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Abstract. The capability of a multi-directional fixed smearedack constitutive model to
simulate the flexural/punching failure modes ofefibreinforced concrete (FRC) laminar
structures is discussed. The constitutive modishggemented in a computer program based on
the finite element method, where the FRC laminarcstires were simulated according to the
Reissner-Mindlin shell theory. The shell is dis@ed into layers for the simulation of the
membrane, bending and out-of-plane shear nonlifedravior. A stress-strain softening
diagram is proposed to reproduce, after crackatmin, the evolution of the normal crack
component. The in-plane shear crack componenttéaraa using the concept of shear retention
factor, defined by a crack-strain dependent law. cBpture the punching failure mode, a
softening diagram is proposed to simulate the dsereof the out-of-plane shear stress
components with the increase of the correspondimgars strain components, after crack
initiation. With this relatively simple approachccarate predictions of the behavior of FRC
structures failing in bending and in shear can lif@ined. To assess the predictive performance
of the model, a punching experimental test of aut®of a facade panel fabricated with steel
fiber reinforced self-compacting concrete is nueedly simulated. The influence of some

parameters defining the softening diagrams is dised.
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1. Introduction

The Reissner-Mindlin theory for shell structuress@mmonly used to predict the behavior of
laminar concrete structures up to failure (Barrad &igueiras 2001). The thickness of the
laminar structure is discretized in layers that @ssumed subjected to a plane stress state. The
use of laws to simulate the nonlinear behavioeraftack initiation, for the in-plane fracture
modes is appropriate in most cases, and the defiomai response of the structure for load
configurations inducing flexural failure modes che predicted with sufficient accuracy.
However, the simulation of laminar structures fajlin punching is a much more complex task,
being the treatment of the out-of-plane shear ceomapts of paramount importance. In the
present work, in order to explore the use of a Brapproach to simulate the material nonlinear
behavior of concrete laminar structures failingpnching, a softening law is proposed to
model both out-of-plane shear components. This kcraonstitutive model has been
implemented in the FEMIX computer program, whichb&ésed on the finite element method
(Sena-Cruzet al. 2007). Since the shell model only admits crackd #re orthogonal to its
middle surface, the inclined cracks that are oleskia the experimental punching tests cannot
be accurately predicted. For this purpose a muate momplex and time-consuming general 3D
crack constitutive model must be used (Barzegamdaddipudi 1997).

Steel fiber reinforced self-compacting concreteRSEC) is a relatively recent cement-based
material that combines the benefits of the selffgacting concrete technology (Okamura 1997)
with the advantages of the addition of fibers farittle cementitious matrix (Pereira 2006). The
developed SFRSCC was used to manufacture the kaittv panel system schematically
represented in Fig. 1, which can be applied inding facades (Barrost al. 2005a). The mix
composition of the SFRSCC used to manufacture Hreelpis presented in Table 1. In the
composition of the SFRSCC, 30 kd/nf hooked ends steel fibers with a lendthdaf 60 mm,

a diameter d) of 0.75 mm, an aspect ratif /() of 80 and a yield stress of 1100 MPa were
used. At seven days the average value of the casipeestrength and modulus of elasticity of
this SFRSCC was 52 MPa and 31 GPa, respectivelg. flgxural strength of this type of

structural elements is a key aspect in their desigite, in general, the bending moments of the



wind load combination are an important factor ia thesign process of the panel. To assess the
panel flexural behavior, representative modulethefSFRSCC panel system were tested, being
the details of the experimental program descrillseehere (Barrost al. 2007). The punching
resistance is also a key aspect in the designisftgpe of panel, since its lightweight zones
consist of a thin layer that is only 30 mm thicla @valuate the punching resistance of these
zones, representative modules of the panel systensubmitted to a load configuration that
implies the occurrence of this type of failure m¢Barroset al. 2005a, Barrost al. 2007). The
results obtained in one of these tests were cordpaith the numerical simulations in order to
assess the predictive performance of the developmakel. Several numerical simulations are
carried out to assess the influence of some paemstiat define the softening diagrams. The
objective of these simulations is to understand leaeh parameter affects the response of a
laminar FRC structure failing in punching. The ughce of the in-plane mesh and
through-thickness refinement of the simulated $tmecis also analyzed.

