε

+
+ −
=  

(b) If  u ux x+ −<  then: 

u ux x+ −= , 

0oε = , 

un u txε ε+ += and  

find corresponding stress unf +  from tensile envelope curve for the strain ( unε + ) from 

Eqn.(27) and calculate 
sec

2 un
o

pl

f
E E

ε
+

+ −∆ =
+

. 

(c)The shift is calculated by 

o pl o u txε ε ε ε− += + ∆ −  (55) 

3.4) Reversal from Compression envelope curve: 

A reversal from compression envelope curve begins with rule 3, which subsequently 

make over to rule 8 through rule 9 as intermediate rule, to finally end on tension envelope 

curve. All the rules use the Eq (34) to connect smoothly the initial and final point. The 

rules are described in Fig (3), with the parameters required for Eq. (34) described below 

in tabular form. 

Parameters Rule 3 Rule 9 Rule 8 

εi  unε
−  plε−  unε

+  

if  unf −  0 newf +  
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iE  cE  plE−  newE+  

ε f  plε
−  unε

+  reε
+  

ff  0 newf +  ref +  

fE  plE−  newE+  reE+  
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Fig. 3 Reversal from compression envelope curve (hypothetical data used fro 

representation). 

1.1.3.4) Reversal from Tension envelope curve: 

The reversal from tension envelope curve is similar to the reversal from compression, 

while the rule 4, rule 10 and rule 7 are used, which are also described in Fig(4). The rules 

are summarized in tabular form: 

Parameters Rule 4 Rule 10 Rule 7 
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εi  unε
+  plε+  unε

−  

if  unf +  0 newf −  

iE  cE  plE+  newE−  

ε f  plε
+  unε

−  reε
−  

ff  0 newf −  ref −  

fE  plE+  newE−  reE−  
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Fig. 4.1 Reversal from Tension envelope curve. 
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Fig. 4.2 Reversal from Tension envelope curve. 

 

 

1.1.3.5)Post cracking unloading and reloading curves: 

When complete cracking occurs, then it is understood that there will be no tensile 

resistance capacity, so the region corresponding to tension will also not exist. When 

reversal from compression envelope curve will occur, rule 6 will follow rule 3 instead of 

rule 9 and rule 8. Reversal from rule 6 in this case will be followed by rule 13 (Fig 5). 

The parameter describing rule 13 are described in tabular form: 

Parameters Rule 13 
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εi  rε  

if  0 

iE  0 

ε f  unε
−  

ff  newf −  

fE  newE−  

where rε  corresponds to reversal strain from rule 6. 

1.1.3.6) Pre- cracking transition curves: 

Rules 3, 4, 9 and 10 are considered as connecting curves, whenever reversal occurs from 

these rules, a transition curve is used to connect to envelope curves or connecting curves. 

Each rule is dealt separately below and compared with its counterpart. 

When reversal from rule 3 occurs, modified rule 7 is used. In this case newf −  is modified to 

*newf − ; and the returning point coordinate ( , )re refε− −  are also changed to ( *, *)re refε− − . The 

modified expressions are: 

*
un ro

new un
un pl

f f f ε ε
ε ε

− −
− − −

− −

−
= − ∆

−
 (56) 

*
*

new ro
new

un ro

f fE
ε ε

− −
−

− −

−
=

−
 (57) 

*
un ro

re un
un pl

ε εε ε ε
ε ε

− −
− − −

− −

−
= + ∆

−
 (58) 

*
*

re
re

cc

f f ε
ε

−
− − ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 (59) 
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*
*

re
re

cc

E E ε
ε

−
− − ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 (60) 

The modified rule 7 (rule 7*) is described in tabular form for the possible strains as: 

Parameters 
ro c unε ε ε− −≤ ≤  *un c reε ε ε− −< <  

εi  roε
−  unε

−  

if  rof −  *newf −  

iE  cE  *newE−  

ε f  unε
−  *reε

−  

ff  *newf −  *ref −  

fE  *newE−  *reE−  

Similarly rule 8 is modified to rule 8*, when reversal from rule 4 occurs. The parameters 

required for rule 8* is described in tabular from as: 

*
un ro

new un
un pl

f f f ε ε
ε ε

+ +
+ + +

+ +

−
= − ∆

−
 (61) 

*
new ro

new
un ro

f fE
ε ε

+ +
+

+ +

−
=

−
 (62) 

*
un ro

re un
un pl

ε εε ε ε
ε ε

+ +
+ + +

+ +

−
= + ∆

−
 (63) 

*
*

re o
re

t

f f ε ε
ε

+
+ + ⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 (64) 

*
*

re o
re

t

E E ε ε
ε

+
+ + ⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 (65) 

Similar to rule 7* rule 8* can be described as: 
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Parameters 
ro o c o un oε ε ε ε ε ε+ +− ≤ − ≤ − *un o c o re oε ε ε ε ε ε+ +− < − < −  

εi  roε
+  unε

+  

if  rof +  *newf +  

iE  cE  *newE+  

ε f  unε
+  *reε

+  

ff  *newf +  *ref +  

fE  *newE+  *reE+  

 

When reversal from rule 9 occurs from point a ( ,a afε ), it is considered that it will target 

rule 10 at point b ( ,b bfε ), via rule 11 and analogous case will exist for rule 10; except 

rule 9 will be targeted at point a ( ,a afε ), via rule 12. The relation between a ( ,a afε ), 

and b ( ,b bfε ) is given by  

a pl un b

un pl un pl

ε ε ε ε
ε ε ε ε

− −

+ − − +

− −
=

− −
 (66) 

Rule 11 and  12 are expressed in tabular form as: 

Parameters Rule 11 Rule 12 

εi  rε  rε  

if  rf  rf  

iE  cE  cE  

ε f  bε  aε  
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ff  bf  af  

fE  ( )t bE ε  ( )t aE ε  

where, ( ,r rfε ) represents most recent reversal coordinate. 

1.1.3.7) Post- cracking transition curves: 

When cracking is considered, the existence of tension envelope curve diminishes; hence 

any reversal from rule 13 can target only the strain axis. If a reversal occur from rule 13 

from a ( ,a afε ), it will target b ( , 0bε ) through rule 14. A reversal from rule 14 will 

target rule 13 at point a ( ,a afε ) through rule 15. The relation among a ( ,a afε ) and b 

( ,b bfε ) is given by: 

sec

a
b a

f
E

ε ε −= −  (67) 

The rule 14 and 15 are described in tabular form as: 

Parameters Rule 11 Rule 12 

εi  rε  rε  

if  rf  rf  

iE  cE  cE  

ε f  bε  aε  

ff  0 af  

fE  0 ( )t aE ε  

where, ( ,r rfε ) represents most recent reversal coordinate. 
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1.2 STEEL CONSTITUTIVE CYCLIC LAWS 

The constitutive laws described in this section are taken from Chang and Mander (1994) 

Chang and Mander(1994) calibrated the proposed laws from the experimental results 

obtained from Kent and Park (1973), Ma et al. (1976), and Panthaki (1991). The loading 

and unloading stress-strain curves are being characterized by the Menegotto-Pinto 

equation (1973). 

 
1.2.1)The Menegotto-Pinto Equation: 

The Menegotto-Pinto equation (M-P hereafter) describes a curve connecting two tangents 

with a variable radius of curvature at the intersection point of these tangents. The M-P 

equation describing a curve (Fig. 8) joining the initial point ( ,o ofε ) and final point 

( ,f ffε ) can be represented as follows: 

1
1( )

1

s o o s o
R R

s o
o

ch o

Qf f E Q

E
f f

ε ε

ε ε

⎧ ⎫
⎪ ⎪
⎪ ⎪

−⎪ ⎪= + − +⎨ ⎬
⎪ ⎪⎡ ⎤−⎪ ⎪⎢ ⎥+
⎪ ⎪−⎢ ⎥⎣ ⎦⎩ ⎭

 (68) 

The tangent modulus at any point is given by: 

sec
sec

1

s o
t R

s s o
o

ch o

f E QEE E

E
f f

ε ε ε
−

∂ −
= = −
∂ −

+
−

 

(69) 

where: 

sf  = stress in steel 

of = stress in steel at initial point of the curve  

oE = tangent modulus at initial point of the curve 
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sε = strain in steel 

oε = strain in steel at initial point of the curve 

Q = an equation parameter to control the shape of the curve 

chf = an equation parameter to control the shape of the curve 

R = an equation parameter to control the shape of the curve 

tE = tangent modulus of steel 

secE = secant modulus or the slope of the line connecting the initial point ( ,o ofε ) and the 

final point ( ,f ffε ) 

1.2.2)Algorithm of M-P Equation: 

The following steps are involved in determining the unknown parameters of M-P 

equation. 

