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NOTATION 

 

ID  Mode I stiffness modulus 

IID  Mode II stiffness modulus 

crD  Crack constitutive matrix 

eD  Elastic constitutive matrix 

ecrD  Elasto-cracked constitutive matrix 

epD  Elasto-plastic constitutive matrix 

cE  Young's modulus of concrete 

cG  Shear modulus of concrete 

fG
 Mode I fracture energy of concrete 

crT  Transformation matrix of a crack 

 

( ), 0f σ κ =  Yield surface 

cf  Compressive strength of concrete 

ctf  Tensile strength of concrete 

h  Crack band-width, Hardening modulus 

ch  Scalar parameter that amplifies the plastic strain vector 

m  Number of critical crack status changes 

n  Combination 

crn  Number of distinct smeared crack orientations at each integration point 

p  Hydrostatic pressure 

q  Iteration 

 

ε∆  Incremental strain vector 

ε∆ l
cr  Incremental crack strain vector (in CrCS) 

σ∆ l
cr  Incremental crack stress vector (in CrCS) 

α th  Threshold angle 

β  Shear retention function 

cr
tγ  Crack shear strain 
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ε  Strain vector 
crε  Crack strain vector 

ε l
cr  Crack strain vector (in CrCS) 

cr
nε  Crack normal strain 

θ  Angle between the x1 global axis and the crack normal axis 

κ  Hardening parameter 
cr
nσ  Crack normal stress 

cr
tτ  Crack shear stress 

σ  Stress vector 

σ  Yield stress 

σ l
cr  Crack stress vector (in CrCS) 

cν  Poisson's ratio of concrete 
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1 INTRODUCTION 

The finite element method is the basis of a powerful computational tool, which can be used 

to simulate the response of structures, structural components and materials, when 

submitted to a specified load. This tool has been extensively used to assess the behavior of 

concrete structures. 

 

In order to simulate the structural response of concrete structures under the finite 

element framework, a mathematical idealization of the material behavior is required. This 

mathematical approach is commonly named constitutive or material model, and provides 

the relation between the stress and strain tensors in a material point of the body. In order to 

predict with high accuracy the behavior of concrete structures, appropriate constitutive 

models must be used. These constitutive models must be capable of simulating the most 

relevant nonlinear phenomena of the intervening materials. 

 

The nonlinear fracture mechanics theory has been used to simulate the quasi-brittle 

failure of concrete (ACI 1991, ACI 1997). The discrete and the smeared crack concepts are 

the most used to model the concrete fracture under the framework of the finite element 

method. For concrete structures with a reinforcement ratio that assures crack stabilization, 

the smeared crack approach is more appropriate than the discrete approach, since several 

cracks can be formed in the structure. The discrete approach is especially suitable to 

simulate concrete structures where the failure is governed by the occurrence of a small 

number of cracks with a path that can be predicted. The discrete approach is not treated in 

the present work. Nevertheless, a comprehensive description of the discrete approach can 

be found elsewhere, e.g., Ngo and Scordelis (1967), Hillerborg et al. (1976), Rots (1988) 

and Bittencourt et al. (1992). 

 

In smeared crack models, the fracture process is initiated when the maximum 

principal stress in a material point exceeds its tensile strength. The crack propagation is 

mainly controlled by the shape of the tensile-softening diagram and the material fracture 

energy. In order to assure mesh objectivity, the energy dissipated in the crack propagation 

process is associated with a characteristic length of the finite element (Bazant and 

Oh 1983). In the original smeared crack or single-fixed smeared crack concept, the 

orientation of the crack, i.e., the direction which is normal to the crack plane is coincident 

with the maximum principal stress orientation at crack initiation, and remains fixed 
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throughout the loading process. However, due to aggregate interlock and dowel action of 

the reinforcement (Chen 1982), the principal stresses can change their orientation and, 

once more, exceed the tensile strength. In this case, the single-fixed smeared crack 

approach predicts a numerical response that is stiffer than the experimental observations. 

To avoid this inconvenience, rotating single smeared crack or multi-fixed smeared crack 

models have been developed. In the former, the local crack coordinate system is 

continuously rotating with the modification of the direction of the principal axes. In the 

multi-fixed smeared crack models, several fixed smeared cracks are allowed to form, 

according to a crack initiation criterion. 

 

Plasticity theory has been extensively used to model the concrete behavior, 

particularly under compressive states of stress (ASCE 1982, Chen and Han 1988). 

Plasticity theory is based on a micromechanical or a phenomenological approach. In the 

micromechanical approach, also named fundamental approach, the constitutive relations 

are established for the microstructural behavior. In contrast, the phenomenological 

approach, also known as the mathematical theory of plasticity, establishes the constitutive 

model directly based on observed features from experimental tests. Plasticity theory is a 

natural constitutive description for metals (Hill 1950), but it can also be used for 

cementitious materials. In the 1980s several tools were developed for mathematical 

plasticity, e.g., implicit Euler backward algorithms and consistent tangent operators (e.g., 

Ortiz and Popov 1985, Simo and Taylor 1985), which made this theory even more 

attractive to model the concrete behavior. 

 

Hybrid models derived from fracture mechanics and plasticity theories have been 

proposed by several researchers. In these models, fracture mechanics theory is used to 

simulate the tensile post-cracking behavior of concrete, whereas plasticity theory is used to 

simulate its compressive behavior. Elasto-plastic multi-fixed smeared crack models seem 

to be suitable for the simulation of concrete structures, but due to their conceptual 

complexities and severe computational difficulties, only a few researchers were successful 

in the implementation of these models (de Borst and Nauta 1985, Crisfield and Wills 1989, 

Barros 1995). 

 

The present report details the developed elasto-plastic multi-fixed smeared crack 

model. The description of the model is divided in three parts: the first part deals with the 
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smeared crack model; the second describes the elasto-plastic model; and, finally, the third 

part presents the elasto-plastic multi-fixed smeared crack model. The developed numerical 

model is validated with results available in the literature. 

 

 

2 CRACK CONCEPTS 

In this section, firstly, the single-fixed smeared crack concept is described, followed by the 

generalization to the multi-fixed smeared crack concept. The most relevant algorithmic 

aspects are detailed. Finally, the developed numerical model is validated using results 

available in the literature. 

 

 

2.1 Smeared crack concept 

After crack initiation, the basic assumption of smeared crack models, is the decomposition 

of the incremental strain vector, ε∆ , into an incremental crack strain vector, crε∆ , and an 

incremental strain vector of the concrete between cracks, coε∆ : 

 

 cr coε ε ε∆ = ∆ + ∆  (1) 

 

The decomposition expressed by (1) has been adopted by several researchers (Litton 1974, 

Bazant and Gambarova 1980, de Borst and Nauta 1985, Rots et al. 1985, Rots 1988). 

 

2.1.1 Crack strains and crack stresses 

Figure 1 shows the morphology of a crack for the case of plane stress. Two relative 

displacements define the relative movement of the crack lips: crack opening displacement, 

w , and crack sliding displacement, s . Axes n  and t  define the local coordinate system of 

the crack (CrCS), being n  and t  the crack normal and tangential directions, respectively. 

 

In the smeared crack approach w  is replaced with a crack normal strain defined in 

CrCS, cr
nε , and s  is replaced with a crack shear strain in CrCS, cr

tγ . The same approach 

can be applied to the incremental normal and shear crack strains ( cr
nε∆  and cr

tγ∆ ). The 

incremental crack strain vector in CrCS, ε∆ l
cr , is defined by 
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 ε ε γ ∆ = ∆ ∆ l
Tcr cr cr

n t  (2) 

 

 

x1

x2

σ
t

Crack

n
cr
n

τcr
t

τcr
tσcr

n w

s

θ

 
Figure 1 – Crack stresses, relative displacements and local coordinate system of the crack. 

 

The incremental crack strain vector in the global coordinate system (GCS), crε∆ , has the 

following three components, 

 

 1 2 12ε ε ε γ ∆ = ∆ ∆ ∆ 
Tcr cr cr cr  (3) 

 

The transformation of the incremental crack strain vector from CrCS to GCS reads 

 

 

2
1

2
2

2 2
12

cos sin cos

sin sin cos

2sin cos cos sin

ε θ θ θ
ε

ε θ θ θ
γγ θ θ θ θ

   ∆ −
 ∆   ∆ =      ∆    ∆ −   

cr

cr
cr n

cr
cr t

 (4) 

 

or 

 

 ε ε ∆ = ∆  l
Tcr cr crT  (5) 
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being 
TcrT    the crack strain transformation matrix and θ  the angle between 1x  and n  

(see Figure 1). The incremental local crack stress vector, σ∆ l
cr , is defined by 

 

 σ σ τ ∆ = ∆ ∆ l
Tcr cr cr

n t  (6) 

 

where cr
nσ∆  and cr

tτ∆  are the incremental crack normal and shear stresses, respectively. 

