

BETÃO REFORÇADO COM FIBRAS DE AÇO: RECOMENDAÇÕES NORMATIVAS, INVESTIGAÇÃO EXPERIMENTAL E NUMÉRICA

Vítor Cunha¹; Alberto Ribeiro¹; Joaquim Barros²; Alexandre Antunes¹

(1) Aluno de Mestrado do Departamento de Engenharia Civil, da Escola de Engenharia da Universidade do Minho email: <u>vcunha@civil.uminho.pt</u>, <u>alberto@civil.uminho.pt</u>, <u>jantunes@civil.uminho.pt</u>

> (2) Professor Auxiliar, Departamento de Engenharia Civil, da Escola Engenharia da Universidade do Minho email: <u>barros@civil.uminho.pt</u>

Departamento de Engenharia Civil Escola de Engenharia da Universidade do Minho Campus de Azurem, 4800-058 Guimarães Portugal

Resumo

A adição de fibras ao betão aumenta significativamente a ductilidade deste, resultando diversos benefícios em termos de propriedades materiais e estruturais. Nos últimos anos a utilização deste compósito de matriz cimentícia tem aumentado significativamente, quer no volume de material aplicado, quer no tipo de aplicações. Recentemente tem havido um esforço de normalização dos ensaios a efectuar para caracterizar os aspectos mais relevantes do comportamento deste compósito, assim como o estabelecimento de parâmetros a serem utilizados na análise e dimensionamento de estruturas em betão reforçado com fibras de aço (BRFA). Neste âmbito tem-se destacado o grupo de trabalho TC162-TDF, nomeado pela RILEM, cujo trabalho realizado nos últimos anos tem dado contributo significativo para o aumento do conhecimento do BRFA, nas vertentes da caracterização experimental, do dimensionamento e da análise numérica.

No presente trabalho é descrita a investigação experimental efectuada no âmbito do desenvolvimento de um BRFA de custo competitivo para pavimentos de edifícios industriais. A caracterização experimental foi efectuada segundo as recomendações do TC162-TDF. Em simultâneo foi desenvolvido um código computacional para aferir a qualidade das simulações numéricas obtidas utilizando-se as leis constitutivas propostas pelo referido grupo de trabalho. A investigação numérica realizada é também descrita no presente trabalho, dando-se especial relevo à parte que permitiu definir os parâmetros "óptimos" que caracterizam as leis que modelam o comportamento pós fendilhado do BRFA, quer em termos de tensão-extensão (σ - ϵ), quer no formato tensão-abertura de fenda σ -w.

1 Introdução

Num número significativo de aplicações, a participação de fibras de aço na composição do betão tem-se revelado oportuna do ponto de vista técnico e económico, dado ser possível conceber soluções mais económicas e de segurança estrutural mais elevada. No entanto, a utilização de betão reforcado com fibras de aco (BRFA) em aplicações estruturais tem sido reduzida, dado que os principais benefícios proporcionados pela adição de fibras ao betão têm sido avaliados por distintos procedimentos, sendo propostos diversos parâmetros e formulações que, na maior parte dos casos, atribuem diferentes graus de desempenho à propriedade que pretendem representar (ASTM C1018-89, 1991; JSCE-SF4, 1984; ACI 544.1R-96, 1997; RILEM, 2000a). Além disto, esses benefícios não têm sido formulados no quadro de recomendações de projecto de elevada divulgação, pelo que os projectistas sentem fundamentadas dificuldades no dimensionamento de estruturas de BRFA. Para tentar alterar este estado, a RILEM designou o grupo de trabalho TC 162-TDF que tem vindo a publicar documentos no âmbito da caracterização experimental, da análise e do dimensionamento de estruturas de BRFA. Em 2000 este grupo de trabalho publicou (RILEM 2000b) um documento onde é sugerido um modelo para análise e dimensionamento de estruturas de BRFA, em que a principal alteração aos modelos tradicionais resume-se na consideração de uma certa capacidade resistente do BRFA fendilhado. Para tal propõem uma lei tensão-extensão definida com base em parâmetros que, por sua vez, reproduzem a capacidade de absorção de energia, ou a tensão residual do BRFA para determinadas flechas. Mais recentemente (RILEM, 2002a), o mesmo grupo de trabalho sugere a utilização da mecânica da fractura não linear (Karihaloo, 1995) para simular o comportamento fendilhado deste compósito.

No presente trabalho foi desenvolvido um código computacional com o objectivo de se aferir o grau de rigor da simulação permitida pelas leis propostas pelo TC 162-TDF. Para tal utilizaram-se os resultados obtidos numa extensa campanha de ensaios experimentais (Barros *et al.*, 2002; Antunes e Barros, 2002), efectuados segundo as recomendações deste comité (RILEM, 2002b).

Os principais resultados obtidos na investigação experimental são apresentados e analisados. A estratégia numérica desenvolvida é descrita e são apresentados e analisados os principais resultados obtidos.

