
Program Verification in SPARK and ACSL: A
Comparative Case Study

Eduardo Brito and Jorge Sousa Pinto
{edbrito,jsp}@di.uminho.pt

Departamento de Informática / CCTC
Universidade do Minho, Braga, Portugal

Abstract. We present a case-study of developing a simple software
module using contracts, and rigorously verifying it for safety and func-
tional correctness using two very different programming languages, that
share the fact that both are extensively used in safety-critical develop-
ment: SPARK and C/ACSL. This case-study, together with other investi-
gations not detailed here, allows us to establish a comparison in terms of
specification effort and degree of automation obtained with each toolset.

1 Introduction

In recent years, deductive program verification based on contracts and JML-like
annotation languages has been a very active and fruitful area of research. The
state of the art of currently available tools has been greatly advanced with the
use of SMT provers and other automatic proof tools targeted for verification.

The SPARK [1] programming language and toolset offers program verifica-
tion capabilities as part of a wider array of static analyses aimed at the de-
velopment of high-integrity software. The SPARK reality is different from that
faced by verification tools for general-purpose languages, since the SPARK lan-
guage itself is so restricted (as imposed by the specific application domains in
which it is used) that some of the big verification challenges (to name one: the
manipulation of data structures in the program heap) are not even present.

Curiously, our industrial research partners who work in the safety-critical
context (more specifically, in the development of real-time, embedded applica-
tions) are mainly interested in two programming languages: SPARK and C. This
may sound surprising, as one can hardly think of two imperative languages that
stand farther away from each other in terms of safety restrictions, but it is a
reality. Prompted by this fact, we present in this paper an attempt to com-
pare SPARK with C in terms of the programming and annotation languages, as
well as the currently available verification tools. Naturally, this comparison only
makes sense for a subset of C that excludes features that are absent in SPARK.

Let us recall two fundamental differences between both programming lan-
guages, in addition to the safety issues: C has very little support for abstraction,
whereas SPARK, which is a subset of Ada, explicitly supports abstract data
types, as well as refinement. In SPARK specification contracts are part of the
language; in C we resort to the external ACSL [3] specification language.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55613358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


– nat count() – Returns the number of elements currently in the stack.
– nat capacity() – Returns the maximum number of elements that the stack may contain.
– boolean isEmpty() – Returns information on whether the stack is empty.

Postcond: Result = (count() = 0)
– boolean isFull() – Returns information on whether the stack is full.

Postcond: Result = (count() = capacity())
– int top() – Returns the top of the stack.

Precond: not isEmpty()
– void pop() – Removes the top of the stack.

Precond: not isEmpty(); Postcond: count() = old_count() - 1
– void push(int n) – Pushes item n onto the stack.

Precond: not isFull(); Postcond: count() = old_count() + 1 and top() = n

Fig. 1. Stack operations

Our goals are (i) to explain the differences involved in coding a very simple
software module when full verification is an issue; (ii) to evaluate the relative
difficulty of establishing the safe execution of programs in both platforms (we
expect it to be easier in SPARK, as a consequence of the language design); and
(iii) to assess how the verification tools compare in terms of automatic proof.

The paper can be used by readers familiar with either ACSL (or other JML-
like language) or SPARK, as a quick introduction to the other platform, and
as a general introduction to verified development in both languages. We believe
this to be a useful contribution towards promoting the use of such tools.

2 Background

The goal of deductive program verification is to statically ensure that a program
performs according to some intended specification, resorting to the axiomatic se-
mantics of the programming languages and tools like theorem provers. Typically,
what is meant by this is that the input/output behaviour of the implementation
matches that of the specification (this is usually called the functional behaviour
of the program), and moreover the program does not ‘go wrong’, for instance no
errors occur during evaluation of expressions (the so-called safety behaviour).
Related approaches that do not concern us here are dynamic verification (which
considers a single run of a program), software model checking (based on the ex-
ploration of a limited state space), and extended static checking (which abandons
correctness and completeness for the sake of automation). Neither of these offer
as high an assurance degree as deductive verification.

The idea of a software contract – consisting, for each procedure / method,
of a precondition that should be established by the caller and a postcondition
that must be established by the callee – was initially meant to be used as part
of a software development cycle that relies on dynamic verification. The code is
compiled by a special compiler that introduces run-time checks for the contracts
in the code, that will be executed at call-time and at return-time. Since these
conditions are checked dynamically, they must be written as boolean expressions
in the syntax of the programming language, which may include calls to other
methods or functions defined as part of the same program.



