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Abstract. The capability of a multi-directional fixed smeared crack constitutive model to 

simulate the flexural/punching failure modes of fiber reinforced concrete (FRC) laminar 

structures is discussed. The constitutive model is implemented in a computer program based on 

the finite element method, where the FRC laminar structures were simulated according to the 

Reissner-Mindlin shell theory. The shell is discretized into layers for the simulation of the 

membrane, bending and out-of-plane shear nonlinear behavior. A stress-strain softening 

diagram is proposed to reproduce, after crack initiation, the evolution of the normal crack 

component. The in-plane shear crack component is obtained using the concept of shear retention 

factor, defined by a crack-strain dependent law. To capture the punching failure mode, a 

softening diagram is proposed to simulate the decrease of the out-of-plane shear stress 

components with the increase of the corresponding shear strain components, after crack 

initiation. With this relatively simple approach, accurate predictions of the behavior of FRC 

structures failing in bending and in shear can be obtained. To assess the predictive performance 

of the model, a punching experimental test of a module of a façade panel fabricated with steel 

fiber reinforced self-compacting concrete is numerically simulated. The influence of some 

parameters defining the softening diagrams is discussed. 
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1. Introduction 

The Reissner-Mindlin theory for shell structures is commonly used to predict the behavior of 

laminar concrete structures up to failure (Barros and Figueiras 2001). The thickness of the 

laminar structure is discretized in layers that are assumed subjected to a plane stress state. The 

use of laws to simulate the nonlinear behavior, after crack initiation, for the in-plane fracture 

modes is appropriate in most cases, and the deformational response of the structure for load 

configurations inducing flexural failure modes can be predicted with sufficient accuracy. 

However, the simulation of laminar structures failing in punching is a much more complex task, 

being the treatment of the out-of-plane shear components of paramount importance. In the 

present work, in order to explore the use of a simple approach to simulate the material nonlinear 

behavior of concrete laminar structures failing in punching, a softening law is proposed to 

model both out-of-plane shear components. This crack constitutive model has been 

implemented in the FEMIX computer program, which is based on the finite element method 

(Sena-Cruz et al. 2007). Since the shell model only admits cracks that are orthogonal to its 

middle surface, the inclined cracks that are observed in the experimental punching tests  cannot 

be accurately predicted. For this purpose a much more complex and time-consuming general 3D 

crack constitutive model must be used (Barzegar and Maddipudi 1997).  

Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively recent cement-based 

material that combines the benefits of the self-compacting concrete technology (Okamura 1997) 

with the advantages of the addition of fibers to a brittle cementitious matrix (Pereira 2006). The 

developed SFRSCC was used to manufacture the lightweight panel system schematically 

represented in Fig. 1, which can be applied in building façades (Barros et al. 2005a). The mix 

composition of the SFRSCC used to manufacture the panel is presented in Table 1. In the 

composition of the SFRSCC,  30 kg/m3 of hooked ends steel fibers with a length (l f) of 60 mm, 

a diameter (df) of 0.75 mm, an aspect ratio (l f /df) of 80 and a yield stress of 1100 MPa were 

used. At seven days the average value of the compressive strength and modulus of elasticity of 

this SFRSCC was 52 MPa and 31 GPa, respectively. The flexural strength of this type of 

structural elements is a key aspect in their design, since, in general, the bending moments of the 
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wind load combination are an important factor in the design process of the panel. To assess the 

panel flexural behavior, representative modules of the SFRSCC panel system were tested, being 

the details of the experimental program described elsewhere (Barros et al. 2007). The punching 

resistance is also a key aspect in the design of this type of panel, since its lightweight zones 

consist of a thin layer that is only 30 mm thick. To evaluate the punching resistance of these 

zones, representative modules of the panel system are submitted to a load configuration that 

implies the occurrence of this type of failure mode (Barros et al. 2005a, Barros et al. 2007). The 

results obtained in one of these tests were compared with the numerical simulations in order to 

assess the predictive performance of the developed model. Several numerical simulations are 

carried out to assess the influence of some parameters that define the softening diagrams. The 

objective of these simulations is to understand how each parameter affects the response of a 

laminar FRC structure failing in punching. The influence of the in-plane mesh and 

through-thickness refinement of the simulated structure is also analyzed. 

The possibility of defining the fracture parameters that characterize the fracture mode I 

strain-softening diagram by performing an inverse analysis (IA) (Barros et al. 2005b) is also 

discussed. The IA is based on the results obtained in three point notched beam bending tests 

carried out according to the RILEM TC 162-TDF recommendations (Vandewalle et al. 2002). 

 

2. Crack constitutive model 

2.1 - Introduction 

Presently, several finite element approaches are available to analyze the behavior of complex 

structures subject to arbitrary loads. The most recent ones are capable of modeling the behavior 

of concrete structures presenting brittle failure modes, and accurately predict crack formation 

and progression. Discrete cohesive fracture models (discrete) with fragmentation algorithms, 

strong discontinuity approaches (continuum) with the embedded discontinuities method and the 

extended finite element method are examples of advanced methodologies that, together with 

powerful mesh refinement algorithms, reveal great efficiency in modeling the concrete fracture 

initiation and propagation (Yu et al. 2007). Alternative methods are based on damage models 
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(de Borst and Gutiérrez 1999), smeared crack models (Bazant and Oh 1983)] and microplane 

models (Bazant 1984). These methods are less precise to predict the local phenomena related to 

crack propagation, but from the computational effectiveness and the assessment of the global 

behavior of a concrete structure point-of-views, are more appropriate to analyze complex 

structures with a large number of degrees of freedom. As shown by de Borst (2002), “fixed and 

rotating smeared crack models, but also microplane models, can be conceived as a special case 

of (anisotropic) damage models”, these three FEM-based solutions are closely related and 

produce similar results. Taking into account the main characteristics of all these approaches, the 

multi-directional fixed smeared crack model was selected and implemented in the scope of the 

present research, since it allows for the analysis of large scale SFRSCC structures 

(de Borst 1987, Rots 1988, Dahlblom and Ottosen 1990), as long as an appropriate constitutive 

law is used to model the SFRSCC post-cracking behavior. 