1) Calculate secE  as: 

sec
f o

f o

f f
E

ε ε
−

=
−

 (70) 

2) Calculate minR  as: 

sec
min

sec

f

o

E E
R

E E
−

=
−

 (71) 

3) If min 0R = , the value of Q is taken as 1. In this case ch ff f=   

4) If minR R≤  then take min 0.01R R= +  

5) Define a function of variable a : 

1

sec
1 (1 )( )
1 1

R R

f o
a a af a E E E
a a

+− −
= − +

− −
 (72) 

6) Take 0.01z = . Calculate (1 ) ( )f z f z− ×  
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7) Decrease the value of z  until (1 ) ( )f z f z− ×  becomes 0≤ . Once this condition is 

reached, the value of a  satisfying the following equation can be found in the 

interval (0, )z . The equation to be satisfied is: 

1

sec
1 (1 ) 0
1 1

R R

f o
a a aE E E
a a

+− −
− + =

− −
 (73) 

8) Consider an initial estimate: 

min
o

Ra
R

=  (74) 

9) Calculate ( ) (1 )of a f ε× −  and if this is < 0 then decrease the value of oa  using the 

following recursive function: 

1
2 ( )

( ) ( )
i

i i
i i

f a aa a
f a a f a a+

∆
= −

+ ∆ − −∆
 (75) 

This recursion should be applied on a  until the value of ( ) (1 ) 0of a f ε× − ≥  

The value of a∆ should be taken as: 

0.5(1 )
min

0.001
oa

a
−⎧ ⎫

∆ = ⎨ ⎬
⎩ ⎭

 (76) 

10) Once the desired value of a  is obtained, the value of unknown parameter b  can be 

calculated as: 

1

(1 )R Rab
a

−
=  (77) 

The parameters a and b are used in calculating the values of the unknown M-P 

parameters chf andQ . 

11) Using the known values of a  and b  the value of chf  and Q  can be calculated as: 

( )o
ch o f o

Ef f
b

ε ε= + −  (78) 
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sec

1
o

E a
EQ

a

−
=

−
 

(79) 

12) Using these obtained values of initially unknown parameters , ,chb f Q  the value of sf  

corresponding to the value of sε  can be calculated from Eqn (68) and the value of 

tangent modulus tE  can be obtained from Eqn (69). 

1.2.3.1) Cyclic properties of Reinforcing Steel: 

This section deals with the stress-strain model for ordinary reinforcing and high strength 

prestressing bars. It is described by ten rules, five corresponding to tension and other five 

for the compression  

1.2.3.2) Envelope Branches (Rule 1 and Rule 2): 

The envelope branches are composed of monotonic stress-strain relation along both the 

tension and the compression side, known as a) Tension Envelope Branch and b) 

Compression Envelope Branch. 

 

Rule 1 (Tension Envelope Branch): Chang and Mander(1994) assumed that the form of 

the envelope branches should be kept intact, but when reversal would occur from them, a 

scale factor would be considered. The model proposed the degradation of steel under the 

action of local cyclic loading, which has not been proposed before. Chang and Mander 

(1994) validated their model by means of experimental results obtained by Panthaki 

(1991). The stress-strain relationship for the tension envelope curve is represented in (Fig. 

8) and expressed by:  
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(80) 

1
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(81) 

where: 

ss s omε ε ε += −  (82) 

su sh
sh

su y

p E
f f
ε ε+ +

+ +
+ +

−
=

−
 (83) 

and  

omε + = point of origin of the tension envelope branch 

sE = Elastic modulus of Elasticity 

yf + = yield stress during tension in steel 

shε + = strain hardening strain during tension in steel 

suf + = ultimate (maximum) stress during tension in steel 

suε + = strain at ultimate stress in steel during tension in steel 

shE+ = tangent modulus at strain hardening 
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Fig. 8 Representation of vital parameters for steel model. 

 

Rule 2 (Compression Envelope Branch): The governing equations for the compression 

envelope curve are described as: 

0.110

( ) 1 ( ) 1
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s ss sh ss su ss
s su y

su sh
s ss

y

E signf f f
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(84) 
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(85) 

where: 

ss s omε ε ε −= −  (86) 

su sh
sh

su y

p E
f f
ε ε− −

− −
− −

−
=

−
 (87) 
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and, 

omε − = point of origin of the compression envelope branch 

yf − = yield stress during compression in steel 

shε − = strain hardening strain during compression in steel 

suf − = ultimate (maximum) stress during compression in steel 

suε − = strain at ultimate stress in steel during compression in steel 

shE− = tangent modulus at strain hardening 

1.2.3.3) Reversal Branches (Rule 3 and Rule 4): The curve which connects a reversal 

point on an envelope branch with a target point on the opposite envelope branch is known 

as a reversal branch. It is considered that a reversal branch can be exclusively described 

by the two extreme points: 

a) Maximum excursion into the tension envelope branch ( maxε ) 

b) Maximum excursion into the compression envelope branch ( minε ) 

The type of reversal can be categorized in two cases depending on the position of reversal 

point: 

a) Reversal from a point within the yield plateau 

b) Reversal from a point on the strain hardened curve. 

These two cases are considered separately as they are governed by different set of 

equations. 

The reversal branches can also be divided into two types: 

a) Unloading Reversal Branch (Rule 3) 

b) Loading Reversal Branch (Rule 4) 
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Rule 3 (Unloading Reversal Branch):  

Case1: If the unloading starts at a point ( , )o ofε − − on the tension envelope curve within the 

yield plateau (Fig.9) then following equations are used to calculate intermediate 

parameters for unloading. The target strain ( taε
− ) on the compressive envelope branch is 

calculated as: 

max o omε ε ε− += −  (88) 

minta omε ε ε− −= +  (89) 

where, 

min ( )y r sh ypε ε ε ε− − −= + −  
(90) 

o
om o

s

f
E

ε ε
−

− −= −  (91) 

max y
r

sh y

p
ε ε
ε ε

+

+ +

−
=

−
 

(92) 

The target slope is calculated by: 

1
1 1 1ta

r
s sh s

E
p

E E E

−

−

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

 

(93) 

The target stress taf −  is the yield stress ( yf − ) on the compression envelope branch. 
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Fig 9 Reversal from rule 1 from with in yield plateau. 

 

Case 2: If the unloading starts at a point ( , )o ofε − − on the strain hardening curve (Fig.10) 

then following equations are used to calculate intermediate parameters for unloading. The 

minε  is calculated in same manner as in equation (90), but it should satisfy the following 

condition: 

min shε ε −>  (94) 

 

The shifted origin for the compression envelope branch on strain axis is calculated as: 

(1 )om a rev b revk kε ε ε− + − + −= + −  (95) 

where: 

y
a om sh

s

f
E

ε ε ε
+

+ + += + −  (96) 
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max
maxb om

s

f
E

ε ε ε+ += + −  (97) 

max
2exp

5000( )rev
y

k ε
ε

−
+

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠

 
(98) 

with: 

revk − = A factor used to locate the compression envelope branch between the points aε
+  

and bε
+ . 

The target strain taε
− is calculated using Eqn (89). 

In this case the target stress taf − and target slope taE− are calculated from equations (84) and 

(85) respectively. The controlling parameters used in the MP equation are shown in 

tabular form below: 

Parameters Rule 3 

3aε  maxomε ε+ +  

3af  maxf  

3aE  oE−  

3bε  taε
−  

3bf  taf −  

3bE  taE−  

 

where: 

3aε = Starting strain of Rule 3 

3af = Starting stress of Rule 3 
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3aE = Starting slope of Rule 3 

3bε = Target strain of Rule 3 

3bf = Target stress of Rule 3 

3bE = Target slope of Rule 3 
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Fig 10 Reversal from rule 1 after strain hardening  

 

The initial slope oE− and the Menegotto-Pinto equation parameter R− are the functions of 

the strain amplitude aε∆ which is given by: 

3 3-
2

b a
a

ε εε∆ =  (99) 

Experiments carried out by Panthaki (1991) have shown that the initial Young’s modulus 

at the unloading point can be expressed as: 
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(1 3 )o a sE Eε− = − ∆  (100) 

The M-P parameter R was also found to be a function of the yield stress, which can be 

expressed as: 

1
3

16 (1 10 )y
a

s

f
R

E
ε− ⎛ ⎞

= − ∆⎜ ⎟
⎝ ⎠

 (101) 

 

Using these parameters the M-P equation can be used to derive the unloading reversal 

curve i.e. the Rule 3. Fig. 10 shows the transition from Rule 1 to Rule 3 obtained from the 

numerical simulation of the hysteretic model for steel reinforcing bars. 

Rule 4 (Loading Reversal Branch): 
 
Case1: If the reversal crops up from a point ( ,o ofε + + ) lying within the yield plateau of the 

compression envelope branch, the following equations govern the loading reversal curve: 

min o omε ε ε+ −= −  (102) 

The target strain on the tension envelope branch is calculated as: 
 

maxta omε ε ε+ += +  (103) 

where, 
max ( )y r sh ypε ε ε ε+ + += + −  (104) 

o
om o

s

f
E

ε ε
+

+ += −  (105) 

min y
r

sh y

p
ε ε
ε ε

−

− −

−
=

−
 

(106) 

 
The target slope is calculated by: 

1
1 1 1ta

r
s sh s

E
p

E E E

+

+

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

 

(107) 
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The target stress taf + is the yield stress yf + on the tension envelope branch. 

 

Fig 11 Reversal from rule 2 from with in yield plateau. 

 

Case2: If the reversal takes place from a point on the strain hardening curve (Fig. 12) 

then the following equations govern the loading reversal curve. The maxε is calculated in 

same manner as in equation (104) 

The shifted origin abscissa for the tension envelope branch is calculated as: 

(1 ) )om a rev b revk kε ε ε+ − + − += − +  (108) 

where: 

y
a om sh

s

f
E

ε ε ε
−

− − −= + −  (109) 

min
minb om

s

f
E

ε ε ε− −= + −  (110) 
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min
2exp

5000( )rev
y

k
ε
ε

+
−

⎛ ⎞
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⎝ ⎠

 
(111) 

With: 

revk +  = A factor used to locate the tension envelope branch between the points aε
−  and bε

− . 

The target strain taε
+ is calculated using equation (103). 

In this case the target stress taf + and target slope taE+ are calculated from equations (113) 

and (114) respectively.  

