
1 INTRODUCTION 

When an existing continuous RC structure is 

strengthened with Fiber Reinforced Polymer (FRP) 

materials, its ductility and “plastic” rotation capacity 

may be restricted or even extinct, due to, principally, 

the linear-elastic stress-strain response of the FRP up 

to its brittle failure (Arduini et al. 1997, Casadei et 

al. 2003). As flexural members retrofitted with ex-

ternally bonded reinforcing (EBR) technique tend to 

fail by brittle premature plate debonding, well before 

the FRP tensile strength capacity is reached, the duc-

tility, particularly the plastic rotation capacity, is se-

verely reduced, which decreases the available degree 

of moment redistribution (Oehlers et al. 2004a). The 

tests of El-Refaie et al. (2003a, 2003b), Ashour et al. 

(2004) and Oehlers (2004a) show that, in general, 

premature debonding of the EBR strengthening 

systesm is the dominant failure mechanism. How-

ever, according to the approach used by these au-

thors to quantify the moment redistribution, signifi-

cant moment redistribution was obtained in the tests 

(El-Refaie et al. 2003a, Oehlers et al. 2004a/2004b, 

Oehlers et al. 2006, Liu et al. 2006a), which contra-

dicts the existing design guidelines (Concrete Soci-

ety 2000, fib 2001, ACI 2002) that suggest that mo-

ment redistribution should not be allowed for RC 

members strengthened with EBR technique. 

On the other hand, tests on simply supported RC 

members strengthened with Near Surface Mounted 

(NSM) strips (Hassan & Rizkalla 2003, Täljsten et 

al. 2003, Barros & Fortes 2005, Barros et al. 2006) 

have shown that NSM strengthening elements 

debond or fail at much higher relative strain levels 

than EBR strengthening systems, therefore, in gen-

eral, NSM strengthened members are expected to be 

much more ductile than EBR strengthened members. 

In addition, NSM strengthening installation proce-

dures are easier and faster to apply than the ones of 

EBR technique (Täljsten et al. 2003). Therefore, 

NSM technique is recommended for strengthening 

negative moment regions, since for this application 

the NSM technique can be restricted to open slits 

and fix, with an adhesive, the FRP strips to the con-

crete substrate. 

On the topic of moment redistribution of stati-

cally indeterminate RC members strengthened with 

NSM technique, the first preliminary studies were 

conducted at the Adelaide University, in Australia 

(Liu et al. 2006b). A significant amount of moment 

redistribution was attained with NSM, when com-

pared with EBR technique. With the final purpose of 

establishing design guidelines for the NSM flexural 

strengthening of continuous RC structures, an ex-

ploratory experimental program was recently con-

ducted (Bonaldo 2008). In this program the level of 

moment redistribution that can be obtained in two 

span RC slabs strengthened with NSM strips for 

negative moments was assessed. To help on the 
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preparation of an extensive experimental program in 

this domain, the values of the parameters of a consti-

tutive model, implemented into the FEMIX software 

(Sena-Cruz et al. 2007), a FEM-based computer pro-

gram, were calibrated from the numerical simulation 

of these tests. This model is able of simulating the 

concrete crack initiation and crack propagation, the 

nonlinear concrete compression behavior, the elasto-

plastic behavior of steel reinforcements and the elas-

tic-brittle failure behavior of FRP elements. The pre-

sent work resumes the experimental program (more 

details can be found in Bonaldo (2008)), and describes 

and appraises the performance of the numerical model. 