The possibility of defining the fracture parametéhat characterize the fracture mode |
strain-softening diagram by performing an inverealygsis (IA) (Barroset al. 2005b) is also
discussed. The IA is based on the results obtamedree point notched beam bending tests

carried out according to the RILEM TC 162-TDF reenemdations (Vandewalket al. 2002).

2. Crack constitutive model

2.1 - Introduction

Presently, several finite element approaches aadadle to analyze the behavior of complex
structures subject to arbitrary loads. The mostmeones are capable of modeling the behavior
of concrete structures presenting brittle failuredes, and accurately predict crack formation
and progression. Discrete cohesive fracture mo@bécrete) with fragmentation algorithms,
strong discontinuity approaches (continuum) with émbedded discontinuities method and the
extended finite element method are examples of rembth methodologies that, together with
powerful mesh refinement algorithms, reveal gréfitiency in modeling the concrete fracture

initiation and propagation (Yat al. 2007). Alternative methods are based on damage Isnode



(de Borst and Gutiérrez 1999), smeared crack mg@aisant and Oh 1983)] and microplane
models (Bazant 1984). These methods are less erecjgredict the local phenomena related to
crack propagation, but from the computational ¢ffeness and the assessment of the global
behavior of a concrete structure point-of-viewse anore appropriate to analyze complex
structures with a large number of degrees of freed®s shown by de Borst (2002), “fixed and
rotating smeared crack models, but also microptaodels, can be conceived as a special case
of (anisotropic) damage models”, these three FEBkbasolutions are closely related and
produce similar results. Taking into account themncharacteristics of all these approaches, the
multi-directional fixed smeared crack model wasstdd and implemented in the scope of the
present research, since it allows for the analysislarge scale SFRSCC structures
(de Borst 1987, Rots 1988, Dahlblom and Ottosei®)} %5 long as an appropriate constitutive

law is used to model the SFRSCC post-cracking behav

2.2 - Formulation

In the context of finite element material nonlindshavior of concrete shell structures, the
developed crack constitutive model is implementedden the framework of the
Reissner-Mindlin theory adapted to the case of rleyeshells. The description of the
formulation is restricted to the case of crackedcecete, for a selected concrete layer, and at the
domain of an integration pointR) of a finite element. According to the adopted stitntive

law, stresses and strains are related by the follpeguation

AQ-mf _ Q:l:o Q Aé’mf
o - crco (1)
o, 0 D° £,

where Ag,, ={A0,A0,A1,} and Ag, ={A¢, 0,0y} are the vectors of the
. . . . . T
incremental stress and incremental strain in-plaomponents, whileg, = { r23,r3]} and

& ={ Yoz y3]}T are the vectors of the total stress and total obytane shear strain

components.



Due to the decomposition of the total strain into edastic concrete part and a crack part
(e =¢£*+£"), in Eq. (1) the in-plane cracked concrete comstié matrixD:.~, is obtained

with the following equation (Sena-Cruz 2004)

e Hmte — mf

D" =0 -0 [T°] 0%+ 1°D% [T] | 105 @

where D® | is the constitutive matrix of concrete with a hinend elastic behavior

—~mf,e

£ 1 v 0
an‘;,ezl_vz v 1 0 (3)
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whereE andv are the elasticity modulus and the Poisson’s raftiooncrete, respectively. In
Eq. (2),T” is the matrix that transforms the stress companfotn the coordinate system of
the finite element to the local crack coordinatstem
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and D is the crack constitutive matrix

or DCI‘ O
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In Eq. (4),6 is the angle betweer, and n (see Fig. 2). In Eq. (5P and D}’ represent,

respectively, the constitutive components relativehe crack opening mode I (normal) and
mode Il (in-plane shear).