The relationship between σ∆ l
cr  and the incremental stress vector (in GCS), σ∆ , can be 

defined as 

 

 
12 2

22 2

12

cos sin 2sin cos

sin cos sin cos cos sin

σ
σ θ θ θ θ σ
τ θ θ θ θ θ θ τ

∆ 
   ∆  = ∆     ∆ − −    ∆ 

cr
n
cr
t

 (7) 

 

or 

 

 σ σ∆ = ∆l
cr crT  (8) 

 

 

2.1.2 Concrete constitutive law 

Assuming linear elastic behavior for the concrete between cracks (undamaged concrete), 

the constitutive relationship between coε∆  and σ∆  is given by, 

 

 co coDσ ε∆ = ∆  (9) 

 

where coD  is the constitutive matrix according to Hooke's law, 

 

 

( )
2

1 0

1 0
1

0 0 1 2

co cE
D

ν
ν

ν
ν

 
 =  −  − 

 (10) 

 

being cE  and ν  the Young's modulus and Poisson's ratio of plain concrete, respectively. 
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2.1.3 Constitutive law of the crack 

In a similar way, a relationship between σ∆ l
cr  and ε∆ l

cr  is established to simulate the 

crack opening and the shear sliding using a crack constitutive matrix, crD , 

 

 σ ε∆ = ∆l l
cr cr crD  (11) 

 

where crD  is a 2×2 matrix including mode I and mode II crack fracture parameters. 

 

 

2.1.4 Constitutive law of the cracked concrete 

Combining the equations presented in the previous sections, a constitutive law of the 

cracked concrete is obtained. Hence, incorporating equations (1) and (5) into (9) yields, 

 

 ( )σ ε ε ∆ = ∆ − ∆  l
Tco cr crD T  (12) 

 

Pre-multiplying both members of equation (12) by crT  leads to 

 

 σ ε ε ∆ = ∆ − ∆  l
Tcr cr co cr co cr crT T D T D T  (13) 

 

Substituting (8) into the left side of (13) yields 

 

 σ ε ε ∆ + ∆ = ∆ l l
Tcr cr co cr cr cr coT D T T D  (14) 

 

Including (11) into the left side of (14), the following equation defining the incremental 

crack strain vector in CrCS is obtained 

 

 ( ) 1

ε ε
−

 ∆ = + ∆ l
Tcr cr cr co cr cr coD T D T T D  (15) 

 

The inclusion of (15) in (12) leads to the constitutive law of the cracked concrete, which 

reads 
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 ( ) 1T Tco co cr cr cr co cr cr coD D T D T D T T Dσ ε
−    ∆ = − + ∆     

 (16) 

 

or 

 

 crcoDσ ε∆ = ∆  (17) 

 

where crcoD  is the following constitutive matrix for the cracked concrete 

 

 ( ) 1T Tcrco co co cr cr cr co cr cr coD D D T D T D T T D
−

   = − +     (18) 

 

 

2.1.5 Crack fracture parameters 

In the present model, the crack constitutive matrix, crD , is assumed to be diagonal 

 

 
0

0

cr
cr I

cr
II

D
D

D

 
=  
 

 (19) 

 

In this matrix cr
ID  and cr

IID  are the mode I and mode II stiffness modulus associated with 

the crack behavior. 

 

The crack-dilatancy effect and the shear-normal stress coupling is not considered in 

the present approach. The shear-normal stress coupling, however, may be simulated 

indirectly, allowing non-orthogonal cracks to form and relating cr
IID  with the crack normal 

strain (Rots 1988). This strategy is adopted in the present model. 

 

The crack initiation in the present model is governed by the Rankine yield surface 

(see Figure 2), i.e., when the maximum principal stress, Iσ , exceeds the uniaxial tensile 

strength, ctf , a crack is formed. This assumption is justified by the experimental results 

obtained by Kupfer et al. (1969) when the tensile cracking is not accompanied by 

significant lateral compression. 
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According to Rots (1988), the most suitable approach to simulate the crack 

propagation under the finite element framework is by taking into account the concrete 

fracture parameters, namely, the shape of the tensile-softening diagram and the fracture 

energy. 

 

 

σII

Iσ

 
Figure 2 – Rankine yield surface in the 2D principal stress space. 

 

Two distinct tensile-softening diagrams are available in the developed computational 

code: tri-linear and exponential diagrams (see Figure 3). The tri-linear diagram shown in 

Figure 3(a) is defined by the following expressions 

 

 ( ) ( )
( )

,1 1 ,

1 ,2 1 , 1 , 2 ,

2 ,3 2 , 2 , ,

,

0

0

cr cr cr cr
ct I n n n ult

cr cr cr cr cr cr
ct I n n ult n ult n n ultcr cr

n n cr cr cr cr cr cr
ct I n n ult n ult n n ult

cr cr
n n ult

f D if

f D if

f D if

if

ε ε ξ ε

α ε ξ ε ξ ε ε ξ ε
σ ε

α ε ξ ε ξ ε ε ε

ε ε

 + < ≤


+ − < ≤= 
+ − < ≤


>

 (20) 

 

with, 

 

 
2

,
cr ct
I i i

f

hf
D k

G
= −  (21) 

 

where 
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( )( )

( )( )
( )

( )
( )

1 1 1 2 2 1 2
1

1

1 2 1 1 2 2 1 2
2

2 1

2 1 1 2 2 1 2
3

2

1

2

2

2 1

k

k

k

α ξ α ξ α ξ α
ξ

α α ξ α ξ α ξ α
ξ ξ

α ξ α ξ α ξ α
ξ

− + − +
=

− + − +
=

−

+ − +
=

−

 (22) 

 

The ultimate crack normal strain, ,
cr
n ultε , is given by, 

 

 , 4
fcr

n ult
ct

G
k

f h
ε =  (23) 

 

where 

 

 4
1 1 2 2 1 2

2
k

ξ α ξ α ξ α
=

+ − +
 (24) 

 

 

σcr
n

n
crε

ctf

fct

ctf

α1

2α

εcr
n,ult

crεn,ultn,ultεcr
1ξ ξ2

1

1

1

Dcr

crD

Dcr

I,1

I,2

I,3

 

σcr
n

n
crε

fct

crεn,ult

crDI

 
(a) (b) 

Figure 3 – Tensile-softening diagrams: tri-linear (a) and exponential (b). 
 

The exponential softening diagram proposed by Cornelissen et al. (1986) (see Figure 3(b)) 

is defined by 
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( )

( )
3

3
1 2 1 2 ,

, , ,

,

1 exp 1 exp( ) 0

0

cr cr
n n

ct

cr cr cr
cr crn n n
n n ultcr cr cr

n ult n ult n ult

cr cr
n n ult

f

C C C C if

if

σ ε

ε ε ε ε ε
ε ε ε

ε ε

=

     + − − + − < <        =      
≥

 (25) 

 

where 1 3.0C =  and 2 6.93C = . The ultimate crack normal strain, ,
cr
n ultε , is obtained from, 

 

 ,

1 fcr
n ult

ct

G

k f h
ε =  (26) 

 

where 

 

 ( ) ( )
3

3 31
1 1 22 3 4

2 2 2 2 2 2 2

1 1 1 3 6 6 1
1 6 1 exp

2

C
k C C C

C C C C C C C

         = + − + + + + + + −    
        

 (27) 

 

The mode I crack stiffness modulus is calculated with the following expression 

 

 

( )

2

1
1 2

, , ,

3
3
1

2 2 1 2
, , , ,

3 exp

1
exp 1 exp

cr cr
cr n n
I ct cr cr cr

n ult n ult n ult

cr cr cr
n n n

cr cr cr cr
n ult n ult n ult n ult

C
D f C C

C
C C C C

ε ε
ε ε ε

ε ε ε
ε ε ε ε

    
= − +          

      +  − − + − −                

 (28) 

 

The concrete fracture energy, fG , is the energy required to propagate a tensile crack 

of unit area. Generally, fG  is assumed to be a material parameter and according to the 

CEB-FIB model code (1993) it can be estimated from the concrete compressive strength, 

cf , and maximum aggregate size. 

 

In the smeared crack approach, the fracture zone is distributed in a certain width of 

the finite element, which is designated crack band-width, h , as indicated in Figure 4. In 

this model a constant strain distribution in the width h  is assumed. To assure mesh 
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objectivity, the concrete fracture energy and the crack band-width must be mesh 

dependent. Several researchers have proposed different ways to estimate h  (Bazant and 

Oh 1983, Rots 1985, Leibengood et al. 1986, Oñate et al. 1987, Dahlblom and 

Ottosen 1990, Oliver et al. 1990, Cervenka et al. 1990, Rots 1992, Feenstra 1993). In the 

present numerical model, the crack band-width can be estimated in three different ways: 

equal to the square root of the area of the finite element, equal to the square root of the area 

of the integration point or equal to a constant value. To avoid snap-back instability, the 

crack band-width is subjected to the following constraint (de Borst 1991), 

 

 2
f c

ct

G E
h

b f
≤  (29) 

 

where { }max ib k=  for tri-linear softening and ( ) ( )( )3
2 1 21 expb k C C C= + + −  for 

exponential softening. 