The starting strain, stress, slope and the target strain, stress, slope for Rule 4 are defined 

by the following equations: 

Parameters Rule 4 

4aε  minomε ε− +  

4af  minf  

4aE  oE+  

4bε  taε
+  

4bf  taf +  

4bE  taE+  

where: 

The initial slope oE+ and the Menegotto-Pinto equation parameter R+ are the functions of 

the strain amplitude aε∆ which is given by: 

4 4

2
b a

a
ε εε −

∆ =  (112) 
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Experiments performed by Panthaki (1991) have shown that the initial Young’s modulus 

at the point of reversal from the compression envelope branch (loading) can be expressed 

as: 

(1 )o a sE Eε+ = − ∆  (113) 

The M-P parameter R was also found to be a function of the yield stress, which can be 

expressed as: 

1
3

20 (1 20 )y
a

s

f
R

E
ε+ ⎛ ⎞

= − ∆⎜ ⎟
⎝ ⎠

 (114) 
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Fig 12 Reversal from rule 2 after strain hardening 

Using these parameters the M-P equation can be used to derive the loading reversal curve 

i.e. the Rule 4. Fig. 12 shows the transition from Rule 2 to Rule 4 obtained from the 

numerical simulation of the hysteretic model for steel reinforcing bars. 
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Returning Branches (Rule 5 and Rule 6): After complete unloading occurs on the 

unloading reversal branch (rule 3), the current branch merges to rule 2 (Fig.9), but if there 

is partial unloading then loading returning branch (rule 5) is considered, shown in Fig. 13. 

Similarly, if complete loading occurs on the loading reversal branch (rule 4) then 

transition from rule 4 to rule 1 takes place (Fig. 11), whereas the partial loading results in 

generation of unloading returning branch (rule 6), shown in Fig. 13. 

Rule 5 (Loading Returning Branch): As described above the reversal from rule 3 will 

define the starting of rule 5, (Fig. 13). The target strain of rule 5 is given by: 

5 maxb om reε ε ε ε+ += + + ∆  (115) 

where: 

3 5 1.2
y

re a a
s

f
E

ε ε ε
+

+∆ = − −  (116) 

 

and 

0
3

y
re

s

f
E

ε
+

+≤ ∆ ≤  (117) 

The target stress 5bf and the target slope 5bE can be calculated by using equations (100) 

and (101) respectively. The initial Young’s modulus 5aE and the M-P parameter R can be 

calculated from corresponding rule table by putting: 

5 5

2
b a

a
ε εε −

∆ =  (118) 

Fig. 13 represents the transition from rule 3 to rule 5 on partial unloading on rule 3. The 

rule 5 is also summarized in tabular form below. 

Parameters Rule 5 
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,5saε  
srε  

,5saf  
srf  

,5saE  
soE+  

,5sbε  
max 3 5 1.2

sy
s so sa sa

s

f
E

ε ε ε ε
+

++ + − −  

,5sbf  
5( )s sbf ε  

,5sbE  
5( )s sbE ε  

The graph is generated from the numerical simulation of hysteretic model for steel 

reinforcing bars. 
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Fig 13 Reversal from rule 3 

Rule 6 (Unloading Returning Branch): At the occurrence of a reversal on rule 4, rule 6 

will start (Fig. 14). The target strain of rule 6 is given by: 
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,6 minsb so s sreε ε ε ε− −= + + ∆  (119) 

where: 

,4 ,6 1.2
sy

sre sa sa
s

f
E

ε ε ε
−

−∆ = − −  (120) 

and 

0
3

sy
sre

s

f
E

ε
−

−≥ ∆ ≥  (121) 

The target stress ,6sbf and the target slope ,6sbE can be calculated by using the table 

described above. 

The initial Young’s modulus ,6saE and the M-P parameter sR can be calculated from 

equation (113) and (114) respectively by putting: 

,6 ,6

2
sb sa

sa

ε ε
ε

−
∆ =  (122) 

Fig. 14 represents the transition from rule 4 to rule 6 on partial loading on rule 4. The 

graph is generated from the numerical simulation of hysteretic model for steel reinforcing 

bars. 
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Fig 14 Reversal from rule 4 

 

First Transition Branches (Rule 7 and Rule 8): The curve followed after a reversal from 

the envelope branch is called as reversal branch, the one followed by a reversal from a 

reversal branch is called as returning branch. The curve which is obtained after reversal 

from the returning branch is called as the first transition branch. Partial loading on 

loading returning branch (rule 5) gives rise to the first transition branch (rule 7), shown in 

Fig. 15. Similarly, the partial unloading on the unloading returning branch (rule 6) gives 

rise to the first transition branch (rule 8), shown in Fig. 16. 

Rule 7 (First Transition Branch): In case of reversal from rule 5, when partial loading is 

done on rule 5, rule 7 will follow from that point onwards, rule 7 will target the starting 

point of rule 5, which is also the reversal from rule 3. The vital parameters are shown in 

tabular form. 
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Parameters Rule 7 

,7saε  
srε  

,7saf  
srf  

,7saE  
soE−  

,4sbε  ,5saε  

,4sbf  ,5saf  

,4sbE  ,3 ,5( )sa saE ε  

 

where, ,3 ,5( )sa saE ε  is  the tangential modulus calculated on rule 3 corresponding to the 

strain ,5saε . The Menegotto Pinto equation can then be used to connect these two points. 

Fig. 15 represents the generation of rule 7 after reversal from rule 5 in the case of partial 

loading. This graph is generated from the numerical simulation of hysteretic model for 

steel reinforcing bars. In the case of complete loading on loading returning branch (rule 

5), the transition from rule 5 to rule 1 takes place. 
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Fig 15 Reversal from rule 5 

 

Rule 8 (First Transition Branch): In case of reversal from rule 6, when partial unloading 

is done on rule 6, the first transition branch (rule 8) will start from this point, which will 

target starting of rule 6. The vital parameters are summarized in tabular form below: 

Parameters Rule 8 

,8saε  
srε  

,8saf  
srf  

,8saE  
soE+  

,8sbε  
6saε  

,8sbf  
6saf  

,8sbE  ,4 ,6( )sa saE ε  
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The target stress ,8sbf and the target slope ,8sbE are calculated from table. Fig. 16 

represents the generation of rule 8 after reversal from rule 6 in the case of partial 

unloading. This graph is generated from the numerical simulation of hysteretic model for 

steel reinforcing bars. 
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Fig 16 Reversal from rule 6 

 

Second Transition Branches (Rule 9 and Rule 10): Partial unloading on rule 7 gives rise 

to the second transition branch (rule 9), shown in Fig. 17, whereas the complete 

unloading on rule 7 results in transition from rule 7 to rule 3 (Fig. 17). Similarly, the 

partial loading on rule 8 gives rise to the second transition branch (rule 10), shown in 

Fig.18, whereas the complete loading on rule 8 results in transition from rule 8 to rule 4 

(Fig. 18).  

Rule 9 (Second Transition Branch): In case of reversal from rule 7, when partial 

unloading is done on rule 7,rule 9 will follow from that point onwards. The curve that 
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follows a reversal from rule 7 is called as the second transition curve (rule 9) whose 

target point is defined as: 

,9 ,7sb saε ε=  (123) 

The target stress ,9sbf and the target slope ,9sbE are calculated on rule 5. Fig. 17 represents 

the generation of rule 9 after reversal from rule 7 in the case of partial unloading. The 

vital parameters required for rule 9 are summarized in tabular form below. 

Parameters Rule 8 

,9saε  
srε  

,9saf  
srf  

,9saE  
soE+  

,9sbε  
7saε  

,9sbf  
7saf  

,9sbE  ,7 7( )sa saE ε  

 

This graph is generated from the numerical simulation of hysteretic model for steel 

reinforcing bars. 

 

Rule 10 (Second Transition Branch): In case of reversal from rule 8, when partial loading 

is done on rule 8, rule 8 will follow from that point onwards. The curve that follows a 

reversal from rule 8 is called as the second transition curve (rule 10) whose target point is 

defined as: 
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8,10, sasb εε =  (124) 

The target stress 10,sbf and the target slope 10,sbE  are calculated on the rule 6. Fig.18. 

represents the generation of rule 10 after reversal from rule 8 in the case of partial loading. 

This graph is generated from the numerical simulation of hysteretic model for steel 

reinforcing bars. 

The below figure also summarizes a schematic representation of all the possible rules and 

their combinations. The variables required for the rules are also summarized in the 

tabular form below. 
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Fig 19 Schematic representation of the constitutive steel laws 

 

Rule number 
Parameter 

3 4 5 6 7 8 9 10 

saiε  srε  srε  srε  srε  srε  srε  srε  srε  

saif  srf  srf  srf  srf  srf  srf  srf  srf  
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saiE  soE−  soE+  soE+  soE−  soE−  soE+  soE+  soE−  

sbiε  mins soε ε−+  maxs soε ε++  

max

3 5

1.2

s so

sa sa

sy

s

f
E

ε ε
ε ε

+

+

+

+ −

−

 
min

4 6

1.2

s so

sa sa

sy

s

f
E

ε ε
ε ε

−

−

+

+ −

−

 
5saε  6saε  7saε  8saε  

sbif  3( )s sbf ε  4( )s sbf ε  5( )s sbf ε  6( )s sbf ε  5saf  6saf  7saf  8saf  

sbiE  3( )s sbE ε  4( )s sbE ε  5( )s sbE ε  6( )s sbE ε  ,5 5( )sa saE ε ,6 6( )sa saE ε  ,7 7( )sa saE ε  ,8 8( )sa saE ε  

 

1.3 CFRP laminates 

The stress and strain behaviour of CFRP laminates was assumed to be linear. In the femix 

to simulate the behaviour, they were assumed to as a linear isotropic material. The figure 

show the behaviour of the CFRP laminates. 
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Fig 20 Stress strain relation for linear Isotropic material 
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2. TIMOSHENKO BEAM THEORY 

The current section describes in detail the Timoshenko theory which is applied to each 

and every fiber element. This theory assumes first-order shear deformation effects in 

addition to the classical beam theory. In this model CS remain plane and rotate about the 

neutral axis, but do not remain perpendicular to the deformed longitudinal axis. 