The crack opening propagation is simulated with ttilsnear diagram represented in Fig. 3,
which is defined by the parametems and ¢ , relating stress with strain at the transitions
is

between the linear segments that compose thisadragfhe ultimate crack straia;"

h,u?

defined as a function of the parametersand & , the fracture energyG; , the tensile strength,

— cr
fct - an,l’

and the crack bandwidth,, as follows (Sena-Cruz 2004),
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wherea, =0,/ oy, a,=0,,10,,, é=¢&,1&, and&, =&,/ &

n

The fracture mode Il modulug);’, is obtained with

oo P
Du _1 ,B (7)

where G, is the concrete elastic shear modulus ghds the shear retention factor. The

parameters is defined as a constant value or as a functioth@fcurrent crack normal strain,

&', and of the ultimate crack normal straiy,, , as follows,
Py
ECI’
B =[1- o J 8

When p, is unitary, a linear decrease gf with the increase of; is assumed. Larger values

of the exponentp, correspond to a more pronounced decrease of tlagnpéer, in order to

simulate a higher in-plane shear stress degradatiuith the crack opening process
(Barroset al.2004). A softening constitutive law to model theplane crack shear stress
transfer has also been implemented in the FEMIXecbdt its adoption as an alternative to the
shear retention concept does not contribute tonarease of the accuracy of the numerical

simulations, and causes difficulties in the coneeg of the Newton-Raphson procedure.

The definition of the out-of-planeOP) constitutive matrix,D;° in Eq. (1), is based on the
diagram represented in Fig. 4. When the concresocesed with thelP changes from
uncracked to cracked state, the out-of-plane sh&asses are stored for later use and each

out-of-plane shear stress-strain relation,,¢ y,, and 7., - y,,) follows the softening law

crco

depicted in Fig. 4. Therefore, tH2.~ matrix is defined by

Dcrco _ |: DI?I3 sec O :I (9)
= 0 Dl?ll sec
where
TOP TOP
D23 e = 23, max ' D31 o= 31, max (10)
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in accordance with the secant approach shown indFigach peak shear strain is calculated

using the stored peak shear stress at crack iaitiand G,

o _Tp or _Tsip
}/Zj;,pz G ! y31,p: G (11)

C C

Each out-of-plane ultimate shear straiff; , is defined as a function of the out-of-plane peak

shear strainysp, the out-of-plane shear strenglzrf,P, the mode Ill (out-of-plane) fracture
energy,G;' , and the crack bandwidth,, as follows

ZGIII 2G|||
P _—_ ,,OP f OoP _ OP f
yzo?,,u - y23,p + OoP | ’ y31u - y31p + OoP | (12)
T23,p b T3l,p b

The present approach assumes that the crack bdthdused to assure mesh independence

when modeling fracture mode | can also be adoptéke out-of-plane fracture process.

3. Evaluation of the mode | fracture properties byinverse analysis

This section describes the inverse analysis (IA)hodology adopted to evaluate the fracture
mode | parameters of the SFRSCC used in the paotdtppe that was experimentally tested
and numerically simulated. Detailed information atbdhis IA can be found elsewhere
(Barroset al. 2005b, Sena-Cruzt al. 2004).

As already mentioned, in the implemented smearadkoconstitutive model the post-cracking

behavior of SFRSCC under tension is described byliaear stress-strain softening diagram

(Fig. 3). This function is defined by a set of tire parametersa(, &, G;, f, andl,), being

the accuracy of the FEM modeling largely dependenthe values that are assigned to these
parameters. In this context, the experimental biehaf an element failed in bending may be
predicted by a FEM model, as long as the correlctiegaof the material fracture parameters are

introduced in the constitutive model. The adoptiedtegy consists in the evaluation of tfe
a and G, parameters that define the shape of the trilingdr— & constitutive law, based on

the minimization of the error parameter



err =

AT Al AT (13)

where A%, and A™7 are the areas beneath the experimental and nwahéoid-deflection

curves corresponding to a three point notched beamding test (Sena-Cret al.2004). The
experimental curve corresponds to the averagetsesbserved in prismatic SFRSCC notched
specimens, tested according to the RILEM TC 162-T&fommendations at the age of 7 days
(Vandewalleet al. 2002), while the numerical curve consists of tesults obtained by FEM
analysis, where the specimen, loading and suppoditions are simulated in agreement with
the experimental flexural test setup (Fig. 5a)this context, the specimen is modeled with a
mesh of 8 node serendipity plane stress finite etés The Gauss-Legendre integration scheme
with 2x2 integration points is used in all elementith the exception of the elements at the
specimen symmetry axis, where 1x2 integration gaané used. With this particular integration
point layout, the numerical results have a bettge@ment with the experimental observations,
since a vertical crack may develop along the sympreetis. Linear elastic material behavior is
assumed in all the elements, with the exceptiothate above the notch, along the symmetry
axis. In this region an elastic-cracked materiatieddn tension is adopted. The crack bandwidth,
[, is assumed to be equal to 5 mm, being this veduecident with the width of the notch and
of the elements located above it.