 

 

σcr
n

n
crε

G /hf

nσ

fG 
w

cr

fct fct

Discrete approach

h

Smeared approach

w

(a) (b)

 
Figure 4 – Two distinct approaches to model the tensile-softening diagram: discrete (a) and smeared 
(b) crack models. 
 

Applying the strain decomposition concept to the crack fracture mode II, yields 

 

 cr coγ γ γ∆ = ∆ + ∆  (30) 
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or, 

 

 
1 1 1

cr
c II cG D Gβ

= +  (31) 

 

resulting 

 

 
1

cr
II cD G

β
β

=
−

 (32) 

 

cr
IID  is the mode II crack fracture stiffness modulus. The parameter β  is called the shear 

retention factor and its value depends on the crack normal strain and on the ultimate crack 

normal strain (Rots 1988, Póvoas 1991, Barros 1995), 

 

 
1

,

1
εβ

ε
 

= −  
 

p
cr
n

cr
n ult

 (33) 

 

In this equation 1p  is an integer parameter that, currently, can assume the values of 1, 2 or 

3 (Barros 1995). When 0cr
nε =  (closed crack) a full interlock is assumed. For a fully open 

crack ( ,
cr cr
n n ultε ε≥ ) the shear retention factor is equal to zero, resulting in a null crack shear 

stiffness that corresponds to a negligible aggregate interlock. 

 

 

2.2 Multi-fixed smeared crack concept 

In the previous sections the concept of the fixed smeared crack model was described. In 

this model only one fixed smeared crack was allowed to form at each integration point. To 

be capable of simulating the formation of more than one fixed smeared crack, as well as, to 

be not restricted to the particular case of two orthogonal cracks (Azevedo 1985, 

Póvoas 1991), the formulation was extended, resulting in the multi-fixed smeared crack 

model. 
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To deal with the eventual formation of crn  smeared cracks at each integration point, 

the generalized crack transformation matrix, crT , and the crack constitutive matrix, crD , 

adopt the following format 

 

 ( ) ( ) ( )1 1 2 2θ θ θ =  K
cr cr

T
cr cr cr cr

n nT T T T  (34) 

 

 

1

2

0 0

0 0

0 0

 
 
 =  
 
  

K

K

K K K K

K
cr

cr

cr
cr

cr
n

D

D
D

D

 (35) 

 

In these matrices, ( )cr
i iT θ  and cr

iD  correspond to the crack transformation matrix and to 

the crack constitutive matrix of the i-th crack, respectively. Matrix crD  is diagonal since 

the sub-matrices cr
iD  have null off-diagonal terms (see Section 2.1.5). 

 

 

2.2.1 Crack initiation 

Cracking occurs when the maximum principal stress exceeds the concrete uniaxial tensile 

strength, ctf . After crack initiation, and assuming that the shear retention factor is non-null, 

i.e., the crack shear stresses can be transferred between the crack lips, the values and the 

orientation of the principal stresses can change during the loading process. For this reason 

the maximum principal stress in the concrete between cracks can also exceed ctf . In the 

present work a new crack is initiated when the following two conditions are satisfied 

simultaneously: 

• the maximum principal stress, Iσ , exceeds the uniaxial tensile strength, ctf ; 

• the angle between the direction of the existing cracks and the direction of Iσ , Iθ , 

exceeds the value of a predefined threshold angle, α th . 

 

Typically, the threshold angle varies between 30 and 60 degrees (de Borst and 

Nauta 1985). When the second condition is not verified (which means that the new crack is 

not initiated) the tensile strength is updated in order to avoid inconsistencies in the crack 
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initiation process. With this strategy the updated tensile strength can significantly exceed 

the original concrete tensile strength (Rots 1988). 

 

 

2.2.2 Crack evolution history 

In a previously cracked integration point, the coupling between non-orthogonal cracks is 

simulated with fracture parameters associated to the new cracks. The fracture energy 

available for the next crack, next
fG , is calculated with (Barros 1995) 

 

 ( )
2

, ,2
α

π
 

= − + 
 

p

next
f f f a f aG G G G  (36) 

 

where 2p  is an integer parameter and can assume the values of 1, 2 or 3, α  is the angle (in 

radians) between the next and the previous crack and ,f aG  is the available fracture energy 

in the previous crack. Its value is calculated subtracting the fracture energy consumed by 

the previous crack, ,
prev
f cG , from the concrete fracture energy (see Figure 5), 

 

 , ,
prev

f a f f cG G G= −  (37) 
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f,c
g 

cr,1
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ctf

cr,1
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f ct
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α
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Figure 5 – Fracture energy available for the next crack. 
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2.3 Algorithmic aspects 

In a multi-fixed smeared crack model the consideration of all the crack status changes that 

can occur during the loading process of a concrete element, requires the implementation of 

several computational procedures. Otherwise the model becomes unreliable and inefficient 

for practical use (de Borst and Nauta 1985, Rots 1988, Crisfield and Wills 1989, Barros 

1995, Hofstetter and Mang 1995). The implementation of these algorithms in the FEMIX 

computer code (Azevedo et al. 2003) is described below. 

 

 

2.3.1 Stress update 

When the strain field in a cracked integration point is submitted to an incremental strain, 

ε∆ m , the stress state of the integration point is also modified and must be updated (σ m ). 

The incremental relationship (8) can be written in terms of total stresses, 

 

 ,σ σ=l
cr cr

m m mT  (38) 

 

This equation is equivalent to 

 

 ( ), 1 , 1σ σ σ σ− −+ ∆ = + ∆l l
cr cr cr

m m m m mT  (39) 

 

Including (12) in (39) yields 

 

 ( )( ), 1 , 1 ,σ σ σ ε ε− −  + ∆ = + ∆ − ∆ l l l
Tcr cr cr co cr cr

m m m m m m mT D T  (40) 

 

Equation (40) can be written as 

 

 ( ), 1 , , , 1 0σ σ ε ε σ ε− − + ∆ ∆ + ∆ − − ∆ = l l l l
Tcr cr cr cr co cr cr cr cr co

m m m m m m m m m mT D T T T D  (41) 

 

where ,
cr

mσ∆ l depends on ,
cr

mε∆ l . The components of the incremental strain crack vector, 

,ε∆ l
cr

m , are the unknown variables of the nonlinear equations (41). This vector contains the 

two local strain components of the active cracks (non-closed cracks). To solve this 
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equation two different methods were implemented: the Newton-Raphson and the fixed-

point iteration methods (Chapra and Canale 1998). The methods exhibiting quadratic 

convergence, such as the Newton-Raphson method, are usually very efficient, but in some 

cases the solution cannot be obtained. In theses cases the Newton-Raphson method is 

replaced with the fixed-point iteration method which exhibits linear convergence. In the 

following algorithms the first member of equation (41) is referred as a function f  of ε∆ l
cr , 

i.e., 

 

 ( ) ( ), , 1 , , , 1ε σ σ ε ε σ ε− − ∆ = + ∆ ∆ + ∆ − − ∆ l l l l l
Tcr cr cr cr cr co cr cr cr cr co

m m m m m m m m m m mf T D T T T D  (42) 

 

with this assumption, equation (41) becomes ( ), 0ε∆ =l
cr

mf . 

 

Figure 6 shows the flowchart of the Newton-Raphson method adapted to the solution 

of (42). The calculation of the initial solution (step (2) in Figure 6) is performed with 

equation (41), considering ( ), ,σ ε∆ ∆l l
cr cr

m m  equal to 1 ,ε− ∆ l
cr cr
m mD , where 1−

cr
mD  is the tangential 

crack constitutive matrix of the previous converged stress state. 

 

In step 3 610 cToler f−= , where cf  is the concrete compressive strength. The symbol 

∞
 means the infinite norm of the vector, i.e., the maximum absolute value found in 

vector f . The first derivatives of f  in order to the incremental crack strain vector can be 

defined as 

 

 
( ) ˆ

ε
ε

ε
∂ ∆

 = + ∆ +  ∂∆
l

l
l

cr
Tcr cr cr cr co cr

cr

f
D D T D T  (43) 

 
where 

 

 

1

2

ˆ 0 0

ˆ0 0ˆ

ˆ0 0

 
 
 =  
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 

K

K
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K
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n

D

D
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D

 (44) 
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and 

 

 

0 0
ˆ

0
cr cr
i II

cr
n i

D D

ε

 
 = ∂ 
 ∂∆ 

 (45) 
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Figure 6 – Flowchart of the Newton-Raphson method. 
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When equation (33) is adopted to define (32) the non-null term of (45) is 
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 (46) 

 
 

When the convergence is not obtained using the Newton-Raphson method, the 

fixed-point iteration method, shown in Figure 7 is tried. 
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  Zero the iteration counter:

   Calculate the initial solution: ( )0

,ε∆ l
cr

m

0←q

  Update the counter: 1+← qq

Calculate the incremental crack strain
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Figure 7 – Fixed-point iteration method. 

