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1. INTRODUCTION 

 
 
The concrete precasting industry is frequently confronted with the production of structural reinforced 

concrete elements of some geometric complexity. These geometric conditions introduce difficulties on the 

placement of reinforcement, resulting in a large consuming time phase of the industrial process. 

Moreover, when high percentage of reinforcement is used, there are difficulties on assuring the desired 

concrete pouring quality, resulting in deficiencies that can compromise the mechanical behavior and the 

visual appearance of the final structure. 

 

Self-compacting concrete (SCC) can be defined as concrete that is able to flow in the interior of the 

formwork, passing through the reinforcement and filling it in a natural manner, being consolidated under 

the action of its own weight. Adding the benefits of SCC to those resulting from the addition of discrete 

fibers to cement based materials, a high performance material, designated by steel fiber reinforced self-

compacting concrete (SFRSCC), is obtained. 

 

The present work is part of a research program for the development of lightweight sandwich SFRSCC 

panels for building façade applications, to be produced by the pre-casting industry. The requirements 

established for this SFRSCC were the following: average compression strength at 24 hours greater than 

20 MPa; equivalent flexural tensile strength greater than 2 MPa at this age; content of cement not 

exceeding 400 Kg/m3; the cement should be the most expensive component of the binder paste. The 

strategy followed to design this SFRSCC is briefly described in the present report. 

 

In the precasting industry, the ability to demold the elements as soon as possible is an important 

requirement. To assure safe demolding process, the influence of the concrete age on the flexural and 

compression behavior of the SFRSCC should be known. For this purpose, an experimental program was 

carried out with specimens of 12 hours, 24 hours, 3, 7 and 28 days. Special care was taken to evaluate the 

post-cracking behavior of the SFRSCC, since the fracture mode I crack constitutive law was derived from 

the results obtained in these flexural tests, and used in a discrete crack model implemented into a 

computational code based on the finite element method (FEM) that is able of simulating the nonlinear 

behavior of concrete structures. The experimental program is described and the results are presented and 

analyzed. 

When installed in building façades, the panel’s flexural strength is the principal design property since 

significant bending moments result from wind loading, which has the greatest impact on the most 

unfavorable load combination. Representative elements of the SFRSCC panel system were tested to 
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assess its flexural behavior. Since the SFRSCC layer at the lightweight parts of the panel is only 30 mm 

thick, its resistance to punching was also determined, based on experimental tests. 

The research program ended with the fabrication of a real size panel in industrial environment. This panel 

was loaded up to failure in order to evaluate its load carrying capacity. 
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2. SELF COMPACTING CONCRETE TECHNOLOGY 

 

2.1. Definition of Self Compacting Concrete 

 
Self-compacting concrete (SCC) can be defined as concrete that is able to flow in the interior of the 

formwork, passing through the reinforcement and filling it in a natural manner, being consolidated under 

the action of its own weight. Besides the requirement of being consolidated without the use of any 

vibration equipment, segregation should not occur during the application of SCC. 

 

The first steps in the self compacting technology of concrete were given in Tóquio University, Japan, in 

1986. The first application of SCC in a prototype was made in 1988 (Okamura e Ouchi, 1999). Since 

then, a great effort has been done in the improvement of the SCC technology and in the characterization 

of its properties by experimental research. 

 

2.2. Properties of SCC 

 
To assure self-compacting requirements to a concrete, the mixture should have the right values 

for its fluidity, viscosity and cohesion, in order to assure that the mixture flows homogeneously 

without the occurrence of segregation. This type of exigencies is not required for conventional 

concretes. In consequence, specific tests should be carried out to check self-compacting 

requirements. 

 

The high fluidity of SCC gives it the capacity of flowing within the formwork, filling it only under its 

own weight. SCC has also the capacity to evolve the spaces between any obstacles. Segregation of the 

SCC components can be avoided controlling the viscosity and the cohesion of the mixture. 

 

The microstructure and the “inert-binder paste” interface of SCC are more compact than the ones of 

conventional concrete of same water/binder ratio. In consequence, if compared to conventional concrete, 

SCC has high resistance to clorets and gases penetration and has also higher adherence to the 

reinforcement. However, in general, SCC has higher content of cement than conventional concrete, which 

requires extra cautions during its curing procedure to avoid crack formation, mainly in elements that have 

some restrictions to its deformation. 
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2.3. Properties of Steel Fiber Reinforced Self Compacting Concrete 

 
The use of discrete steel fibers as a reinforcement system for cement based materials is a current practice 

for several applications. The resulting material is designated Steel Fiber Reinforced Concrete (SFRC). 

The post cracking residual stress is much higher in SFRC than in plain concrete (PC), due to fiber 

reinforcement mechanisms provided by fibers bridging the cracks. In consequence, SFRC allows high 

level of stress redistribution, providing a significant deformability capacity of a structure between crack 

initiation and its failure, which increases the structural safety. This is especially relevant in structures of a 

redundant number of supports. The level of the post cracking residual stress depends of several factors, 

namely: fiber geometric characteristics, fiber material properties, concrete properties, method of SFRC 

application. 

 

The benefits provided by concrete fiber addition are also visible in structures submitted to cyclic and 

fatigue loads, since this material can be engineered to have very high energy absorption capacity. When 

well conceived, fiber reinforcement can replace totally or partially conventional steel reinforcement for 

the flexural and shear resistance of concrete elements. The percentage of this replacement depends on the 

type of element, and support and loading conditions. 

 

Adding the benefits that fiber reinforcement can provide to those resulting from the characteristics of self-

compacting, a high performance material can be obtained, designated Steel Fiber Reinforced Self-

Compacting Concrete (SFRSCC). 

 

 

2.4. Phases of SCC development 

 
SCC can be seen as a material constituted of a solid and a fluid phase. 

 
The solid phase is composed by the solid skeleton of the mixture, being constituted by the aggregates of 

an equivalent diameter larger than 150 µm. The research involving the solid skeleton should have the 

purpose of obtaining the highest compact skeleton. 

 

The fluid phase (binder paste) has the main function of transporting the concrete constituent particles in a 

stable and cohesive way. This phase is composed by water, adjuvants and a solid part of particles of an 

equivalent diameter smaller than 150 µm. This phase is the most complex of the mixture, due to the 

diversity and the nature of its components. 
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Superplasticizers have the function of dispersing the particles and avoid flocculation.  

 

These flakes appeared in the sequence of the aggregation of particles in suspension, resulting greater 

spaces between particles and a reduction on the paste fluidity. To fulfill the space in-between particles the 

content of the water should increase. 

 

2.5. Tests to assess Self Compacting requisites 

 
The most common tests to assess the self compacting requirements are the following: V-Funnel, L-Box 

and Slump Flow. Some of them can also be associated: Slump Flow with J-Ring or J-Ring with U-Box. 

These tests, providing values in length and time unities, can decide about considering, or not, a concrete 

as a SCC. They are easy of executing and do not require to build sophisticate and expensive apparatus. 

The values provided by these tests have empirical basis. 

 

2.5.1. Slump Flow 

 
The slump flow test is used to assess the horizontal free flow of SCC in the absence of 

obstructions. It was first developed in Japan for use in assessment of underwater concrete.  The 

test method is based on the Abrams Cone test, which is the most used to assess the workability and 

fluidity of fresh concrete. It can also detect, by visualization, the occurrence of segregation. The 

diameter of the concrete circle is a measure for the filling ability of the concrete.  

 

The characteristics of the instruments are specified in EN 12350-2 and ISO 4109 standards. The inferior 

and superior bases of the Abrams Cone has 200 mm and 100 mm diameter, respectively, while its height 

has 300 mm height. In a steel base plate, two concentric circumferences are marked, one with 200 mm of 

diameter and the other with 500 mm of diameter (see Figures 2.1 and 2.2). 
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Figure 2.1: Abrams Cone 

 

Figure 2.2: Base to perform the test 

 

 

The higher the slump flow (df) value, the greater its ability to fill formwork under its own weight. A 

value of at least 650mm is required for SCC. There is no generally accepted advice on what are 

reasonable tolerances about a specified value, though ± 50mm, as with the related flowtable test, might 

be appropriate.  