In Fig. 5b, the results experimentally obtainedthe flexural tests are compared with the
numerical results. The curve of the numerical satiah, obtained with the optimized fracture
parameters, is not perfectly coincident with thepezimental curve, suggesting that more

parameters should be considered in order to olastdetter fitting. The values of the fracture

parameterst, , @, andG; that lead to the numerical results representeeignsb are listed in

Table 2.



4. Numerical simulation

4.1 - Introduction

The punching test of a module of the developed SFEREghtweight panel is used to assess the
predictive performance of the proposed multi-dil fixed smeared crack model. The test
layout and the test setup are represented in Fiyldde details about the corresponding

experimental program can be found elsewhere (Batrak 2007).

The influence of mesh refinement and some modedrpeters in the results of the numerical
simulations is assessed and discussed in thioseaamely: the values adopted for the fracture
mode | parameters used to define the trilinearrdmgand the values used to define the out-of-

plane shear stress-strain diagram.

4.2 - Analysis based on the values obtained fromeHA.

4.2.1 - Influence of the out-of-plane shear softgrdiagram

The results of the numerical simulations are comgbavith the experimental data obtained in
the punching test of the panel module. The finikement idealization, load and support
conditions used in the numerical simulations ofgthaching test are shown in Fig. 7a. Only one
quarter of the panel is used in the simulationg, udouble symmetry. The mesh is composed
of 6 x 6 eight-node serendipity plane shell elememhe elements are divided into 11 layers,
each one being 10 mm thick. Since the panel hhsaigght zones (shaded elements in Fig. 7a),
materialized by the suppression of 80mm of conciet¢he central zone, null stiffness is
assigned to the 8 bottom layers of the correspanfiliite elements (see Fig 7b). The material
of the remaining three layers has an elastic-cihddehavior, as described in Section 2.2. This
model is also used in the elements located outeeleentral lightweight zone.

A trial-and-error procedure is required to estimat@asonable values for the out-of-plane
components of the elastic-cracked constitutive mdd®, since their experimental evaluation

is quite complex and beyond the scope of the pteserk. The out-of-plane shear fracture

energy that leads to the best agreement with tiperarental results of the punching tests,



G{' =3.0N/mm, is determined with this procedure. The valuesttfé mode | fracture

parameters that take part in the in-plane elasticked constitutive matrix for concret,°,

are obtained by IA, as described in Section 3. ig. & the responses obtained with the
numerical model are compared with the experimentgllts. A good agreement can be
observed up to a deflection of 2.5 mm. For largefledtions, an overestimation of the load
carrying capacity of the prototype panel occursmadinear elastic behavior is assumed for the
out-of-plane shear components. At a deflectionbafud 3 mm the experimental curve suddenly
falls, indicating the failure of the panel by puitah) as visually confirmed in the experimental
test. This load decay that is not reproduced wresuraing a linear elastic behavior for the
out-of-plane shear components is, however, welltwread when the bilinear diagram

represented in Fig. 4 is used to model the softerbehavior of the out-of-plane shear

components, wittG{' =3.0N/mm, and assuming a crack bandwidth, equal to the square

root of the area associated with the correspondifg The abrupt load decay from
approximately 41 kN to 20 kN, which is observedtive experimental test, is accurately
simulated by the numerical model, as well as thHessguent extended stage of residual load
carrying capacity exhibiting a very small load deca

Up to a 10 kN load all the curves depicted in Bigire practically coincident. Afterwards, the
straight line that represents the response assuaniimgar-elastic behavior no longer follows
the curves that correspond to the experimentalaiedtto the numerical analysis with material
nonlinear model. These results suggest that soagksstart to form at a very early stage of the
experimental test. The nonlinear numerical modeugeately captures the formation of bending
cracks at the top surface (see Fig. 9a), in agreemih the experimentally observed crack
pattern. Fig. 9b shows the crack pattern at the siofface observed at the end of the test
sequence. The numerical model also indicates thraation of bending cracks at the bottom
surface, in the lightweight zone. These cracksaitatat the center of the panel, beneath the

loaded area, and then progress to the corner® digthtweight zone, showing some similarities
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with the classical yield lines formed in square a@ete slabs failing by flexure. These cracks
can also be observed in the experimental test ifBet@06).