 

 

2.3.2 Crack status 

Depending on the followed cr cr
n nσ ε−  path, a crack can assume one of six crack statuses as 

shown Figure 8. The first (1) was named initiation and corresponds to the crack initiation. 

The opening status occurs when the crack is in the softening branch (2). In the present 

model a secant branch is assumed to simulate the unloading (3) and the reloading (5) 

phases. The closing status designates the unloading phase while the reopening crack status 

is attributed to the crack in the reloading phase. This assumption does not correspond to the 

most realistic approach, since cyclic tests reveal the occurrence of an hysteretic behavior 
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(Hordijk 1991). Since the present model was developed to simulate the behavior of 

concrete structures under monotonic loading, this simple approach is sufficiently accurate. 

If a crack closes, i.e., 0cr
nε = , the crack status receives the designation of closed (4). The 

fully open (6) crack status occurs when in the crack the mode I fracture energy is fully 

exhausted. 

 

 

σcr
n

n
crε

1

2

5

3

4
6

2

1 - INITIATION
2 - OPENING
3 - CLOSING
4 - CLOSED
5 - REOPENING
6 - FULLY OPEN

 
Figure 8 – Crack status. 

 

The stress update procedure described in the previous section is only applied to the 

active cracks, i.e., when 0cr
nε > . When a crack initiates ( I ctfσ >  and Iθ α≥ ), when a 

crack closes ( 0cr
nε < ) or when a closed crack reopens ( 0cr

nσ > ), the incremental strain 

vector ε∆  must be successively decomposed in order to accurately simulate the crack 

status evolution (see Figure 9). These three crack status changes were named critical crack 

status changes. This decomposition is necessary since the content of crD  and crT  matrices 

depends on the number of active cracks. For instance, when a new crack is formed the size 

of these matrices must be extended in order to accommodate new terms (see equations (34) 

and (35)). 
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Figure 9 – Algorithm used for the decomposition of the incremental strain vector. 

 



Elasto-plastic multi-fixed smeared crack model for concrete 

 

José Sena Cruz, Joaquim Barros and Álvaro Azevedo  27 

The calculation of the number of active cracks (step (2) in Figure 9) is based on the 

content of the database containing the historical data. This database stores, for each 

integration point and for each iteration of the incremental-iterative procedure, all the 

critical parameters such as the stress and strain vectors, the number of cracks, the crack 

stress and strain vectors, the crack statuses, the crack orientation and data associated with 

the crack evolution history. 

 

The stress update procedure, described in the Section 2.3.1, is performed in step (4) 

of Figure 9. When one critical crack status change occurs, the current incremental strain 

vector, ε∆ , must be decomposed. 

 

To calculate the transition point corresponding to crack initiation, ,new mk , to a closed 

crack reopening, ,reopen mk , or to an open crack closure, ,close mk , two algorithms were 

implemented: the Newton-Raphson method (Figure 10) and the bisection method 

(Figure 11). The last one is used when the first fails. Table 1 contains the definition of the 

function ( )f k , the initial solution and the parameter Toler  for some crack status changes. 

These functions and parameters are used in the algorithms shown in Figure 10 and 

Figure 11. 

 

 

Table 1 – Definition of the function f  used in the algorithms shown in Figure 10 and Figure 11, the initial 

solution and the respective convergence criterion parameter. 

Critical crack status changes 
 

New crack initiation Closed crack reopening Open crack closure 

( )f k  ( )ct If kσ−  ( )cr
n kσ  ( )cr

n kε  

0k  ( )
1

1

σ
σ ε σ

−

−
−

∆ −

p
ct I

p p
I I

f
 ,

, , 1

ε
ε ε −−

cr
n m

cr cr
n m n m

 0.5  

Toler  610 cf
−  610 cf

−  610−  

 

Besides the crack initiation conditions described in Section 2.2.1 (tensile strength and 

threshold angle), an additional check is required. When a new crack is initiating, ,new mk  is 

calculated (see Figure 9). At this phase, the new crack is only considered as potential 
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crack. At the end of the first part of the incremental strain vector, , ε∆new m mk , the crack 

normal stress, cr
nσ , is equal to the current tensile strength, ctf , and its normal crack strain, 

cr
nε , has a null value (point 1 in Figure 8). For the remaining part of the incremental strain 

vector, ( ), 11 ε −− ∆new m mk , the potential crack is already considered in equation (41). To 

become a definitive crack, cr
nε∆  of the potential crack must be positive during the 

evaluation of equation (41). If this condition is not fulfilled, the crack initiation procedure 

is aborted and the tensile strength is replaced with the value of the current maximum 

principal stress. 

 

After the determination of the transition point corresponding to the first critical crack 

status change (step 7), the stress vector is calculated, and the historical data of the cracks 

and the incremental strain vector are updated. The decomposition of the incremental strain 

vector ends when no more critical crack status changes occur (see Figure 9). 

 

In this section, m  is the counter of critical crack status changes, requiring a 

decomposition of the vector ε∆ . In Table 2 the meaning of “previous iteration” 1−m  is 

clarified. 

 

Table 2 – Meaning of 1−m  value. 

m  value Algorithmic strategy (PD or PI) Meaning of 1−m  

Path dependent Previous Newton-Raphson iteration 
0=m  

Path independent Previous converged combination 

0>m  Path dependent or path independent Previous iteration in the algorithm of Figure 9 
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Figure 10 – Calculation of the transition point by the Newton-Raphson method. 
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Figure 11 – Calculation of the transition point by the bisection method. 
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2.3.3 Singularities 

When two fully open orthogonal cracks occur at an integration point, it can be shown that, 

in the system of nonlinear equations (41), the shear equations related to these cracks are 

linear dependent. This situation can be illustrated with the following example. 

 

Considering two orthogonal cracks, being one horizontal ( 1 90ºθ = ) and the other 

vertical ( 2 0ºθ = ), and considering that both are fully open, the variation of the crack stress 

vector, σ∆ l
cr , is null. Assuming that in the previous state , 1 1σ σ− −=l

cr cr
m m mT , equation (41) 

leads to 

 

 , 0ε ε  ∆ − ∆ =  l
Tcr co cr cr cr co

m m m m mT D T T D  (47) 

 

resulting in 

 

 

,1
2

,1 ,2
12

,2
1

,1 ,2
12

cr
n

cr cr
t t

cr
n

cr cr
t t

ε ε
γ γ γ

ε ε
γ γ γ

∆ = ∆
+∆ − ∆ = −∆
∆ = ∆
−∆ + ∆ = +∆

 (48) 

 

where ,1cr
nε∆ , ,1cr

tγ∆ , ,2cr
nε∆  and ,2cr

tγ∆  are the normal and shear crack strain variations of 

the crack 1 and 2, respectively. The system of equations (48) cannot be solved since the 

second and fourth equations are linearly dependent. A physical interpretation of this 

situation is presented in Figure 12. The crack normal strain variations can be obtained 

directly from the global strain variations. 
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(a) (b) 
Figure 12 – Crack strain variation: (a) normal strain and (b) shear component. 

 

The solution of (41) for the case of fully open orthogonal cracks requires the 

introduction of the following additional condition 

 

 , , 0γ γ∆ + ∆ =cr i cr j
t t  (49) 

 

where ,γ∆ cr i
t  and ,γ∆ cr j

t  are the crack shear strains variations of a pair orthogonal cracks. 

 

To calculate the stiffness matrix of an element, K , the constitutive matrix, D , is 

required. The calculation of D  of a cracked concrete integration point requires the 

inversion of the matrix that results from the evaluation of the following expression (see 

section 2.1.4, equation (18)) 

 

 ′  = +  
Tcr cr co crD D T D T  (50) 

 

When an integration point has two fully open orthogonal cracks, crD  is null resulting in a 

singular ′D  matrix. To overcome this problem the following residual value is assigned to 

crD , 

 

 610cr
II cD G−=  (51) 
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2.4 Model appraisal 

The performance of the developed multi-fixed smeared crack model is assessed using 

results published by other researchers. Since the concrete plastic deformation is not 

considered in the formulation described, the example selected to validate the model exhibit 

a linear behavior in compression. 

 

Three-point bending tests are commonly used to evaluate the concrete tensile 

strength and the fracture energy (RILEM 1985). The tests carried out by Kormeling and 

Reihnardt (1983) are simulated using the implemented numerical model. The adopted 

mesh (see Figure 13) was composed of 4-node Lagrangian plane stress elements with 2×2 

Gauss-Legendre integration scheme. In order to obtain a well-defined crack pattern at 

mid-span, ahead the notch, 1×2 Gauss-Legendre integration rule was used in the elements 

cross the center line. 
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Figure 13 – Notched beam: geometry, mesh, loading configuration and support conditions. Note: all 
dimensions are in millimeters. 
 