 

2.2 - Formulation 

In the context of finite element material nonlinear behavior of concrete shell structures, the 

developed crack constitutive model is implemented under the framework of the 

Reissner-Mindlin theory adapted to the case of layered shells. The description of the 

formulation is restricted to the case of cracked concrete, for a selected concrete layer, and at the 

domain of an integration point (IP) of a finite element. According to the adopted constitutive 

law, stresses and strains are related by the following equation 

0

0

crco
mfmf mf

crco
s ss

D

D

σ ε
σ ε

 ∆ ∆   
=     
     

 (1) 

where { }1 2 12, ,
T

mfσ σ σ τ∆ = ∆ ∆ ∆  and { }1 2 12, ,
T

mfε ε ε γ∆ = ∆ ∆ ∆  are the vectors of the 

incremental stress and incremental strain in-plane components, while { }23 31,
T

sσ τ τ=  and 

{ }23 31,
T

sε γ γ=  are the vectors of the total stress and total out-of-plane shear strain 

components. 
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Due to the decomposition of the total strain into an elastic concrete part and a crack part 

( crco co crε ε ε= + ), in Eq. (1) the in-plane cracked concrete constitutive matrix, crco
mfD , is obtained 

with the following equation (Sena-Cruz 2004) 

( ) 1

, , , ,

T Tco co cr cr cr co cr cr cocrco
mf e mf e mf e mf emfD D D T D T D T T D

−
   = − +     (2) 

where ,
co
mf eD  is the constitutive matrix of concrete with a linear and elastic behavior 

( )
, 2

1 0

1 0
1

0 0 1 2

co
mf e

E
D

ν
ν

ν
ν

 
 =  −
 − 

 (3) 

where E and ν  are the elasticity modulus and the Poisson’s ratio of concrete, respectively. In 

Eq. (2), crT  is the matrix that transforms the stress components from the coordinate system of 

the finite element to the local crack coordinate system 

2 2

2 2

cos sin 2sin cos

sin cos sin cos cos sin
crT

θ θ θ θ
θ θ θ θ θ θ

 
=  − − 

 (4) 

and crD  is the crack constitutive matrix 

0

0

cr
cr I

cr
II

D
D

D

 
=  
 

 (5) 

In Eq. (4), θ  is the angle between x1 and n (see Fig. 2). In Eq. (5), cr
ID  and cr

IID  represent, 

respectively, the constitutive components relative to the crack opening mode I (normal) and 

mode II (in-plane shear). 

The crack opening propagation is simulated with the trilinear diagram represented in Fig. 3, 

which is defined by the parameters iα  and iξ , relating stress with strain at the transitions 

between the linear segments that compose this diagram. The ultimate crack strain, ,
cr
n uε , is 

defined as a function of the parameters iα  and iξ , the fracture energy, I
fG , the tensile strength, 

,1
cr

ct nf σ= , and the crack bandwidth, bl , as follows (Sena-Cruz 2004), 

I
fcr

n,u
1 1 2 2 1 2 ct b

G2

f l
ε

ξ α ξ α ξ α
=

+ − +
 (6) 
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where cr cr
1 n,2 n,1/α σ σ= , 2 ,3 ,1/cr cr

n nα σ σ= , 1 ,2 ,/cr cr
n n uξ ε ε=  and 2 ,3 ,/cr cr

n n uξ ε ε= . 

The fracture mode II modulus, cr
IID , is obtained with 

1
cr
II cD G

β
β

=
−

 (7) 

where cG  is the concrete elastic shear modulus and β  is the shear retention factor. The 

parameter β  is defined as a constant value or as a function of the current crack normal strain, 

cr
nε , and of the ultimate crack normal strain, ,

cr
n uε , as follows, 

1

,

1

p
cr
n
cr
n u

εβ
ε

 
= −  
 

 (8) 

When 1p  is unitary, a linear decrease of β  with the increase of cr
nε  is assumed. Larger values 

of the exponent 1p  correspond to a more pronounced decrease of the parameter β , in order to 

simulate a higher in-plane shear stress degradation with the crack opening process 

(Barros et al. 2004). A softening constitutive law to model the in-plane crack shear stress 

transfer has also been implemented in the FEMIX code, but its adoption as an alternative to the 

shear retention concept does not contribute to an increase of the accuracy of the numerical 

simulations, and causes difficulties in the convergence of the Newton-Raphson procedure. 