In conclusion, the results indicate that flexurechamnisms prevail in the deformational behavior
up to a deflection of approximately 2.5 mm. Forgtr deflections, the punching failure
mechanisms start to assume a greater relevance,ttendoverestimation of the panel
out-of-plane rigidity components, when linear otiptane shear behavior is assumed, leads to a
divergence between the numerical model and therempptal observations. With the adoption
of a softening law for the out-of-plane shear congus, the numerical model becomes much
more accurate in the prediction of the completeabim of the panel failing in punching,

capturing the sudden load decay associated withhpuog failure mechanisms.
As already mentioned, the selection of a valueGdr has no experimental support. In order to
analyze its influence on the results of the nuna¢rsimulation using a softening law for both

out-of-plane components, a parametric analysisfigad out consisting in the variation of its

value from 1.0t05.0 N/'mm. The results depicted Hig. 10 show that a value of

G{' =3.0 N/ mm leads to a perfect prediction of the abrupt loaday experimentally observed

at a deflection of about 3 mm. Increasing or desirgpthe value of5;"' implies the occurrence
of the abrupt load decay at a larger or smallefedgbn, respectively. The conclusion of this
study is that, independently of the valueG@lf , when using the model described in this work, it

is essential to use a softening law for the ouplafie shear components in order to simulate the

sudden load decay observed in the punching test.

4.2.2 - Influence of the through-thickness refinetnoé the panel

In this section, the influence of through-thicknesfinement of the panel on the load-deflection
relationship is analyzed. The parameters usedntolate the fracture mode | and the out-of-
plane shear softening diagram are those that hestefitted the experimental results, according

to the strategy described in the previous section.
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For this purpose, the following two refinements emesidered: 6 layers in the lightweight zone
and 22 layers in the remaining parts; 10 layethénlightweight zone and 26 layers in the other
zones.

In Fig. 11 the load-deflection relationships ofdéenumerical simulations are compared with
the experimental one. In the legend of this fig@®) jL represents the relationship obtained
from the simulation whose lightweight zone was @itized inj layers. It can be observed that
by increasing the number of layers from 3 to 6ha tightweight zone, the maximum load
increases in about 17% and the stiffness correspgrid the branch between crack initiation
and peak load also increases. This behavior cqushBed by the fact that the flexural stiffness
of the layers is not taken into account in the tagleapproach adopted to simulate the stiffness
of Mindlin shell finite elements, when a materiahfinear analysis is performed. Therefore, the
larger the number of layers discretizing the elemére higher the flexural stiffness of the
element is, resulting in a smaller deformabilitytloé panel and a higher load carrying capacity.
However, Fig. 11 also shows that when the numbdays#rs increases from 6 to 10, only a
marginal increase of the maximum load is visiblejol indicates that the increase ratio of the
flexural stiffness and load carrying capacity af tayered Mindlin-shell element decreases with
the number of layers.

It is also interesting to observe that the deftectat the abrupt load decay, as well as the

residual load carrying capacity of the panel amy g@milar in all three numerical analysis.

4.2.3 Influence of the in-plane mesh refinemeth®panel

In order to assess the influence of the in-planeshmeefinement on the load-deflection
relationship, an analysis with the refined mesh jR¥&presented in Fig. 12 is carried out.
Eight-node serendipity plane shell elements ard,usith 10 layers in the lightweight zone and
26 layers in the other zones.

The load-deflection relationship for the RM is reggnted in Fig. 13, which is compared with
the one obtained with the previous coarse mesh (GMY with the one experimentally

registered. As expected, the deformability of tlemed increases with the mesh refinement,
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causing the abrupt load decay to occur for a higleglection (3.3 mm). Due to the higher
flexibility of the panel when performing the anatysvith the RM, a decrease of about 5% in
terms of load carrying capacity occurs. Thereftie, shape of the load-deflectioR-@) curve

for the RM is approximately the result of the raatof theF-u curve for the CM in turn of the
point that corresponds to the crack initiation.

With the increase of the number of finite elemef@asd number of integration points), the
concrete in cracked status and the correspondingucoed mode | fracture energy also increase.
This can be a possible justification for this maleformable response of the in-plane RM

numerical simulation.