The concrete properties used in the present simulation are listed in Table 3. Three 

different types of tensile-softening diagrams were used: linear, tri-linear and exponential. 

The beam weight was included in the simulation. 

 

Figure 14 presents the response obtained using the three different types of tensile-

softening diagrams described above. The experimental results are also displayed. It can be 

observed that all numerical simulations have the same pre-peak response, up to 1050 kN. 

The maximum numerical peak load was obtained with the linear softening diagram. The 
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tri-linear and the exponential tensile-softening diagrams lead to an identical response in the 

post-peak phase, in good agreement with the experimental results. 

 

Figure 15 shows the crack pattern at the final stage, for the case of tri-linear diagram. 

A well-defined crack above the notch can be observed. Spurious cracks with closing status 

were formed in the neighborhood of the fracture surface. 

 

Table 3 – Concrete properties used in the simulation of the three point bending test. 

Density 6 32.4 10 N/mmρ −= ×  

Poisson's ratio 0.20cν =  

Initial Young's modulus 220000.0 N/mmcE =  

Compression strength 248.0 N/mmcf =  

Tensile strength 22.4 N/mmctf =  

Tri-linear softening parameters 1 0.4ξ = ; 1 0.6α = ; 2 0.8ξ = ; 2 0.2α =  

Fracture energy 0.113 N/mmfG =  

Parameter defining the mode I fracture energy 
available to the new crack 1 2=p  

Shear retention factor  Exponential ( 2 2=p ) 

Crack band-width Square root of the area of the element 

Threshold angle 30ºα =th  
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Figure 14 – Influence of the type of tensile-softening diagram on the load-deflection response. 
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Figure 15 – Numerical crack pattern at the final stage using the tri-linear diagram. 

 

 

3 PLASTICITY 

The plasticity theory has been used by many researchers in the simulation of the behavior 

of structures built with materials exhibiting irreversible deformations, such as concrete 

(Chen 1982), soils (Chen and Mizuno 1990) or masonry (Lourenço 1996). An extensive 

study of this subject can be found in the literature (Lemaitre anb Caboche 1985, 

Lubliner 1990, Crisfield 1997, Simo and Hughes 1998). In the simulation of compressed 

concrete, a model based on the plasticity theory is adopted. This model is described in the 

following sections. Results available in the literature are used to assess the performance of 

the model. 

 

 

3.1 Basic assumptions 

The basic assumption of the plasticity theory, in the context of small strains, is the 

decomposition of the incremental strain, ε∆ , in an elastic reversible part, eε∆ , and an 

irreversible or plastic part, pε∆ : 

 

 e pε ε ε∆ = ∆ + ∆  (52) 

 

The elastic constitutive matrix, eD , is used to obtain the incremental stress vector, 

σ∆ , 
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 ( )e e e pD Dσ ε ε ε∆ = ∆ = ∆ − ∆  (53) 

 

Plasticity based models depend on the concepts of yield surface, flow rule and 

hardening (or softening) law. The yield surface, defined in stress space, limits the elastic 

behavior domain. In general, this surface is a function of the stress state in a point, σ , and 

of some internal variables, a  and κ , that define the evolution of the yield surface. The 

general equation of the yield surface is 

 

 ( ), , 0f aσ κ =  (54) 

 

The back-stress vector, a , locates the origin of the yield surface and κ  is the scalar 

hardening parameter, which defines the amount of hardening or softening. 

 

Depending on the evolution of the yield surface during the loading process, three 

basic hardening types can be defined (see Figure 16): isotropic hardening (Odqvist 1933), 

kinematic hardening (Prager 1955) and mixed hardening (Hodge 1957). The internal 

variables involved in these hardening rules are indicated in Table 4. 

 

 

 σI

 σII
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σII
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 σII

(1)
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(a) (b) (c)  
Figure 16 – Basic hardening rules: (a) isotropic hardening, (b) kinematic hardening and (c) mixed hardening. 
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Table 4 – Basic hardening rules. 

Hardening rule Variables involved 

No hardening (ideal plasticity) ( )f σ  

Isotropic hardening (Figure 16(a)) ( ),f σ κ  

Kinematic hardening (Figure 16(b)) ( ),f aσ  

Mixed hardening (Figure 16(c)) ( ), ,f aσ κ  

 

In the geometric representation shown in Figure 16 a  defines the location of the 

origin of the yield surface whereas κ  controls the size and shape of the yield surface. 

Good results can be obtained with the isotropic hardening when loading is monotonic. 

However, more complex hardening rules are required when the material is submitted to 

cyclic loading. Since the aim of the present model is to simulate the behavior of concrete 

structures under monotonic loading, the back-stress vector will not be considered as a yield 

surface parameter. With these assumptions the yield condition adopted for the present 

model is the following 

 

 ( ), 0f σ κ =  (55) 

 

The evolution of the plastic strain is given by the following flow rule 

 

 
p gε λ

σ
∂∆ = ∆
∂

 (56) 

 

where λ∆  is a non-negative scalar designated by plastic multiplier and g  is the plastic 

potential function in stress space. When g  and f  coincide, the flow rule is named 

associated. Otherwise, a non-associated flow rule is obtained. The yield function and the 

plastic multiplier are constrained by the following conditions 

 

 0f ≤ , 0λ∆ ≥  and 0fλ∆ =  (57) 

 

The variation of the hardening parameter, κ∆ , coincides with the equivalent plastic 

strain variation epsε∆  (strain hardening) or with the plastic work variation pW∆  (work 
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hardening). When the first hypothesis holds ( epsκ ε∆ = ∆ ), the hardening parameter is 

defined by 

 

 ( )Teps p pcκ ε ε ε∆ = ∆ = ∆ ∆  (58) 

 

The assumption of 2 3c =  assures that the plastic strain in the loading direction of 

an uniaxial test is equal to the equivalent plastic strain variation, i.e., 1
eps pε ε∆ = ∆  and 

2 3 1 2p p pε ε ε∆ = ∆ = −∆  (Owen and Hinton 1980). 

 

The equivalent plastic strain variation can also be defined as a function of the plastic 

work per unit volume, pW∆ , resulting 

 

 
1p

eps T pWκ ε σ ε
σ σ

∆∆ = ∆ = = ∆  (59) 

 

where σ  is the uniaxial yield stress which depends on the hardening parameter, and is 

currently named hardening law. When the variation of the hardening parameter is defined 

with the work hardening hypotheses ( pWκ∆ = ∆ ), the following relation holds 

 

 p T pWκ σ ε∆ = ∆ = ∆  (60) 

 

 

3.2 Integration of the elasto-plastic constitutive equations 

The integration of the elasto-plastic constitutive equations over a finite step in a consistent 

manner is one of the main challenges in computational plasticity. At the previous step 

1n − , the stress state and the internal variables are known ( 1nσ − , 1nκ − , 1nε − , 1
p
nε − ), and the 

main task is the calculation of the current values of these variables when a strain variation 

occurs, nε∆ . This problem can be solved with an implicit Euler backward integration 

algorithm. The stability and accuracy of this algorithm has been demonstrated by several 

researchers (Ortiz and Popov 1985, de Borst and Feenstra 1990, Schellekens and de 

Borst 1990). The algorithm has two phases: an elastic predictor phase and a plastic 
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corrector phase. In the former null plastic flow is assumed which leads to a discrete set of 

equations 

 

 

( )

1

1

, 0

e
n n n

n n

n n n

D

f f

σ σ ε
κ κ

σ κ

−

−

 = + ∆
 =
 = =

 (61) 

 

When the elastic trial stress, nσ , lies out the yield surface, plastic flow must be 

considered and the plastic corrector phase of the algorithm is used to find an admissible 

stress state. Otherwise, the load step is considered linear elastic. The algorithm used to find 

an admissible stress state is named return-mapping algorithm and consists in the solution 

of the following system of nonlinear equations, 

 

 

( )

( )

1

1

0

0

, 0

e e
n n n

n

n n n

n n n

g
D

f

σ σ λ
σ

κ κ κ

σ κ

−

−

  ∂  − + ∆ =    ∂ 
 − − ∆ =


 =


 (62) 

 

The first equation of the system of nonlinear equations is obtained from the equation 

 

 ( )1
e p e e p

n n n n n nD Dσ σ ε ε σ ε−= + ∆ − ∆ = − ∆  (63) 

 

where p
nε∆  is replaced with the right-hand side of equation (56). The Newton-Raphson 

method is used to solve the system of nonlinear equations (62), where nσ , nκ  and nλ∆  are 

the unknowns. 