The definition of the out-of-plane (OP) constitutive matrix, crco
sD  in Eq. (1), is based on the 

diagram represented in Fig. 4. When the concrete associated with the IP changes from 

uncracked to cracked state, the out-of-plane shear stresses are stored for later use and each 

out-of-plane shear stress-strain relation (23 23τ γ−  and 31 31τ γ− ) follows the softening law 

depicted in Fig. 4. Therefore, the crco
sD  matrix is defined by 

23
,sec

31
,sec

0

0
crco III
s

III

D
D

D

 
=  
  

 (9) 

where 

23,max 31,max23 31
,sec ,sec

23,max 31,max

,
OP OP

III IIIOP OP
D D

τ τ
γ γ

= =  (10) 
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in accordance with the secant approach shown in Fig. 4. Each peak shear strain is calculated 

using the stored peak shear stress at crack initiation and cG  

23, 31,
23, 31,,

OP OP
p pOP OP

p p
c cG G

τ τ
γ γ= =  (11) 

Each out-of-plane ultimate shear strain, OP
uγ , is defined as a function of the out-of-plane peak 

shear strain, OP
pγ , the out-of-plane shear strength, OP

pτ , the mode III (out-of-plane) fracture 

energy, III
fG , and the crack bandwidth, bl , as follows 

23, 23, 31, 31,
23, 31,

2 2
,

III III
f fOP OP OP OP

u p u pOP OP
p b p b

G G

l l
γ γ γ γ

τ τ
= + = +  (12) 

The present approach  assumes that the crack bandwidth used to assure mesh independence 

when modeling fracture mode I can also be adopted in the out-of-plane fracture process. 

 

3. Evaluation of the mode I fracture properties by inverse analysis 

This section describes the inverse analysis (IA) methodology adopted to evaluate the fracture 

mode I parameters of the SFRSCC used in the panel prototype that was experimentally tested 

and numerically simulated. Detailed information about this IA can be found elsewhere 

(Barros et al. 2005b, Sena-Cruz et al. 2004). 

As already mentioned, in the implemented smeared crack constitutive model the post-cracking 

behavior of SFRSCC under tension is described by a trilinear stress-strain softening diagram 

(Fig. 3). This function is defined by a set of fracture parameters (iα , iξ , I
fG , ctf  and bl ), being 

the accuracy of the FEM modeling largely dependent on the values that are assigned to these 

parameters. In this context, the experimental behavior of an element failed in bending may be 

predicted by a FEM model, as long as the correct values of the material fracture parameters are 

introduced in the constitutive model. The adopted strategy consists in the evaluation of the iξ , 

iα and I
fG  parameters that define the shape of the trilinear cr cr

n nσ ε−  constitutive law, based on 

the minimization of the error parameter 
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exp expnum
F F Ferr A A Aδ δ δ− − −= −  (13) 

where exp
FA δ−  and num

FA δ−  are the areas beneath the experimental and numerical load-deflection 

curves corresponding to a three point notched beam bending test (Sena-Cruz et al. 2004). The 

experimental curve corresponds to the average results observed in prismatic SFRSCC notched 

specimens, tested according to the RILEM TC 162-TDF recommendations at the age of 7 days 

(Vandewalle et al. 2002), while the numerical curve consists of the results obtained by FEM 

analysis, where the specimen, loading and support conditions are simulated in agreement with 

the experimental flexural test setup (Fig. 5a). In this context, the specimen is modeled with a 

mesh of 8 node serendipity plane stress finite elements. The Gauss-Legendre integration scheme 

with 2×2 integration points is used in all elements, with the exception of the elements at the 

specimen symmetry axis, where 1×2 integration points are used. With this particular integration 

point layout, the numerical results have a better agreement with the experimental observations, 

since a vertical crack may develop along the symmetry axis. Linear elastic material behavior is 

assumed in all the elements, with the exception of those above the notch, along the symmetry 

axis. In this region an elastic-cracked material model in tension is adopted. The crack bandwidth, 

bl , is assumed to be equal to 5 mm, being this value coincident with the width of the notch and 

of the elements located above it. 

In Fig. 5b, the results experimentally obtained in the flexural tests are compared with the 

numerical results. The curve of the numerical simulation, obtained with the optimized fracture 

parameters, is not perfectly coincident with the experimental curve, suggesting that more 

parameters should be considered in order to obtain a better fitting. The values of the fracture 

parameters iξ , iα  and I
fG  that lead to the numerical results represented in Fig. 5b are listed in 

Table 2. 
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4. Numerical simulation 

4.1 - Introduction 

The punching test of a module of the developed SFRSCC lightweight panel is used to assess the 

predictive performance of the proposed multi-directional fixed smeared crack model. The test 

layout and the test setup are represented in Fig. 6. More details about the corresponding 

experimental program can be found elsewhere (Barros et al. 2007). 

The influence of mesh refinement and some model parameters in the results of the numerical 

simulations is assessed and discussed in this section, namely: the values adopted for the fracture 

mode I parameters used to define the trilinear diagram and the values used to define the out-of-

plane shear stress-strain diagram. 

 

4.2 - Analysis based on the values obtained from the IA. 

4.2.1 - Influence of the out-of-plane shear softening diagram 

The results of the numerical simulations are compared with the experimental data obtained in 

the punching test of the panel module. The finite element idealization, load and support 

conditions used in the numerical simulations of the punching test are shown in Fig. 7a. Only one 

quarter of the panel is used in the simulations, due to double symmetry. The mesh is composed 

of 6 × 6 eight-node serendipity plane shell elements. The elements are divided into 11 layers, 

each one being 10 mm thick. Since the panel has lightweight zones (shaded elements in Fig. 7a), 

materialized by the suppression of 80mm of concrete in the central zone, null stiffness is 

assigned to the 8 bottom layers of the corresponding finite elements (see Fig 7b). The material 

of the remaining three layers has an elastic-cracked behavior, as described in Section 2.2. This 

model is also used in the elements located outside the central lightweight zone. 