2 Ensaio de flexão e conceito de resistência residual

Nas Figuras 1 e 2 representa-se a configuração do ensaio de flexão proposto pelo TC 162-TDF para caracterizar o comportamento em flexão do BRFA. Detalhes sobre o tipo de equipamento, características dos transdutores de deslocamentos e de força, e aspectos relevantes da estrutura de reacção podem ser encontrados em outros trabalhos (RILEM, 2002b; Barros et al., 2002).

Na Figura 3 apresenta-se uma resposta típica que se obtém neste ensaio. Com base na relação força-flecha determinam-se dois parâmetros que se designam de resistências residuais em flexão, f_{R1} e f_{R4} , representando a tensão para a flecha de $\delta_{R,1}$ =0.46 mm e $\delta_{R,4}$ =3.0 mm, respectivamente. As expressões que permitem determinar f_{R1} e f_{R4} estão incluídas na Figura 3, sendo h_{sp} (=125 mm) e *b* (=150 mm) a altura e a largura da secção de fractura, respectivamente, e *L* (=500 mm) o vão do provete.

Figura 1 – Esquema de suporte e de aplicação da carga.

Figura 2 – Disposição dos sistemas de leitura.

Figura 3 – Resistências residuais em flexão f_{R1} , f_{R4} (δ_L =0.05 mm).

3 Investigação experimental

3.1 Materiais

A investigação em curso foi iniciada com o desenvolvimento de um BRFA de custo competitivo, com propriedades apropriadas para pavimentos de edifícios industriais, cumprindo as seguintes condições: resistência característica à compressão superior a 25 MPa aos 28 dias; quantidade de ligante (cimento + cinzas volantes) igual a 300 kg/m³; abaixamento (slump) superior a 15 cm; recurso a agregados disponíveis na região Norte do País.

Tabela 1 - Composições típicas dos BRFA produzidos.						
Componente		Quantidade [kg/m ³]				
Cimento I 42.5R	300	262.5	225			
Cinzas Volantes (% de substitui	ção de cimento)	0 (0%)	37.5 (12.5%)	75 (25%)		
Areia Fina	173.5	165.5	152.3			
Areia britada		871.0	875.5	869.1		
Brita 5/15	315.7	319.1	319.1			
Brita 15/25		468.2	470.6	467		
Água	163.8	158.8	153.8			
Rheobuild [®] 1000		7.5				
Eibras Dramix [®] (% am valuma)	RC-80/60-BN	0 (0%); 10 (0.12%); 20 (0.25%); 30 (0.38%)				
FIDIAS DIAMIX (% em volume)	RC-65/60-BN	'60-BN 15 (0.19%); 25 (0.32%); 35 (0.45%); 45 (0.57%)				
Designação: FwQfiCvildk \rightarrow w - tipo fibra; j - quantidade fibras (kg/m ³); j - quantidade cinzas volantes (%); k - idade (dias)						

Foram utilizados dois tipos de fibras de aço Dramix®, comercialmente designadas, uma por RC-80/60-BN e outra por RC-65/60-BN (DRAMIX, 1998). A fibra RC-80/60-BN tem 60 mm de comprimento (I_f), 0.75 mm de diâmetro (d_f) e 80 de esbelteza (I_f/d_f), tendo-se realizado amassaduras com 0, 10, 20 e 30 kg/m³ com este tipo de fibra. A fibra RC-65/60-BN tem 60 mm de comprimento, 0.92 mm de diâmetro e 65 de esbelteza, V Simpósio EPUSP sobre Estruturas de Concreto

tendo-se realizado amassaduras com 0, 15, 25 e 35 e 45 kg/m³ com este tipo de fibra. Ambas as fibras apresentam uma tensão de cedência da ordem dos 1100 MPa. Na Tabela 1 incluem-se as composições efectuadas. Maior desenvolvimento sobre este assunto pode ser encontrado em (Barros *et al.*, 2002; Antunes e Barros, 2002).

3.2 Resistência à compressão

Para avaliar a influência da percentagem de fibras, da percentagem de substituição de cimento por cinzas volantes (Cv) e da idade (Id) dos provetes na resistência à compressão, foram efectuados ensaios com cubos de 150 mm de aresta. Na Tabela 2 apresenta-se o valor médio da resistência à compressão, fcm, para cada uma das séries ensaiadas, num formato apropriado para avaliar a influência da percentagem de substituição de cimento por Cv e do tipo e quantidade de fibras (Qf). Constata-se que a diminuição da resistência com a substituição de cimento por Cv só foi significativa nos provetes com sete dias de idade. A influência do tipo e da percentagem de fibras, na resistência à compressão, é marginal, excepto na série com 30 kg/m³ fibras 80/60. Dado tratar-se da primeira série de amassaduras, a substituição do cimento por Cv teria na trabalhabilidade da mistura não era perfeitamente dominada, pelo que nesta série não se procedeu à redução da razão água/cimento com o aumento da percentagem de substituição de cimento por Cv, facto que conduziu à referida diminuição de resistência. No entanto, com o decorrer desta primeira série verificou-se que, para as percentagens em questão, havia como que um efeito "lubrificante" proporcionado pelas Cv, efeito este que permitiu adoptar, nas restantes séries, uma estratégia de redução da razão água/cimento com o aumento da percentagem de Cv.