4.2.4 Influence of the fracture energg{ ) used in the out-of-plane shear softening diagram

To assess the influence of the fracture energy tsetbfine the out-of-plane shear softening
diagram,G;' , on the load-deflection relationship, its valuevagied between 1.0 N/mm and
5.0 N/mm. In these analyses the in-plane CM andRiieare used, with 10 layers discretizing
the thickness of the panel in the lightweight zofidie obtained numerical curves are
represented in Fig. 14a and 14b, respectivelys lbbserved that in the RM th@!"' value
mainly affects the residual load carrying capaaeityer the abrupt load decay. When using the
CM, the value attributed tG;" not only affects the residual load carrying catyabit also

influences the value of the deflection correspogdm the abrupt load decay. This influence,
however, is less pronounced than when using araimepCM with 3 layers discretizing the

thickness of the panel in the lightweight zone (B&e 10). Therefore it can be concluded that

when a RM is used, suitable predictions can beimédawith G{' = G, , but further research

needs to be carried out for a more reliable estomaif G| .

Figures 15a and 15b show the consumed out-of-dtacture energy G;'.) up to a deflection

of 3.5 mm for the in-plane CM and RM, respectivetyeach integration point, this consumed

fracture energy receives the contribution of the wmt-of-plane shear components in all layers

13



discretizing the thickness of the panel, and camnegarded as an indicator of damaged due to
punching failure mode. It can be observed thatpimeching failure pattern is well predicted
when using the RM. When using the in-plane CM eafient the shear failure bandwidth is

larger, which justifies the higher sensitivity dietdeflection corresponding to the abrupt load

decay to the adopte@;" value (Figure 14a).

4.3 — Influence of the parameters that define thedcture mode |
In order to assess the influence of the param#tatslefine the fracture mode | constitutive law
(Fig. 3) on the load-deflection relationship pregitby the numerical model, the values of these

parameters are decreased and increased by 50%aiglab those obtained by IA. The crack
stress vs. crack straing{ - £, ) for these analyses and the corresponding lodéaliein

relationships are depicted in Figs. 16 to 20. Alde numerical analyses were performed with
the refined mesh and using 10 layers for the digation of the thickness of the lightweight

part of the panel. From the analysis of these grapban be concluded that the inclination of
the first branch of ther;' - & diagram Oy; in Fig. 3) governs the point corresponding to the

first drop in the load-deflection relationship. fhrct, the less abrupt is this branch the higher is
the load of this point. In consequence, the loadyoay capacity of the panel is quite sensible to
the slope of this branch. Direct tensile tests VBFRSCC similar to the one used in the tested
panels showed, in fact, an abrupt stress decay diatedy after crack formation. Fig. 17b

evidences that the numerically predicted load @agrgapacity of the panel is quite dependent

on thea, parameter, since a pronounced softening and afisagit hardening deflection are

estimated when a value of smaller or larger than the one obtained by IAsedi(Fig. 17a).

, when adopting higher values for

n

The higher strengtlo’ (£ﬁ')of the second branch af; - &

the a, parameter (Fig. 17a), also contributes to incréedh the load carrying capacity of the

panel and the deflection corresponding to the pgcfailure. However, Fig. 19 reveals that

n

the strengtho”’ (5“’) corresponding to the first branch af - €, diagram has a much higher

14
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influence on the load carrying capacity of the pahen the strengtlo’ (5 ) of the second

branch. Nevertheless, Fig. 19 and Fig. 20 also dstrate that the slope of the load-deflection
branch before the punching failure grows with tatue of D7, (Fig. 3). Finally, the decrease of

the fracture energy is mainly reflected on the poorresponding to the first drop of the load-

deflection relationship (Fig. 20b). This decreasadito a more abrupt decay of the first branch