A trial-and-error procedure is required to estimate reasonable values for the out-of-plane 

components of the elastic-cracked constitutive matrix, crco
sD , since their experimental evaluation 

is quite complex and beyond the scope of the present work. The out-of-plane shear fracture 

energy that leads to the best agreement with the experimental results of the punching tests, 
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3.0III
fG N mm= , is determined with this procedure. The values of the mode I fracture 

parameters that take part in the in-plane elastic-cracked constitutive matrix for concrete, crco
mfD , 

are obtained by IA, as described in Section 3. In Fig. 8 the responses obtained with the 

numerical model are compared with the experimental results. A good agreement can be 

observed up to a deflection of 2.5 mm. For larger deflections, an overestimation of the load 

carrying capacity of the prototype panel occurs when a linear elastic behavior is assumed for the 

out-of-plane shear components. At a deflection of about 3 mm the experimental curve suddenly 

falls, indicating the failure of the panel by punching, as visually confirmed in the experimental 

test. This load decay that is not reproduced when assuming a linear elastic behavior for the 

out-of-plane shear components is, however, well captured when the bilinear diagram 

represented in Fig. 4 is used to model the softening behavior of the out-of-plane shear 

components, with 3.0III
fG N mm= , and assuming a crack bandwidth, bl , equal to the square 

root of the area associated with the corresponding IP. The abrupt load decay from 

approximately 41 kN to 20 kN, which is observed in the experimental test, is accurately 

simulated by the numerical model, as well as the subsequent extended stage of residual load 

carrying capacity exhibiting a very small load decay. 

Up to a 10 kN load all the curves depicted in Fig. 8 are practically coincident. Afterwards, the 

straight line that represents the response assuming a linear-elastic behavior no longer follows 

the curves that correspond to the experimental test and to the numerical analysis with material 

nonlinear model. These results suggest that some cracks start to form at a very early stage of the 

experimental test. The nonlinear numerical model accurately captures the formation of bending 

cracks at the top surface (see Fig. 9a), in agreement with the experimentally observed crack 

pattern. Fig. 9b shows the crack pattern at the top surface observed at the end of the test 

sequence. The numerical model also indicates the formation of bending cracks at the bottom 

surface, in the lightweight zone. These cracks initiate at the center of the panel, beneath the 

loaded area, and then progress to the corners of the lightweight zone, showing some similarities 
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with the classical yield lines formed in square concrete slabs failing by flexure. These cracks 

can also be observed in the experimental test (Pereira 2006). 

In conclusion, the results indicate that flexure mechanisms prevail in the deformational behavior 

up to a deflection of approximately 2.5 mm. For larger deflections, the punching failure 

mechanisms start to assume a greater relevance, and the overestimation of the panel 

out-of-plane rigidity components, when linear out-of-plane shear behavior is assumed, leads to a 

divergence between the numerical model and the experimental observations. With the adoption 

of a softening law for the out-of-plane shear components, the numerical model becomes much 

more accurate in the prediction of the complete behavior of the panel failing in punching, 

capturing the sudden load decay associated with punching failure mechanisms.  

As already mentioned, the selection of a value for III
fG  has no experimental support. In order to 

analyze its influence on the results of the numerical simulation using a softening law for both 

out-of-plane components, a parametric analysis is carried out consisting in the variation of its 

value from 1.0 to 5.0 N/mm. The results depicted in Fig. 10 show that a value of 

3.0 N mmIII
fG =  leads to a perfect prediction of the abrupt load decay experimentally observed 

at a deflection of about 3 mm. Increasing or decreasing the value of III
fG  implies the occurrence 

of the abrupt load decay at a larger or smaller deflection, respectively. The conclusion of this 

study is that, independently of the value of III
fG , when using the model described in this work, it 

is essential to use a softening law for the out-of-plane shear components in order to simulate the 

sudden load decay observed in the punching test. 

 

4.2.2 - Influence of the through-thickness refinement of the panel 

In this section, the influence of through-thickness refinement of the panel on the load-deflection 

relationship is analyzed. The parameters used to simulate the fracture mode I and the out-of-

plane shear softening diagram are those that have best fitted the experimental results, according 

to the strategy described in the previous section. 
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For this purpose, the following two refinements are considered: 6 layers in the lightweight zone 

and 22 layers in the remaining parts; 10 layers in the lightweight zone and 26 layers in the other 

zones. 

In Fig. 11 the load-deflection relationships of these numerical simulations are compared with 

the experimental one. In the legend of this figure, CM_jL represents the relationship obtained 

from the simulation whose lightweight zone was discretized in j layers. It can be observed that 

by increasing the number of layers from 3 to 6 in the lightweight zone, the maximum load 

increases in about 17% and the stiffness corresponding to the branch between crack initiation 

and peak load also increases. This behavior can be justified by the fact that the flexural stiffness 

of the layers is not taken into account in the layered approach adopted to simulate the stiffness 

of Mindlin shell finite elements, when a material nonlinear analysis is performed. Therefore, the 

larger the number of layers discretizing the element, the higher the flexural stiffness of the 

element is, resulting in a smaller deformability of the panel and a higher load carrying capacity. 

However, Fig. 11 also shows that when the number of layers increases from 6 to 10, only a 

marginal increase of the maximum load is visible, which indicates that the increase ratio of the 

flexural stiffness and load carrying capacity of the layered Mindlin-shell element decreases with 

the number of layers.  