Figure 1 shows a typical specification of a bounded stack that can be found in
many tutorials on the design by contract approach to software development [13].
The figure contains an informal description of each operation on stacks, and in
some cases a contract consisting of a precondition and a postcondition. Notice
that methods count, capacity, and isFull occur in several preconditions and
postconditions. In fact, the first two are not usually given as part of a stack’s
interface, and their presence is justified by their use in other methods’ contracts.

In general, annotation languages include two features that can be found in
postconditions in this example: the possibility of referring to the value of an ex-
pression in the pre-state (old_count() for count), and of referring to the return
value (Result). The preconditions state that some stack operations cannot be
performed on an empty or a full stack, while the postconditions partially specify
the functional behaviour of the methods. This is straightforward for isEmpty
and isFull. For push the postcondition ensures that the element at the top of
the stack on exit is indeed the pushed value, and the stack count is increased
with respect to its initial value; for top the contract simply states that the count
is decreased. It is implicit that the stack remains unmodified, with the exception
of its top element when performing a push or pop operation.

Although program verification based on preconditions and postconditions
predates design by contract by decades, it has been revitalized by the growing
popularity of the latter and the advent of specification languages like JML [10],
intended to be used by different tools ranging from dynamic checking to test-case
generation, static analysis and verification. In contract-based program verifica-
tion each procedure C is annotated with a contract (Precond: P ; Postcond: Q);
checking its correctness amounts to establishing the validity of the Hoare triple
{P}C {Q} [8]. A program is correct if all its constituent annotated procedures
are correct. The verification process follows the mutually recursive nature of pro-
grams: in proving the correctness of procedure f that invokes procedure g, one
simply assumes the correctness of g with respect to its contract. In a deductive
framework, correctness of a program can be established by the following steps.

1. Annotating the source code with specifications in the form of contracts (for
every procedure / function / method) and invariant information for loops;

2. Generating from the code, with the help of a verification conditions generator
tool (VCGen for short), a set of first-order proof obligations (verification
conditions, VCs), whose validity will imply the correctness of the code; and

3. Discharging the verification conditions using a proof tool. If all VCs are valid
then the program is correct.

ACSL/Frama-C and SPARK. Frama-C [3] is a tool for the static analysis of C
programs. It is based on the intermediate language Jessie [11] and the multi-
prover VCGen Why [7]. C programs are annotated using the ANSI-C Specifi-
cation Language (ACSL). Frama-C contains the gwhy graphical front-end that
allows to monitor individual verification conditions. This is particularly useful
when combined with the possibility of exporting the conditions to various proof
tools, which allows users to first try discharging conditions with one or more



automatic provers, leaving the harder conditions to be studied with the help of
an interactive proof assistant. For the examples in this paper we have used the
Simplify [6] and Alt-Ergo [5] automatic theorem provers. Both Frama-C and
ACSL are work in progress; we have used the Lithium release of Frama-C.

SPARK on the other hand is both a language and a toolset. The language is a
strict subset of the Ada 95 standard, with some added anotations, designed with
predictability and safety in mind. What we mean by strict is that every SPARK
program is a valid Ada 95 program. This is very important since the SPARK
toolset does not provide a compiler, relying instead on existing Ada compilers.
A clearly defined semantics for the SPARK subset of Ada 95 is obtained by
imposing a set of rules that precisely define a set of programming practices and
limitations that do not depend on specific aspects of the compiler

Because SPARK was created mainly to be used in the context of critical
embedded and real-time systems, it imposes some restrictions that may seem
too harsh, but are in fact fairly standard in those scenarios. For instance in
embedded systems it is usually important to know the exact memory footprint
of the programs, so dynamic memory allocation is forbidden in SPARK. Also,
pointers / pointer operations and recursion are not present in SPARK.

The most relevant tools in the toolset are the Examiner, the Simplifier, and
the interactive Proof Checker. The Examiner is responsible for checking if the
Ada code is compliant with the set of restrictions imposed by SPARK, including
the consistency of programs with respect to data and information flow annota-
tions. It also contains the VCGen functionality responsible for generating the
proof obligations. The Simplifier tool simplifies and attempts to automatically
discharge the verification conditions, with the help of user-supplied rules. Al-
though not a powerful automatic theorem prover of the same nature as those
used by Frama-C, it is a carefully designed tool that incorporates many years of
experience in simplifying typical VCs. The Proof Checker is the manual, inter-
active prover. For this work we have used SPARK GPL edition 2009, V. 8.1.1.