Transverse shear which remain constant over the cross section accounts for the deviation 

from perpendicularity of the cross-section with respect to longitudinal axis. The 

Timoshenko beam theory with finite element formulation is described in detail under the 

following sections. 

 

2.1 Coordinate Systems  

From the analysis and computational point of view, it is not only necessary but important 

also, to define two coordinate systems, Local and Global coordinate system. The Local 

coordinate system is used as an intermediate step before the final analysis, which is 

always performed in Global coordinate system. The relation between the two types of 

coordinate system is derived later in this section. 

2.1.1 Global Coordinate System (GCS)  

 Global coordinate axis is the only coordinate system which is immobile. For 

every element its position is fixed, whatever may be the dimension, location and 

orientation of the element. The GCS axes are represented by 1 2,g g and 3g , respectively, 

as shown in Figure 1, which also shows the unit vectors ( îi ) and global displacements 

( g
iu  and g

iθ  ), where i = 1, 2 and 3 

 

2.1.2 Local Coordinate System (LCS) 

 The Local coordinate system is established for each element in order to define the 

entities related to the element. The LCS is represented by 1 2,l l and 3l  respectively, with 

direction of 1l  always tangential to the beam axis (Figure 2). 
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Fig 21  Local coordinate system (LCS) of the element 

The transformation from one coordinate system to other i.e. from LCS to GCS and vice-

versa is derived here. Consider a typical element (Figure 3) randomly located in GCS 

with the assumed LCS shown, assumed to have natural coordinate ( 1s ) which stretches 

from -1 to +1 along the axis. Moreover it is assumed that one of local coordinate axis 

direction is always concurrent to the axis of the beam; therefore the direction of the 

tangential axis is derivative of the curvilinear axis. It is to be noted that all the point on 

the axis of the element can be expressed in terms of curvilinear coordinate system.  

The vector 1l  is tangent to the curvilinear axis 1s , so the derivative of the global 

coordinates with respect to 1s  will generate a vector in direction of 1l .  Thus, 
T

s
x

s
x

s
xl ⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

=
1

3

1

2

1

1
1   (125) 

[ ]1
1 11 12 13

1

ˆ Tl
l l l l

l
= =  (126) 

 

The unit vector in the direction of  2l  axis can be determined in the following way. If the 

direction of  1l  coincide with 3̂i , then unit vector in the direction of  2l  can be assumed 

as  

2 2
ˆ ˆl i=  (127) 
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Otherwise it can be derived by cross product of  3̂i  with 1̂l , 

2 3 1
ˆ ˆˆl i l= ×  (128) 

 
In analogous way, 3̂l  can be generated by the cross product of above two local axes,  

213
ˆˆˆ lll ×=  (129) 

 

These generated vector directions can be used to generate the transformation matrix, to 

transform the variables from local coordinate system to global coordinate system.  If 2̂l  

and  3̂l  are represented by the following components,  

[ ]2 12 22 23
ˆ Tl l l l=  (130) 

[ ]3 13 23 33
ˆ Tl l l l=  (131) 

1 11 12 13
lg

2 21 22 23

31 32 333

ˆ

ˆ

ˆ

l l l l
T l l l l

l l ll

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (132) 

 

2.2 Displacement Field 

Any point on the element can have three translational and three rotational displacements. 

So the displacement field comprises of six components.  The displacement field in the 

LCS and GCS can be represented by lU and gU , respectively, with the following 

components: 

1 2 3 1 2 3

Tl l l l l l lU u u u θ θ θ⎡ ⎤= ⎣ ⎦  (133) 

g
1 2 3 1 2 3

Tg g g g g gU u u u θ θ θ⎡ ⎤= ⎣ ⎦  (134) 

 

The displacement field from LCS to GCS can be transformed by the use of 

transformation matrix. 
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(6 1) (6 6)(6 1)

lg glU T U
× × ×

=  

 
(135) 

lg
lg

lg

0

0

T
T

T

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 (136) 

 

The theory derived here considers the feasibility of shear centre do not coincide with the 

centre of gravity of the CS. Consider that G represents the centre of gravity (origin of the 

local coordinate system) and C represents the shear centre, with 2
l
cx  and  3

l
cx   as the 

coordinates in the direction of  2l  and  3l   with respect to centre of gravity. Hence 

translational displacements of any point in the cross section (in LCS) can be written as 

(see Figure 4)  

1 1 2 3 1 1 3 2 1 2 3 1( , , ) ( ) ( ) ( )l l l l l l l l l l l lu x x x u x x x x xθ θ= + −  (137) 

2 1 2 3 2 1 3 3 1 1( , , ) ( ) ( ) ( )l l l l l l l l l l
cu x x x u x x x xθ= − −  (138) 

3 1 2 3 3 1 2 2 1 1( , , ) ( ) ( ) ( )l l l l l l l l l l
cu x x x u x x x xθ= + −  (139) 

 

Fig 21 - Generalized displacement field for TB. 
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When shear centre coincides with the centre of gravity the equation 10 reduces to 

1 1 2 3 1 1 3 2 1 2 3 1( , , ) ( ) ( ) ( )l l l l l l l l l l l lu x x x u x x x x xθ θ= + −  (140) 

2 1 2 3 2 1 3 1 1( , , ) ( ) ( )l l l l l l l l lu x x x u x x xθ= −  (141) 

3 1 2 3 3 1 2 1 1( , , ) ( ) ( )l l l l l l l l lu x x x u x x xθ= +  (142) 

 

2.3 Strain components  

The strains in the cross section of an element can be calculated using the equations 140-

142 in the following way 

  

31 1 2
3 2

1 1 1 1
1

1 2 2 1
12 3 3 3

2 1 1 1
13

3 31 1
2 2 2

3 1 1 1

( )

( )

ll l l
l l

l l l l
l

l l l l
l l l l l

cl l l l
l

l ll l
l l l

cl l l l

u u x x
x x x x

u u u x x
x x x x

u uu x x
x x x x

θθ

ε
θε γ θ

γ
θθ

⎧ ⎫ ⎧ ⎫∂∂ ∂ ∂
+ −⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎧ ⎫

⎪ ⎪ ⎪∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪= = + = − + − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎪ ⎪ ⎪∂ ∂∂ ∂
⎪ ⎪ ⎪+ + + −
∂ ∂ ∂ ∂⎪⎪ ⎪ ⎩⎩ ⎭

⎪⎪

⎪
⎪
⎪
⎪⎭

 (143) 

 
Equations (143) can be transformed in the following format  

 

 

1

1

2 1
3 3

1 1

3 1
2 21 3 2

1 1
12 3

1
13 2

1

2

1

3

1

1 0 0 0
0 1 0 0 0
0 0 1 0 0

l

l

l l
l l

cl l

l l
l ll l l

cl l
l l

l
l l

l

l

l

l

l

u
x

u
x x

u
x x

x x
x

x
x

x

x

θθ θ

θθ θε
γ

θγ

θ

θ

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ∂

− +⎢ ⎥
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎢ ⎥⎧ ⎫ ⎡ ⎤ + −−
∂ ∂⎢ ⎥⎪ ⎪ ⎢ ⎥= −⎨ ⎬ ⎢ ⎥⎢ ⎥ ∂⎪ ⎪ ⎢ ⎥⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎢ ⎥∂
⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥
⎢ ⎥∂
⎢ ⎥∂⎣ ⎦

 (144) 

or,  
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1 3 2

12 3

13 2

1 0 0 0
0 1 0 0 0
0 0 1 0 0

l
l l l a

l
l l ls

l
l l t

l
b

x x
x R

x

ε
ε

ε
γ ε

ε
γ

ε

⎡ ⎤
⎧ ⎫ ⎡ ⎤− ⎢ ⎥
⎪ ⎪ ⎢ ⎥ ⎢ ⎥= − =⎨ ⎬ ⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 (145) 

or even  

l lRε ε=  (146) 

where  

1

1

l
l

a l

u
x

ε ∂
=
∂

 (147) 

is the axial strain, 

2 1
3 3

1 1

3 1
2 2

1 1

l l
l l

cl l
l
s l l

l l
cl l

u
x x

u
x x

θθ θ
ε

θθ θ

⎡ ⎤∂ ∂
− +⎢ ⎥∂ ∂⎢ ⎥=

⎢ ⎥∂ ∂
+ −⎢ ⎥

∂ ∂⎣ ⎦

 (148) 

are the shear strain components, 

1

1

l
l

t lx
θε ∂

=
∂

 (149) 

is the torsional strain and   

2

1

3

1

l

l
l

b l

l

x

x

θ

ε
θ

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥=
⎢ ⎥∂
⎢ ⎥
∂⎣ ⎦

 (150) 

are the flexural strain components. 

2.4 Stress and Resultant stresses components 

The stress vector in correspondence to the strain vector (eqn. 150) has the following 

format:  

1 12 13

Tl l lσ σ τ τ⎡ ⎤= ⎣ ⎦  (151) 

whose components are represented in figure 21. 
 