 

 

3.3 Evaluation of the tangent operator 

In the present work, the Newton-Raphson method is used to calculate the solution of the 

system of nonlinear equations resulting from the nonlinear finite element analysis. The 

nonlinear problem is converted into a sequence of linear iterations until convergence is 
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reached. The linearized form of the equations depends on a tangent stiffness matrix, TK , 

which plays a crucial role in the performance and robustness of the Newton-Raphson 

method. In the context of the mathematical plasticity, and according to Simo and 

Taylor (1985), the tangent stiffness matrix must be obtained by consistent linearization of 

the stress update resulting from the return-mapping algorithm at the end of the iteration i . 

 

The elasto-plastic consistent tangent constitutive matrix can be determined from the 

total differentials ndσ , p
ndε  and ndf  (Hofstetter and Mang 1995) or from part of the 

Jacobian matrix used in the Newton-Raphson method of the return-mapping algorithm 

(Lourenço 1996). 

 

 

3.4 Elasto-plastic concrete model 

Several elasto-plastic models have been proposed to simulate the concrete behavior. These 

models differ from each other, mainly, in the shape of the yield surface and in the 

hardening and flow rules. The model described in this section is suitable to simulate the 

concrete compressive behavior under monotonic loading, admitting that the tensile stresses 

do not exceed the concrete tensile strength. 

 

 

3.4.1 Yield surface 

The yield surface proposed by Owen and Figueiras (1983) was adopted in the present 

model. Its main characteristic is the consideration of parabolic meridians. This yield 

surface is defined with the following equation 

 

 ( ) ( ) ( )1 2
, 0T Tf P qσ κ σ σ σ σ κ= + − =  (64) 

 

where P  is the projection matrix, given by 

 

 

0

0

0 0

a b

P b a

c

 
 =  
  

 (65) 
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and q  is the projection vector defined by 

 

 [ ]1 1 1 0
T

q dq d= =  (66) 

 

The parameters a , b , c  and d  can be obtained with 

 

 
2

2

A
a B

 = + 
 

, 
2

2 2

A B
b

 = − 
 

, 3c B= , 
2

A
d =  (67) 

 

where the scalars A  and B  assume the values that result from the fitting process between 

the present model and the experimental results obtained by Kupfer et al. (1969). In these 

circumstances, A  and B  assumes the values of (Owen and Figueiras 1983) 

 

 0.355A =  and 1.355B =  (68) 

 

Figure 17 represents the initial and the limit yield surfaces. This initial yield surface 

is the limiting surface for elastic behavior. Experimental results obtained by Kupfer et 

al. (1969) are also included. 
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Figure 17 – Yield surface for concrete. 
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3.4.2 Hardening behavior 

Figure 18 represents the relationship between the yield stress, σ , and the hardening 

parameter, κ , used to simulate the hardening and softening phases of the concrete 

behavior. Three points define the transitions between the branches of the curve. The 

location of these points is obtained from uniaxial compression tests: 0 0 cfσ α= , p cfσ =  

and lim 0.5 cfσ = . The equivalent plastic strain corresponding to the peak compressive 

strength, pκ , with the following equation, 

 

 1p c c cf Eκ ε= −  (69) 

 

where 1cε  is the total strain at the peak compressive strength. The 0α  parameter defines 

the beginning of the plastic behavior. In most cases 0α  can assume the value 0.3. 

 

For the hardening branch, ( )1σ κ , the relationship used by Lourenço (1996) was 

adopted, whereas for the softening phase, ( )2σ κ  and ( )3σ κ , the post-peak relationship 

proposed by CEB-FIB (1993) for the uniaxial compressive behavior was used. The 

expressions of the hardening (and softening) behavior laws are included in APPENDIX I. 

 

 

σ

κ

_

κp limκ

σ
_ _

σ3

2σ
_

1σ
_

0

limσ
_

pσ
_

(κ)

(κ)

(κ)

 
Figure 18 – Hardening/softening law for concrete. 
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The plastic strain variation is described by the following expression which is 

assumed to be valid when an associated flow rule is considered 

 

 
p

c

g f
hε λ λ

σ σ
∂ ∂∆ = ∆ = ∆
∂ ∂

 (70) 

 

The scalar function ch  is included in this equation in order to amplify the contribution of 

fλ σ∆ ∂ ∂  to pε∆ . The function ch  depends on the hydrostatic pressure, p, and reads 

(Abaqus 2002) 

 

 ( )
2

01c c
c

p
h h c

f
σ

 
= = +  

 
 (71) 

 

A value of 6.056 for 0c  was obtained based on the condition that under biaxial 

compression, with equal compressive stress in both directions, the plastic strain at failure 

is, according to Kupfer et al. (1969), approximately 1.28 times the plastic strain at failure 

under uniaxial compression. 

 

 

3.4.3 Return-mapping algorithm 

Assuming the strain-hardening hypothesis, κ λ∆ = ∆  (Cachim 1999, Abaqus 2002), the 

system of nonlinear equations (62) can be reduced to the following pair of equations, 

 

 

( )

( )

1

1, ,

2,

0

, 0

e e
n nn n c n

n

nn n

f
f D h

f f

σ σ κ
σ

σ κ

−  ∂  = − + ∆ =    ∂ 

 = =

 (72) 

 

Figure 19 shows the return-mapping algorithm currently implemented in the 

computer code. The norm defined in step (4) is given by 
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( )

( )

1

,

,

q

e q e q q
n n n c n

q
nn

q q
n n

f
D h

r

f

σ σ κ
σ

σ κ

−

∞

  ∂  − + ∆    ∂  =
 
 
 

 (73) 

 

where the superscript q  corresponds to the iteration counter. The Jacobian matrix used in 

step (6) is defined by the following four blocks 

 

 

1 1

2 2

2
1

2

T

e c
c c

T

f f

J
f f

f h f f
D h h

f f

σ κ

σ κ

κ
σ σ σ σ

σ κ

−

∂ ∂ 
 ∂ ∂ = ∂ ∂ 
 ∂ ∂ 
  ∂  ∂  ∂ ∂  + ∆ +     ∂ ∂ ∂ ∂   
 =
  ∂  ∂
  ∂ ∂   

 (74) 

 

where 

 

 
( )1 2T

f P
q

P

σ
σ σ σ

∂ = +
∂

;   
( ) ( )

2

1 2 3 22

T

T T

f P P P

P P

σ σσ
σ σ σ σ σ

∂ = −
∂

 

0 12
2c

c

h p
c q

fσ
∂ =
∂

;  
f d

h
d

σ
κ κ

∂ = − = −
∂

 

(75) 
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Figure 19 – Return-mapping algorithm of the elasto-plastic model. 
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3.4.4 Consistent tangent constitutive matrix 

The consistent tangent constitutive matrix adopted in the present numerical model is 

deduced in APPENDIX II, resulting 

 

 

T

ep
T

f f
H H

D H
f f

h H

σ σ

σ σ

 ∂ ∂
 ∂ ∂ = −

 ∂ ∂+  ∂ ∂ 

 (76) 

 

where 

 

 
12

1

2
e

c

f
H D h λ

σ

−
− ∂ = + ∆   ∂ 

 (77) 

 

 

3.5 Model appraisal 

The performance and the accuracy of the developed elasto-plastic model are assessed using 

results available from the literature. All the selected examples are governed by the 

compressive behavior. 

 

 

3.5.1 Uniaxial compressive tests 

The uniaxial compressive tests 3B2-4 to 3B2-6, carried out by Van Mier (1984), were 

selected for a comparison with the proposed model. One single 4-node Lagrangian plane 

stress finite element with 1×1 Gauss-Legendre integration scheme was used to simulate the 

experimental results. The dimensions of the finite element coincides with those of 

specimen (200×200×200 mm3). Table 5 shows the adopted concrete properties. The 

numerical and the experimental results are compared in Figure 20. 
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Table 5 – Concrete properties used in the simulation of the uniaxial compressive test. 

Poisson's ratio 0.20cν =  

Initial Young's modulus 233344.0 N/mmcE =  

Compression strength 243.24 N/mmcf =  

Strain at peak compression stress 3
1 2.7 10ε −= ×c  

Parameter defining the initial yield surface 0 0.3α =  
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Figure 20 – Stress-strain relationships: experimental and numerical results. 

 

Up to peak stress, the model matches with high accuracy the experimental results. In 

the softening phase, and for strains higher than 4.5 ‰, the model estimates a residual 

strength that is lower than those experimentally obtained. This indicates that the softening 

branch of the uniaxial compressive behavior proposed by CEB-FIB (1993), mainly the 

second softening branch, ( )3σ κ , may not be suitable to reproduce this type of test. 

 

 

3.5.2 Biaxial compressive test 

To evaluate the importance of the ch  parameter in the flow rule, the biaxial compressive 

tests carried out by Kupfer et al. (1969) were selected. One single 4-node Lagrangian plane 

stress element with 1×1 Gauss-Legendre integration scheme was used in the numerical 
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model. Table 6 shows the properties adopted for the concrete and for the yield surface. In 

Figure 21 the numerical simulation with 0 0c =  ( 1.0ch = ) and 0 6.056c =  are compared 

with the experimental results. 