of the g - & diagram (Fig. 20a), resulting a decrease of thd kt this point

5. Conclusions

In the present work a model based on the finitenele method is proposed to simulate fiber
reinforced concrete (FRC) structures failing indiag and shear. The Reissner-Mindlin theory,
in the context of layered shells, is selected gatial emphasis is dedicated to the treatment of
the shear behavior. The model is based on a niddiitibnal fixed smeared crack concept. By
considering the nonlinear behavior of each shgknacrack propagation through the thickness
of these structures can be simulated. Fracture madenodeled with a crack stress. crack
strain trilinear diagram, whose defining paramets&s be obtained by inverse analysis (IA)
using the load-deflection relationship obtainedhwitree-point notched beam tests, carried out
according to the RILEM TC 162-TDF recommendationéth this strategy the values of the
fracture parameters that define the normal streasiscrack constitutive relationship are
obtained. Since this type of test is much simpled daster to execute, it becomes an
advantageous alternative to the direct tensile testommended to evaluate the fracture mode |
parameters of cement based materials. The adoptsuldtegy is presented and discussed in the
numerical simulation section. To simulate the duplane strain gradient that occurs in
punching tests, a softening diagram is proposedddel, after crack initiation, the out-of-plane
shear components. The adequacy and accuracy ahdlael is appraised using the results
obtained in the punching test of a panel prototypelt with steel fiber reinforced
self-compacting concrete (SFRSCC). This numeritrateyyy allows for an accurate simulation
of the load-deformational process of the experimigntested panel, which exhibited a brittle

punching failure.
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Several numerical simulations are presented amdissed. Mesh refinement, data obtained with
inverse analysis to define the trilinear diagrard ansoftening out-of-plane shear diagram are
alternatives whose influence on the predictiorhefeéxperimental panel response is investigated.
The use of softening laws to simulate the modeatkropening and the out-of-plane shear
components is crucial in order to obtain accuratenerical simulations The numerical
simulations carried out with the proposed model aadcomparison with the results of the
experimental test used in this work lead to thechasion that the behavior of laminar SFRSCC
structures failing in punching can be numericalfgdicted by a FEM-based Reissner-Mindlin
shell approach as long as a crack constitutive intide includes a softening diagram for

modeling both out-of-plane shear constitutive léswssed.
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TABLE CAPTIONS

Table 1 - Composition for 1 hof SFRSCC including 30 kg/hof fibers.
Table 2 - Values of the parameters of the conatéunodel used in the numerical simulations

of the punching test.
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Table 1 - Composition for 1 hof SFRSCC including 30 kg/hof fibers

Paste Cement
total CEM I Limestone Super- Fine Coarse Crushed
volume 42.5R filler Water plasticizer sand sand aggregates
(%) (kg) (kg) (dn’) (dn) (kg) (kg) (kg)
0.34 364.28 312.24 93.67 6.94 108.59 723.9p 669.2

" Third generation based on polycarboxilates (Glerii@7SCC)
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Table 2 - Values of the parameters of the conatéunodel used in the numerical simulations
of the punching test.

Poisson’s ratio v=0.15
Initial Young's modulus E. =31000.0 N mrf
Compressive strength f, =52.0 N/ mnf

Trilinear tension softening diagram gf
SFRSCC (used in the numerical f, =35N mnf ; G} =4.3 N/ mm;

simulations of section 4.2. Parameterss =0.009; a, =0.5; &, =0.15; @, =0.59
values obtained from inverse analysis)

Trilinear tension softening diagram df f, =3.5N/ mn? ;
SFRSCC (used in the numerical | — _eno )
simulations of section 4.3. Parameter Gy =-50%x 4.3 mm;
values obtained by modifying in & =+50%x 0.009; a, =+50%x 0.5;

0, i i q
+50% .the ones obtained from invers eg2 = +500x 0.1E; @, = +50%x 0.5¢ (£ - depends on the
analysis) . . .

numerical simulation)

Fracture energy (mode IlIl) used in th mo_ no_
out-of-plane shear stress-strain rom G;' =1.0 N mmto G;' =5.0 N mm (depends on

diagram the numerical simulation)

Parameter defining the mode | fracty rep -
. 2 -
energy available to the new crack

Shear retention factor Exponential p, =2)
Crack bandwidth Square root of the area of the integration point
Threshold angle a,, =30°

a,=oy,l0), a,=0,,l0,, §=&,1¢,, & =¢€,51&,, (seeFig. 3)

nu?
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FIGURE CAPTIONS

Fig. 1 - Concept of a lightweight steel fiber reirfed self-compacting concrete panel
(dimensions in mm).
Fig. 2 - Stress components, relative displacenmemddocal coordinate system of the crack.

Fig. 3 - Trilinear stress-strain diagram to simel#te fracture mode | crack propagation of

SFRSCC ¢, =a,0%,, 0%, =a,0%,, &, =& &%, €7, =&, &%).