2 EXPERIMENTAL PROGRAM 

2.1 Slab specimens and strengthening technique 

According to CEB-FIB Model Code (1993), the coeffi-

cient of moment redistribution,  = Mred Melas , is de-

fined as the relationship between the moment in the 

critical section after redistribution (Mred) and the 

elastic moment (Melas) in the same section, calcu-

lated according to the theory of elasticity, while 

𝑀𝑅 =  1 −  × 100 is the moment redistribution 

percentage. To assess the influence of NSM CFRP 

strips on the moment redistribution ability of conti-

nuous RC slabs, an experimental program composed 

of nine 120×375×5875 mm
3
 RC two-way slabs was 

carried out (Fig. 1), three of them were unstreng-

thened RC slabs forming a control set (SL15, SL30 

and SL45), and six slabs were strengthened with 

CFRP strips according to the NSM technique 

(SL15s25, SL15s50, SL30s25, SL30s50, SL45s25 

and SL45s50). The notation adopted to identify each 

slab specimen is SLxsy, where SL is the slab strip 

base, x is the moment redistribution percentage, MR, 

(15%, 30% or 45%), s means that the slab is streng-

thened, and y is the increase of negative moment of 

the slab cross section at its intermediate support 

(25% or 50%). Steel bars with nominal diameters of 

8 mm and 12 mm were used for the longitudinal 

reinforcement. The concrete cover thickness is about 

26 mm. 

 Due to space limitation, this paper only deals with 

the series SL15s25, but the entire experimental pro-

gram is treated in detail by Bonaldo (2008) and all 

the simulations can be found in Dalfré & Barros 

(2008). 

2.2 Measuring Devices 

To measure the deflection of the slabs, six displace-

ment transducers were applied (see Figure 2). 

 
 
Figure 1. Cross-section dimensions, see also figure 2 (𝐴𝑠

′  - top 
reinforcement; As – bottom reinforcement). 

 

The LVDTs 60541 and 18897, positioned at the slab 

mid-spans, were also used to control the test. Ten elec-

trical resistance strain gages were installed on the in-

ternal steel reinforcement at the central support (SG1 

to SG7) and under line loads (SG8 to SG10) to meas-

ure the strains in the steel reinforcements at critical 

regions. Six strain gages (SG11 to SG16) were also 

bonded on concrete surface to determine the maxi-

mum concrete compressive strain. Finally, three 

strain gages were installed at one CFRP strip (SG17, 

SG18 and SG19) to evaluate the strain variation 

along the strip. 

3 NUMERICAL SIMULATION 

3.1 Constitutive laws 

According to the present model, a concrete slab is 

considered a plane shell formulated under the Reiss-

ner-Mindlin theory (Barros 1995). In order to simu-

late the progressive damage induced by concrete 

cracking and concrete compression nonlinear beha-

vior, the shell element is discretized in layers. Each 

layer is considered in a state of plane stress.  

 The incremental strain vector derived from the in-

cremental nodal displacements obtained under the 

framework of a nonlinear FEM analysis is decom-

posed in an incremental crack strain vector, ∆𝜀𝑐𝑟 , 

and an incremental strain vector of the concrete be-

tween cracks, ∆𝜀𝑐𝑜 . This last vector is decomposed 

in an elastic reversible part, ∆𝜀𝑒 , and an irreversible 

or plastic part, ∆𝜀𝑝 , resulting 

∆𝜀 = ∆𝜀𝑐𝑟 + ∆𝜀𝑐𝑜 = ∆𝜀𝑐𝑟 + ∆𝜀𝑒 + ∆𝜀𝑝  (1) 

The incremental stress vector can be computed 
from the incremental elastic strain vector, 

∆𝜎 = 𝐷𝑐𝑜∆𝜀𝑐𝑜  (2) 
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Figure 2. Arrangement of displacement transducers and strain 

gages. 

 
where 𝐷𝑐𝑜  is the concrete tangent constitutive ma-
trix, 

𝐷𝑐𝑜 =  
𝐷𝑚𝑏

𝑐𝑜 ∅

∅ 𝐷𝑠
𝑐𝑜                                                  (3) 

with 𝐷𝑚𝑏
𝑐𝑜  and  𝐷𝑠

𝑐𝑜  being the in-plane and the out-of-

plane shear stiffness matrices , respectively. In the 

present model, concrete behavior is assumed linear 

elastic in terms of out-of-plane shear. Therefore, the 

concrete nonlinear behavior is only considered in the 

𝐷𝑚𝑏
𝑐𝑜  constitutive matrix. 