The T50 time is a secondary indication of flow. A lower time indicates greater flowability. The Brite 

EuRam research suggested that a time of 3-7 seconds is acceptable for civil engineering applications, 

and 2-5 seconds for housing applications.  

 

 

 

Figure 2.3: Measuring the final diameter of SFRSCC 
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In case of severe segregation most coarse aggregate will remain in the centre of the pool of concrete and 

mortar and cement paste at the concrete periphery.  In case of minor segregation a border of mortar 

without coarse aggregate can occur at the edge of the pool of concrete. If none of these phenomena appear 

it is no assurance that segregation will not occur since this is a time related aspect that can occur after a 

longer period.  

 
 
Abrams Cone with J-Ring  
 
To assess the fluidity of SCC, when it should be passed through steel bars in RC elements, a 

combination of Abrams Cone and J-Ring is used, placing the Abrams Cone inside the J-Ring (see 

Figures 2.4 and 2.5). The principle of the J-Ring test may be Japanese, but no references are known. 

The J-Ring test itself has been developed at the University of Paisley. The test is used to determine the 

passing ability of the concrete. The equipment consists of a rectangular section (30mm x 25mm) open 

steel ring, drilled vertically with holes to accept threaded sections of reinforcement bar. These sections 

of bar can be of different diameters and spaced at different intervals: in accordance with normal 

reinforcement considerations, 3x the maximum aggregate size might be appropriate. The diameter of 

the ring of vertical bars is 300mm, and the height 100 mm.  

 

 

Figure 2.4: J-Ring 

 

Figure 2.5: Combination of J-Ring with Abrams 
Cone 

 

2.5.2. L-Box 

 
This test, based on a Japanese design for underwater concrete (Petersson et al., 1996; Bartos and Grauers, 

1999). The test assesses the flow of the concrete, and also the extent to which it is subject to blocking by 
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reinforcement. The apparatus is shown in Figure 2.6. The apparatus consists of a rectangular-section box 

in the shape of an ‘L’, with a vertical and horizontal section, separated by a moveable gate, in front of 

which vertical lengths of reinforcement bar are fitted. The vertical section is filled with concrete, then the 

gate lifted to let the concrete flow into the horizontal section.  

 

 

  

Figure 2.6: L-Box 

 

 

When the flow has stopped, the height of the concrete at the end of the horizontal section is expressed as a 

proportion of that remaining in the vertical section H2/H1 (see Figures 2.7, 2.8 and 2.9). It indicates the 

slope of the concrete when at rest. This is an indication passing ability, or the degree to which the passage 

of concrete through the bars is restricted. The horizontal section of the box can be marked at 200mm and 

400mm from the gate and the times taken to reach these points measured. These are known as the T20 

and T40 times and are an indication for the filling ability. The sections of bar can be of different 

diameters and spaced at different intervals: in accordance with normal reinforcement considerations, 3x 

the maximum aggregate size might be appropriate.  The bars can principally be set at any spacing to 

impose a more or less severe test of the passing ability of the concrete.  

 

 



PABERFIA – Lightweight Sandwich Panels in Steel Fibre Reinforced Self Compacting Concrete 

PRÉGAIA, S.A. / CiviTEST, Lda. / University of Minho 9-56 
 

 

Figure 2.7: End of test Figure 2.8: Measuring h2 Figure 2.9: Measuring h1 

 

 
 
If the concrete flows as freely as water, at rest it will be horizontal, so H2/H1 = 1. Therefore the nearer 

this test value, the ‘blocking ratio’ (Cbl), is to unity, the better the flow of the concrete.  The EU research 

team suggested a minimum acceptable value of 0.8. T20 and T40 times can give some indication of ease 

of flow, but no suitable values have been generally agreed. Obvious blocking of coarse aggregate behind 

the reinforcing bars can be detected visually as well as the occurrence of segregation can also be 

visualized in qualitative manner. 

2.5.3. U-Box 

 
The test was developed by the Technology Research Centre of the Taisei Corporation in Japan (Rooney, 

M., Bartos, P.M.J, 2001). Sometimes the apparatus is called a “box-shaped” test.  The test is used to 

measure the filling ability of self-compacting concrete.  The apparatus consists of a vessel that is divided 

by a middle wall into two compartments (see Figure 2.10). An opening with a sliding gate is fitted 

between the two sections. Reinforcing bars with nominal diameters of 13 mm are installed at the gate 

with centre-to-centre spacing of 50 mm. This creates a clear spacing of 35 mm between the bars. The left 

hand section is filled with about 20 litre of concrete then the gate lifted and concrete flows upwards into 

the other section. The height of the concrete in both sections is measured.  
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Figure 2.10: U-Box 

 
 
If the concrete flows as freely as water, at rest it will be horizontal, so H1-H2 = 0. Therefore the nearer 

this test value, the ‘filling height’, is to zero, the better the flow and passing ability of the concrete.   

 

2.5.4. V-Funnel 

 
The test was developed in Japan and used by Ozawa et al in the University of Tokyo(Gomes, 2002). The 

equipment consists of a V-shaped funnel, shown in Figure 2.11. An alternative type of V-funnel, the O 

funnel, with a circular section is also used in Japan. The described V-funnel test is used to determine the 

filling ability (flowability) of the concrete with a maximum aggregate size of 20mm. The funnel is filled 

with about 12 litre of concrete and the time taken for it to flow through the apparatus measured. After this 

the funnel can be refilled concrete and left for 5 minutes to settle.  If the concrete shows segregation then 

the flow time will increase significantly.  

 

 

Gate 

SCC After opening the gate

Gate 

Filling 
Height 

(h) 
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Figure 2.11: V-Funnel 

 

This test measures the ease of flow of the concrete; shorter flow times indicate greater flowability. For 

SCC a flow time of 10 seconds is considered appropriate. The inverted cone shape restricts flow, and 

prolonged flow times may give some indication of the susceptibility of the mix to blocking. After 5 

minutes of settling, segregation of concrete will show a less continuous flow with an increase in flow 

time.  
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3. EXPERIMENTAL PROGRAMS 

 

3.1. Experimental Program I – SFRSCC_30  

 

3.1.1. Conception method 

 
The used materials were cement (C) CEM I 42.5R, limestone filler (LF), superplasticizer (SP) of third 

generation based on polycarboxilates (Glenium® 77SCC), water (W), three types of aggregates (fine river 

sand, coarse river sand and crushed granite 5-12 mm) and DRAMIX® RC-80/60-BN hooked end steel 

fibers. This fiber has a length (lf) of 60 mm, a diameter (df) of 0.75 mm, an aspect ratio (lf/df) of 80 and a 

yield stress of 1100 MPa. The method developed in the present work is based on the three following 

steps: i) the proportions of the constituent materials of the binder paste are defined; ii) the proportions of 

each aggregate on the final solid skeleton are determined; iii) binder paste and solid skeleton are mixed in 

different proportions until self-compacting requirements in terms of spread ability, correct flow velocity, 

filling ability, blockage and segregation resistance are assured. 

 

In the first step, a series of tests were performed to achieve the optimum composition of the binder paste. 

To define the optimum percentage of LF addition in the final composition, several mixes of LF, cement 

and water were prepared. The proportions of each component were defined in terms of volume, the water 

content was 66% of cement volume, and the percentage of LF has varied between 0% and 125% of the 

cement volume. To promote the dispersion and deflocculation of the fine particles in suspension, a small 

constant quantity of superplasticizer was also added to each mix. The relative spread in the "Flow table" 

and the “Marsh cone” flow time of each mix were measured. Concluding the paste phase design, the 

compression strength of each mix was also evaluated on 5 cm edge cubic specimens at an age of 7 days. 