Idade [dias]	Cinzas [%]	f _{cm} [MPa]	Tipo de		
	0.0	37.0	fibra	Qr[kg/m]	f _{cm} [MPa]
7	12.5	30.1	-	0	39.2
	25.0	26.5		15	38.8
	0.0	39.7	65/60	25	39.9
28	12.5	39.3	00/00	35	38.9
	25.0 34.8		45	40.3	
	0.0	47.2		10	40.4
90	12.5	46.6	80/60	20	43.2
	25.0	45.5		30	31.3

Tabela 2 – Influência da percentagem de substituição de cimento por Cv e do tipo e quantidade de fibras (Qf) na resistência à compressão.

3.3 Resistências residuais em flexão

Na Tabela 3 apresentam-se os valores das resistências residuais f_{R1} e f_{R4} , para cada uma das séries ensaiadas.

3.3.1 Influência da quantidade de fibras nas resistências residuais

Na Figura 4 está representada a variação das resistências residuais em flexão, f_{R1} e f_{R4} , com a quantidade de fibras. Da análise dos valores incluídos na Tabela 3 e do traçado dos gráficos da figura 4, verifica-se que, de um modo geral, ambas as resistências residuais aumentam com a quantidade de fibras. Para a fibra 80/60 o aumento de f_{R1} e f_{R4} com Q_f é mais uniforme quando comparado com o da fibra 65/60. Além disto, em termos gerais, para a mesma Qf, as séries com fibras 80/60 apresentam valores de f_{R1} e f_{R4} ligeiramente superiores aos apresentados pelas séries com fibras 65/60. Na campanha de provetes reforçados com fibras 65/60, na passagem de 25 para 35 kg/m³, pontualmente verifica-se um decréscimo ou um aumento marginal de f_{Ri} .

Percentagem de cinzas volantes										
0			0			12.5			25	
Qf	ld	7	28	90	7	28	90	7	28	90
10 [*]		1.457	1.778	1.559	1.311	1.861	1.678	1.358	1.513	2.210
15**		2.182	2.635	3.078	2.016	2.425	2.570	1.566	1.604	1.954
20 [*]	£	2.733	2.930	2.638	2.076	2.419	3.422	2.007	2.770	2.860
25**		2.726	3.838	3.154	2.539	3.243	4.231	2.457	2.637	2.919
30 [*]	[IVIFa]	4.807	3.565	2.855	2.941	3.488	4.092	2.870	3.318	3.498
35**		3.313	4.086	3.840	3.466	3.129	4.073	2.578	3.040	3.405
45 ^{**}		5.061	5.822	4.954	3.840	4.623	4.925	3.551	4.710	4.689
10 [*]		1.337	1.416	1.505	1.116	1.543	1.457	1.080	1.275	1.958
15**		1.915	2.365	2.529	2.086	2.268	2.320	1.462	1.799	1.567
20[*]	f_	2.357	2.206	2.049	2.098	2.376	2.497	2.020	2.747	3.026
25**	IMPal	2.965	3.748	3.174	2.805	3.232	3.847	2.776	2.573	2.995
30		4.711	3.662	2.849	3.075	3.163	3.216	2.574	3.548	3.324
35		2.442	3.194	3.018	3.266	3.200	3.689	2.880	3.084	3.492
<u>45^{**}</u>		5.303	5.380	4.300	3.803	3.847	4.406	3.429	3.612	4.484

Tabela 3 – Resistência residual em flexão, f_{R1} e f_{R4} .

Fibras DRAMIX[®] RC-80/60-BN; ** Fibras DRAMIX[®] RC-65/60-BN

Tal pode ser justificado por intermédio do número de fibras (Nf) contadas na superfície de fractura dos provetes ensaiados. Em (Barros *et al.*, 2002) é descrito o critério adoptado na contagem das fibras na superfície de fractura. Na Figura 5 representa-se a relação entre Nf e Qf, para ambos os tipos de fibras. Como seria de esperar, Nf é maior nas séries com

fibras 80/60 (esbelteza maior). Além disto, constata-se que na fibra 65/60, entre 25 e 35 kg/m³, a variação de Nf é muito inferior à variação registada entre outras Qf.

Figura 5 – Relação entre o número de fibras na superfície de fractura, N_f, e a quantidade de fibras, Q_f.

3.3.2 Influência da percentagem de substituição de cimento por cinzas volantes nas resistências residuais

A Figura 6 representa a variação de f_{R1} e f_{R4} com a percentagem de substituição de cimento por cinzas.

Na generalidade observou-se um pequeno decréscimo com o aumento da percentagem de cinzas. A reduzida diminuição de f_{Ri} com a percentagem de substituição de cimento por Cv deve-se ao facto de se ter diminuído a razão água/cimento com o aumento da percentagem de Cv, o que contribuiu para se obterem betões com resistências à compressão semelhantes, proporcionando condições similares para a mobilização dos mecanismos de reforço das fibras.

