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Abstract. Recent evidence suggests that the neural mechanisms under-
lying memory for serial order and interval timing of sequential events are
closely linked. We present a dynamic neural field model which exploits
the existence and stability of multi-bump solutions with a gradient of
activation to store serial order. The activation gradient is achieved by
applying a state-dependent threshold accommodation process to the fir-
ing rate function. A field dynamics of lateral inhibition type is used in
combination with a dynamics for the baseline activity to recall the se-
quence from memory. We show that depending on the time scale of the
baseline dynamics the precise temporal structure of the original sequence
may be retrieved or a proactive timing of events may be achieved.

Keywords: Dynamic Field Model, Serial Order, Interval Timing, Pre-
frontal Cortex.

1 Introduction

Virtually every aspect of our everyday routine actions is embedded in a sequential
context. We see this in tasks like getting dressed, playing games, setting the
dinner table or cooking a meal. The capacity to hold the temporal order of a
short sequence of events in memory is of primary importance to our ability for
efficient high-level planning when precise order of what has just happened and
what is about to happen is of the essence. Very often a fluent and successful task
execution requires not only a judgment about the ordinal sequence structure but
also a metrical judgment that involves the analysis of elapsed time. Our ability
to adjust behavior to temporal regularities in the environment in the range of
seconds or minutes is called interval timing [1]. It manifests for instance when
we start preparing an action in anticipation of a salient perpetual event that will
happen in the nearer future.

Experimental evidence from physiological and behavioral studies suggests that
the neural mechanisms supporting both ordinal and interval properties of time
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are closely related (for discussion see e.g. [2,3,4]). It has been postulated that
temporally predictable changes in self-sustained activity of prefrontal “delay”
cells which are known for their role in working memory and action planning
may be used by the brain to measure elapsed time [5].

In this paper we present a computational model based on dynamic neural fields
[6] that aims at testing the idea of shared mechanisms for temporal and ordinal
coding of sequential processes. More concretely, the model builds on three key
neuroscientific findings. 1) Averbeck et al. [7] described firing patterns of cells
in prefrontal cortex (PFC) in a sequential task that are consistent with the
notion of a parallel processing of planned serial movements (see also [8]). They
reported that prior to sequence onset neural population activity reflected each
of all forthcoming goal-directed actions with a pre-activation gradient encoding
serial order. 2) Various studies that directly investigated the neural basis of
timing report ensemble activity showing a monotonic relationship between peak
activity and elapsed time [3,9]. 3) Separate subpopulations in PFC represent
intended future goal-directed actions and already accomplished goals [10].

Dynamic neural field models explain the capacity to hold an item of informa-
tion “on-line” in short term memory as the result of strong recurrent interactions
within neural populations that can sustain a persistent “bump” activity in the
absence of external input [6,11,16]. The model extends previous mathematical
results on the existence of multiple bumps of equal strength [12] to implement
a working memory of sequential events in which varying levels of self-sustained
peak activity are correlated with the relative position of each item.

In what follows, we begin with a description of the model consisting of three
coupled neural fields. We discuss mathematical details of the model in section
3. A report of a series of simulation results is given in section 4, followed by a
discussion of results and related work.

2 Model Description

In the experiments designed to test the neural processing of serial order in goal-
directed behavior typically simple reaching or saccadic eye movements towards
objects are used. The temporal order may be defined by the spatial object po-
sition (that is, movement direction and amplitude) or object features like color,
weight or size. The central idea of dynamic field models is that suprathreshold
population activity of neurons tuned to these continuous dimensions represents
specific parameter values. Fig. 1 presents an overview of the model architecture
which is inspired by the experimental findings summarized in the Introduction.
The self-sustained activation pattern in field uSM stores all items of a sequence
with a strength of activation that decreases from item to item as a function of
elapsed time since sequence onset. This activation gradient is achieved by com-
bining a field dynamics that guarantees the evolution of a single, self-stabilized
bump in response to a localized transient input representing a perceived event
with a state-dependent threshold accommodation dynamics for the firing rate
function [13]. Through excitatory connections, neurons in uSM project their
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activation to corresponding neurons in field uSR. This input leads to a sub-
threshold pre-activation of neural populations that mirrors the primacy gradi-
ent of strengths in uSM . Sequence recall starts with a continuous increase of the
baseline activity which brings neural populations closer to the threshold for the
evolution of a self-stabilized bump. The order and timing of sequence elements
can be retrieved by using the baseline dynamics to first trigger a suprathreshold
response of the population with the highest pre-activation which then becomes
suppressed due to inhibitory feedback from field uPE . Self-stabilized population
activity in this field is initially driven by the activation dynamics of the corre-
sponding population in uSR and may thus be described as a memory for already
achieved events or goals.