For linear elastic uncracked concrete, Dmb
co   is 

designated by 𝐷𝑚𝑏
𝑒𝑐𝑜 , which is defined else-

where (Barros & Figueiras 2001). For the case of 

cracked concrete with concrete between cracks ex-

hibiting an elasto-plastic behavior, 𝐷𝑚𝑏
𝑐𝑜  of (3) is re-

placed by 𝐷𝑚𝑏
𝑒𝑝𝑐𝑟𝑐𝑜

 (Sena-Cruz et al. 2004): 

𝐷𝑚𝑏
𝑐𝑜 ⟹ 𝐷𝑚𝑏

𝑒𝑝𝑐𝑟𝑐𝑜 = 𝐷𝑚𝑏
𝑒𝑝𝑐𝑜 − 𝐷𝑚𝑏

𝑒𝑝𝑐𝑜  𝑇𝑐𝑟  
𝑇
 𝐷 𝑐𝑟 +

𝑇𝑐𝑟𝐷𝑚𝑏𝑒𝑝𝑐𝑜𝑇𝑐𝑟𝑇−1𝑇𝑐𝑟𝐷𝑚𝑏𝑒𝑝𝑐𝑜                             

(4)  

where 
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                          (5) 

and 

𝐻 =    𝐷𝑚𝑏
𝑒𝑐𝑜  

−1
+ ℎ𝑐∆𝜆

𝜕2𝑓

𝜕𝜎2 
−1

                          (6) 

where 𝜕𝑓 𝜕𝜎  is the flow vector,  ℎ𝑐  is a scalar func-

tion that depends on the hydrostatic pressure, 𝑇𝑐𝑟  is 

a transformation matrix that depends on the direction 

of the cracks formed at a sampling point (Sena-Cruz 

et al. 2004), and 𝐷 𝑐𝑟  is the constitutive matrix of the 

set of cracks. In case of one crack per each sampling 

point, 

𝐷 𝑐𝑟   =  𝐷𝑐𝑟 =  
𝐷𝛪

𝑐𝑟 0

0 𝐷𝛪𝐼
𝑐𝑟                                  (7) 

where 𝐷𝛪
𝑐𝑟  and 𝐷𝛪𝐼

𝑐𝑟   are the softening modulus of the 

fracture modes I and II of the smeared cracks, re-

spectively. 𝐷𝛪
𝑐𝑟  is characterized by the stress at crack 

initiation, 𝜎𝑛,1
𝑐𝑟  (see Fig. 3), the fracture energy, Gf, 

the shape of the softening law and the crack band 

width, 𝑙𝑏 .  

 
Figure 3. Tri-linear tensile-softening diagram. 
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In smeared crack models the fracture zone is distri-

buted over 𝑙𝑏 , which must depend on the finite ele-

ment geometric characteristics in order to assure that 

the results of the FEM analysis are not dependent on 

the finite element mesh (Bazant & Oh 1983). The 

fracture mode II modulus, 𝐷𝛪𝐼
𝑐𝑟 , of (7) is obtained 

from (Barros 1995): 

𝐷𝛪𝐼
𝑐𝑟 =

 1−
𝜀𝑛
𝑐𝑟

𝜀𝑛 ,𝑢
𝑐𝑟  

𝑝1

1− 1−
𝜀𝑛
𝑐𝑟

𝜀𝑛 ,𝑢
𝑐𝑟  

𝑝1 𝐺𝐶                                            (8) 

where 𝐺𝐶  is the concrete elastic shear modulus and  

𝑝1 an integer parameter that can obtain distinct val-

ues in order to simulate different levels of concrete 

shear stiffness degradation (Barros 1995). 

In case of cracked concrete with concrete between 

cracks in linear and elastic state, 𝐷𝑚𝑏
𝑐𝑜   is still ob-

tained from (4) replacing 𝐷𝑚𝑏
𝑒𝑝𝑐𝑜

 by 𝐷𝑚𝑏
𝑒𝑐𝑜 . 

3.2 Steel constitutive law 

For modeling the behavior of the steel bars, the 

stress-strain relationship represented in Figure 4 was 

adopted (Sena-Cruz 2004). The curve (under com-

pressive or tensile loading) is defined by the points 

PT1=(sy,sy), PT2=(sh,sh) and PT3=(su,su),, and a 

parameter 𝑝 that defines the shape of the last branch 

of the curve. Unloading and reloading linear 

branches with slope 𝐸𝑠  (𝜎𝑠𝑦 𝜀𝑠𝑦 ) are assumed in the 

present approach.  