Nas séries com 45 kg/m³ de fibras 65/60, aos 7 e 28 dias observou-se um decréscimo das resistências residuais com o aumento da percentagem de Cv. Tal pode ser justificado com o número de fibras presentes na superfície de fractura. Aos 7 dias foi de 89, 87 e 73 fibras para percentagens de cinzas de 0, 12.5 e 25%, respectivamente. Para os 28 dias foi de 97, 83 e 85 fibras para percentagens de cinzas de 0, 12.5 e 25%, respectivamente.

Para as fibras 80/60, à excepção da série Qf30ld7, a influência da percentagem de cinzas é marginal, verificando-se inclusive que, aos 90 dias, as resistências residuais aumentaram ligeiramente com a introdução de cinzas.

3.3.3 Influência da idade nas resistências residuais

A Figura 7 mostra a evolução de f_{R1} e f_{R4} com a idade. De um modo geral observou-se um incremento de f_{Ri} com a idade, particularmente, entre os 7 e os 28 dias.

Nas séries com 45 kg/m³ de fibras 65/60 e sem cinzas, após um incremento de f_{R1} e f_{R4} entre os 7 e 28 dias, verificou-se um decréscimo para os 90 dias. Isto é justificado com o número de fibras presentes na superfície de fractura (90, 98 e 84 fibras para os 7, 28 e 90 dias, respectivamente). Nas séries com 30 kg/m³ de fibras 80/60 observa-se uma diminuição de f_{Ri} com a idade, facto este também devido ao número de fibras na superfície de fractura registado nestas séries, que foi de 90, 75 e 68 fibras para os 7, 28 e 90 dias, respectivamente.

3.3.4 Influência do número de fibras na superfície de fractura nas resistências residuais

Na Figura 8 encontra-se representada a relação entre as resistências residuais f_{R1} e f_{R4} , com o número de fibras na superfície de fractura, N_{f} . Ambas as figuras contêm os dois tipos de fibras estudados, 65/60 e 80/60. É notório um aumento das resistências residuais com N_{f} . No entanto, observa-se uma dispersão de valores bastante considerável, sobretudo para a relação entre a resistência residual f_{R4} e N_{f} . Esta dispersão é mais notória para um número de fibras, superior aproximadamente a 60, revelando uma diminuição na homogeneidade dos mecanismos de reforço das fibras com o aumento do número de fibras acima de determinada quantidade, demonstrando ser necessário adaptar a composição do BRFA quando Qf aumenta acima de determinado valor.

Figura 8 – Relação entre f_{R1} e f_{R4} , com o número de fibras na superfície de fractura, N_{f} .

4 Modelação do comportamento em flexão do BRFA segundo o TC 162-TDF

A Figura 9 representa a lei σ - ε proposta pelo TC 162-TDF para modelar o comportamento em flexão do BRFA.

 $\sigma_l = 0.7 f_{ctm,fl} (1.6-d); \sigma_2 = 0.45 f_{Rl} \kappa_h; \sigma_3 = 0.37 f_{R4} \kappa_h; E_c = 9500 (f_{cm})^{1/3}; \varepsilon_l = \sigma_l / E_c; \varepsilon_2 = \varepsilon_l + 0.1\%; \varepsilon_3 = 25\%$ Figura 9 – Lei constitutiva, σ - ε para o BRFA, Figura 10 – Parâmetro para simular o efeito de escala, segundo o TC 162-TDF.

V Simpósio EPUSP sobre Estruturas de Concreto

4.1 Compressão

Dado que nos ensaios recomendados pelo TC 162-TDF para caracterizar o comportamento em flexão do BRFA, a extensão máxima de compressão é inferior à extensão correspondente à resistência à compressão do material, a influência da participação das fibras é insignificante no comportamento em compressão uniaxial (Barros, 1995). Assim, o TC 162-TDF propõe um diagrama linear parábola seguido de uma patamar após a extensão correspondente à resistência à compressão (ver Figura 9). No presente trabalho, a simulação do comportamento à compressão uniaxial do BRFA foi efectuada por intermédio da lei proposta pelo CEB-FIP (1993).

4.2 Tracção

4.2.1 Pré-pico

Tendo em conta o facto da percentagem volumétrica de fibras utilizada em aplicações correntes ser inferior a 1, a influência das fibras no comportamento à tracção uniaxial até à resistência à tracção do material é marginal, pelo que o TC 162-TDF recomenda uma relação linear entre a tensão e a extensão de tracção para essa fase do comportamento do material (ver Figura 9). Esta relação linear foi adoptada no presente modelo numérico, dado que na campanha experimental efectuada, a máxima percentagem volumétrica de fibras foi de 0.57.