It is also interesting to observe that the deflection at the abrupt load decay, as well as the 

residual load carrying capacity of the panel are very similar in all three numerical analysis.  

 

4.2.3 Influence of the in-plane mesh refinement of the panel 

In order to assess the influence of the in-plane mesh refinement on the load-deflection 

relationship, an analysis with the refined mesh (RM) represented in Fig. 12 is carried out. 

Eight-node serendipity plane shell elements are used, with 10 layers in the lightweight zone and 

26 layers in the other zones. 

The load-deflection relationship for the RM is represented in Fig. 13, which is compared with 

the one obtained with the previous coarse mesh (CM), and with the one experimentally 

registered. As expected, the deformability of the panel increases with the mesh refinement, 
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causing the abrupt load decay to occur for a higher deflection (3.3 mm). Due to the higher 

flexibility of the panel when performing the analysis with the RM, a decrease of about 5% in 

terms of load carrying capacity occurs. Therefore, the shape of the load-deflection (F-u) curve 

for the RM is approximately the result of the rotation of the F-u curve for the CM in turn of the 

point that corresponds to the crack initiation. 

With the increase of the number of finite elements (and number of integration points), the 

concrete in cracked status and the corresponding consumed mode I fracture energy also increase. 

This can be a possible justification for this more deformable response of the in-plane RM 

numerical simulation. 

 

4.2.4 Influence of the fracture energy (IIIfG ) used in the out-of-plane shear softening diagram  

To assess the influence of the fracture energy used to define the out-of-plane shear softening 

diagram, III
fG , on the load-deflection relationship, its value is varied between 1.0 N/mm and 

5.0 N/mm. In these analyses the in-plane CM and the RM are used, with 10 layers discretizing 

the thickness of the panel in the lightweight zone. The obtained numerical curves are 

represented in Fig. 14a and 14b, respectively. It is observed that in the RM the IIIfG  value 

mainly affects the residual load carrying capacity after the abrupt load decay. When using the 

CM, the value attributed to III
fG  not only affects the residual load carrying capacity but also 

influences the value of the deflection corresponding to the abrupt load decay. This influence, 

however, is less pronounced than when using an in-plane CM with 3 layers discretizing the 

thickness of the panel in the lightweight zone (see Fig. 10). Therefore it can be concluded that 

when a RM is used, suitable predictions can be obtained with III I
f fG G= , but further research 

needs to be carried out for a more reliable estimation of III
fG . 

Figures 15a and 15b show the consumed out-of-plane fracture energy ( ,
III
f cG ) up to a deflection 

of 3.5 mm for the in-plane CM and RM, respectively. In each integration point, this consumed 

fracture energy receives the contribution of the two out-of-plane shear components in all layers 
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discretizing the thickness of the panel, and can be regarded as an indicator of damaged due to 

punching failure mode. It can be observed that the punching failure pattern is well predicted 

when using the RM. When using the in-plane CM refinement the shear failure bandwidth is 

larger, which justifies the higher sensitivity of the deflection corresponding to the abrupt load 

decay to the adopted IIIfG  value (Figure 14a). 

 

4.3 – Influence of the parameters that define the fracture mode I 

In order to assess the influence of the parameters that define the fracture mode I constitutive law 

(Fig. 3) on the load-deflection relationship predicted by the numerical model, the values of these 

parameters are decreased and increased by 50% relatively to those obtained by IA. The crack 

stress vs. crack strain (cr
nσ - cr

nε ) for these analyses and the corresponding load-deflection 

relationships are depicted in Figs. 16 to 20. All these numerical analyses were performed with 

the refined mesh and using 10 layers for the discretization of the thickness of the lightweight 

part of the panel. From the analysis of these graphs it can be concluded that the inclination of 

the first branch of the cr
nσ - cr

nε  diagram ( cr
n1D  in Fig. 3) governs the point corresponding to the 

first drop in the load-deflection relationship. In fact, the less abrupt is this branch the higher is 

the load of this point. In consequence, the load carrying capacity of the panel is quite sensible to 

the slope of this branch. Direct tensile tests with SFRSCC similar to the one used in the tested 

panels showed, in fact, an abrupt stress decay immediately after crack formation. Fig. 17b 

evidences that the numerically predicted load carrying capacity of the panel is quite dependent 

on the 1α  parameter, since a pronounced softening and a significant hardening deflection are 

estimated when a value of 1α  smaller or larger than the one obtained by IA is used (Fig. 17a). 

The higher strength ( )cr cr
n nσ ε of the second branch of cr

nσ - cr
nε , when adopting higher values for 

the 1α  parameter (Fig. 17a), also contributes to increase both the load carrying capacity of the 

panel and the deflection corresponding to the punching failure. However, Fig. 19 reveals that 

the strength ( )cr cr
n nσ ε  corresponding to the first branch of cr

nσ - cr
nε  diagram has a much higher 
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influence on the load carrying capacity of the panel than the strength ( )cr cr
n nσ ε  of the second 

branch. Nevertheless, Fig. 19 and Fig. 20 also demonstrate that the slope of the load-deflection 

branch before the punching failure grows with the value of cr
n2D  (Fig. 3). Finally, the decrease of 

the fracture energy is mainly reflected on the point corresponding to the first drop of the load-

deflection relationship (Fig. 20b). This decrease lead to a more abrupt decay of the first branch 

of the cr
nσ - cr

nε  diagram (Fig. 20a), resulting a decrease of the load at this point 

 