3.3 FRP constitutive law 

A linear elastic stress-strain relationship was 
adopted to simulate the behavior of NSM CFRP 
strips applied in the RC slabs. 

4 SIMULATION OF THE TESTS 

4.1 Materials properties and finite element mesh 

Tables 1 and 2 include the values of the parameters 
adopted for the characterization of the constitutive 
models for the concrete and steel, respectively. The 
CFRP strips, of 10×1.4 mm

2
 cross sectional area, 

were assumed as an isotropic material with an elas-
ticity modulus of 160 GPa and null value for the 
Poisson’s coefficient, since the consideration of their 
real anisotropic properties have marginal influence 
in terms of their contribution for the behavior of 
NSM strengthened RC slabs. 
 Due to the structural symmetry, only half of the 
slab was considered in the numerical simulations. 
Figure 5 shows the eight node finite element mesh 
adopted to discretize the half part of the slab. The 

support conditions are also represented in this figure. 
The slab thickness was discretized in 20 layers. 
 
Table 1.  Values of the parameters of the concrete constitutive 
model. __________________________________________________ 
Poisson´s ratio          c = 0.15 
Initial Young´s modulus       Ec = 28000 N/mm

2
  

Compressive strenght        fc = 40 N/mm
2 

Strain at peak compressive strength   c1 = 2.2x10
-3

  
Initial yield surface parameter 

(1)    0 = 0.4  
Tensile softening diagram 

(2)     
fct = 1.5 N/mm

2  

               
Gf = 0.05 N/mm 

               1 = 0.015 
               1 = 0.6 
               2 = 0.2  
               2 = 0.25 
Parameter defining the mode I frac-   n = 2 
ture energy available to the new crack 

(3) 

Shear retention factor (Equation 8)   p1=2 
Threshold angle 

(3)        
 th = 30º 

Maximum number of cracks per inte-  2 
gration point

 
 ___________________________________________________ 

(1) 𝛼0 = 𝜎0 𝜎𝑝 , Sena-Cruz (2004)
 

(2)𝑓𝑐𝑡 = 𝜎𝑛,1
𝑐𝑟 ; 𝜉1 = 𝜀𝑛,2

𝑐𝑟 𝜀𝑛,𝑢
𝑐𝑟 ; 𝜉2 = 𝜀𝑛,3

𝑐𝑟 𝜀𝑛,𝑢
𝑐𝑟 ; 𝛼1 = 𝜎𝑛,2

𝑐𝑟 𝜎𝑛,1
𝑐𝑟 ; 

𝛼2 = 𝜎𝑛,3
𝑐𝑟 𝜎𝑛,1

𝑐𝑟  (see Figure 3)
 

(3) 
Barros (1995) 

 
Table 2.  Values of the parameters of the steel constitutive 
model (see Figure 4). ________________________________________________ 
Steel bar diameter  8mm    10mm   12mm 
  (mm) ________________________________________________ 
P1  sy(-)    2.30x10

-3  
2.70x10

-3  
2.40x10

-3
 

  sy(MPa)  421.00   446.00   445.00 
P2  sh(-)    4.42x10

-2  
3.07x10

-2  
3.05x10

-2
 

  sh(MPa)  526.25   446.00   445.00 
P3  su(-)    8.85x10

-2  
1.31x10

-1  
1.02x10

-1  
  su(MPa)  555.72   557.50   547.35 
 Es (GPa)   200.8    178.24   198.36 ________________________________________________ 

4.2 Results and discussion 

Figures 6 to 9 represent relevant results of the simula-
tions corresponding to the slabs of the SL15 series. The 
analysis of the simulations of the other series can be 
found elsewhere (Dalfré & Barros 2008). 
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Figure 4. Uniaxial constitutive model of the rebars. 

 



Figure 5. Finite element mesh adopted to discretize the half 

part of a RC slab. 

Figure 6. Force-loaded section deflection relationship. 