Fig. 1. The architecture of the field model

3 Model Equations

The dynamics in the sequence memory field is governed by the following equation
[6]:

τuSM u̇SM(x, t) = −uSM(x, t) +hSM (t) +
∫

w(x − x′)f (uSM(x′, t)) dx′ + S(x, t)

(1)
where uSM(x, t) represents the activity at time t of a neuron encoding dimen-
sion x. The parameter τuSM > 0 defines the time scale of the field. The firing
rate function f is taken as the Heaviside step function with threshold 0. S(x, t)
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represents the time-dependent, localized input to the field. It is taken as a Gaus-
sian centered at position x with amplitude Sstrength > 0 and standard deviation
σinput > 0 . The connection function w(x) determines the coupling between
neurons within the field. It is well know that coupling function of lateral in-
hibition type used by Amari in his original work (1977) do not support stable
multi-bump solutions [12,16]. Using a coupling function with oscillatory rather
than monotonic decay, Laing et al (2002) have shown that multiple regions of
suprathreshold activity can persist in a field. To model working memory for
several events separated in time we adapt the connection function w used in
[12]:

w(x) = Ae−b|x| (b sin |αx| + cos(αx)) , (2)

where the parameter b > 0 controls the rate at which the oscillations in w decay
with distance. The parameters A and α are added to control the amplitude
and the zero crossings of w. The variable hSM (t) defines the baseline level of
activation which we chose to vary with time. Note that by including hSM(t) in
the definition of the firing rate function f = f (u − hSM(t)) it becomes clear
that changing the baseline level is equivalent to changing the threshold of f .
Following the idea of the phenomenological model for threshold accommodation
in dynamic fields discussed by Coombes and Owen [13], we apply the following
state-dependent dynamics for the baseline activity:

ḣSM = (1 − g(uSM(x, t))) (−hSM + hSM0) + kg(uSM(x, t)), (3)

where g is chosen as the Heaviside step function, hSM0 defines the level to which
hSM relaxes without suprathreshold activity at position x and k > 0 measures
the growth rate when it is present. As the result of the baseline or threshold
dynamics a primacy gradient of strengths is establish when at different points in
time bumps evolve in response to external input. The standard deviation σinput

is chosen to guarantee that the population evolves a single localized activity
pattern centered at the stimulated field position. A minimum spatial distance
between successive input presentations ensures that a multi-bump solution may
stabilize.

The dynamics of the “sequence recall” field uSR and the “past events” field
uPE are governed by the following equations, respectively:

τuSR u̇SR(x, t) = −uSR(x, t) + hSR(t) +
∫

wSR(x − x′)f (uSR(x′, t)) dx′

−
∫

w(x − x′)f (uPE(x′, t)) dx′ + uSM(x), (4)

τuP E u̇PE(x, t) = −uPE(x, t) + hPE + uSR(x, t)f (uSR(x′, t))

+
∫

w(x − x′)f (uPE(x′, t)) dx′. (5)

Since like uSM also uPE has to represent multi-bumps as stable solution we use
the same connection function (2). The baseline activity hPE < 0 is constant. The
situation is different for uSR where a single localized activity pattern represents
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a particular event during sequence recall. To ensure the existence of a 1-bump
solution we use a connection function of lateral inhibition type given by:

wSR(x − x′) = wexcitee

(
− (x−x′)2

2σ2
excite

)
− winhib. (6)

The baseline activity hSR(t) evolves continuously in time described by the
equation:

τhSR ḣSR = 1, hSR(t0) = huSR0
< 0, (7)

where τhSR controls the growth rate of hSR.

4 Simulations Results

Fig. 2 shows a snapshot of a simulation of a one-dimensional version of the
sequence model. To give a concrete example, the order of a sequence of goal-
directed reaching movements may be defined by object color. There are 5 reach-
ing movements to different objects that are successively executed. In the model,
the series of localized inputs to the “sequence memory” field triggers a self-
stabilized pattern consisting of 5 peaks (Fig.2, left). Due to the threshold ac-
commodation dynamics (dashed line) the peak amplitudes reflect the temporal
order of events. Fig.2 (right) shows the activation patterns in the “sequence re-
call” field (solid line) and the “past events” field (dashed line) at a time when
all representations in uSR are below threshold because the activation peak at
x = 100 in uPE has just suppressed the representation of the first event and the
representation of the second event at x = 60 is just about to reach the threshold.