A percentage of 100% of LF relative to the cement volume has resulted in a good compromise between 

strength and flowability requirements, and has also allowed maintaining the amount of cement on the 

final concrete mix only slightly above 350 kg/m3. 

 

In the second step, the most appropriate proportions of the three types of aggregates were obtained 

preparing mixes of distinct quantities of each type of aggregate, and weighting 5 dm3 volume for each 

mix. The optimum aggregate mix was assumed to be the heaviest one, since it should correspond to the 

most compact. An estimated portion of fibers equivalent to 30 Kg of fibers per m3 of concrete was 

included in each mixture. Initially, only two of the three types of aggregates were mixed. After finding 

the optimum relation between these two, the third aggregate was added in distinct volumetric percentages, 
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keeping constant the relation between the two first aggregates. These results indicated that the optimum 

solid skeleton was composed, in volume, by 49.5% of coarse sand, 40.5% of crushed stone and 10% of 

fine sand. 

 

The third phase is dedicated to the evaluation of the paste content in the concrete volume. The optimum 

composition should accomplish an upper limit of around 350 kg of cement per m3 of concrete. To achieve 

the optimum paste content, some mixes of concrete were prepared, varying the paste percentage. For each 

mix, the added water was evaluated taking into account the aggregate’s saturation degree. The mix 

process was always the same, and for each mix the slump flow test was performed. Total spread, df, and 

time to reach a spread diameter of 500 mm, T50, were measured. Table 1 includes the composition that has 

best fitted self-compacting requirements (the amount of water referred includes the aggregate’s saturation 

water). No sign of segregation was detected, a total spread of 725 mm was measured and the mixture 

showed good homogeneity and cohesion, even when flowing trough the small orifice of the Abrams cone 

(when testing, Abrams cone was always used in the inverted position). A T50 of 4.6 seconds was 

measured. 

 
 

Table 3.1: Final Composition for 1 m3 of SFRSCC 30 kg of fibers 
Paste/Total volume 

(%) 
Cement 

(kg) 
LF 

(kg) 
Water 
(dm3) 

SP 
(dm3) 

Fine sand
(kg) 

Coarse sand 
(kg) 

Crushed aggregates 
(kg) 

0.34 364.28 312.24 139.12 6.94 108.59 723.96 669.28 

 
 

3.1.2. Mechanical Properties of SFRSCC  

3.1.2.1. Compression 

 
The experimental program was composed by uniaxial compression tests with cylinders of 150 mm 

diameter and 300 mm height, and flexural tests with prismatic 600×150×150 mm3 specimens. Both types 

of specimens were molded without any external compaction. To assess the influence of the age of 

SFRSCC on the compression and on the flexural behavior, series of tests with specimens of 12 and 24 

hours, and 3, 7 and 28 days were carried out. 

 

The Young Modulus (Ec) is determined according to the recommendations of the LNEC E397-1993 

standard, using the test setup represented in Figure 3.1. This test setup is composed by two rings at 

100mm from each other. In the superior ring three LVDTs (Linear Variation Displacement Transducer) 

are placed, making an angle of 120º between them. These LVDTs read the deformation of the concrete 
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specimen between the two rings. This proceeding avoids that the LVDTS register extraneous 

deformations. 

  

 
 

Figure 3.1 Test setup to evaluate the concrete Young’s Modulus, Ec 

 
 
To start the test, a stress of 0.5 to 1 MPa (σb) is applied, and the corresponding strain is measured (εb). 

The stress is than increased at a velocity of 0.5 ± 0.1 MPa/s until a stress level σa = fc / 3 is reached, where 

fc is the compressive strength, previously obtained in direct compression tests with concrete cylinder 

specimens. The stress σa is maintained during 90 seconds, and in the last 30 seconds of this period, the 

strains are recorded (εa1). After this period, the load is decreased at a stress ratio of 0.5 ± 0.1 MPa/s until a 

stress level σb. This stress level is maintained during a period of 90 seconds, and in the last 30 seconds of 

this period, the strains are recorded. The loading configuration of this test is composed of 10 cycles of this 

type, see Figure 3.2. 

 

 

 
Figure 3.2: Representation of load cycles to determine Ec  

t=90s t=90s t=90s

t=90s t=90s t=90s time (s)

f  (MPa)

1 
3 fc 

σ b 

LVDT 

Steel ring 
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The Young’s Modulus, Ecm, is the average of the Ec,n values obtained in each cyclic:  
 

, ,
,

, ,

a n b nn
c n

n a n b n

E
σ σσ

ε ε ε
−∆

= =
∆ −

 (1) 

 
where σa,n and σb,n are the average stress of the nth cyclic, and εa,n and εb,n are the corresponding strains. 

 
Compression tests were carried out in a servo-controlled equipment of 3000 kN maximum load carrying 

capacity. Each test was controlled by the internal displacement transducer of this equipment, at a 

displacement rate of 5 µm/s. Three displacement transducers were positioned at 120 degrees around the 

specimen to record the displacements between the load steel plates of the equipment, see Figure 3.3. This 

arrangement of the LVDTs avoids that extraneous deformations, such as the deformation of the reaction 

frame, are added to the values recorded by the LVDTs. 
 

Taking the values recorded in these transducers, the displacement at the specimen axis was determined 

for each scan reading, and the corresponding strain was obtained dividing this displacement by the 

measured specimen’s height. 

 

 

  

Figure 3.3: Configuration of compression test and position of the LVDTs 

 

 

The compression stress-strain relationship, c cσ ε− , for each testing age of SFRSCC is represented in 

Figure 3.4. Each curve is the average of three specimens. As it was expected, the decay of the post-peak 

residual compression strength has increased with the SFRSCC age, since the material becomes more 

brittle with the increase of the compressive strength. However, this decay is not as pronounced as it will 

be expected for plain concrete. 

Specimen 

Load Plate 
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Figure 3.5 checks if the c cσ ε−  expressions proposed by Model Code CEB-FIP 1993 to simulate the 

uniaxial compression behavior of plain concrete can be applicable to the developed SFRSCC. This figure 

shows that those expressions simulate with high accuracy the uniaxial compression behavior of the 

designed SFRSCC up to its peak stress, but in the softening phase (post-peak) they predict a stress decay 

higher than the one observed experimentally. 

 
 

0

10

20

30

40

50

60

70

0 2.5 5 7.5 10 12.5 15 17.5
Strain (‰)

St
re

ss
 (M

Pa
)

12 hours

24 hours

28 days

3 days

7 days

 
Figure 3.4: Stress-strain curves of SFRCSCC of different ages. 
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Figure 3.5: Evaluation of the applicability of CEB-FIP 1993 expressions to simulate the behavior of SFRSCC  

in uniaxial compression. 

 
Figures 3.6 and 3.7 show the influence of the age on the average compressive strength, fcm, and on the 

average initial Young’s Modulus, Ecm. From the analysis of these figures, the following observations can 

be pointed out: at 12 hours the pre-established minimum limit of 20 MPa for the compressive strength at 

24 hours had already been exceeded. At this age the fcm was about 25 MPa while the Ecm was around 
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24 GPa. These properties increased with the SFRSCC age, reaching fcm = 62 MPa and Ecm = 36 GPa at 28 

days. The evolution of the compressive strength with time indicates that, above 28 days the increase of fcm 

is marginal. This can be justified by the use of relatively high percentage of a material (limestone filler) 

without pozolanic activity in the binder paste composition. The evolution of the Young’s Modulus with 

the age indicates that above 28 days the increase of the Ecm is marginal. This can be justified by the low 

value of the water/cement ratio (approximately 0.28 in weight), since a high compact matrix has resulted. 