 

 

Table 6 – Concrete properties used in the simulation of the biaxial compressive test. 

Poisson's ratio 0.20cν =  

Initial Young's modulus 230180.0 N/mmcE =  

Compression strength 232.06 N/mmcf =  

Strain at peak compression stress 3
1 2.2 10ε −= ×c  

Parameter defining the initial yield surface 0 0.3α =  
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Figure 21 – Influence of the 0c  parameter in numerical response. 

 

The results shown in the Figure 21 indicate that the response obtained with 0 0c =  is 

stiffer in the hardening phase and too brittle after the peak stress. A good agreement with 

the experimental results was obtained with 0 6.056c = . 
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4 ELASTO-PLASTIC MULTI-FIXED SMEARED CRACK MODEL 

In the present section an elasto-plastic multi-fixed smeared crack model is proposed. This 

model corresponds to the coupling of the multi-fixed smeared crack model described in 

Section 2 and the elasto-plastic model presented in Section 3. In the following sections the 

implemented model is described. 

 

 

4.1 Yield surface 

Two types of yield surface were combined in the proposed numerical model: the Rankine 

criterion (described in Section 2) for concrete in tension, and the Owen and 

Figueiras (1983) yield surface (described in Section 3) for concrete in compression. Figure 

22 represents the initial and the limit yield surfaces. Experimental results from Kupfer et 

al. (1969) are also included. 
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Figure 22 – Yield surfaces adopted in the elasto-plastic multi-fixed smeared crack model. 
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4.2 Integration of the constitutive equations 

The incremental strain vector is decomposed in an incremental crack strain vector, crε∆ , 

and an incremental strain vector of the concrete between cracks, coε∆ . This vector is 

decomposed in an elastic reversible part, eε∆ , and an irreversible or plastic part, pε∆ , 

resulting 

 

 cr co cr e pε ε ε ε ε ε∆ = ∆ + ∆ = ∆ + ∆ + ∆  (78) 

 

The constitutive equations of the present model follow the multi-fixed smeared crack 

model and the elasto-plastic model and are deduced in the following sections. 

 

 

4.2.1 Constitutive equations from the multi-fixed smeared crack model 

The incremental stress vector can be computed from the incremental elastic strain vector, 

 

 σ ε∆ = ∆e e
m mD  (79) 

 

Incorporating (79) into (39) leads to 

 

 ( ), 1 , 1σ σ σ ε− −+ ∆ = + ∆l l
cr cr cr e e

m m m m mT D  (80) 

 

Substituting (78) into (80) yields 

 

 ( ), 1 , 1 ,σ σ σ ε ε ε− −  + ∆ = + ∆ − ∆ − ∆ l l l
Tcr cr cr cr e p cr e cr cr

m m m m m m m m m mT T D T D T  (81) 

 

and including (70) in (81) results in 

 

 

( ), 1 , , , 1

, 0

σ σ ε ε σ

ε λ
σ

− − + ∆ ∆ + ∆ − − 
  ∂ ∆ − ∆ =  ∂  

l l l l
Tcr cr cr cr e cr cr cr

m m m m m m m m

cr e
m m m c m

m

T D T T

f
T D h

 (82) 
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4.2.2 Constitutive equations from the elasto-plastic model 

The incremental elastic strain vector, e
mε∆ , multiplied by the elastic constitutive matrix, 

eD , is used to update the stress vector, which leads to 

 

 1σ σ ε−= + ∆e e
m m mD  (83) 

 

Including (78) and (70) in (83) yields to 

 

 ( )1 ,σ σ ε ε λ
σ−

 ∂ = + ∆ − ∆ − ∆  ∂ 
e cr e

m m m m m c m

m

f
D h D  (84) 

 

This equation can be written in a more suitable format as 

 

 ( )( )1

1 , 0σ σ ε ε λ
σ

−

−
 ∂   − − ∆ − ∆ + ∆ =   ∂ 

e e cr
m m m m m c m

m

f
D D h  (85) 

 

or 

 

 ( )( )1

1 , , 0σ σ ε ε λ
σ

−

−
 ∂    − − ∆ − ∆ + ∆ =     ∂ 

Te e cr cr
m m m m l m m c m

m

f
D D T h  (86) 

 

 

4.2.3 Return-mapping algorithm 

Equations (82), (86) and (64) define the system of nonlinear equations that corresponds to 

the return-mapping algorithm of the present model. Assuming κ λ∆ = ∆  (see Section 3.4.3) 

this system becomes 
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( )

( )( )

( )
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0

, 0

σ σ ε ε σ

ε κ
σ

σ σ ε ε κ
σ

σ κ

− −

−

−

  = + ∆ ∆ + ∆ − − 
   ∂ ∆ − ∆ =   ∂   


  ∂   = − − ∆ − ∆ + ∆ =      ∂ 



 = =



l l l l

l

Tcr cr cr cr e cr cr cr
m m m m m m m m m

cr e
m m m c m

m

Te e cr cr
m m m m m m m c m

m

mm m

f T D T T

f
T D h

f
f D D T h

f f

 (87) 

 

In the system of nonlinear equations (86) the unknowns are ,ε∆ l
cr

m , σ m  and κm . 

Figure 23 shows the return-mapping algorithm implemented in the present computer code. 

The determination of the initial solution is based on the assumption of null plastic flow 

(see step 2). The residual vector defined in step (3) is given by 

 

 1, 2, 3, =  
T

m m m mr f f f  (88) 

 

and the corresponding norm (step 4) is defined as 

 

 1, 2, 3,∞ ∞
 =  

T

m m m mr f f f  (89) 

 

The Jacobian matrix of step (6) is composed of nine blocks 

 

 

1 1 1

2 2 2

3 3 3

ε σ κ

ε σ κ

ε σ κ

 ∂ ∂ ∂
 ∂∆ ∂ ∂ 
 ∂ ∂ ∂ =

∂∆ ∂ ∂ 
 

∂ ∂ ∂ 
 ∂∆ ∂ ∂ 

l

l

l

cr

cr

cr

f f f

f f f
J

f f f

 (90) 

 

being 
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Figure 23 – Returning mapping algorithm of the elasto-plastic multi-fixed smeared crack model. 
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f hf f
T D hκ

σ σ σ σ

 ∂  ∂ ∂ ∂ = ∆ +  ∂ ∂ ∂ ∂  
 

1 cr e c
c

f h f
T D h κ

κ κ σ
∂ ∂ ∂ = + ∆ ∂ ∂ ∂ 

 

(91) 

 

 

2

ε
∂

 =  ∂∆ l

Tcr
cr

f
T  

2
12

2

T

e c
c

f hf f
D hκ

σ σ σ σ
−  ∂  ∂ ∂ ∂   = + ∆ +     ∂ ∂ ∂ ∂  

 

2 c
c

f h f
h κ

κ κ σ
∂ ∂ ∂ = + ∆ ∂ ∂ ∂ 

 

(92) 

 

 

3 0
ε

∂ =
∂∆ l

T
cr

f
 

3

T
f f

σ σ
∂  ∂ =  ∂ ∂ 

 

3f f

κ κ
∂ ∂=
∂ ∂

 

(93) 

 

These derivatives are defined in Sections 2.3.1 and 3.4.3. In the present model 0ch κ∂ ∂ = . 

 

 

4.2.4 Method proposed by de Borst and Nauta 

An additional algorithm was implemented and to be used when the algorithm of Figure 23 

fails. This algorithm is called was proposed by de Borst and Nauta (1985). In the method 

proposed by de Borst and Nauta the constitutive equations of the smeared crack model and 

the constitutive equations of the elasto-plastic model are solved separately. To solve the 

constitutive equations of the smeared crack model, the procedure described in 

Section 2.3.1 was used, replacing ε∆  by pε ε∆ − ∆ . The constitutive equations of the 

elasto-plastic model are solved using the procedure described in Section 3.4.3 for the 

elasto-plastic model, replacing ε∆  by crε ε∆ − ∆ . Figure 24 shows the implemented 
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algorithm. The determination of the initial solution is based on the assumption of null 

plastic flow (see step 2). The solution is reached when the yield surface is not violated 

(step 4). 
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Figure 24 – Method proposed by de Borst and Nauta (1985). 
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4.3 Consistent tangent constitutive matrix 

The elasto-plastic cracked consistent tangent operator, epcrD , can be calculated from the 

elasto-plastic consistent tangent constitutive matrix epD  (see Section 3.4.4) and from the 

constitutive matrix of cracked concrete, crcoD  (see Section 2.1.4). The incremental stress 

vector, σ∆ , is obtained with 

 

 ep epDσ ε∆ = ∆  (94) 