5. Conclusions 

In the present work a model based on the finite element method is proposed to simulate fiber 

reinforced concrete (FRC) structures failing in bending and shear. The Reissner-Mindlin theory, 

in the context of layered shells, is selected and special emphasis is dedicated to the treatment of 

the shear behavior. The model is based on a multi-directional fixed smeared crack concept. By 

considering the nonlinear behavior of each shell layer, crack propagation through the thickness 

of these structures can be simulated. Fracture mode I is modeled with a crack stress vs. crack 

strain trilinear diagram, whose defining parameters can be  obtained by inverse analysis (IA) 

using the load-deflection relationship obtained with three-point notched beam tests, carried out 

according to the RILEM TC 162-TDF recommendations. With this strategy the values of the 

fracture parameters that define the normal stress-strain crack constitutive relationship are 

obtained. Since this type of test is much simpler and faster to execute, it becomes an 

advantageous alternative to the direct tensile tests recommended to evaluate the fracture mode I 

parameters of cement based materials. The adopted IA strategy is presented and discussed in the 

numerical simulation section. To simulate the out-of-plane strain gradient that occurs in 

punching tests, a softening diagram is proposed to model, after crack initiation, the out-of-plane 

shear components. The adequacy and accuracy of the model is appraised using the results 

obtained in the punching test of a panel prototype built with steel fiber reinforced 

self-compacting concrete (SFRSCC). This numerical strategy allows for an accurate simulation 

of the load-deformational process of the experimentally tested panel, which exhibited a brittle 

punching failure. 
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Several numerical simulations are presented and discussed. Mesh refinement, data obtained with 

inverse analysis to define the trilinear diagram and a softening out-of-plane shear diagram are 

alternatives whose influence on the prediction of the experimental panel response is investigated. 

The use of softening laws to simulate the mode I crack opening and the out-of-plane shear 

components is crucial in order to obtain accurate numerical simulations The numerical 

simulations carried out with the proposed model and its comparison with the results of the 

experimental test used in this work lead to the conclusion that the behavior of laminar SFRSCC 

structures failing in punching can be numerically predicted by a FEM-based Reissner-Mindlin 

shell approach as long as a crack constitutive model that includes a softening diagram for 

modeling both out-of-plane shear constitutive laws is used. 
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NOTATION 

exp
FA δ−  

= areas beneath the experimental load-deflection curves 
num
FA δ−  

= areas beneath the numerical load-deflection curves 

df = steel fiber diameter 
crD  = crack constitutive matrix 
cr
niD  = opening fracture mode stiffness modulus for the i th trilinear 

stress-strain softening branch 
cr
ID  = crack constitutive matrix component relative to the crack 

normal opening mode (mode I) 
cr
IID  = crack constitutive matrix component relative to the crack in-

plane sliding mode (mode II) 

,sec
ij
IIID  = secant constitutive matrix ij  component relative to the crack 

out-of-plane sliding mode (mode III) 

,secIIID  
= secant stiffness relative to the crack out-of-plane sliding mode 

(mode III) 

,
co
mf eD  = constitutive matrix of in-plane membrane and bending 

components for concrete in elastic regime 
crco
mfD  = constitutive matrix of in-plane membrane and bending 

components for cracked concrete 
crco
sD  = constitutive matrix of out-of-plane shear components for 

cracked concrete 

cE , E  = concrete elasticity modulus 

FRC = fiber reinforced concrete 
Gc = concrete elastic shear modulus 

I
fG  = mode I (in-plane) fracture energy 

III
fG  = mode III (out-of-plane) fracture energy 

,
III
f cG  = consumed mode III (out-of-plane) fracture energy 

IA  = inverse analysis 
IP = integration point 

SFRSCC = steel fiber reinforced self compacting concrete 
crT  = transformation matrix from the coordinate system of the finite 

element to the local crack coordinate system 
fc = compressive strength 
fct = tensile strength 
lb = crack bandwidth 
l f = steel fiber length  

n, t = crack local coordinate system 
OP = out-of-plane 
p1 = shear degradation factor 
p2 = parameter defining the mode I fracture energy available to the 

new crack 
s  = sliding displacement 
w = opening displacement 

ix  = element local coordinate system 

iα  = fracture parameters used to define the trilinear stress-strain 
softening diagram 

thα  = threshold angle 

β  = shear retention factor 

mfε∆  = vector containing the in-plane membrane and bending strain 
incremental components 

crcoε  = elasto-cracked strain 
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crε  = crack strain 
coε  = elastic concrete strain 
cr
nε  = crack normal strain 

,
cr
n iε  = crack normal strain used to define point i in the trilinear 

stress-strain softening diagram 

,
cr
n uε  = ultimate crack normal strain 

sε  = vector containing the out-of-plane shear strain components 

ijγ  = out-of-plane shear strain  ij  component 

OP
pγ  = out-of-plane peak shear strain 

OPγ  
= out-of-plane shear strain 

,
OP
ij pγ  = out-of-plane peak shear strain for the ij  component 

OP
uγ  = out-of-plane ultimate shear strain 

,
OP
ij uγ  = out-of-plane ultimate shear strain for the ij  component 

max
OPγ  = out-of-plane maximum shear strain in the softening branch 

,max
OP
ijγ  = out-of-plane maximum shear strain ij  component in the 

softening branch 
ν  = Poisson’s ratio 
θ  = angle between the element local coordinate system and the 

crack local coordinate system  

iξ  = fracture parameters used to define the trilinear stress-strain 
softening diagram 

mfσ∆  = vector containing the in-plane membrane and bending stress 
incremental components 

cr
nσ  

= crack normal stress 

,
cr
n iσ  = crack normal stress used to define point i in the trilinear 

stress-train softening diagram 

sσ  = vector containing the out-of-plane shear stress components 
cr
tτ  = in-plane crack shear stress 