At 24 hours the fcm and the Ecm were about 61% and 79% of the corresponding values at 28 days. In the 

first hours, there was a more pronounced increase in Ecm than in fcm. 
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Figure 3.6: Variation of fcm with age. 
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Figure 3.7: Variation of Ecm with age. 
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3.1.2.2. Bending 

 

3.1.2.2.1 Concepts 
 

 

In the bending tests, the curing procedures, the position and dimensions of the notch sawn into the 

specimen, the load and specimen support conditions, the characteristics for both the equipment and 

measuring devices and the test procedures recommended by RILEM TC 162-TDF were adopted. The 

method for casting the beam specimens proposed by RILEM TC 162-TDF was adapted for SFRSCC 

since they were cast without any external compaction energy. 

 

RILEM TC 162-TDF recommends the use of 600 ×150×15 mm3 beams, with a notch of 2-3 mm thick and 

25±1 mm depth at the specimen middle surface. The test setup is represented in Figure 3.8. At the notch 

mouth a “clip gauge” can be applied to measure the crack opening. 

 

The LVDT is attached to a bar that is supported in two fixed points of the specimen. The bar may rotate 

in turn of one of these points and slide along the other one (Figure 3.8d). This arrangement for the support 

of the LVDT is designated by “Yoke system” (Gopalaratnam et al. 1991) and avoids extraneous 

deflections to be read by the LVDT. The reaction frame must have enough stiffness to avoid the 

occurrence of unstable tests (Hordijk 1991). 

 

 

 
a) 

 
b) 

 
c) 
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d) 

Figure 3.8: Bending Test Setup  

 

 

The quality of the controller equipment and the stiffness of the reaction structure used in this project, 

allow performing stable tests under displacement control. The load cell, with maximum load capacity of 

50 kN, has a linearity class of 0.03% of full scale. The LVDT presents a linearity class of 0.1% of full 

scale (5 mm) and a repeatability of 0.01% of full scale. 

 

The crack must start in the notch; otherwise the test must be rejected. The test is carried out at a deflection 

ratio of 0.2 mm/min. The test ends when a displacement of 3.1 mm is reached. 

 
Figure 3.9 represents a typical force-deflection (F-δ) relationship obtained in a bending test. Using these 

relationships, RILEM TC 162-TDF proposed the evaluation of the load at the limit of proportionality 

(FL), the equivalent (feq,2 and feq,3) and the residual (fR,1 and fR,4) flexural tensile strength parameters 

(Vandewalle et al. 2000, 2002). FL is the highest value of the load recorded up to a deflection of 0.05 mm. 
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Figure 3.9: Normal Load-Displacement relation in a bending test  

 

 

The parameters feq,2 and feq,3 are related to the material energy absorption capacity up to a deflection of δ2 

and δ3 (δ2 = δL + 0.65mm and δ3 = δL + 2.65mm, where δL is the deflection corresponding to FL) provided 

by fibre reinforcement mechanisms ( ,2
f

BZD and ,3
f

BZD ), as seen in Figure 3.9. The parcel of the energy due 

to matrix cracking ( b
BZD ) is not considered in the feq evaluation. The parameters fR,1 and fR,4 are the 

stresses for the forces FR,1 and FR,4, respectively, at deflection of δR,1 = 0.46 mm and δR,4 = 3.0 mm. 

Assuming a linear stress distribution in the cross section (see Figure 3.10), the equivalent (Vandewalle et 

al. 2000) and the residual (Vandewalle et al. 2002) flexural tensile strength parameters are obtained from 

the following expressions: 
 

,2 ,3
,2 ,32 2

3 3  ;   
2 0.50 2 2.50

f f
BZ BZ

eq eq
sp sp

D DL Lf f
bh bh

= =  [N/mm2] (2) 
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3 3  ;  
2 2

R R
R R
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F L F L
f f
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The tensile stress at the limit of proportionality, ffct,fl, is obtained from the following expression: 

 

2, 2
3

sp

L
ftfct h

L
b

Ff =  (4) 
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Figure 3.9: Assumed stress distribution in the beam cross section 

 

 

The parameters feq,2 and fR,1 are used on the design at serviceability limit states, while feq,3 and fR,4 are used 

on the design at ultimate limit states (Vandewalle et al. 2000). 

 

 

3.1.2.2.2 Results 
 
The force-deflection curves, F-δ, obtained in the tested series are depicted in Figure 3.11. Each curve is 

the average of the F-δ relationship recorded in three specimens. The influence of the SFRSCC age in the 

force corresponding to the limit of proportionality, FL, is graphically represented in Figure 3.12. As 

shown in this figure, FL increased with the SFRSCC age, but this increase became marginal after 7 days. 

Just after deflection at midspan value reach δL, a load decay occurred with an amplitude that increased 

with the SFRSCC age (see Figure 3.11), since a higher load should be sustained by the fibers bridging 

mechanism at the specimen’s fracture surface. This load decay was followed by a hardening phase up to a 

deflection level that has decreased with the SFRSCC age. Except for specimens of 28 days, the maximum 

load was larger than FL. Apart series of 12 hours, in the remaining series, the hardening phase was 

followed by a softening branch. The decrease of residual strength in the softening branch was much more 

significant in series of specimens with 28 days. The larger amplitude of load decay just after reaching δL 

in this series would have adversely affected the fiber-concrete bond properties and the fiber anchorage 

efficacy, leading to a decrease in the force necessary to pullout the fibers crossing the specimen fracture 

surface. As a result, the equivalent (feq) and the residual (fR) flexural tensile strength parameters have only 

decreased between 7 and 28 days, as seen in Figure 3.13. This decrease was more pronounced in the fR,4 

since this parameter is directly dependent on the shape of the force-deflection curve, and is evaluated for 

a deflection of 3.0 mm. As feq,2 and fR,1 had similar variation with the age, this means that, for low values 

of deflection (δ2 and δR,1), the energy and the force based concepts provide identical results. 
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Figure 3.11: Load-deflection curves for SFRSCC of different ages 
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Figure 3.12: Influence of the age in FL 
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Figure 3.10: Influence of the age in equivalent and residual flexural strength parameters. 
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3.1.3. Fracture parameters of SFRSCC 

Previous research has shown that the post-cracking behavior of SFRC materials can be simulated by the 

trilinear stress-crack opening diagram, σ-w, represented in Figure 3.14 (Vandewalle et al. 2002, Barros et 

al. 2005). To evaluate the influence of the SFRSCC age on the values of the fracture parameters of this 

material, an inverse analysis was carried out in order to obtain the dependence of σi and wi, that define the 

σ-w diagram, on the age of the SFRSCC. Knowing these dependencies, the influence of the SFRSCC age 

on its fracture energy can be directly derived. 
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Figure 3.14: Stress-crack opening diagram 

 

 

The inverse analysis was performed evaluating the σi and wi values that best fit the experimental F-δ 

curves with the minimum error of the parameter, 
 

exp expnum
FF Ferr A A Aδδ δ−− −= −  (5)

 
where exp

FA δ−  and num

FA δ−  are the areas below the experimental and the numerical F-δ curves, respectively. For 

this purpose, a computational code named FEMIX (Azevedo et al. 2003) was used, that has discrete and 

smeared crack models to simulate the crack initiation and crack propagation in cement based materials. 

Since the RILEM TC 162-TDF flexural test brings up a localized fracture problem, a discrete crack 

model, described in detail elsewhere, was used. Six-node 2D (see Figure 3.15) line interface finite 

elements were located in the specimen's symmetry axis to model the fracturing process. In the remaining 

parts of the specimen, eight-node Serendipity linear-elastic plane-stress elements were used. Gauss-

Lobatto integration scheme with three integration points (IP) was used for the 2D line interface finite 



PABERFIA – Lightweight Sandwich Panels in Steel Fibre Reinforced Self Compacting Concrete 

PRÉGAIA, S.A. / CiviTEST, Lda. / University of Minho 24-56 
 

elements, while Gauss-Legendre integration scheme with 2×2 IP was used for the eight-node elements. 