52 

 

G 

e 

3l  

l
13τ  

2l  

1l  

l
1σ  

l
12τ  

 

Fig 21 - Stress components 

 
2.4.1 Constitutive equation 

Assuming 

2 3 1
l l lε ε νε= = −  and 23 0lγ =  (152) 

The constitutive relation for the 3D Timoshenko beam is 

1 1

12 12

13 13

0 0
0 0
0 0

l l

l l

l l

E
G

G

σ ε
τ γ
τ γ

⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭ ⎩ ⎭

 (153) 

 or  

l lDσ ε=  (154) 

where E is the longitudinal elasticity modulus of the material and G is the transversal 

elasticity modulus given by 

2(1 )
EG
ν

=
+

 (155) 

 

2.4.2 Resultant stresses 

 Since the 3D Timoshenko Beam has six degrees of freedom at each node, the internal 

forces are composed of three force and three moment components.  
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1 2 3 1 2 3

Tl l l l l l lN V V M M Mσ ⎡ ⎤= ⎣ ⎦  (156) 

where 1 2 3, ,l l lN V V  and 1 2 3, ,l l lM M M are forces and moments in 1 2,l l  and 3l  

directions respectively, which are obtained from the following relationships:  

1 1
l l

A

N dAσ= ∫  (157) 

2 12
l l

A

V dAτ= ∫  (158) 

3 13
l l

A

V dAτ= ∫  (159) 

1 12 3 13 2( )l l l l l

A

M x x dAτ τ= − + −∫  (160) 

2 1 3
l l l

A

M x dAσ= ∫  (161) 

3 1 2
l l l

A

M x dAσ= −∫  (162) 

where 1
lN  is the axial force, 2

lV  is the shear force in 2l  direction, 3
lV  is the shear force in 

3l  direction, 1
lM  is the torsion moment, 2

lM  is the bending moment in 2l  direction and 

3
lM  is the bending moment in 3l  direction. 

These relations can be arranged in matrix, getting the following format,  

1

2
1

3
12

3 21
13

32

23

1 0 0
0 1 0
0 0 1
0

0 0
0 0

l

l
l

l
l l

l ll
lA

ll

ll

N
V
V

dA
x xM

xM
xM

σ
σ τ

τ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

∫  (163) 

or 

l T l

A

R dAσ σ=∫  (164) 

Introducing (20b) into (33) and taking into account (13c) results:   

l T l T l

A A

R D dA R DR dAσ ε ε= =∫ ∫  (165) 
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ˆ lDσ ε=  (166) 

where 

3 2

12 3 12

13 2 13
2 2

3 12 2 13 12 3 13 2
2

3 3 3 2
2

2 3 2 2

0 0 0
0 0 0 0
0 0 0 0
0 ( ) ( ) 0 0

0 0 0 ( )
0 0 0 ( )

l l

l

l
T

l l l l
A A

l l l l

l l l l

E x E x E
G x G

G x G
D R DRdA dA

x G x G G x G x
x E E x x x E
x E x x E x E

⎡ ⎤−
⎢ ⎥−⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
− +⎢ ⎥

⎢ ⎥−
⎢ ⎥
− −⎢ ⎥⎣ ⎦

∫ ∫
)  

(167) 

 

Since the material is homogenous, isotropic and moreover with one of the CS principal 

axis coinciding with the local coordinate axis associated to a given cross section, the 

following equations should hold, 

0 ( 2,3)l l
i i

A A

Ex dA E x dA i= = =∫ ∫  (168) 

0 ( 2,3)l l
i i

A A

Gx dA G x dA i= = =∫ ∫  (169) 

2 3 2 3 0l l l l

A A

Ex x dA E x x dA= =∫ ∫  (170) 

2 2
3 3 2( ) ( )l l

A A

E x dA E x dA EI= =∫ ∫  (171) 

2 2
2 2 3( ) ( )l l

A A

E x dA E x dA EI= =∫ ∫  (172) 

2 2 2 2
13 2 12 3 2 3 1[ ( ) ( ) ] [( ) ( ) ]l l l l

A A

G x G x dA G x x dA EI+ = + =∫ ∫  (173) 

A

EdA EA=∫  (174) 

*
12 12 2

l

A

G dA GA GAα= =∫   
(175) 

*
13 13 3

l

A

G dA GA GAα= =∫  (176) 

where *
2
lA  and *

3
lA  are the reduced areas in 2l  and 3l  direction. 
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therefore, for a section of homogenous and isotropic materials  having a CS principal axis 

coincident with the CS local coordinate system, the resultant stresses are obtained for the 

following relationship: 

1

1

2 1
3 3

1 11
*

22 3 1
2 2*

1 133

11 1

2 12

33 2

1

3

1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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0 0 0 0 0
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l l
l l

cl ll

ll l l
l l

cl lll

ll l

l ll
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l

l

l

u
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u
x xEAN

GAV u
x xGAV

GIM
EI xM

EIM
x

x

θθ θ

θθ θ

θ

θ

θ

⎡ ∂
⎢ ∂⎢
⎢∂ ∂

− +
∂ ∂⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ∂ ∂⎢ ⎥ ⎢ ⎥ + −
⎢ ⎥ ⎢ ⎥ ∂ ∂

=⎢ ⎥ ⎢ ⎥
∂⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ∂
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ∂⎣ ⎦⎣ ⎦
∂

∂
∂⎣

⎤
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

 

(177) 

 
2.5 Finite Element Formulation 

The internal virtual work of a volume V, of a 3D TB element is obtained from the 

following relation:  

( )

( )
int 1 1 12 12 13 13( )

e

l l l l l l e

V

W dVδ δε σ δγ τ δγ τ= + +∫  (178) 

( )

( )

( )

( ) ( )

( )

int ( )

( )

( )

( ) ( )

ˆ( )

e

e

e

e e

e

l T l

V

l T T l

V

l T T l

V

l T T l

L A

l T l

L

W dV

R D dV

R DR dV

R DRdA dL

D dL

δ δ ε σ

δ ε ε

δ ε ε

δ ε ε

δ ε ε

=

=

=

=

=

∫

∫

∫

∫ ∫

∫

 

 

(179) 

The global coordinates of any point of a finite element can be obtained from the 

coordinates of the nodes of that element and using the shape functions of the 

element 1( )iN s . For a n noded finite element, n shape functions will be used to interpolate 

the coordinates of a generic point at natural coordinate position 1s  :  
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1 1
1

( ) ( )
n

g g
i i

i
x s N s x

=

= ∑  (180) 

where n is the number of nodes per element. For a three noded finite element (180) can 

have the following format: 

11

21

31

1 1 1 1 1 12

2 1 2 1 2 1 22

3 3 1 3 1 32

13

23

33

( ) 0 0 ... ( ) 0 0
( ) 0 ( ) 0 ... 0 ( ) 0

0 0 ( ) ... 0 0 ( )

g

g

g

g g

g g

g g

g

g

g

x
x
x

x N s N s x
x s N s N s x
x N s N s x

x
x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(181) 

where g
ijx  is the cartesian coordinate of node i in the jx  and gX  is the vector of the 

coordinates in the global reference of the nodes of the finite elements. 

1

2

3

1

1 1

1

( )
( ) ( )

( )

x
gg

x

x

N s
x s N s X

N s

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (182) 

1 1( ) ( )g g
xx s N s X=  (183) 

 

2.6 Nodal Displacements  

If the nodal displacements are known then the displacements of any point at interior of 

the element can be calculated using the element shape function in a similar procedure 

such as the one described in previous section. Adopting an isoparametric formulation, the 

shape function used for coordinate interpolation can be used for the displacement 

interpolation. If a finite element of n node is considered, the coordinates of a point at 

natural coordinate position 1s  is obtained from the following relationship: 
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(184) 

where g
iju  and g

ijθ  are the displacement and rotation of node i in the jx  and,  

g
1 2 3 1 2 3

Tg g g g g g
n n n n n n nU u u u θ θ θ⎡ ⎤= ⎣ ⎦  (185) 

is the vector of the displacement components at nth node number in the global coordinate 

system. 

2.7 Matrices relating strains and displacements  

Section 2.3 showed that strains can be obtained deriving the displacement field, therefore 

the strain components at natural coordinate position 1s  of the vector lε  can be obtained 

from:   

1 1
1

( ) ( )
n

l l
k k

i
s B s Uε

=

=∑  (186) 

 

Where l
kU  is the displacement vector for kth node (k = 1 to n) in the local coordinate 

system, 

1 2 3 1 2 3

Tl l l l l l l
k k k k k k kU u u u θ θ θ⎡ ⎤= ⎣ ⎦  (187) 

and the strain-displacement matrix ( kB ) is given by 
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 (188)

Since the displacements of the nodes of the structure are obtained in the global coordinate 

system, the displacement of the nodes for each finite element need to be transformed to 

the local coordinate system of the element:  

lg
1 1 1

1

1
1

( ) ( ) ( )

( )

n
l g

k k
k

n
g

k k
k

s B s T s U

B s U

ε
=

=

⎡ ⎤= ⎣ ⎦

=

∑

∑
 (189) 

or  
lg

1 1( ) ( )
( 1) ( ) ( ) ( 1)

l gs B s T U
sc sc t t t t
ε =

× × × ×

)

 (190) 

where 1( )B s and 
lg

T̂ are extended to the element, gU is the vector of the displacements of 

the element nodes, sc is the total strain components of the element and t is the total 

number of degrees of freedom per element. 