3 Bounded Stack: Specification

We use the bounded stack example to illustrate the differences between the
verified development of a small software module in SPARK and C/ACSL. We
first discuss a few modifications of the typical DbC specification in Figure 1. If
we think algebraically in terms of the usual stack equations:

top(push(n, s)) = n pop(push(n, s)) = s

Only the first equation is ensured by the contracts of Figure 1. Note that the con-
tracts for push and pop do not state that the methods preserve all the elements
in the stack apart from the top element; they simply specify how the number
of elements is modified. We will strengthen the specification by introducing a
substack predicate, to express the fact that a stack is a substack of another.
The notion of substack together with the variation in size allows for a complete
specification of the behaviour of these operations. Equally, the contracts for top,



package Stack
--# own State: StackType;
is

--# type StackType is abstract;
--# function Count_of(S: StackType) return Natural;
--# function Cap_of(S: StackType) return Natural;
--# function Substack(S1: StackType; S2: StackType) return Boolean;

MaxStackSize: constant := 100;

procedure Init;
--# global out State;
--# derives State from;
--# post Cap_of(State) = MaxStackSize and Count_of(State) = 0;

function isEmpty return Boolean;
--# global State;
--# return Count_of(State) = 0;

function isFull return Boolean;
--# global State;
--# return Count_of(State) = Cap_of(State);

function Top return Integer;
--# global State;
--# pre Count_of(State) > 0;

procedure Pop;
--# global in out State;
--# derives State from State;
--# pre 0 < Count_of(State);
--# post Cap_of(State) = Cap_of(State~) and Count_of(State) = Count_of(State~)-1 and
--# Substack(State, State~);

procedure Push(X: in Integer);
--# global in out State;
--# derives State from State, X;
--# pre Count_of(State) < Cap_of(State);
--# post Cap_of(State) = Cap_of(State~) and Count_of(State) = Count_of(State~)+1 and
--# Top(State) = X and Substack(State~, State);

end Stack;

Fig. 2. Stack SPARK specification

isEmpty, and isFull must state that these methods do not modify the stack
(i.e. they have no side effects, which is not stated in Figure 1).

Additionally, we add to the specification an initialisation function that creates
an empty stack. Also, we consider that the operations count and capacity
are not part of the interface of the data type (they are not available to the
programmer). In both specification languages count and capacity will be turned
into the logical functions count_of and cap_of that exist only at the level
of annotations, and are not part of the program. These logical functions are
sometimes also called hybrid functions because they read program data. In ACSL
they are declared inside an axiomatic section at the beginning of the file. Note
that no definition or axioms can be given at this stage for the logical functions.

In SPARK (as in Ada) the specification and implementation of a package
are usually placed in two separate files: the package specification (.ads) and
the package body (.adb) containing the implementation. Packages are separately



compiled program units that may contain both data and code and provide encap-
sulation. Figure 2 shows the specification file for the Stack package; StackType
is an abstract type that is used at the specification level and will later be instan-
tiated in a package body. In the package specification a variable State of type
StackType stands for an abstract stack, i.e. an element of the ADT specified.
This will be refined in the body into one or more variables of concrete types.

The specification of a bounded stack in ACSL is given in Figure 3. For the
sake of simplicity we choose to use a global stack variable, but stacks could
equally be passed by reference to the C functions. A crucial difference with
respect to the SPARK specification is that ACSL has no support for refinement
(and neither has C, of course). Thus in the figure the typedef declaration is
left unfinished. The reader should bear in mind that it will not be possible to
reason about stacks without first providing a concrete implementation. Whereas
in SPARK/Ada one can have different implementations in different body files
for the same package specification file, in C those implementations would have
to be obtained using the file in the figure as a template that would be expanded.

Some language features are directly reflected in the two specifications. The
SPARK function Init will always produce an empty stack with capacity given
by the constant MaxStackSize, since dynamic allocation is not possible. In the C
version it takes the desired stack capacity as argument. Also, we take advantage
of SPARK’s type system and set the type returned by functions Cap_of and
Count_of to Natural rather than Integer (since the number of elements cannot
be negative). C’s type system is much less precise, thus integers are used instead,
but note the use of the integer ACSL logical type (for logical functions only).