 

 
(a) 

 
 

(b) 
Figure 7. Force – Steel strain relationships at (a) slab symmetry 
cross section and (b) loaded section. 

 

 

 
 

 
(a) 

 
(b) 

Figure 8. Force – Concrete strain relationships at (a) slab 

symmetry cross section and (b) loaded section. 

 

 
Figure 9. Force-CFRP strain relationship. 
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 The figures show that the numerical model is able 
to capture with good accuracy the behavior of the 
constituent materials of this structural system during 
the loading process of the tested slabs.  Crucial ex-
perimental results registered in the monitoring sys-
tem installed in the constituent materials at the zones 
of the intermediate support and at the loaded sections (IS 
and LS, respectively) are included in Table 3. 

 
Table 3.  Main results of series SL15. __________________________________________________ 
        Hinge at intermediate support        __________________________________   

     𝐹𝑦
𝐼𝑆   𝑢𝑦

𝐼𝑆   𝑐
𝐼𝑆   𝑐

𝐿𝑆  𝑠
𝐿𝑆  𝑓,𝑚𝑎𝑥  

     (kN)  (mm)  (‰)  (‰)  (‰)  (‰)  __________________________________________________ 
Reference  85.29  15.85  -1.22  -1.53  2.20  ------
SL15s25  88.00  15.82  -1.48  -1.17  2.00  2.81 
SL15s50  96.15  16.28  -1.43  -1.08  2.03  2.87  __________________________________________________ 
         Hinge at loaded sections        __________________________________   

     𝐹𝑦
𝐿𝑆   𝑢𝑦

𝐼𝑆   𝑐
𝐼𝑆   𝑐

𝐿𝑆  𝑠
𝐼𝑆   𝑓,𝑚𝑎𝑥  

     (kN)  (mm)  (‰)  (‰)  (‰)  (‰)  __________________________________________________ 
Reference  98.00  21.50  -3.77  -1.91  2.45  ------
SL15s25  100.00 19.09  -1.77  -1.40  2.49  3.29 
SL15s50  100.45 18.43  -1.58  -1.19  2.08  3.16  __________________________________________________ 

     𝐹𝑚𝑎𝑥   𝑓,𝑚𝑎𝑥
𝐹𝑚𝑎𝑥   

     (kN)  (‰)   ________________________ 
Reference  98.00  ------ 
SL15s25  106.49 7.86 
SL15s50  118.60 7.83 ________________________ 

 
In this Table, 𝐹𝑦

𝐼𝑆 and 𝐹𝑦
𝐿𝑆 are the total load at the 

formation of the plastic hinge at IS and LS, 𝑐
𝐼𝑆 , 𝑐

𝐿𝑆  
are the average concrete strains at IC and LS, 𝑠

𝐼𝑆  and 
𝑠
𝐿𝑆  are the maximum and the average steel bars  

strains at IS and LS, respectively,  𝑓,𝑚𝑎𝑥  is the max-
imum strain in the CFRP strips, 𝐹𝑚𝑎𝑥  is the maxi-
mum total load up to a concrete compressive strain of 
3.5‰ in the IS   𝑐

𝐼𝑆 = 3.5‰ , and 𝑓,𝑚𝑎𝑥
𝐹𝑚𝑎𝑥  is the maxi-

mum strain in the CFRP strips at 𝐹𝑚𝑎𝑥 . It was as-
sumed that a plastic hinge was formed when yield strain 
was attained at the steel bars. 

These figures show that, after crack initiation, 
which occurred at the top surface of the intermediate 
support for a total load of about 13 kN, the slab stiff-
ness decreased significantly, but the elasto-cracked stiff-
ness was almost maintained up to the formation of the 
plastic hinge at the intermediate support, at a load level 
of about 85 kN, 88 kN and 96 kN for the reference, 
SL15s25 and SL15s50 slabs, respectively. 