2.7.1 Calculation of Jacobian  
 To evaluate 1 1( ) l

kdN s dx  of kB  the chain derivative rule is applied:  

1 1

1 1 1

k
l l

dN dN ds
dx ds dx

=  (191) 

1

1 1

1k
l

dN dN
dx ds J

=  (192) 

where  J  is Jacobian, which is derived in the following section. 

Since, 

( ) 2 2 2
1 1 1 2 3( ) ( ) ( )l g g gdx s dx dx dx= + +  (193) 
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therefore  

 
2 2 2

31 1 2

1 1 1 1

gl g g dxdx dx dx
ds ds ds ds

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (194) 

The Jacobian for one dimensional TB element with three nodes is given by: 
1 22 2 2

1
11 21 31

11 1 1 1

l n
g g gk k k

k

dN dN dNdx x x x
ds ds ds ds=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑  (195) 

1

1

ldx J
ds

=  (196) 

 
2.8 Stiffness matrix 
The virtual work can also be written as, 

int

lg lg

ˆ( )

ˆ

l T l l

L
Tg T l g

L

W D dL

U T B D BT U dL

δ δ ε ε

δ

=

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

∫

∫
 

 

(197) 

 
Converting the integration for the natural coordinate the expression yields: 

int

1
lg lg

1
1

ˆT Tg T l gW U T B D BT Jds Uδ δ
+

−

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦∫  (198) 

Hence the stiffness matrix can be written as 
1

lg lg
1

1

ˆT T lK T B D BT Jds
+

−

⎡ ⎤= ⎣ ⎦∫  (199) 

By using the Gauss Legendre integration the stiffness coefficient can be derived as 

( )1
( )

lg lg
1

1

ˆ
s

eN T T l p
p

p
K T B D BJT s W

=

⎡ ⎤= ⎣ ⎦∑  (200) 

 
2.9 Equilibrium equations and external loads 

In each structure node is regarded as a small connector to which elements are attached, 

and it is argued that assembly of elements and load terms generate a set of equations 

stating that each node is in equilibrium. Loads applied to a node come from element 

deformation, from initial stress in elements, from external loads etc. In general the 

following loading type can act on a structure  

1. Point loads; 
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2. Internal point loads; 

3. Loads distributed per unit length of the finite element; 

4. Gravity loads; 

5. Prescribed loads. 

 
2.10.1 Point loads 
 
When concentrated point loads act directly on the discrete nodes of an element, the loads 

are directly lumped to the load vector without any changes in the corresponding direction. 

If the external load acting in GCS at nth node is given by g
nQ ,  

1 2 3 1 2 3

Tg g g g g g g
n n

Q F F F M M M⎡ ⎤= ⎣ ⎦  (201)

The g
nQ  is directly lumped to the global load vector gQ  corresponding to its nodal 

degrees of freedom. 

2.10.2 Internal point loads 

Consider that a point load is applied in between two nodes which is well defined in global 

coordinate axes, the point of action is A. The load vector at point A in GCS is shown in 

figure 5 and given by: 
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Fig 21 Internal point load in between nodes. 
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1 2 3 1 2 3

Tg g g g g g g
A A

Q F F F M M M⎡ ⎤= ⎣ ⎦  (202)
 
 

The load vector acting at point A is converted to the equivalent global load vector applied 

at defined nodal points of the element. By using the virtual work principle the force 

contribution at any node m can be calculated as: 

 

1 1 1 1

2 2 2 2

3 3 3 3
1,

1 1 1 1

2 2 2 2

3 3 3 3

( )

g g g g
m m A m
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F u F u
F u F u
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M M
M M
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δ δ
δ δ
δθ δθ
δθ δθ
δθ δθ
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⎪ ⎪ ⎪ ⎪ ⎪ ⎪
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 (203)

where   

 1 2 3 1 2 3

Tg g g g g g g
m m m m m m mU u u uδ δ δ δ δθ δθ δθ⎡ ⎤= ⎣ ⎦  (204)

g
mUδ  is virtual displacement vector for node m in the GCS. After canceling the nodal 

displacements from both sides the equation reduces to  

 

1 1
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3 3
1,

1 1

2 2

3 3

( )

g g
m A
g g
m A
g g
m A

m Ag g
m A

g g
m A
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F F
F F
F F

N s
M M
M M
M M

⎧ ⎫ ⎧ ⎫
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⎪ ⎪ ⎪ ⎪
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 (205)

1,( )g g
m Am m

Q N s Q=  (206)
The above method to find the equivalent force at nodes can be compared to the 

interpolation of the coordinates by using nodal coordinates and shape functions. 

2.10.3 Gravity loads  

The calculation of the equivalent nodal load vector due to the gravity load vector is 

derived in this section. It is important that no moments are generated due to such body 

forces. Consider that the generated loads in the GCS for a small part of element (dV) is 

given by  
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,1 1

,2 2

,3 3

g g
V
g g

V
g g

V

dQ g
dQ g dV
dQ g

ρ
⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

 (207)

 
where gg1 , gg2  and  gg3  are accelerations in the direction gx1 , gx2  and gx3  respectively, 

and ρ  is mass per unit volume.  By using the virtual work principle, the work done at mth 

node is given by (in LCS): 

 ( )
( )e

l ll l
V mm

m L

F U N U g AdLδ δ ρ= ∫  (208)

Converting the accelerations in GCS,  

 ( )
( )

lg

e

l ll g
V mm

m L

F U N U T Ag dLδ δ ρ= ∫  (209)

Since both sides include same nodal displacements, so the expression can be reduced to 

force equation 

 
( )

lg

e

l g
V m m

L

F N T g AdLρ= ∫  . (210)

The integration can be performed by Gauss Legendre integral technique and expression 
reduces to  

 { }
1

11

s

p

N
l l
V m Vm psp

F N F J W
=

= ∑  . (211)

 
2.10.4 Distributed load applied along the element axis  
The possible ways of distribution of forces for a 3D Timoshenko beam is shown in the 

figure 6.  Consider a case of force distribution for any element given by the force vector 
j
kLq l

,  in local coordinate axis with q f= representing force and q m=  representing 

moments.  The force equations for a small element dL can be written as –  
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 (212)

  In condensed form eqn. (212) can be summarized as 
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Fig 6 - Distribution of force on 3D Timoshenko frame element. 
 

where in the condensed equation   

[ ]TLLLLLLLLLLLLLLLLLLL
mmmfffmmmfffmmmfffq 321321321321321321

3,3,3,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1,
lllllllllllllllllll =  . (214)

and the shape function matrix is given by 
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(215)

 
As already mentioned that the equations are derived for a small element, hence they must 

be integrated over the length to get the equivalent nodal forces. Applying the virtual work 

principle and integrating the work done: 

 ( ) ( )dLsqsQd
LL 11
ll =  . (216)

 [ ]
( )

1 1( ) ( )
e

Tg g

L L
L

Q s N s q dL= ∫  . (217)

The forces should be converted to the GCS by using the following equation of 

transformation  

 ( ) ( )1 1

Tgg
L L

q s T q s⎡ ⎤= ⎣ ⎦
l l  (218)

The integration of equation (218) can be performed by Gauss Legendre integration 

technique. 
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The generated forces by the equation (219) are represented in the Figure 8 shown below. 
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Fig 22  Equivalent force representation at the nodes 
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3. FIBER MODEL 

3.1 Introduction- 

A fiber element is designed to model the 3D RC components in the RC structures. Its 

cross-section can be edited in a divided fibrous form according to the real distribution of 

steel and concrete in the axial direction. The section during the forced state is assumed to 

keep a plane, and the average strain and average stress in each cell of the section obey the 

corresponding constitutive relationship of concrete or steel materials or linear isotropic 

materials(CFRP laminates). The force and moment acting on the section are obtained by 

integrating on the section as described in the current section. The section is then reduced 

to a point on the fiber element, which can be treated as a frame beam element in the 

analysis of complete structure. Timoshenko Beam theory is used to consider shear 

deformation which is assumed to be constant in this research, which can also be 

improved at later stage. The geometrical nonlinear can also be taken into consideration. 

The Gauss point values are considered in femix for integration of the fibrous element 

properties. The gauss point refers to the representing point of function for gauss 

numerical integral. When the element stiffness matrix is formed, the gauss point values 

with gauss parameters are used instead of the complicated integrating computation. The 

element internal forces at gauss points can be calculated easily too after global equations 

are solved. 

 

3.2. Non-linear analysis of Timoshenko frame element  

The finite element equilibrium equations derived for static analysis was 

KU R=  (220)

The equation correspond to the linear analysis of a structural problem because the 

displacement (U) is a linear function of the applied load vector (R); i.e., if the loads are 

aR instead of R, where a is a constant, the corresponding displacements are aU. When 

this is not the case a nonlinear analysis is performed.  

Below a computationally efficient method of analysis of reinforced concrete 

beams and columns is presented. According to this method any element is divided in 
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longitudinal fibers (steel and concrete fibers), and the relation for section force-

deformation is derived from stress strain relation of the fibers. The fibers are considered 

to follow the Timoshenko beam theory presented before. Using fiber, the deformation at 

their specific locations is calculated and integrated over whole section for the derivation 

of stiffness matrix. The use of a longitudinal fiber model for the simulation of the non-

linear behavior of structures has some advantages. The solution of the system of 

equations of for non-linear analysis was generated by the application of Newton-Raphson, 

described later. The algorithm of the implementation of the fibrous model is also 

described later. 