OP
pτ  = out-of-plane shear strength 

OPτ  
= out-of-plane shear stress 

,
OP
ij pτ  = out-of-plane shear strength for the ij  component 

ijτ  
= out-of-plane shear stress for the ij  component 

max
OPτ  = out-of-plane maximum shear stress in the softening branch 

,max
OP
ijτ  = out-of-plane maximum shear stress ij  component in the 

softening branch 
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TABLE CAPTIONS 
 

Table 1 - Composition for 1 m3 of SFRSCC including 30 kg/m3 of fibers. 

Table 2 - Values of the parameters of the constitutive model used in the numerical simulations 

of the punching test. 
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Table 1 - Composition for 1 m3 of SFRSCC including 30 kg/m3 of fibers 

Paste 
total 

volume 

(%) 

Cement 
CEM I 
42.5R 

(kg) 

Limestone 
filler 

(kg) 

Water 

(dm3) 

Super- 
plasticizer* 

(dm3) 

Fine 
sand 

(kg) 

Coarse 
sand 

(kg) 

Crushed 
aggregates 

(kg) 

0.34 364.28 312.24 93.67 6.94 108.59 723.96 669.28 

* Third generation based on polycarboxilates (Glenium 77SCC) 
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Table 2 - Values of the parameters of the constitutive model used in the numerical simulations 
of the punching test. 

Poisson’s ratio 0.15ν =  

Initial Young’s modulus 231000.0 N mmcE =  

Compressive strength 252.0 N mmcf =  

Trilinear tension softening diagram of 
SFRSCC (used in the numerical 
simulations of section 4.2. Parameters 
values obtained from inverse analysis) 

23.5 N mmctf = ; 4.3 N mmI
fG = ; 

1 0.009ξ = ; 1 0.5α = ; 2 0.15ξ = ; 2 0.59α =  

Trilinear tension softening diagram of 
SFRSCC (used in the numerical 
simulations of section 4.3. Parameter 
values obtained by modifying in 

50%± the ones obtained from inverse 

analysis) 

23.5 N mmctf = ; 

50% 4.3 N mmI
fG = − × ; 

1 50% 0.009ξ = ± × ; 1 50% 0.5α = ± × ; 

2 50% 0.15ξ = ± × ; 2 50% 0.59α = ± ×  ( ± - depends on the 

numerical simulation) 

Fracture energy (mode III) used in the 
out-of-plane shear stress-strain 
diagram 

from 1.0 N mmIII
fG =  to 5.0 N mmIII

fG =  (depends on 

the numerical simulation) 

Parameter defining the mode I fracture 
energy available to the new crack 2 2p =  

Shear retention factor Exponential ( 1 2p = ) 

Crack bandwidth Square root of the area of the integration point 

Threshold angle 30ºthα =  

cr cr
1 n,2 n,1/α σ σ= , 2 ,3 ,1/cr cr

n nα σ σ= , 1 ,2 ,/cr cr
n n uξ ε ε= , 2 ,3 ,/cr cr

n n uξ ε ε=  (see Fig. 3) 
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FIGURE CAPTIONS 

 

Fig. 1 - Concept of a lightweight steel fiber reinforced self-compacting concrete panel 

(dimensions in mm). 

Fig. 2 - Stress components, relative displacements and local coordinate system of the crack. 

Fig. 3 - Trilinear stress-strain diagram to simulate the fracture mode I crack propagation of 

SFRSCC ( cr cr
n,2 1 n,1σ α σ= , cr cr

n,3 2 n,1σ α σ= , ,2 1 ,
cr cr
n n uε ξ ε= , ,3 2 ,

cr cr
n n uε ξ ε= ). 

Fig. 4 - Diagram to simulate the relationship between the out-of-plane (OP) shear stress and 

shear strain components. 

Fig. 5 - Three-point notched beam flexural test at 7 days: (a) FEM mesh used in the numerical 

simulation, and (b) obtained results. 

Fig. 6 - (a) Test panel module, and (b) test setup (dimensions in mm). 

Fig. 7 - (a) Geometry, mesh, load and support conditions used in the numerical simulation of the 

punching test – Coarse Mesh (CM); (b) Properties of the layered cross section. 

Fig. 8 - Relationship between load and deflection at the center of the test panel.  

Fig.9 - Punching test simulation: (a) top surface cracks predicted by the numerical model (using 

a FEM mesh with 12 × 12 eight-node serendipity plane shell elements) , and (b) photograph 

showing the cracks at the top surface of the panel, at the end of the test sequence. 

Fig. 10 - Influence of III
fG , using the in-plane coarse mesh and 3 layers in the lightweight zone, 

on the numerical relationship between load and deflection at the center of the test panel. 

Fig. 11 - Influence of the number of layers discretizing the thickness of the panel (the number 

indicated is restricted to the lightweight zone of the panel). 

Fig. 12 - Geometry, mesh, load and support conditions used in the numerical simulation of the 

punching test – Refined Mesh (RM). 