 

where epD  is the elasto-plastic consistent tangent constitutive matrix, and epε∆  is the 

incremental elasto-plastic strain vector, which includes the elastic and the plastic variations 

of the strain vector ( e pε ε∆ + ∆ ). Incorporating equation (78) into (94) and using (5) yields 

 

 ( )Tep cr crD Tσ ε ε ∆ = ∆ − ∆  l  (95) 

 

Pre-multiplying equation (95) by crT  and substituting (8) and (11) in the left side of (95), 

an expression that evaluates the incremental crack strain vector from the incremental 

cracked concrete strain vector is obtained, 

 

 ( ) 1Tcr cr cr ep cr cr epD T D T T Dε ε
−

 ∆ = + ∆ l  (96) 

 

Including (96) in (95) the constitutive law for cracked concrete is obtained 

 

 ( ) 1T Tep ep cr cr cr ep cr cr epD D T D T D T T Dσ ε
−    ∆ = − + ∆     

 (97) 

 

or 

 

 epcrDσ ε∆ = ∆  (98) 

 

where epcrD  is the constitutive matrix for the elasto-plastic cracked concrete 
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 ( ) 1T Tepcr ep ep cr cr cr ep cr cr epD D D T D T D T T D
−

   = − +     (99) 

 

 

4.4 Model appraisal 

The first part of this section describes some numerical tests that have the main purpose of 

evaluating the performance of the model under cyclic loading, inducing different crack 

statuses and irreversible deformations. In the second part, the performance of the 

developed elasto-plastic multi-fixed smeared crack model is assessed using results 

available from the literature. 

 

 

4.4.1 Numerical tests 

The numerical tests were performed using one single 4-node Lagrangian plane stress 

element with 1×1 Gauss-Legendre integration scheme. Table 7 shows the adopted 

parameters. Three numerical tests were selected from all that were carried out during the 

developing phase of the model. In the remaining part of this section a description of these 

tests is performed. 

 

 

Table 7 – Concrete properties used in the simulation of the numerical tests. 

Poisson's ratio 0.20cν =  

Initial Young's modulus 233550.0 N/mmcE =  

Compression strength 238.0 N/mmcf =  

Strain at peak compression stress 3
1 2.2 10ε −= ×  

Parameter defining the initial yield surface 0 0.3α =  

Tensile strength 22.9 N/mmctf =  

Type of softening diagram Exponential 

Fracture energy 0.005 N/mmfG =  

Shear retention factor Exponential ( 2 2=p ) 

Crack band-width Square root of the area of the element 
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Traction-Compression-Traction (TCT) numerical test 

In the first uniaxial test, the element is, initially, submitted to a tensile force up to the 

formation of a single crack (steps 1 and 2 in Figure 25). With the purpose of inducing 

plastic deformation under compression, compressive forces are applied (step 3 and 4). In 

the beginning of the compression softening phase response, the loading direction is 

reversed causing a return to the crack-opening process (steps 5 and 6). The loading 

procedure is terminated at step 7, which corresponds to a complete dissipation of the 

fracture energy (fully open crack status). Figure 25 shows the obtained response in terms of 

principal stress versus principal strain relationship. 

 

 

Compression-Traction-Compression (CTC) numerical test 

This uniaxial test consists on, firstly, submitting the element to a compressive force up to 

the occurrence of plastic deformation under compression (steps 1, 2 and 3 in Figure 26). 

After wards, loading is reversed and is increased up to crack formation (step 4) and crack 

propagation (step 5). At the tensile softening phase loading is again reversed until the 

compressive softening response is reached. Figure 26 shows the obtained response in terms 

of principal stress versus principal strain relationship. 
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Figure 25 – TCT numerical test. 
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Figure 26 – CTC numerical test. 

 

 

Biaxial numerical test 

The biaxial test consists on the application of biaxial tensile forces up to the formation of 

two orthogonal cracks (step 1 in Figure 27). After wards, loading in the x1 direction is 
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reversed in order to induce compressive forces with the same direction. In the x2 direction 

the load continues its progression in the same direction until total dissipation of the fracture 

energy (step 2 and 3). In step 4, the concrete reached a compressive softening phase (x1 

direction) and the crack orthogonal to x1 direction remains with fully open crack status. 

Figure 27 shows the obtained response in terms of x1 and x2 normal stresses. 
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Figure 27 – Biaxial numerical test. 

 

 

4.4.2 Beam failing by shear 

Figure 28 shows the finite element mesh adopted in the simulation of the behavior of the 

beam tested by Walraven (1978). Due to its load and properties the beam failed by shear. 

In the simulation, 8-node Serendipity plane stress elements with 3×3 Gauss-Legendre 

integration scheme were used. Table 8 includes the main properties of the concrete. The 

properties of the steel reinforcement located in the bottom side of the beam are: Young 

modulus's 2210000 N/mmsE = ; yield stress 2440 N/mmsyf = . 

 

Some researches have already used this test with the aim of assessing the 

performance of other models (de Borst and Nauta 1985, Póvoas 1991, Barros 1995). The 

obtained results indicate that the simulation of beams failing by shear is a difficult task. 
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Figure 28 – Finite element mesh of the moderately deep beam. 

 

 

Table 8 – Concrete properties used in the simulation of the beam failing by shear. 

Poisson's ratio 0.20cν =  

Initial Young's modulus 228000.0 N/mmcE =  

Compression strength 220.0 N/mmcf =  

Strain at peak compression stress 3
1 2.2 10ε −= ×c  

Parameter defining the initial yield surface 0 0.3α =  

Tensile strength 22.5 N/mmctf =  

Tri-linear softening diagram parameters 1 0.01ξ = ; 1 0.45α = ; 2 0.05ξ = ; 2 0.10α =  

Fracture energy 0.06 N/mmfG =  

Parameter defining the mode I fracture energy 
available to the new crack 1 2=p  

Shear retention factor Exponential ( 2 2=p ) 

Crack band-width Square root of the area of the integration point 

Threshold angle 30ºα =th  

 

Figure 29 and Figure 30 show the experimental and the numerical crack pattern 

obtained, respectively. A shear crack near the middle of the shear-span of the represented 

part of the beam can be easily identified. Due to the perfect bond assumed between the 

reinforcement and the concrete, the numerical model has predicted the formation of cracks 

at the reinforcement level, which were not observed in the experimental test. Figure 31 

includes all cracks and the plastic zones. In some integration points, the concrete is cracked 

and exhibits plastic deformation, simultaneously. 
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Figure 29 – Experimental crack pattern at impending failure (de Borst and Nauta 1985). 

 

 

F

 
Figure 30 – Numerical crack pattern at the final stage (only cracks with OPENING status are included). 
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Figure 31 – Numerical crack pattern (all cracks) and plastic zones at the final stage. 

 

Figure 32 shows the relationship between the load and the deflection at mid-span, for 

both the experimental test and the numerical analysis. A good agreement can be observed 

with the exception of the ultimate load, which is higher in the numerical simulation. The 

reason for this behavior is the non-shear failure obtained with the numerical model. 
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Figure 32 – Load vs. deflection at mid-span: experimental and numerical results. 

 

 

5 CONCLUSIONS 

The present report describes the elasto-plastic multi-fixed crack model for concrete 

developed. This model was implemented in FEMIX computer code.  

 

The formulation of the developed elasto-plastic multi-fixed smeared crack model 

was described in detail. This model has two independent yield surfaces: one for concrete in 

tension and the other for concrete in compression. The former controls crack initiation and 

propagation and the latter controls the plastic behavior of compressed concrete. The 

incremental strain vector ε∆  is decomposed in order to accurately simulate the crack 

status evolution. The post-cracking behavior of concrete depends on the tension-softening 

diagram. In the developed computer code several alternatives for this diagram are 

available. Fully implicit Euler backward integration schemes are used to integrate the 

constitutive equations. Data available in the literature was used to show that the developed 

model can predict, with enough accuracy, the nonlinear behavior of concrete structures. 
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APPENDIX I: HARDENING/SOFTENING LAW FOR CONCRETE 

 

The expression that defines the hardening behavior is the following (see also Figure 18) 
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The first branch of the softening phase is defined by 
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The second branch of the softening phase is defined by 
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where 
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Finally, 1cε  is the strain at the uniaxial peak compressive stress, cf , and cE  is the initial 

Young’s modulus of concrete. 
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APPENDIX II: CONSISTENT TANGENT OPERATOR 

 

The derivation of the consistent elasto-plastic tangent matrix requires the determination of 

the total differentials ndσ , p
ndε  and ndf  (Simo and Hughes 1988), obtained from the 

constitutive equation (63), the plastic flow (70) and the yield condition (64), respectively, 

resulting 
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Incorporating equation (108) into (107) yields 
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Including equation (110) in equation (109), results 
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and assuming the strain hardening hypotheses ( d dλ κ= ), leads to 
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Substituing this equation into (110) yields 
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where h  is the hardening modulus. Finally, the consistent tangent stiffness matrix, epD , is 

given by 
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