 

3.3 Stiffness Matrix  

The element (e) section is discretized in finite elements (fibers) which follow 

Timoshenko beam theory, the stiffness matrix for Timoshenko frame element is already 

derived in section 2.6. The stiffness matrix of every element ( )eK , is the sum of the 

stiffness of the fibers (the concrete fibers and steel fibers) of the element. As the stiffness 

of the element is depending on the stiffness of fibers, the fibers performance depends on 

the type (steel and concrete) of fiber and the position of fiber w.r.t. neutral axis of 

element. The stiffness matrixes for steel and concrete fibers are tangent matrix derived 

from the corresponding non-linear constitutive laws. Moreover the strain in each fiber 

will be different, so the contribution of stiffness to the element stiffness matrix will also 

vary. The figure 23 and 24 represents the discretization of frame element in fibrous form. 
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Fig 23 Discretization of an element into longitudinal fibers. 

 

The relation for the incremental stress and incremental strain considered was  

TDσ ε∆ = ∆  (221)

Here TD  corresponds to the constitutive tangent stiffness matrix. 

The calculation of the stiffness matrix can be summarized in the following steps – 

• Evaluation of the generalized displacements (U), at the integration points (Gauss 

points) for the 3D element, 

• Calculation of the deformations (ε ) at each Gauss points of  the finite elements 

(cells) of the discretized section, 

• Calculation of the tangent stiffness matrix ( TD ) at the level of each Gauss point 

of the section, using the constitutive relations of the material of fiber, 

• Calculation of the stiffness matrix for the element (e) (it is sum of the stiffness 

matrix of all the concrete fibers and steel fibers). 
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Fig 24 Discretization of an element and fiber behavior. 

 

 

At the level of each 3D element 

 

 

 

 

At the level of each section 
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3.3.1 Contribution of the stiffness from the concrete  

In the linear analysis the effect of the axial force on the bending moment was neglected 

and similarly the effect of the shear force on the torsion was also neglected, which can 

also be seen from the equation derived in the linear analysis of Timoshenko frame 

element. The equations were derived by the use of virtual work principle for the stiffness 
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matrix for axial, shear, bending and torsion, but the contribution or the effect of any 

component on the other was neglected. 

For the nonlinear analysis the axial force is considered to have effect on the 

bending moment and similarly the shear force to have on torsion as shown below  

( )

( ) lg lgˆ
e

Te T
ab a a ab b b

L

K T B D B T dL⎡ ⎤= ⎣ ⎦∫ , 
(222)

( )

( ) lg lgˆ
e

Te T
ba b b ba a a

L

K T B D B T dL⎡ ⎤= ⎣ ⎦∫ , 
(223)

( )

( ) lg lgˆ
e

Te T
st s s st t t

L

K T B D B T dL⎡ ⎤= ⎣ ⎦∫ , 
(224)

( )

( ) lg lgˆ
e

Te T
ts t t ts s s

L

K T B D B T dL⎡ ⎤= ⎣ ⎦∫ . 
(225)

The subscripts used above represent  

a = parameters related to axial, 

b = parameters related to bending, 

t = parameters related to torsion and 

s = parameters related to shear. 

By applying the numerical integration method of Gauss-Legendre, the 

submatrices of stiffness can be found as shown below – 

Sub-matrix associated to the axial deformation – 

( )1

1

lg lg

1

ˆ
ab

s

p

N Tc T c
a aa a a a p

p s

K T B D B T J W
=

⎡ ⎤= ⎣ ⎦∑  
(226)

sec

, ,
1

ˆ
tNG

c c
a ab i GP i

i
D D A

=

= ∑  
(227)

Where superscript c stands for parameters related to concrete, sectNG  represents 

the number of Gauss points in the finite element, GPA   the area corresponding to the 

Gauss point and the longitudinal tangential elasticity at the level of ith Gauss point 

by ,
c
ab iD . 

Sub-matrix associated to the bending deformation  
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1

lg lg
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ˆ
ab

s

p

N Tc T c
b bb b b b p

p s

K T B D B T J W
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(229)

Where 2,
l

ix  and 3,
l

ix  are the local coordinates of the gauss point of the finite 

element w.r.t. the centroid of the section of the corresponding finite element.  

Sub-matrix associated to the axial-bending interrelation  

( )1

1

lg lg

1

ˆ
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s

p

N Tc T c
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p s
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Sub-matrix associated to the bending- axial interrelation  
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Sub-matrix associated to the shear deformation  
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Where ,
c
st iD  is the shear modulus of the concrete. 

Sub-matrix associated to the torsional deformation  
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N Tc T c
t tt t t t p
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=
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(236)
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Sub-matrix associated to the shear- torsion interrelation  
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Sub-matrix associated to the torsion-shear interrelation  
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1
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1
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The number of Gauss points of associated to the integration of the sub-matrices of axial, 

bending, axial-bending and bending-axial are same and equal to 
1

ab
sN . Similar is the case 

for the number of Gauss points associated to the integration of the sub-matrices of shear, 

torsion, shear-torsion and torsion-shear which is equal to 
1

st
sN . 

3.3.2 Contribution of the stiffness from the steel   

The sub-matrices for the steel are derived below, which are similar to the concrete sub-

matrices. The point to be noted is that the number of Gauss point used for calculation of 

stiffness matrix ( cK ) of concrete should be used for calculation of stiffness matrix ( sK ) 

steel also. 

By knowing the location and the number of the steel fibers, and using the Gauss-

Legendre integration technique the sub-matrices can be found in the following manner as 

described below – 

Sub-matrix associated to the axial deformation  
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, ,
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ˆ
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s s
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i

D D A
=

=∑  
(243)

Where NS is the number of steel fibers in the section,  ,s nA  is the area associated with nth 

steel fiber and ,
s

ab nD  is tangential modulus of elasticity for the nth steel fiber. 

Sub-matrix associated to the bending deformation 
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1
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ˆ
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Where 2,
l

nx  and 3,
l

nx  are the local coordinates of the steel fiber w.r.t. the centre of 

gravity in 2l  and 3l  direction. 

Sub-matrix associated to the axial-bending interrelation  
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Sub-matrix associated to the bending- axial interrelation  
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3.4 Internal forces  
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The nodal forces are equivalents to the stresses in the finite elements (fibers)  and have to 

be calculated from the constitutive stress strain relations. The procedure is identical to the 

calculation of the stiffness matrix. The internal forces in the element ( ( )

int

ef ) is the 

contribution from stresses of steel fibers 
int

sf  and stresses in the concrete fibers
int

cf . 

For the calculation of these internal forces in each element, the following procedure can 

be used effectively – 

• Evaluation of the generalized displacements (U), at the integration points (Gauss 

points) for the 3D element, 

• Calculation of the deformations (ε ) at each Gauss points of  the finite elements 

(cells) of the discretized section, 

• Calculation of the stresses (σ ) at the level of each Gauss point of the finite 

element of section, using the constitutive relations of the material for fiber, 

• Integration throughout the section will result in the resultant forces ( F ) acting on 

the section, 

• Calculation of the internal forces ( ( )

int

ef ) of each 3D element( from  stresses of 

steel fibers 
int

sf  and stresses in the concrete fibers
int

cf ).  

At the level of each 3D element 

 

 

 

 

At the level of each section 

( )

int

efU

Fε σ

⇓ ⇑

⇒ ⇒
 

Systemic way for getting the internal forces 

3.4.1 Contribution of the Internal forces from the concrete  

The contribution of nodal forces from concrete can be calculated by the Gauss-Legendre 

integration technique by integrating over whole section. The general expressions used are 

described below – 
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• Nodal forces corresponding to axial deformation of the finite elements, 

equivalent to the tension in the element  

( )
1

1

lg

int,
1

ab
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p

N
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p s

f T B N J W
=

= ∑  
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sec
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= ∑  
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Where ,
c
ab iσ  is the normal stress in the concrete at the ith Gauss point of the section. 

• Nodal forces corresponding to bending deformation of the finite elements, 

equivalent to bending stresses in the element   

( )
1
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• Nodal forces corresponding to shear deformation of the finite elements, 

equivalent to shear stresses in the element 

( )
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N
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Where 12,
c

iτ  and 13,
c

iτ   are the tangential stress in the concrete at the ith Gauss point of the 

section in the direction of  2l  and 3l  respectively. 

•  Nodal forces corresponding to torsional deformation of the finite elements, 

equivalent to the torsional stresses in the element   

( )
1

1

lg

int,
1

ab
s

p

N
c T

t t c pt
p s

f T B T J W
=

= ∑  
(256)

sec
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= − +∑  
(257)

3.4.2 Contribution of the Internal forces from the Steel  
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The contribution of nodal forces from steel fibers 
int

sf  to element ( ( )

int

ef ) can be 

calculated as described below – 

• Nodal forces corresponding to axial deformation of the steel fibers, equivalent 

to the normal stress in the steel fiber –  

( )
1

1

lg

int,
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ab
s

p

N
s T

a a s pa
p s

f T B N J W
=

= ∑  
(258)
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Where ,
s
ab nσ  is the normal stress in the nth steel fiber. 

• Nodal forces corresponding to bending deformation of the steel fibers, 

equivalent to bending stresses in the element   
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int,
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s
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p s
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3.5 Nonlinear Analysis Algorithm – Newton Raphson Method 

The response calculation is carried out using a step-by-step increment of load till it 

reaches the maximum load. The widely used iteration methods in finite element method 

are based on the classical Newton-Raphson technique.  In the present work the method of 

Newton-Raphson incremental-iterative method is used. 