Fig. 13 - Influence of the in-plane refinement on the numerical relationship between load and 

deflection at the center of the test panel. 

Fig. 14a - Influence of III
fG  on the numerical relationship between load and deflection at the 

center of the panel, when using the in-plane coarse mesh and 10 layers in the lightweight zone. 
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Fig. 14b - Influence of III
fG  on the numerical relationship between load and deflection at the 

center of the panel when using the in-plane refined mesh and 10 layers in the lightweight zone. 

Fig. 15a - Representation of the consumed out-of-plane fracture energy, ,
III
f cG , when using the 

in-plane coarse mesh and 10 layers in the lightweight zone, for a deflection of 3.5 mm. 

Fig. 15b - Representation of the consumed out-of-plane fracture energy, ,
III
f cG , when using the 

in-plane refined mesh and 10 layers in the lightweight zone, for a deflection of 3.5 mm. 

Fig. 16 - Influence of the 1ξ  parameter: (a) trilinear softening diagrams and (b)  relationship 

between load and deflection at the center of the test panel. 

Fig. 17 - Influence of the 1α  parameter: (a) trilinear softening diagrams and (b) relationship 

between load and deflection at the center of the test panel. 

Fig. 18 - Influence of the 2ξ  parameter: (a) trilinear softening diagrams and (b) relationship 

between load and deflection at the center of the test panel. 

Fig. 19 - Influence of the 2α  parameter: (a) trilinear softening diagrams and (b) relationship 

between load and deflection at the center of the test panel. 

Fig. 20 - Influence of I
fG : (a) trilinear softening diagrams and (b) relationship between load and 

deflection at the center of the test panel. 
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Fig. 1 - Concept of a lightweight steel fiber reinforced 
self-compacting concrete panel (dimensions in mm). 
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Fig. 2 - Stress components, relative displacements and 
local coordinate system of the crack. 
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Fig. 3 - Trilinear stress-strain diagram to simulate the fracture 
mode I crack propagation of SFRSCC (cr cr

n,2 1 n,1σ α σ= , 
cr cr
n,3 2 n,1σ α σ= , ,2 1 ,

cr cr
n n uε ξ ε= , ,3 2 ,

cr cr
n n uε ξ ε= ). 
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Fig. 4 - Diagram to simulate the relationship between the 
out-of-plane (OP) shear stress and shear strain components. 
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Fig. 5 - Three-point notched beam flexural test at 7 days: (a) FEM mesh 

used in the numerical simulation, and (b) obtained results. 
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(a) (b) 

Fig. 6 - (a) Test panel module, and (b) test setup (dimensions in mm). 
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Fig. 7 - (a) Geometry, mesh, load and support conditions used in the 
numerical simulation of the punching test – Coarse Mesh (CM); (b) 

Properties of the layered cross section. 
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Fig. 8 - Relationship between load and deflection at the center of the test 
panel.  
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(b) 

 

Fig.9 - Punching test simulation: (a) top surface cracks predicted by the numerical model (using a FEM 
mesh with 12 × 12 eight-node serendipity plane shell elements) , and (b) photograph showing the cracks 

at the top surface of the panel, at the end of the test sequence. 
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Fig. 10 - Influence of III
fG , using the in-plane coarse mesh and 3 layers 

in the lightweight zone, on the numerical relationship between load and 
deflection at the center of the test panel. 
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Fig. 11 - Influence of the number of layers discretizing the thickness of 
the panel (the number indicated is restricted to the lightweight zone of 

the panel). 
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Fig. 12 - Geometry, mesh, load and support conditions used in the 
numerical simulation of the punching test – Refined Mesh (RM). 
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Fig. 13 - Influence of the in-plane refinement on the numerical 

relationship between load and deflection at the center of the test panel. 
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Fig. 14a- Influence of III
fG  on the numerical relationship between load 

and deflection at the center of the panel, when using the in-plane coarse 
mesh and 10 layers in the lightweight zone. 

 
 
 
 
 

 

Fig. 14b- Influence of III
fG  on the numerical relationship between load 

and deflection at the center of the panel when using the in-plane refined 
mesh and 10 layers in the lightweight zone. 
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Fig. 15a- Representation of the consumed out-of-plane fracture energy, 

,
III
f cG , when using the in-plane coarse mesh and 10 layers in the 

lightweight zone, for a deflection of 3.5 mm. 
 
 
 

 
 

Fig. 15b - Representation of the consumed out-of-plane fracture energy, 

,
III
f cG , when using the in-plane refined mesh and 10 layers in the 

lightweight zone, for a deflection of 3.5 mm. 
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(a) (b) 

Fig. 16 - Influence of the 1ξ  parameter: (a) trilinear softening diagrams and (b)  relationship between load 

and deflection at the center of the test panel. 
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(a) (b) 
Fig. 17 - Influence of the 1α  parameter: (a) trilinear softening diagrams and (b) relationship between load 

and deflection at the center of the test panel. 
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(a) (b) 

Fig. 18 - Influence of the 2ξ  parameter: (a) trilinear softening diagrams and (b) relationship between load 

and deflection at the center of the test panel. 
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(a) (b) 

Fig. 19 - Influence of the 2α  parameter: (a) trilinear softening diagrams and (b) relationship between load 

and deflection at the center of the test panel. 
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(a) (b) 

Fig. 20 - Influence of I
fG : (a) trilinear softening diagrams and (b) relationship between load and 

deflection at the center of the test panel. 
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