At these load levels, the maximum concrete com-
pressive strains of the bottom surface at the intermediate 
support,  𝑐

𝐼𝑆, and of the top surface at the applied load 
section,  𝑐

𝐿𝑆, are in the ranges -1.22 ‰ to -1.48 ‰ and -
1.08 ‰ to 1.53 ‰, respectively. At 𝐹𝑦

𝐿𝑆, the maximum 
strain of the steel bars of the bottom layer at the applied 
load section,  𝑠

𝐿𝑆 , and the maximum strain at the CFRP 
strips, 𝑓,𝑚𝑎𝑥 , are in the ranges 2.0 ‰ to 2.2 ‰ and 
2.81 ‰ to 2.87 ‰, respectively, which indicates that 
tensile stresses in the laminates are far below its ten-

sile strength at the moment of the formation of the 
plastic hinge at intermediate support.  

In fact, the force-deflection relationship (Figure 
6) evinces that, up to the formation of the plastic 
hinge at the intermediate support, CFRP strips did 
not contribute significantly for the slabs’ load carry-
ing capacity. The deflection at 𝐹𝑦

𝐿𝑆, 𝑢𝑦
𝐼𝑆, was not sig-

nificantly affected by the presence of the CFRP la-
minates. Since at the moment of the formation of the 
plastic hinge at the intermediate support the strains 
in the steel bars of the loaded sections, 𝑠

𝐿𝑆 , are near 
the steel yield strain (see Table 2), the load incre-
ment between the formation of the plastic hinges at 
intermediate and loaded sections decreased with the 
increase of the percentage of CFRP laminates. As 
expected, 𝐹𝑦

𝐿𝑆 was almost equal for the three slabs of 
SL15 series (98 to 100 kN), since the deflection at 𝐹𝑦

𝐿𝑆, 
𝑢𝑦

𝐼𝑆, decreased with the increase of the CFRP percen-
tage (from 21.5 mm in the reference slab up to 
18.43 mm in the SL15s50). In the reference slab, at 𝐹𝑦

𝐿𝑆, 
𝑐
𝐼𝑆  was higher than the strain at concrete compressive 

strength (𝑐1, see Table 1) and 𝑐
𝐿𝑆  was almost attaining 

𝑐1, which justifies the formation of the structural me-
chanism. At 𝐹𝑦

𝐿𝑆, 𝑓,𝑚𝑎𝑥  was around 3.22 ‰, which is 
far below the CFRP ultimate strain. However, since 𝑐

𝐼𝑆  
and 𝑐

𝐿𝑆 are both lower than 𝑐1, the laminates contri-
buted to increase the slab’s load carrying capacity. At 
concrete crushing strain (3.5 ‰ was assumed on the de-
sign of the CFRP percentage), the 𝐹𝑚𝑎𝑥  of SL15s25 and 
SL15s50 slabs was 106.49 and 118.60 kN, respective-
ly, being the corresponding CFRP strains 7.86 ‰ 
and 7.83 ‰. The contribution of the CFRP laminates 
for the slab’s maximum load carrying capacity was 
limited due to the occurrence of concrete crushing. 
In terms of moment redistributing capacity, NSM 
laminates did not introduce any restriction, and no 
debond or concrete detachment premature failure 
modes occurred up to the interruption of the tests. 

5 CONCLUSIONS 

This work presented and discussed the results ob-
tained in a preliminary experimental program dealing 
with the thematic of moment redistribution capability of 
two-way RC slabs strengthened according to the NSM 
technique. The main focus was put on the numerical 
simulation of the tested slabs, in order to calibrate 
the constitutive model for its future use on parame-
tric studies, for the evaluation of the influence of re-
levant parameters on the NSM flexural strength and 
moment redistribution capability of continuous RC 
slabs. Since the numerical model was able to cap-
ture, with good accuracy, the behavior of the tested 
slabs, it will be also used to define an extensive ex-
perimental work aiming to support the results to be 
provided by the parametric studies. The comparison 
between the strains registered experimentally in the 
CFRP laminates and the strains determined by the 



numerical model shows that it can be assumed a perfect 
bond between NSM laminates and surrounding concrete. 

The contribution of the NSM laminates for the 
slab’s load carrying capacity was limited by the con-
crete crushing. The NSM strengthened slabs had 
moment redistribution capability similar of the ref-
erence slab. No premature CFRP failure modes were 
detected up the end of the tests, which occurred at a 
deflection more than 40 mm. 
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