 In the non-linear solution algorithm a set of linear matrix relations are iterated till 

convergence is reached. Theoretically it reaches when the applied loads are perfectly 

balanced by the internal resisting forces of the elements. Numerically, however, such 

perfect situation is impossible or computationally very expensive to attain. Hence  in such 

algorithm, it is considered that the convergence is reached when some control parameters, 

such as unbalanced forces, are smaller than a specified threshold or tolerance. The 

convergence criteria can be based on the displacement, force or energy. 
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The decisive factor used here in computational code is of convergence in terms of forces. 

It is considered that for a kth load increment and ith iteration, the norm of the residual 

force i.e., the difference between the external forces and the internal forces of this 

iteration, and norm taken to the exterior forces of this increment; should be lesser than the 

specified tolerance t. 

, int,

ii
k ext k k

r f f= −  (262)

, int,

,

i

ext k k

ext k

f f
t

f

−
<  

(263)

 

3.6 Algorithm 

Increment of load steps (k= 1 to m) 

• If m is the total no of increment in load steps and 
,ext k

f  represents kth increment 

of external load value, with 0
kr  and 0

ku  representing the initial residual and 

initial displacement. Applying the Newton-Raphson equation of iteration   

, , 1 ,ext k ext k ext k
f f f

−
= + ∆ , (264)

0

, 1

final
k ext k k

r f f
−

=∆ +  (265)

0
1

final
k ku u −=  (266)

But for the first iteration when k=1 

,
0

ext k
f = ; 0 0kr =  and 0 0ku =  

Increment of iterative cycles ( i = 1 to n) 

• Calculate the stiffness matrix ,
i
T kK  with the deformation 1

k

iu −  , acquired of the 

previous iteration 

• Solve the system of equation 
1

,
i i i
k T k kr K u− = ∆  

Where 1i
kr −  is the residual of the (i-1)th   iteration and kth load increment step. 

• Update the nodal displacement 
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1i i i
k k ku u u−= +∆  

• Calculate the internal nodal force 
int,

i

k
f  based on the deformations i

ku   

• Calculate the force residual i
kr  

, int,

ii
k ext k k

r f f= −  

• Verify the criteria for the convergence  

, int,

, ,

i i
kext k k

ext k ext k

f f r
t

f f

−
= <  

• If the convergence condition is satisfied then the iteration cycle finishes: with  
final i
k ku u= , 

final i
k kr r=  

and new load increment is done with all the steps described above is followed, if 

convergence criteria is not met then procedure follows from increment of iterative 

cycles. 
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4. APPRAISAL OF MODEL PERFORMANCE  

To simulate numerically the tested RC columns, the values included in tables (at the ned 

of this section) were adopted for the parameters defining the concrete and steel 

constitutive models. These values were obtained from the data registered in the tests 

carried out with concrete and steel specimens. A columns was discretized in five 

elements of three nodes, and two Gauss integration points per element were considered 

on the evaluation of the stiffness matrix and internal forces. A cross section was 

discretized in sixteen quadrilateral 4 nodes elements, for the concrete, elements of equal 

dimensions, with 2×2 Gauss integration points, and four elements to simulate the 

longitudinal bars. According to the developed approach, at the cross section level any 

fibre is discretized by a quadrilateral finite element. Due to the rectangular geometry of 

the simulated RC columns, a four nodded finite elements were used, with an integration 

scheme of 2×2 Gauss integration points. The cross-section was discretized in sixteen 

elements the concrete and four elements for the longitudinal steel bars. In case of NSM 

strengthened RC columns, six additional elements were considered to simulate the CFRP 

laminates. Following the results obtained in the carried out experimental tests, a linear 

stress-strain relationship was assumed for the laminates. The values for the parameters 

that define this relationship were those determined from these tests. 

Fig. 24 compares the experimental and numerical envelope curves for tested columns, 

from which it can be concluded that the developed numerical model captures the 

mandatory phenomena involved in RC columns submitted to cyclic loading.  



79 

The capability of the concrete and steel cyclic models, implemented into FEMIX 

computer program, to simulate the energy dissipated by these materials in the loading 

cycles can be assessed from the analyses of Fig. 23, which includes the horizontal force-

deflection relationship for the columns with 12 mm steel bar diameter. In spite of 

predicting, with high accuracy, the envelope response, the used cyclic material models 

estimate for the materials the possibility of dissipating energy larger than that observed in 

the experimental tests. This is due to the fact that the steel cyclic constitutive model, in 

the present version, does not contemplate the inelastic buckling phenomenon. 

As expected, the laminates had marginal contribution in terms of enhancing the energy 

absorption capacity for RC columns, since this type of reinforcements can only increase 

the flexural resistance of the column. The results are shown in figure below- 
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Fig. 25 Numerical and experimental results on columns 3 and 4 
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Fig. 26 Numerical and experimental results on columns 3 and 4 

Data used in the numerical analysis to simulate the behaviour of the steel bars. 

Column Es 
(N/mm2) 

σsy 
(N/mm2)

εsh σsh 
(N/mm2)

εsu σsu 
(N/mm2) 

Esh 
(N/mm2) 

Column 
1 and 2 

216900 328.0 7.5e-3 344.0 30.0e-3 457.0 6400.0 

Column 
3 and 4 

229700 373.0 3.5e-3 384.0 30.0e-3 519.0 6400.0 

Data used in the numerical analysis to simulate the behaviour of the concrete. 

Column 
ccf  

(N/mm2) 
ccε  crx−  

Ec
(1) 

(N/mm2) ctε  crx+  
fct

(2) 

(N/mm2)

Column 1 13.21 2.50e-3 2 20052 1.20e-4 2 1.20 

Column 2 14.79 2.50e-3 2 20821 1.40e-4 2 1.36 

Column 3 19.95 2.50e-3 2 23000 2.50e-4 2 1.57 

Column 4 17.93 2.50e-3 2 22001 1.89e-4 2 1.42 

(1) Uniaxial tensile strength, according to CEB-FIP Model Code (1993)  
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5. CONCLUCIONS 

The numerical model can simulate degradation based on the material constitutive laws 

implemented. The hysteretic behavior of steel is considered vital, as it influences the 

degrading characteristic of a reinforced concrete. The constitutive laws of steel 

implemented can simulate the hysteretic behavior of all types of steel. The monotonic 

behavior of concrete in tension and compression is most efficiently predicted by Tsai, 

which can describe confined and unconfined behavior rationally The concrete hysteretic 

behavior can be predicted quite reasonably, for all possible cyclic loading. 

This model takes into account the compression non-linear behavior of unconfined and 

confined concrete, the tensile softening of cracked plain concrete, the tensile stiffening of 

cracked concrete under the influence of conventional bars and CFRP laminates, the linear 

shear behavior of concrete, the non-linear behavior of the steel bars and the linear-elastic 

behavior of CFRP laminates. The behavior of the epoxy mortar, used for repairing the 

column non-linear hinged region, was simulated by constitutive laws defined from the 

experimental tests carried out. In the model perfect bond between CFRP laminates and 

concrete was used, in accordance to the observed test results. This model has reproduced, 

with good agreement, the behavior registered on the experiments, being a useful tool for 

analyzing this type of structures. 
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Performance assessment of an innovative structural FRP strengthening technique using 
an integrated system based on optical fiber sensors” supported by FCT, 
POCTI/ECM/59033/2004. The first author acknowledges the support provided by the 
grant in the ambit of this research project. 



84 

 

7. REFERENCE 

• Bathe, Klaus-Jurgen (1996). “Finite Element Procedures.” Prentice Hall, Inc., 

USA 

• CEB-FIP Model Code 1990 (1993). Comite Euro-International du Beton, Bulletin 

d’Information nº 213/214, Ed. Thomas Telford. 

• Chang, G. A. and Mander, J.B. (1994). “Seismic energy based fatigue damage 

analysis of bridge columns: Part I-Evaluation of seismic capacity”, Tech. Report 

NCEER-94-0006. 

• Fillipou, F. C.(1985), “A simple model for reinforcing bar anchorages under 

cyclic excitations” Earthquake Engineering Research Center, University of 

California, Berkeley. Gouveia, A. V. (2000). “Análise Experimental e Simulação 

Numérica de Elementos de Barra de Pórtico Tridimensional de Betão Armado.” 

MSc Thesis, Civil Eng. Dep., University of Minho, Portugal (in Portuguese). 

• Guedes, J.P.S.C.M. (1997) “Seismic behaviour of reinforced concrete bridges. 

Modelling, numerical analysis and experimental assessment”, PhD Thesis, Joint 

Research Centre – ISPRA, Italy. 

• Menegotto, M. and Pinto, P. E. (1973). ‘‘Method of analysis for cyclically loaded 

reinforced concrete plane frames including changes in geometry and non-elastic 

behavior of elements under combined normal force and bending.’’ IABSE  Symp. 

on Resistance and Ultimate Deformability of Struct. Acted on by Well-Defined 

Repeated Loads, Final Report, Lisbon. 

• Reddy J.N. “An Introduction to Finite Element Method.” McGraw-Hill, Inc., 

Singapore. 

• Sheshu P. “Textbook of Finite Element Analysis.” Prentice Hall of India, Private 

Limited, New Delhi. 

• Taucer, F. F., Spacone, E and Filippou, F. C. (1991) “A fiber beam-column 

element for seismic response analysis of reinforced concrete structures” 

Earthquake Engineering Research Center, University of California, Berkeley. 



85 

• Timoshenko, S.P., and Gere, James M. “Mechanics of materials. Third edition.” 

PWS-KENT Publishing Company Boston. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