4.2.2 Pós pico em termos de tensão-extensão

Os parâmetros que caracterizam o diagrama σ - ε pós-pico em tracção são indicados, verificando-se que são função de f_{R1} e f_{R4} , bem com de um factor, κ_h , que tem em conta a dimensão da estrutura a analisar (ver Figura 10). A tensão de tracção de pico σ_1 para betão reforçado exclusivamente com fibras é relacionada somente com a tensão média de tracção em flexão, $f_{ctm,fl}$, isto é, o factor (1.6-*d*) somente é usado em estruturas com reforço híbrido (armaduras convencionais mais fibras).

4.2.3 Pós pico em termos de tensão-abertura de fenda

Tendo em conta a sua simplicidade formal e o rigor de simulação que permite (BARROS, 1995), o diagrama constituído por três ramos lineares (designado por diagrama trilinear), representado na Figura 11, foi utilizado no presente trabalho para simular o comportamento pós-pico em tracção do BRFA. Outros tipos de diagramas são propostos em (RILEM 2002a).

5 Modelo numérico

Para simular a resposta força-flecha registada nos ensaios experimentais efectuados, o provete foi discretizado em três blocos (ver Figura 12): central, designado por rótula não linear, onde todos os fenómenos de não linearidade material são processados; laterais, em que se admite que o material se encontra em regime linear e elástico. Adoptando a recomendação do TC 162-TDF (2002a) a dimensão da rótula não linear é metade da altura da secção de fractura ($s=h_{sp}/2$).

Figura 11 – Diagrama σ -w utilizado no presente trabalho.

Figura 12 – Modelo assumido na simulação numérica do provete tipo ensaiado experimentalmente.

A relação força-flecha, F- δ , do provete foi obtida por recurso a um modelo que permite determinar a relação momento-curvatura de uma secção (M- χ) que é discretizada em camadas. O modelo baseia-se nas equações de equilíbrio, de compatibilidade de deformações e atende às leis constitutivas dos materiais intervenientes (Barros e Figueiras, 1999). O modelo é incremental e iterativo. Para cada incremento de extensão, determina-se a posição do eixo neutro, x_o , (ver Figura 13) a profundidade da progressão da fenda, *a*, a curvatura média, χ_m , a rotação das faces da rótula plástica, φ , e, para cada uma das camadas que discretizam a parte não fendilhada da secção, obtém-se a extensão e a respectiva tensão. Caso se utilize uma lei σ - ε para modelar o comportamento fendilhado do BRFA, será determinada a extensão em cada uma das camadas fendilhadas da secção e, recorrendo ao diagrama trilinear σ - ε , obtém-se a respectiva tensão. Caso se opte por uma lei σ -w para simular o comportamento fendilhado do BRFA, a progressão da fenda é modelada segundo os princípios subjacentes ao modelo de fenda fictícia proposto por (Hillerborg et al., 1976), esquematicamente descrito na Figura 14. A resistência residual para determinada abertura de fenda, $\sigma_w(w)$, depende dos mecanismos de reforço proporcionados pelas fibras que atravessam a fenda e do imbricamento entre as faces da fenda. Assim, para cada uma das camadas que discretizam a parte fendilhada da secção, obtém-se a abertura de fenda e a respectiva tensão (ver Figura 13).

Figura 13 – Progressão da fenda na zona da rótula não Figura 14 – linear. progressão de um

Figura 14 – Aspectos essenciais na progressão de uma fenda no BRFA.

V Simpósio EPUSP sobre Estruturas de Concreto

6 Simulação numérica utilizando leis tensão-extensão

6.1 Leis propostas pelo TC 162-TDF

Com o intuito de verificar a adequabilidade da lei pós pico, σ - ε , proposta pela RILEM para o BRFA, as respostas *F-u* de todas as séries de provetes ensaiados foram simuladas (cada série é constituída por três provetes), utilizando-se, para tal, os valores de f_{R1} e f_{R4} obtidos experimentalmente e apresentados na Tabela 4, que substituídos nas expressões indicadas na Figura 9, permitiram definir a lei pós pico, σ - ε , para cada série de provetes. Por limitação de espaço apenas se apresenta a simulação das séries Qf(i)Cv0ld7, Qf(i)Cv0ld28 e Qf(i)Cv0ld90 ver Figura 15. Contudo, a deficiente simulação registada nestas séries foi também observada em todas as restantes séries. Constata-se que a carga de pico numérica é geralmente superior à experimental. Verifica-se ainda que, para a fibra 65/60 e quantidades de fibras inferiores a 45 Kg/m³, após a carga de pico ter sido atingida, a queda de carga obtida na simulação numérica é mais abrupta que a registada experimentalmente. Nas séries com fibras 80/60 isto verifica-se para quantidades inferiores a 30 kg/m³. Para flechas inferiores a 2 mm, a resistência residual prevista numericamente é significativamente superior à registada experimentalmente. Para flechas superiores a 2 mm ocorre uma queda abrupta de carga na curva numérica, não observado experimentalmente.