Fig. 4 - Diagram to simulate the relationship betwehe out-of-planeQP) shear stress and
shear strain components.

Fig. 5 - Three-point notched beam flexural test diays: (a) FEM mesh used in the numerical
simulation, and (b) obtained results.

Fig. 6 - (a) Test panel module, and (b) test s@irpensions in mm).

Fig. 7 - (a) Geometry, mesh, load and support ¢mmdi used in the numerical simulation of the
punching test — Coarse Mesh (CM); (b) Propertieth@fiayered cross section.

Fig. 8 - Relationship between load and deflectibtthe@ center of the test panel.

Fig.9 - Punching test simulation: (a) top surfaks predicted by the numerical model (using

a FEM mesh with 12 x 12 eight-node serendipity @lahell elements) , and (b) photograph

showing the cracks at the top surface of the paéhe end of the test sequence.

Fig. 10 - Influence ofG{" , using the in-plane coarse mesh and 3 layerseitightweight zone,

on the numerical relationship between load ancedain at the center of the test panel.

Fig. 11 - Influence of the number of layers diseieg the thickness of the panel (the number
indicated is restricted to the lightweight zonglw panel).

Fig. 12 - Geometry, mesh, load and support contitiased in the numerical simulation of the
punching test — Refined Mesh (RM).

Fig. 13 - Influence of the in-plane refinement bl humerical relationship between load and

deflection at the center of the test panel.

Fig. 14a - Influence o6G!" on the numerical relationship between load andedeédn at the

center of the panel, when using the in-plane caaessh and 10 layers in the lightweight zone.
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Fig. 14b - Influence of5{" on the numerical relationship between load andedgdn at the

center of the panel when using the in-plane refinegh and 10 layers in the lightweight zone.

1l
f.c?

Fig. 15a - Representation of the consumed out-arfiglfracture energ\G; ., when using the

in-plane coarse mesh and 10 layers in the lightwteigne, for a deflection of 3.5 mm.

Fig. 15b - Representation of the consumed out-afiglfracture energys,'., when using the

in-plane refined mesh and 10 layers in the light\vezone, for a deflection of 3.5 mm.
Fig. 16 - Influence of th&, parameter: (a) trilinear softening diagrams and (blationship

between load and deflection at the center of thiepanel.

Fig. 17 - Influence of ther, parameter: (a) trilinear softening diagrams andréationship

between load and deflection at the center of tsiepanel.

Fig. 18 - Influence of th&, parameter: (a) trilinear softening diagrams andréationship

between load and deflection at the center of thiepanel.

Fig. 19 - Influence of ther, parameter: (a) trilinear softening diagrams andréationship
between load and deflection at the center of thiepanel.

Fig. 20 - Influence ofG; : (a) trilinear softening diagrams and (b) relasioip between load and

deflection at the center of the test panel.
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Fig. 1 - Concept of a lightweight steel fiber reirded
self-compacting concrete panel (dimensions in mm).
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Fig. 2 - Stress components, relative displacemamds
local coordinate system of the crack.
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Fig. 10 - Influence ofG{" , using the in-plane coarse mesh and 3 layers

in the lightweight zone, on the numerical relatitipsbetween load and
deflection at the center of the test panel.

36



60 A

50 -

40 +

30 A

Load [kN]

20 A

10 A

— Experimental

— Softening out-of-plane shear (CM_3L)

Softening out-of-plane shear (CM_6L)

: === Softening out-of-plane shear (CM_10L)

3 4 5 6
Deflection[mm]
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Fig. 14a- Influence of5{" on the numerical relationship between load

and deflection at the center of the panel, whenguie in-plane coarse
mesh and 10 layers in the lightweight zone.
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Fig. 14b- Influence ofG}{' on the numerical relationship between load

and deflection at the center of the panel whengusie in-plane refined
mesh and 10 layers in the lightweight zone.
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Fig. 15a- Representation of the consumed out-afepfeacture energy,
G!}'_, when using the in-plane coarse mesh and 10 lay¢he

f.c?
lightweight zone, for a deflection of 3.5 mm.

Fig. 15b - Representation of the consumed out-afiglfracture energy,
G'., when using the in-plane refined mesh and 10 fayethe

lightweight zone, for a deflection of 3.5 mm.
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