Concerning the two specification languages, different keywords are used to
identify preconditions (pre, requires) and postconditions (post, ensures), as
well as the return values (return, \result). Also, ACSL offers the possibility
of using optional behaviours in specifications, which permits the association of
more than one contract to a function. For instance the behaviour empty (resp.
not_empty) of function isEmpty corresponds to the precondition that the current
count is zero (resp. not zero), specified with an assumes clause. Behaviours allow
for more readable specifications and for more structured sets of VCs.

C functions may in general have side effects, whereas SPARK functions are
by definition pure: they are not allowed to modify the global state or to take pa-
rameters passed by reference. Thus the SPARK functions isEmpty, isFull, and
top are not allowed to modify the state of the stack, which is an improvement
(obtained for free) with respect to the contracts in Figure 1. In ACSL functions
can be annotated with frame conditions that specify the modified parts of the
state (variables, structure fields, array elements, etc). The frame conditions of
the above three pure functions are written assigns \nothing. Appropriate ver-
ification conditions are generated to ensure the validity of each frame condition.

A consequence of the previous difference is that SPARK allows for program
functions to be used in assertions, whereas in ACSL this is forbidden because of
the possibility of side effects. This is reflected in different treatments of the Top
function in both languages: in the SPARK specification Top is a program function



typedef ... Stack;
Stack st;

/*@ axiomatic Pilha {
@ logic integer cap_of{L} (Stack st) = ...
@ logic integer top_of{L} (Stack st) = ...
@ logic integer count_of{L} (Stack st) = ...
@ predicate substack{L1,L2} (Stack st) = ...
@ } */

/*@ requires cap >= 0;
@ ensures cap_of{Here}(st) == cap && count_of{Here}(st) == 0;
@*/

void init (int cap);

/*@ assigns \nothing;
@ behavior empty:
@ assumes count_of{Here}(st) == 0;
@ ensures \result == 1;
@ behavior not_empty:
@ assumes count_of{Here}(st) != 0;
@ ensures \result == 0;
@*/

int isEmpty (void);

/*@ assigns \nothing;
@ behavior full:
@ assumes count_of{Here}(st) == cap_of{Here}(st);
@ ensures \result == 1;
@ behavior not_full:
@ assumes count_of{Here}(st) != cap_of{Here}(st);
@ ensures \result == 0;
@*/

int isFull (void);

/*@ requires 0 < count_of{Here}(st);
@ ensures \result == top_of{Here}(st);
@ assigns \nothing;
@*/

int top (void);

/*@ requires 0 < count_of{Here}(st);
@ ensures cap_of{Here}(st) == cap_of{Old}(st) &&
@ count_of{Here}(st) == count_of{Old}(st) - 1 &&
@ substack{Here,Old}(st);
@*/

void pop(void);

/*@ requires count_of{Here}(st) < cap_of{Here}(st);
@ ensures cap_of{Here}(st) == cap_of{Old}(st) &&
@ count_of{Here}(st) == count_of{Old}(st) + 1 &&
@ top_of{Here}(st) == x && substack{Old,Here}(st);
@*/

void push (int x);

Fig. 3. Stack ACSL specification: operation contracts



with Stack;
--# inherit Stack;
package SSwap is

procedure Swap(X, Y: in out Integer);
--# global in out Stack.State;
--# derives Stack.State, X, Y from Stack.State, X, Y;
--# pre Stack.Count_of(Stack.State) <= Stack.Cap_of(Stack.State)-2;
--# post X = Y~ and Y = X~;

end SSwap;

package body SSwap is
procedure Swap(X, Y: in out Integer)
is
begin

Stack.Push(X); Stack.Push(Y);
X := Stack.Top; Stack.Pop;
Y := Stack.Top; Stack.Pop;

end Swap;
end SSwap;

Fig. 4. Swap using a stack

and it is used in the postcondition of Push, whereas in ACSL a new logical
function top_of is used; its relation with the top program function is established
by a postcondition of the latter. In addition to logical / hybrid functions, ACSL
offers the possibility of having predicates to be used in annotations; they may be
either defined or else declared and their behaviour described by means of axioms.
In SPARK a predicate must be declared as a logical function that returns a
boolean. This is reflected in the declarations of substack in both languages.