V Simpósio EPUSP sobre Estruturas de Concreto

6.2 Optimização dos parâmetros da lei constitutiva

Nesta secção os parâmetros que caracterizam o diagrama trilinear pós pico (σ_1 , σ_2 , σ_3 , ε_1 , ε_2 , ε_3) serão determinados de modo a que a curva numérica se aproxime, com o menor erro possível, da curva experimental. O erro considerado está esquematicamente representado na Figura 16, sendo o cociente entre a diferença de áreas experimental e numérica (Δ_{Area} em valor absoluto), e a área experimental (A_{Exp}).

Figura 16 – Erro no processo de optimização dos parâmetros da lei de simulação do BRFA fendilhado.

Na Figura 17 encontram-se as curvas experimentais e as numéricas optimizadas, verificando-se uma boa aproximação, a qual é extensiva às séries não apresentadas neste trabalho (devido à limitação de espaço).

6.2.1 Influência da quantidade de fibras nos parâmetros da lei constitutiva

Nesta seccão e nas seguintes o sobreíndice Opt significa que a variável em causa foi obtida pelo processo de optimização. Na Figura 18 representa-se a variação de Qf com os valores de σ_i^{Opt} . Da análise desta figura verifica-se que, em termos gerais, as tensões σ_1^{Opt} e σ_2^{Opt} aumentam com Qf, sendo menos significativo o aumento de σ_1^{Opt} até 35 kg/m³. Esta tendência foi observada em todas as séries simuladas. Nas séries com fibras 80/60, σ_3^{Opt} aumenta ligeiramente com Q_f , enquanto nas séries reforçadas com fibra 65/60, não há uma variação significativa até 35 kg/m³, diminuindo acima desta guantidade de fibras. Quanto à variação dos valores de ε_2^{Opt} e ε_3^{Opt} com a quantidade de fibras (ver Figura 19) constata-se que ε_2^{Opt} denota uma tendência para diminuir com Q_f , enquanto ε_3^{Opt} não revela tendência que mereça ser referida.

Figura 18 - Influência da quantidade de fibras nos Figura 19 - Influência da quantidade de fibras nos parâmetros \mathcal{E}_{i}^{Opt} nas séries com 28 dias. parâmetros σ_{i}^{Opt} nas séries com 28 dias.

Com o objectivo de comparar os parâmetros optimizados, σ_i^{Opt} e ε_i^{Opt} , com os sugeridos pela RILEM, σ_i^{Rilem} e ε_i^{Rilem} , procedeu-se à análise da variação de $\sigma_i^{Opt}/\sigma_i^{Rilem}$ e $\varepsilon_i^{Opt}/\varepsilon_i^{Rilem}$ com a quantidade de fibras. Da análise da Figura 20 constata-se que, para as diferentes quantidades de fibras, as relações $\sigma_1^{Opt}/\sigma_1^{Rilem}$ e $\sigma_2^{Opt}/\sigma_2^{Rilem}$ mantêm-se inferiores à V Simpósio EPUSP sobre Estruturas de Concreto 13

unidade e praticamente constantes. Assim, é recomendável que os valores de σ_1 e σ_2 sugeridos pela RILEM sejam diminuídos. Nas séries com fibras 80/60 verifica-se que $\sigma_1^{Opt}/\sigma_1^{Rilem}$ aumenta muito ligeiramente com Qf, indicando que a proposta de determinação de σ_1 , segundo o TC 162-TDF, ao não ter em conta a influência da presença das fibras, não permite determinar correctamente o valor daquele parâmetro. Quanto às séries com fibras 65/60, dado que $\sigma_1^{Opt}/\sigma_1^{Rilem}$ permanece praticamente constante até Qf = 35 kg/m³, indica que o procedimento recomendado pelo TC 162-TDF para avaliar σ_1 é correcto, não o sendo para Qf acima de 35 Kg/m³, dado que aquele factor aumenta com Qf.

No que respeita à relação $\sigma_2^{Opt}/\sigma_2^{Rilem}$ -Qf verifica-se ser praticamente constante, indicando que a proposta do TC 162-TDF, de fazer depender σ_2^{Rilem} de f_{R1} é ajustada.

Quanto a $\sigma_3^{Opt}/\sigma_3^{kilem}$ os valores desta relação mantêm-se geralmente inferiores à unidade. Nas séries com fibras 65/60 e com Qf inferior a 35Kg/m³ ocorre, em geral, uma ligeira diminuição, seguida de uma diminuição mais acentuada acima de 35Kg/m³. Nas séries com fibras 80/60, em geral, ocorre um ligeiro aumento com Qf.

No que se refere à variação de $\varepsilon_2^{Opt}/\varepsilon_2^{Rilem}$ e $\varepsilon_3^{Opt}/\varepsilon_3^{Rilem}$ com Qf, representada na Figura 21, constata-se que, na sua generalidade, os valores das relações são muito superiores à unidade. Significa isto que os valores de ε_2 e ε_3 sugeridos pela RILEM são manifestamente inferiores aos necessários para obter uma simulação aceitável. Todas as séries simuladas revelaram tendências similares às acabadas de descrever.