Fig. 2. A snapshot of a simulation of a one-dimensional version of the sequence model
is shown. The following parameters value were used: For uSM , τuSM = 20, hSM0 = −4,
k = 0.01, Sstrength = 8, σinput = 4, xinput ∈ {20, 60, 100, 140, 180}. For uSR, τuSR = 20,
τhSR = 100, hSR0 = −17, wexcite = 16, σexcite = 4 and winhib = 0.01. For uPE,
hPE = −4 and τuPE = 40. The connection function parameters b = 0.15 and α = 0.3
were equal for all fields, A = 2 for uSM and A = 3 for the others fields.

To directly compare the timing of events during encoding and recall, Fig. 3
compares the time courses of the population activity in the “sequence memory”
field (top) and the “sequence recall” field (bottom) for two different choices of
the time scale for the baseline dynamics in uSR. Time t = 0 indicates the start
of the sequence and the first event (i.e., first object reached) is perceived at
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about t = 200. Note that the events are irregularly spaced in time. As can be
seen in the bottom figures, all subpopulations in the recall field appear to be
from the beginning on pre-activated with a strength reflecting the rank order of
execution. This model behavior reflects nicely the main findings about parallel
processing of serial order in the neurophysiological study of Averbeck and col-
leagues (2002). If the time scale of the baseline dynamics is chosen as inversely
related to the parameter k controlling the growth rate of the threshold accom-
modation dynamics, τhSR = 1/k, the recall dynamics nearly perfectly reproduces
the timing of events (bottom left). If the time scale for the baseline dynamics
is chosen to be faster, τhSR < 1/k, proactive timing of events can be observed
(bottom right). The total execution time decrease but the proportion of total
time for each event of the sequence remains essentially invariant. It is beyond
the scope of this article to compare model prediction directly with theoretical
and experimental results about interval timing. It is however worth mentioning
that the model behavior is in line with key principles [1]. When people are asked
to speed up or slow down the execution of a movement sequence they do so with
near constancy in the relative timing. Moreover, assuming that noise may affect
the growth rate of the baseline shift from trial to trial the model predicts that
the variability of time estimation grows proportionally with interval duration.

Fig. 3. The time course of the maximal activation of each subpopulation in Fig. 2 (left)
is shown for the sequence encoding (top) and the sequence recall (down) fields. For the
recall τhPE = 100 (left) and τhP E = 70 (right) were chosen.

Fig. 4. Example of a model simulation in two dimensions. Self-stabilized bumps in
uSM (left) and the time course of activity in uSM and uSR (right) are shown.
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It is straightforward to generalize the model to higher dimensions. Fig.4 shows
an example of dynamic fields spanned over two dimensions representing for in-
stance movement direction and amplitude. Stable multi-bump solutions in re-
sponse to transient inputs exist for the two-dimensional analogue of the coupling
function (2).

5 Discussion

We have presented a dynamic field model of sequential events that implements
the idea of closely related neural systems for controlling the interval and or-
dinal dimensions. Serial order is stored in working memory by assuming that
memory strength for each event decreases as a function of elapsed time between
sequence onset and the event. During recall, the ordinal and temporal structure
is recovered from the memory list by applying a simple dynamics for the base-
line activity of the decision field. An interesting feature of the model is that a
speeding up of the baseline dynamics leads to a proactive timing of events. For
a cognitive agent such a mechanism may be important for instance to timely
prepare the next action or to allocate attention. The field model shares key fea-
tures like parallel response activation and activation gradient with “Competitive
Cuing” models [14,15] that have been applied to a wide variety of serial order
problems (mostly concerning the ordinal dimension). Compared to connectionist
implementations, the dynamic field approach offers advantages because it allows
us to rigorously understand the existence and stability of activation patterns and
their dependence on external inputs [6,12,13]. This understanding may guide the
development of complex cognitive models.

One of our future goals is the validation of the sequence model as part of an
existing dynamic field for human-robot interaction [17]. In the context of robotics
applications it is important to stress that due to the self-stabilized properties
of the field dynamics the model runs autonomously without feedback from the
environment. This can be used by the robot for instance to “mentally” simu-
late the timing of sequential events. However, it is also possible and technically
straightforward to include in the model sensory feedback as additional input
necessary to trigger event representations in uSR or uPE [18].

In the present implementation the field model does not allow us to handle
repeated items in a sequence. One possibility to overcome this limitation is to
postulate the existence of a dynamic control signal that allows the activation gra-
dient to vary during the course of sequence generation [15]. A neural substrate
for such a control signal is not known and it would require an extra learning
process to establish links between the signal and the sequence elements. For a
dynamic field model a more parsimonious solution would be to add time as a
continuous dimension along which items may be discriminated, just like per-
ceptual or motor dimensions [19]. The existence of neural populations that are
tuned to specific intervals of elapsed time might be interpreted as supporting
this view [9].
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