To avoid undesired spurious oscillations of the stress field, a value of 1.0×104 N/mm3 was assigned to the 

initial mode I stiffness for the interface element 3. Since sliding between the fracture surfaces does not 

occur in this type of problem, the analysis is independent of the values assigned to the mode II stiffness of 

the interface element. 
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Figure 3.11: Finite element mesh  

 

 

The adequacy of the numerical strategy adopted is shown in Figure 3.16, revealing that the proposed 

trilinear σ-w diagram is capable of predicting, with enough accuracy, the post-cracking behavior of the 

tested specimens. The values for iσ  and iw  are included in Table 2 and correspond to the simulation of 

the average F-δ experimental curves. 
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Figure 3.16: Experimental and numerical F-δ curves  
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Table 3.2: Fracture parameters of SFRSCC with of different ages. 

Age 
(days) 

1σ  (MPa) w2 
(mm) 

2 1σ σ  w3  
(mm) 

3 1σ σ  w4 
(mm) 

Gf  
(N/mm) 

0.5 1.52 0.06 0.7 1 0.85 9 6.37 
1 1.80 0.06 0.7 0.5 0.88 8 6.62 
3 2.25 0.06 0.68 0.5 0.88 5 5.31 
7 2.60 0.06 0.65 0.5 0.80 5 5.64 

28 2.92 0.06 0.58 0.25 0.62 4 3.90 
 
 

As Figure 3.17 shows, σi increase up to 7 days. After this age, σ1 continues to increase, σ2 maintains 

practically constant, and σ3 decreases. From Figures 3.18 and 3.19 it seems that the age has a tendency to 

reduce the values of the w3 and w4, while w2 is not affected by the age of the specimen. This means that 

the slope of the first softening branch of the σ-w diagram, Dn,1, increases with the ages, (see Figures 3.14 

and 3.20). Similar tendency was observed in the Dn,3, (see Figures 3.14 e 3.22), but the increase after 3 

days was not so pronounced. The variation of the Dn,2 with the age is represented in Figure 3.21, 

reflecting a hardening effect of increasing value up to 3 days, followed by a reduced decrement after this 

age (see Figure 3.11). 
 
The higher inclination of the softening branches and the smaller amplitude of the “hardening” branch of 

the σ-w diagram of the specimens with 28 days reflect the brittler character of the F-δ response registered 

in these specimens. 
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Figure 3.17: Influence of SFRSCC age in σi 
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Figure 3.12: Influence of SFRSCC age in w2 and w3 

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30
Age  (days)

w
4 

(m
m

)

 
Figure 3.19: Influence of SFRSCC age in w4. 
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Figure 3.13: Influence of SFRSCC age in parameter Dn,1 
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Figure 3.14: Influence of SFRSCC age in parameter 

Dn,2. 
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Figure 3.22: Influence of SFRSCC age in parameter 

Dn,3. 

 
 
For modeling the contribution of the fiber reinforcement, the TC 162-TDF recommended the use of fR,4 

for the ultimate limit state analysis. The fR,4 is the stress for a deflection of 3.0 mm. Therefore, only the 

fracture energy dissipated up to this deflection, Gf,3mm, has interest from the design point of view. The 

influence of the SFRSCC age on the evolution of the Gf,3mm is represented in Figure 3.23, from which can 

be concluded that Gf,3mm increases up to 7 days, followed by a significant decrease after this age. This 

means that the fiber reinforcing mechanisms were not sufficiently benefited by the increase of the matrix 

strength with the age in order to assure the tendency observed in the specimens tested up to 7 days. To 

avoid the decrease of the Gf,3mm after 7 days, a higher content of fibers should be applied. 
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Figure 3.24 shows that exists an high correlation between σ1 and fctk,min, having fctk,min been evaluated 

according to the Model Code CEB-FIP recommendations (1993). 
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Figure 3.23: Influence of the SFRSCC age on Gf,3mm. 
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Figure 3.24: Relationship between σ1 and fctk,min. 

 

 

According to TC 162-TDF, σ2 is linearly dependent of feq,2 or fR,1, while σ3 is linearly dependent of feq,3 or 

fR,4. The σ2-feq,2, σ2-fR,1 and σ3-feq,3 dependencies are confirmed in Figures 3.25 to 3.27, but Figure 3.28 

indicates that a σ3-fR,4 dependence was not assured. The scalar values of the σ2-feq,2 and σ3-feq,3 

dependencies are, however, distinct to those proposed by TC 162-TDF for the SFRC (0.45 and 0.37, 

respectively, while 0.32 and 0.40 were obtained for the SFRSCC). 
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Figure 3.15: Relationship between σ2 and feq,2    
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Figure 3.16: Relationship between σ2 and fR,1 
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Figure 3.17: Relationship between σ3  and feq,3. 
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Figure 3.18: Relationship between σ3 and fR,4. 

 
 

3.1.4. Conclusions 

 
In the present section a method for cost competitive steel fiber reinforced self-compacting concrete 

(SFRSCC) was described. The developed SFRSCC has attained all the requirements of self-compacting 

and compression strength of 25 MPa at 12 hours and 62 MPa at 28 days, with a content of cement of 

about 360 kg/m3. 

 

To assess the influence of the age on the compression and bending behavior of the developed SFRSCC, 

an experimental program was carried out, testing specimens at 1/2, 1, 3, 7 and 28 days. The strength and 

ductility levels required by precasting industry for the application in which the designed SFRSCC will be 

used, were exceeded. Special research effort was done to assess the influence of the SFRSCC age on the 

mode I fracture parameters of this material. Taking the force-deflection relationships ( F δ− ) obtained in 

the three point bending tests with SFRSCC notched beams and performing an inverse analysis with a 

discrete crack model, a trilinear stress-crack opening diagram ( wσ − ) was obtained for the distinct ages 

considered.  

 

The obtained F δ−  relationships show that, to maintain the post-cracking residual force up to a deflection 

of 3 mm, a higher content of fibers should be used (45 kg/m3 seems to be an adequate fiber content for 

this purpose). The influence of the SFRSCC age on the σi, wi values defining the wσ −  diagram was 

analyzed, as well as, on the corresponding fracture energy. A correspondence between the σi values of the 

wσ −  diagram and the equivalent and residual flexural tensile strength parameters (feq and fR, 

respectively) proposed by RILEM TC 162-TDF was obtained in order to check the applicability of the 

post-cracking diagram proposed by this committee for the design of SFRC. A good correlation was 

obtained between the σi and feq but the constants of this correlation were not equal to those recommended 

by RILEM TC 162-TDF for the current SFRC. New values were proposed for the developed SFRSCC. 
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3.2. Experimental Program II – SFRSCC _45 

 

In the Experimental Program I – SFRSCC_30, the obtained F δ−  relationships showed that, to maintain 

the post-cracking residual force up to a deflection of 3 mm, a higher content of fibers should be used. The 

shape of the obtained force-deflection relationships, and the accumulated experience in previous research 

projects in the ambit of SFRC, indicate that an amount of 45 kg/m3 of fibers could be enough to attain the 

aforementioned purpose. Therefore, an experimental program, similar to the one described in Section 3.1, 

was carried out with a SCC reinforced with 45 kg/m3 of fibers. 

 

 

3.2.1. Conception method 

 
The materials used in the experimental program for the development of SCC reinforced with 45 kg/m3 of 

fibers (SRFSCC_45) were the same of SFRSCC_30. The SFRSCC conception method was the one 

described in Section 3.11. However, since a higher content of fibers is now used, the solid skeleton 

composition (aggregates) should be redesigned to avoid an increase of void content in the solid skeleton 

structure. The solid skeleton composition was evaluated according to the procedures followed for 

SRFSCC_30. The final composition of the solid skeleton for SRFSCC_45 was (in percentage of volume): 

46.75% of coarse sand, 38.25% of crushed aggregate and 15% of fine sand. Note that the percentage of 

fine sand increased, while the relative percentage of coarse sand and crushed aggregate was maintained. 