Figura 20 - Influência da quantidade de fibras nos Figura 21 - Influência da quantidade de fibras nos parâmetros $\sigma_i^{Opt}/\sigma_i^{Rilem}$, nas séries com 28 dias

7 Simulação numérica em termos de tensão-abertura de fenda

Nesta secção, os parâmetros que caracterizam o diagrama σ -w representado na Figura 11 (σ_1 , σ_2 , σ_3 , w_2 , w_3 , w_4) são determinados de modo a que a curva numérica se aproxime, com o menor erro possível, da curva experimental, em similitude com o efectuado na secção 6.2. Na Figura 22 estão representadas as correspondentes simulações, donde se conclui ser possível simular o comportamento de progressão da fenda em flexão, com a lei trilinear proposta. Na simulação da resposta força-flecha das restantes séries foi registado um grau de aproximação às curvas experimentais similar ao observado nas séries apresentadas.

Figura 22 – Curvas experimentais e respectivas simulações numéricas com lei σ -w optimizada.

7.1 Influência da quantidade de fibras nos parâmetros da lei constitutiva σ -w

A Figura 23 representa a variação de σ_1 , $\sigma_2 e \sigma_3 \operatorname{com} Q_f$, nas séries de provetes com 28 dias de idade. Para as restantes idades observou-se tendência similares. Da análise da Figura 23 verifica-se que σ_2 denota uma tendência para aumentar de forma aproximadamente linear com Q_f , que o aumento de σ_1 só é significativo para Qf>35 Kg/m³. Nas séries com fibras 80/60 o parâmetro σ_3 aumenta com Q_f . Nas séries com fibras 65/60, σ_3 permanece praticamente constante até 35kg/m³, aumentando para Qf>35 Kg/m³. Na Figura 24 representa-se a variação de $w_2 e w_3 \operatorname{com} Q_f$, nas séries de provetes com 28 dias de idade. Constata-se uma tendência para uma diminuição destes

parâmetros com Qf, havendo contudo larga dispersão de valores. O valor de w_4 não é determinante nas simulações efectuadas, dado ter sido raros os casos em que a abertura de fenda ultrapassou o valor correspondente a w_3 .

Figura 23 – Influência da quantidade de fibras nos parâmetros de tensão.

8 Influência da percentagem de cinzas volantes e da idade dos provetes nos parâmetros da lei constitutiva

Para avaliar a influência da percentagem de substituição de cimento por cinzas volantes e da idade dos provetes procedeu-se de forma similar ao efectuado com a quantidade de fibras. Os parâmetros que definem, quer a lei σ - ε , quer a lei σ -w, são afectados pela percentagem de Cv e pela idade do BRFA de forma similar. Assim, verificou-se que os valores de σ_1 , σ_2 aumentam com a idade dos provetes, reflectindo o aumento da resistência do betão com a sua idade. Por sua vez, os valores de σ_3 , ε_2 , ε_3 , w_2 e w_3 são marginalmente afectados pela idade dos provetes. Quanto à percentagem de substituição de cimento por cinzas volantes, nenhum dos parâmetros revela tendência que mereça ser reportada, dada a elevada dispersão de valores.

9 Relação extensão-abertura de fenda

Na Figura 25 a extensão pós-pico, ε^{pp} ($\varepsilon^{pp} = \varepsilon - \varepsilon_1$) está relacionada com a abertura de fenda, *w*. Esta relação obteve-se recorrendo às leis de amolecimento do *BRFA*, σ - $\varepsilon e \sigma$ *w*, que originaram as correspondentes simulações óptimas. Para uma dada série, determinou-se a lei σ - $\varepsilon e \sigma$ -*w* que permitiram uma melhor aproximação à relação experimental F- δ . Para um determinado intervalo $\Delta\sigma$ extraíram-se destas relações os correspondentes ε^{pp} e *w*. estes pares de valores estão representados na Figura 25, bem como a relação ε^{pp} -*w* para *w*<3mm, i.e., para um intervalo de interesse prático. Constatase existir correlação aproximadamente linear entre estas variáveis.

Figura 25 – Relação entre a extensão pós-pico, $\varepsilon^{\rho\rho}$ e a abertura de fenda, w: a) até w=10mm; b) até w=3mm

10 Conclusões

Tendo por base as simulações numéricas efectuadas com lei tensão-extensão propõe-se os parâmetros indicados na Tabela 4 para caracterizar a lei trilinear que caracteriza o comportamento do BRFA fendilhado.

σ_i [MPa]	S_d^*	ε_i [MPa]	S _d
$\sigma_l = 0.52 f_{ctm,fl} (1.6-d)$	0.09	$\varepsilon_l = \sigma_l / E_c$	-
$\sigma_2 = 0.36 f_{RI} \kappa_h$	0.04	$\varepsilon_2 = 1.2 \%$	0.5
$\sigma_3 = 0.27 f_{R4} \kappa_h$	0.10	$arepsilon_3 = 104 \%$	26
* desvio padrão		·	

Tabela 4 – Parâmetros propostos para definir a lei σ - ε que caracteriza o comportamento do BRFA fendilhado

Comparativamente com os parâmetros sugeridos pela RILEM sobressaem dois aspectos: redução das constantes que relacionam σ_1 com $f_{ctm,fl}$, σ_2 com f_{R1} e σ_3 com f_{R4} ; aumento das extensões ε_2 e ε_3 .

Da determinação dos parâmetros óptimos que caracterizam a lei trilinear σ -w de simulação do comportamento fendilhado do BRFA obteve-se uma dispersão mais elevada de valores, que a registada com a lei σ - ϵ . Por este facto, a única relação possível de propor, é a seguinte: $\sigma_2 = 0.358 f_{R1} (N/mm^2)$, não sendo aceitável, nesta fase da investigação, propor relações para a definição dos restantes parâmetros que permitem caracterizar a lei trilinear σ -w.

A elevada dispersão de valores registados em alguns dos parâmetros que definem as leis σ - ε e σ -w, principalmente os relativos à abertura de fenda, recomenda a realização de um número mais elevado de simulações numéricas para se poder efectuar análises com maior significado estatístico.

11 Agradecimentos

Os autores agradecem o financiamento prestado pelo programa POCTI, "POCTI/34793/99 – Cost competitive steel fibre reinforced concrete for industrial pavements", FCT, e às empresas que gentilmente forneceram os materiais usados previamente na campanha experimental, nomeadamente, Bekaert / Bui Internacional, Bettor MBT Portugal, à central de Betão Pronto de Moreira de Cónegos, à Central Termo-Eléctrica do Pego, à Pisonort – Pavimentos Industriais SA e à SECIL – Companhia Geral de Cal e Cimento, SA. Também se agradece colaboração prestada pela Civitest, pelo equipamento laboratorial disponibilizado.

12 Referências

ACI 544.1R-96. State-of-the-Art Report on fiber reinforced concrete, ACI, 1997.

Antunes, J. A. B; Barros, J. A. O.. Influência da quantidade de fibras, percentagem de cinzas volantes e idade no comportamento à flexão de betão reforçado com fibras de aço Dramix RC-65/60-BN, Relatório 02-DEC/E-17, 79 pp., Dezembro 2002.

ASTM C1018-89. Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading, Book of ASTM Standards: Part 04.02. ASTM, Philadelphia, 1991.

Barros, J. A. O.; Antunes, J. A. B; Amorim, J. A. S. B. A.. Influência da quantidade de fibras, percentagem de cinzas volantes e idade no comportamento à flexão de betão reforçado com fibras de aço Dramix RC-80/60-BN, Relatório 02-DEC/E-11, 87 pags., Julho 2002.

Barros, J. A. O.; Figueiras, J. A. Flexural behavior of steel fiber reinforced concrete: testing and modelling, Journal of Materials in Civil Engineering, ASCE, Vol. 11, N^o 4, pp 331-339, 1999.

Barros, J. A. O.. **Comportamento do betão reforçado com fibras - análise experimental e simulação numérica**, Tese de Doutoramento, FEUP, Dezembro de 1995.

CEB-FIP Model Code, Design code, Bulletin d'Information CEB Lausanne, Switzerland, 1993.

Dramix®, Product data sheet, N.V.Bekaert S.A., 1998.

Hillerborg, A.; Modéer, M.; Petersson, P. E.. **Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements**, Cement and Concrete Research, Vol. 6, pp. 773-782, 1976.

JSCE-SF4, Method of tests for flexural strength and flexural toughness of steelfiber-reinforced concrete, Concrete library of JSCE. Japan Society of Civil Engineers (JSCE), Tokyo, Japan, Vol. 3, 58-61, 1984. Karihaloo, B. L., **Fracture mechanics and structural concrete, Concrete Design and Construction Series**, Longman Scientific & Technical, Harlow, Essex, England, 1995.

RILEM Technical Committee 162-TDF, **Test and design methods for steel fiber reinforced concrete. Recommendations for bending test**, (Chairlady L. Vandewalle), Mater. Struct. 33 (225), pp. 3-5, January-February 2000a.

RILEM Technical Committee 162-TDF, **Test and design methods for steel fiber reinforced concrete. Recommendations for** σ - ϵ **design method**, (Chairlady L. Vandewalle), Mater. Struct. 33 (226) pp. 75-81, March 2000b.

RILEM Technical Committee 162-TDF, **Test and design methods for steel fiber reinforced concrete. Recommendations for uni-axial tension test**, (Chairlady L. Vandewalle), Mater. Struct. 34 (235) pp. 3-6, , January-February 2001a.

RILEM Technical Committee 162-TDF, Test and design methods for steel fiber reinforced concrete. Design of steel fibre reinforced using σ -w method: principles and applications, (Chairlady L. Vandewalle), Mater. Struct. 35, pp. 262-278, June 2002a.

RILEM Technical Committee 162-TDF, **Test and design methods for steel fibre reinforced concrete - Final Recommendation**, Materials and Structures, Vol.35, pp. 579-582, November 2002b.