 

To obtain the percentage of the binder past in the total volume of concrete, series of experimental castings 

was made, varying the percentage of binder paste. The self compacting parameters were measured for 

each trial, performing the L-Box and the Slump Flow tests. In this phase the V-Funnel test was not used. 

In fact, this test is not feasible since the fiber has a length to high for the reduced overture of the apparatus 

of this test. Table 3 includes the composition of the SFRSCC_45. 

 
 

Table 3.3: Final composition to 1 m3 of SFRSCC with 45kg of fibers 

 
 
 
 
 
 

Paste/ Total volume 
(%) 

Cement 
(kg) 

FC 
(kg) 

Water 
(dm3) 

SP 
(dm3) 

Fine sand 
(kg) 

Coarse sand 
(kg) 

Crushed stone 
(kg) 

0.38 401.68 344.30 117.31 7.65 178.13 669.36 600.00 



PABERFIA – Lightweight Sandwich Panels in Steel Fibre Reinforced Self Compacting Concrete 

PRÉGAIA, S.A. / CiviTEST, Lda. / University of Minho 30-56 
 

3.2.2. Mechanical properties of SFRSCC_45 

 
The experimental program with SFRSCC_45 followed the same procedures of the experimental program 

with SFRSCC_30. Therefore, the characterization of SFRSCC_45 was also composed by compression 

tests in cylinders of 150 mm diameter and 300 mm height and bending tests in prismatic 

600×150×150mm3 specimens. Both types of specimens were filled without any compaction. To evaluate 

the influence of SFRSCC age in the compression and bending behavior, tests with specimens of 0.5, 1, 3, 

7 and 28 days were carried out. Tests with lightweight prototypes (bending and punching tests) were also 

performed. 

 

3.2.2.1. Compression 

 

Figure 3.29 represents the influence of SFRSCC age in the average of the Young’s Modulus, Ecm, of both 

SFRSCC_30 and SFRSCC_45. Each Ecm value is the average of three specimens for each age. This figure 

shows that Ecm increases with age. At 12 hours SFRSCC_45 had a lower Ecm value than the one registered 

in SFRSCC_30. This can be justified by the distinct temperature of the laboratory environment recorded 

during the periods of these two experimental programs, which affected the stiffness growing process of 

the specimens cured in the laboratory environment conditions. In fact, for the SFRSCC_30 the 

temperature was in the range of 25-28 Celsius degrees while for the SFRSCC_45 the temperature varied 

from 15 to 17 oC. At 24 hours, Ecm values are of about 27 GPa. After 24 hours the Ecm of SFRSCC_30 has 

a soft increase, and attained 36 GPa at 28 days. The SFRSCC_45 showed a significant increase of Ecm 

between 24 hours and 3 days, having reached 38 GPa at 3 days. After this age, the Ecm of SFRSCC_45 

increased smoothly, having attained 40 GPa at 28 days. 
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Figure 3.29: Variation of Ecm with age. 

 

 
The stress-strain (σc-εc) curves obtained for SFRSCC_30 (thinner lines) and SFRSCC_45 (thicker lines) 

are depicted in Figure 3.30. Apart the ages of 12 h and 24 h, in the remaining testing ages, the 

compressive strength and the post-peak energy absorption capacity of SFRSCC_45 were larger than the 

values obtained in the SFRSCC_30. The exceptions are justified by the aforementioned distinct 

laboratory environmental conditions when the two experimental programs were carried out. 
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Figure 3.30: Influence of the age on the stress-strain response of SFRSCC_30 and SFRSCC_45 
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Figure 3.31 represents the influence of SFRSCC age in the values of the average compressive strength, 

fcm. Due to the reasons already mentioned, at 12 hours the SFRSCC_45 had an unexpected low fcm value. 

At 24 hours, however, the fcm exceeded the value required by Prégaia Company (20 MPa). At 28 days, the 

fcm of SFRSCC_45 was 66 MPa, while SFRSCC_30 presented a value of 62 MPa. 
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Figure 3.31: Influence of the age on the fcm of SFRSCC_30 and SFRSCC_45 

 
 
Figure 3.32 shows the typical failure mode occurred in the compression tests, where the confinement 

provided by the fibers is well evidenced, as well as a good fiber distribution into the concrete. 

 
 

  
Figure 3.19: Typical failure mode of compression tests 
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3.2.2.2. Bending 

 

Figure 3.33 represents the load-deflection curves obtained in SFRSCC_45 specimens of different ages. 

Figure 3.34 shows the influence of the age in FL, for both SFRSCC_30 and SFRSCC_45. As expected, 

apart for 12 hours, due to the reasons already exposed, the differences in the FL values are not significant, 

since FL concept intends to represent the crack initiation of the matrix, which is not too influenced by the 

presence of the fibers. Analyzing figures 3.33 and 3.34 it is verified that the difference between the 

maximum force and FL is much more pronounced in the SFRSCC_45 than in SFRSCC_30, due to the 

higher fiber content of the former one. 
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Figure 3.20: Load-displacement curves of SFRSCC_45 specimens of different ages 
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Figure 3.21: Influence of SFRSCC age in FL 
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Figures 3.35 and 3.36 represent the influence of age the in the equivalent and residual flexural strength 

parameters. As was expected, the values of these parameters for the SFRSCC_45 are always greater than 

the values for the SFRSCC_30, except at 12 hours due to the reasons already pointed out. Figure 36 show 

that, the high feq values attained in the SFRSCC_45 at 7 days, were maintained up to 28 days, do not 

having been affected by the influence of the increase of the strength of the material between this two ages, 

which indicates that 45 kg/m3 of fibers is an adjusted amount for this purpose. 
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Figure 3.22: Influence of SFRSCC age in fR,1 and fR,4 

 
 



PABERFIA – Lightweight Sandwich Panels in Steel Fibre Reinforced Self Compacting Concrete 

PRÉGAIA, S.A. / CiviTEST, Lda. / University of Minho 35-56 
 

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700

Age (hours)

fe
q

,2
 (M

Pa
)

SFRSCC_30

SFRSCC_45

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700
Age (hours)

fe
q

,3
 (M

Pa
)

SFRSCC_30

SFRSCC_45

Figure 3.23: Influence of the SFRSCC age in feq,2 and feq,3 

 

3.2.3. Conclusions 

 
Although the fcm values of SFRSCC_45 of 12 h and 24 h were inferior to the ones registered in 

SFRSCC_30 – fact justified by the significant difference in the temperature of the laboratory environment 

during the period of execution of the two experimental programs – the values of fcm obtained for the other 

ages exceeded those of SFRSCC_30. At 28 days, SFRSCC_45 attained an average compressive strength 

of 66 MPa, with a cement content of about 400 Kg/m3. 

 
The SFRSCC_45 flexural behavior, evaluated from three point bending notched beam tests carried out 

according to the RILEM TC 162-TDF recommendations, was significantly more ductile the behavior of 

SFRSCC_30. These tests showed that an amount of 45kg/m3 of fibers is capable of maintaining feq values 

grater than 7.5 MPa when the strength of the material is almost attained. 
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4. TESTS IN LIGHTWEIGHT PROTOTYPE PANELS 

Having been finished the characterization of the compression and bending behavior of the developed 

SFRSCC, the next step of the research program is to assess the behavior of SFRSCC panel prototypes 

under load configurations that can simulate the possible failures modes of the real application where the 

developed SFRSCC is intended to use: façade panels. Therefore, SFRSCC lightweight panel prototypes 

were fabricated and tested under load configurations that produce bending and punching failures modes. 

Bending failures modes can occur due to wind loads. Since the SFRSCC compression layer is only 30 

mm thick in the lightweight parts of the panel, punching can occur if point loads act in this part of the 

panel. 

 

 

4.1. Panel Geometry  

 
The geometric configuration of the lightweight panel developed is presented in Figure 4.1. The 

lightweight zones of the panels are constituted by 300x300x80 mm3 polystyrene blocks, fixed to the 

formwork by an adhesive, and a massive layer of 30 mm thick. These lightweight parts are involved by 

massive components forming a grid of bars with 100 mm width and 110mm thick. 
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Figure 4.1: Geometry of panel prototype 

 

Panels were filled with the SFRSCC compositions supra defined. The concrete was discharged in the 

center of the formwork, spreading only by its own weight, due to its self-compacting characteristics (see 

Figures 4.2 to 4.5). 
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Figure 4.2: Metallic formwork to build the panel and 

disposition of the lightweight elements 

 
Figure 4.3: Formwork detail 

 
Figure 4.4: Filling the panel 

 
Figure 4.5:Panel after have been cast 

 
 

4.2. Experimental Program  

 

The experimental program is composed of bending and punching tests in square panels of size edge of 

1000 mm and 600 mm, respectively. Both panel series have a thickness of 110 mm. The panels were 

demolded 24 hours after have been cast, and the tests were carried out at 7 days. 

 

 

4.3. Bending tests 

 
The test setup of the bending tests with panel prototypes is schematically described in Figures 4.6 to 4.10. 

The panel has eight supports, each one composed of two square steel plates of 100 mm edge and 10 mm  
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thick, with a steel sphere of 20 mm diameter between these plates, see Figures 4.6 and 4.7. These supports 

only avoid displacements in the direction orthogonal to the plane of the panel. The load is applied in four 

points, using devices similar to those for the supports, see Figure 4.8. A special device was built to 

transfer the load from the actuator up to these points, which can accommodate the deformation of the 

panel without introducing parasitic force components in the panel. Four LVDTs were used to measure the 

deflection of the points at the panel bottom surface, in the alignment of the point loads, see Figure 4.9. 

 

A servo-controlled equipment of maximum load capacity of 500 kN was used. The test was controlled by 

the displacement transducer of the actuator, at a displacement ratio of 5 µm/s. Figure 4.10 shows a panel 

prototype being tested in bending. 
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Figure 4.6: Test setup 

Support detail 
 

 
Figure 4.7: Supports of the panel prototype 

 

 
Figure 4.8: Position of the loading points 

 
Figure 4.9: Position of the LVDTs to measure the 

panel deflection 

 

  
Figure 4.10: Panel prototype being tested in bending 

 

Loaded areas 
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4.3.1. Results  

 
The load-displacement relation recorded in the four LVDTs is represented in Figures 4.11 and 4.12. For 

both panels the cracking phase starts for a load of about 40 kN. In SFRSCC_30 the load increased until 

55 kN, followed by a softening phase. In SRFSCC_45 the increase of the load carrying capacity after 

crack initiation was much more significant, once a load level of 100 kN was exceeded. Both SFRSCC_30 

and SFRSCC_45 panels showed a high residual strength capacity at the post-peak phase. This can only be 

justified by the reinforcement mechanisms of the fibers bridging the cracks. 
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Figure 4.11: Load-deflection curve for each LVDTs of 
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Figure 4.12: Load-deflection curve for each LVDTs of the 

SFRSCC_45 panel 

 

 

The typical crack patterns of the tested panels are shown in Figures 4.13 and 4.14. A tendency for a 

localization of the fracture surfaces near the nodes of the grid can be visualized, due to a stress 

concentration in these zones. 
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Figure 4.13: Crack pattern in SFRSCC_30, at the end of 

the bending test 

 
Figure 4.14: Crack pattern in SFRSCC_45, at the end 

of the bending test 

 
 

4.4. Punching test 

 
To assess the punching resistance of the lightweight parts of the SFRSCC panels, the panel module shown 

in Figure 4.15a was tested under the load configuration represented in this figure. 

 

 

 

  
a) b) 

 
Figure 4.155: Setup for the punching tests with panel prototypes 

 
 
The panel support conditions are represented in Figure 4.16. The panel is simply supported in a steel 

cylinder forming a square of 500 mm edge (distance between axes). The load applied by the actuator was 

distributed in a 100x100x10 mm3 steel plate, and was registered by a cell of 300 kN maximum load 

PolystyrenSteel Plate 
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capacity. The test was controlled by the displacement transducer of the actuator, at a deflection ratio of 

25 µm/s. The test is ended when a deflection of 30 mm is attained. 

 

 

SFRSCC
Steel Plate (100x100x10)

Actuator

150 150300(x300)

80

30

Q-Q'
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500

Figure 4.16: Punching test Setup 

 
 

4.4.1. Results 

Figures 4.17 and 4.18 present the relationship between the applied load and the displacement in the 

LVDT that recorded the penetration of the steel plate into concrete. 

 

Figures 4.17a and 4.18a present the load-displacement relationship up to a displacement of about 10% of 

the thickness of SFRSCC layer. Up to this deflection the panels have retained their maximum load 

carrying capacity, which is an indication of the significant stress redistribution capacity provided by fiber 

reinforcement.  
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b) 

Figure 4.17: Load-displacement relationship up to of about a) 20 mm and b) 4 mm, from punching test in a 
SFRSCC_30 panel 

 

0

10

20

30

40

50

60

70

0 5 10 15 20
Displacement(mm)

L
oa

d(
kN

)

 
a) 

0

10

20

30

40

50

60

70

0 1 2 3 4
Displacement(mm)

L
oa

d(
kN

)

 
b) 

Figure 4.18: Load-displacement relationship up to of about a) 20 mm and b) 4 mm, from punching test in a 
SFRSCC_45 panel 

 

 
Figure 4.19 shows the typical crack pattern of panels after have been tested. The punching critical contour 

involves the loaded area at a distance of approximately d/2, where d is the layer thickness. Due to the 

resistance provided by fibers bridging the punching failure surface (composed by planes at about 45 

degrees - see Figure 4.20), the resistant negative bending moment of the SFRSCC layer was exceeded, 

leading to the development of a yield line, which is in a middle distance between the punching critical 

contour and the boundaries of the lightweight part.  
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Figure 4.19: Punching critical contour and yield line 
due to negative moments (exterior contour) 

 

Figure 4.20: Failure surface in a punching test 

 

 

4.5. Conclusions 

 

Bending tests carried out with panel prototypes of the developed SFRSCC showed that the panel 

structural configuration and the ductility provided by fiber reinforcement allowed high stress 

redistribution levels, since the maximum load carrying capacity (Fmax) was much higher that the load a 

crack initiation (Fcr). The load increment, Fmax-Fcr, increased with the content of fibers. After peak load, 

the panels presented a significant residual load carrying capacity, even at a crack opening several times 

higher the crack opening limit imposed by the serviceability limit state analysis. 

 

The developed SFRSCC was also very efficient in terms of punching resistance, once the panel maximum 

load was maintained up to a plate penetration of about 10% of the thickness of SFRSCC layer (30 mm) of 

the panel lightweight zone. 
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5. FABRICATION AND TEST OF A REAL PANEL IN INDUSTRIAL ENVIRONMENT 

 

The last phase of the PABERFIA project deals with the fabrication of a real panel in industrial 

environment. The panel was fabricated in the Prégaia installations, in São Félix da Marinha, Oporto, 

Portugal. This phase had the aim of verifying if the procedures adopted in the laboratory, in the 

development of a SFRSCC, can be directly applicable in industrial environment. It had also the purpose 

of evaluating the behavior of a real panel when submitted to its dead weight and to an increase live load 

up to its rupture. 

 
The geometry of the fabricated panel is represented in Figure 5.1, which includes extra information 

related to this panel. 
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Figure 5.1: Panel Geometry (dimensions in mm) 

 

 
The panel lightweight parts were materialized by 40 plates of polystyrene plates of 0.30×0.30×0.08 m3 

and 20 plates of 0.30×0.15×0.08 m3 fixed to timber bars, see Figure 5.2. To maintain this structure stable 

during the casting process, a very heavy concrete beam was placed on this structure, see Figure 5.3. 

 

 

Panel 
 Characteristics  
Width (m) 2.100 
Length (m) 4.200 

Thickness (m) 0.110 
Total Volume(m3) 0.882 

Lightweight (m3) 0.360 
Vol. to cast (m3) 0.522 

Approximate 
weight (kg) 

1305.0 
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Figure 5.2: Placing the lightweight elements 

 

Figure 5.3: Heavy beam to assure stability of the 
lightweight elements during concrete casting 

 

 

Two mixtures of 400 dm3 were made to fabricate the panel and to fill three 0.15×0.15×0.6 m3 beams and 

three cylinders of 150 mm diameter and 300 mm height. Slump flow and L-box tests were also carried out 

to assess the self-compacting characteristics of the designed SFRSCC. Both concrete mixtures were stable 

without any indication of segregation. The spread was 600 mm and 630 mm in the mixtures 1 and 2, 

respectively, while the Cbl parameter of the L-Box test was 0.80 (the test was only carried out for the 

second mixture). Figure 5.4 includes a photo of the concrete casting phase. 

 

 

 
Figure 5.4: Casting the panel 

 

The demolding of the panel was done in the day after it has been cast, when the SFRSCC had an age of 

24 hours. The panel was demolded almost in vertical position (see Figure 5.5). 
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Figure 5.5: Demolding panel operations 

 
 
After that, the panel was placed in a support until the test (see Figure 5.6), which occurred at 7 days of 
panel age. 
 
 

 
Figura 5.6: Panel stockage 

 
 
Figure 5.7 represents the panel support conditions and the location where the deflection was measured 

(center of the panel). The panel was supported in four points, see Figure 5.8. 
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Figure 5.7: Setup of the loading test: a) general view; b) section P-P’; c) section Q-Q’(dimensions in mm) 
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Figure 5.8: Placing the panel in the supports 

 

 

A portable data acquisition system (see Figure 5.9), developed by FiberSensing Company, was used to 

measure the panel deflection at its center, see Figure 5.10. 

 

 

Figure 5.9: Data acquisition system 
 

Figure 5.5: LVDT for measuring the panel deflection 
at its center 

 

 
To simulate a uniform distributed live load, concrete plates of 500×500 mm2, each one of 25 kg, were 

uniformly distributed in the area interior to the panel supports, see Figure 5.11. 
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Figure 5.6: Placing the concrete plates to simulate the panel live load 

 

 
                      
 

The panel supported 33 concrete plates (see Figure 5.12), corresponding to a uniform distributed load of 

8.25/(3.1×1.5)=1.77 kN/m2, plus its dead weight (1.47 kN/m2). When placing the 33rd concrete plate, an 

abrupt increase of deflection occurred, having the test been interrupted due to safety reasons. 

 

 

 

Figure 5.7: Final view of the panel, loaded with 33 concrete plates 

 
 
When the 18th concrete plate was placed, a deflection of 24 mm was measured. When the test was 

interrupted, the deflection was about 44 mm and the maximum crack opening of the critical crack was 

around 3 mm. Fibers crossing this crack were visible (see Figure 5.13). 
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Figure 5.8: Crack opening profile of the critical crack  

 

 

The total resisted uniform distributed load (1.77+1.47=3.24 kN/m2) was higher than the characteristic 

value to the wind dynamic pressure in building with more of 100 m height, located in A zone and in zones 

of type II irregularity (RSA, 1983). It may be concluded that, for the majority of the buildings, where 

façade panels are used, the developed SFRSCC_45 panel provides the necessary structural safety. 
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6.  FINAL CONCLUSIONS 

A method for conceiving cost competitive steel fiber reinforced self-compacting concrete (SFRSCC) was 

described. The designed SFRSCC has met all the requirements of self-compactability, and a compressive 

strength of 25 MPa at 12 hours and 62 MPa at 28 days was reached, with a cement content of about 360 

kg/m3. 

 

To assess the influence of the SFRSCC age on its compression and bending behavior, an experimental 

program was carried out, testing specimens at 1/2, 1, 3, 7 and 28 days. The strength and ductility levels 

required by the precasting industry for the application in which the conceived SFRSCC will be used were 

exceeded. Taking the force-deflection relationships ( F δ− ) obtained in the three point bending tests with 

SFRSCC notched beams, and performing an inverse analysis with a discrete crack model, a trilinear 

stress-crack opening diagram ( wσ − ) was obtained for the distinct ages considered. The obtained F δ−  

relationships showed that, to avoid a softening phase up to a deflection of 3 mm, a higher fiber content 

should be used.  

 

The SFRSCC_45 flexural behavior, evaluated from three point bending notched beam tests carried out 

according to the RILEM TC 162-TDF recommendations, was significantly more ductile than the behavior 

of SFRSCC_30. These tests showed that an amount of 45kg/m3 of fibers is capable of maintaining feq 

values grater than 7.5 MPa when the strength of the material is almost attained. 

 

The influence of the SFRSCC age on the values of the σi, wi parameters that define the wσ −  diagram was 

analyzed. A correspondence between the σi values of the wσ −  diagram and the equivalent and residual 

flexural tensile strength parameters (feq and fR, respectively), proposed by RILEM TC 162-TDF, was 

obtained in order to verify if the post-cracking diagram proposed by this committee for the design of steel 

fiber reinforced concrete (SFRC) elements can be applied to the designed SFRSCC. A strong correlation 

was obtained between σi and feq, but the constants of this correlation were not equal to those 

recommended by RILEM TC 162-TDF for SFRC. New values were proposed for the designed SFRSCC. 

 

Panel prototypes simply supported on a redundant number of supports were tested up to an average 

deflection of 30 mm. The maximum force was attained at a deflection of about 0.5 mm, and was 

maintained up to a deflection of 5 mm, showing that the panel system has high ductility. Beyond this 

deflection limit, the panel load carrying capacity decreased smoothly. 
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To assess the punching strength of the lightweight parts of the panel system, panel prototypes were 

submitted to a punching failure load configuration. A punching crack was formed at the contour of the 

steel loaded plate, followed by a flexural crack at the borders of the lightweight zone. This second crack, 

caused by negative moments, was responsible for the quasi-plastic response of the panels up to a 

penetration of the loaded plate of about 10% of the layer thickness. 

 

The fabrication of the real panel permitted to assess the applicability of SFRSCC to industrial production. 

It was very useful to verify the concrete behavior in terms of self compacting properties, what permits the 

adjusting of the necessary parameters to use this concrete in the production line of the promoter company 

of the project. It was possible to verify the final aspect of panels, due to the usage of a self compacting 

concrete. In fact the visual appearance was very satisfactory, although some aspects can be improved. The 

load test was, willfully realized in the most unfavorable way: note that these elements will be placed in 

vertical plane and not in horizontal plane as this test was performed. The tested panel resisted to its own 

weight and to an overload of about 1.77 kN/m2, indicating that it have sufficient structural properties to 

resist to wind actions that, jointly with demolding, is the most unfavorable.   
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7. FUTURE DEVELOPMENT PERSPECTIVS 

 
The developed SFRSCC have shown excellent properties of ductility and resistance, with a competitive 

cost of fabrication. The applications where this material has technical and economic advantages are many; 

however it is more adequate to be used in structures where the high geometric complexity increase 

significantly the usage of usual reinforcement and, simultaneously, have a redundant number of supports, 

in order to profit the reinforcing mechanisms after the starting of matrix cracking. Shells are included in 

this type of structures (ETARs totally or partially buried structures). 

 

However, the durability properties of this material may be studied. In the case of PABERFIA project, it 

will be now necessary to develop a system to induce the lightweight in the panel. This system must be 

implemented in the fabrication line of the company, must be reusable, must have automat characteristics 

and use eco-efficient and low cost materials. These are the indispensable items to turn the developed 

material and structural system rentable. 
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