In ACSL it is possible to refer to the value of an expression in a given program
state, which is extremely useful in any language with some form of indirect
memory access. In fact, all hybrid functions and predicates must take as extra
arguments a set of state labels in which the value of the parameters are read,
even if this set is singular. Thus, for instance, whereas in SPARK the substack
predicate takes two stacks as arguments, and is invoked (in the postconditions of
Pop and Push) with arguments State and State~, where the latter refers to the
state of the stack in the pre-state, the ACSL version takes as arguments a single
stack variable st and two state labels L1, L2 , with the meaning that the value
of st in state L1 is a substack of the value of st in state L2. It is then invoked
in annotations making use of predefined program labels Here (the current state)
and Old (the pre-state in which the function was invoked).

In SPARK the procedures Init, Pop, and Push have data flow annotations
with the meaning that the state of the stack is both read and modified, and the
new state depends on the previous state (and for Push also on the argument X). In
functions, the --# global State; data flow annotation simply means that these
functions read the state of the stack. At this abstract level of development, it is
not possible to specify with either SPARK data flow annotations or ACSL frame
conditions that the procedures do not modify some part of the state (e.g. pop
and push preserve the capacity). This has then to be done using postconditions.



Reasoning about Specifications in SPARK. A major difference between both
languages is that in SPARK it is possible to reason in the absence of concrete
implementations. To illustrate this, we will define a procedure that swaps the
values of two variables using a stack. The relevant package and body are shown
in Figure 4. Running the SPARK Examiner on this file produces 9 verification
conditions, of which, after running the SPARK Simplifier, only one is left un-
proved. This VC is generated from the postcondition of Swap, which is only
natural since we haven’t given a definition of substack.

The SPARK Simplifier allows users to supply additional rules and axioms,
in the FDL logical language, in a separate file. The following SPARK rule states
that two equally sized substacks of the same stack have the same top elements.

ss_rule(1) : stack__top(S1) = stack__top(S2) may_be_deduced_from
[stack__count_of(S1) = stack__count_of(S2), stack__substack(S1,S3), stack__substack(S2,S3)].

Unfortunately, even with this rule, the Simplifier fails to automatically discharge
the VC, so the user would be forced to go into interactive proof mode (using
the SPARK Proof Checker) to finish verifying the program. Alternatively, the
following rule allows the Simplifier to finish the proof automatically:

ss_rule(3) : stack__top(S1) = stack__top(S2) may_be_deduced_from
[stack__count_of(S3) = stack__count_of(S2)+1, stack__count_of(S1) = stack__count_of(S3)-1,
stack__substack(S1,S3), stack__substack(S2,S3)].

This also illustrates a technique that we find very useful with the Simplifier:
writing special purpose rules that follow the structure of the computation. In
this example we have simply mentioned explicitly the intermediate stack S3 that
the state goes through betwen S2 and S1. This is often sufficient to allow the
Simplifier to discharge all VCs without the need for interactive proof.

4 Bounded Stack: Implementation / Refinement

Figure 5 shows a fragment of the stack package implementation, including the
definition of the state and the definition of the Push procedure. The correspond-
ing fragment in C is given in Figure 6. The state is in both cases defined as a
set of two integer variables (for the size and capacity) together with an array
variable. In SPARK a range type Ptrs is used, which is not possible in C.

In C we simply fill in the template of Figure 3 without touching the an-
notations. We consider a straightforward implementation of bounded stacks as
structures containing fields for the capacity and size, as well as a dynamically
allocated array. This requires providing, in addition to the C function definitions,
appropriate definitions of the logical functions cap_of, top_of, and count_of,
as well as of the predicate substack. count_of and cap_of simply return the
values of structure fields. The most sophisticated aspect is the use of a universal
quantifier in the definition of substack. Note also the use of the operator \at
to refer to the value of a field of a structure variable in a given program state
(not required when a single state label is in scope – it is implicit).



package body Stack
--# own State is Capacity, Ptr, Vector;
is

type Ptrs is range 0..MaxStackSize;
subtype Indexes is Ptrs range 1..Ptrs’Last;
type Vectors is array (Indexes) of Integer;

Capacity: Ptrs := 0;
Ptr: Ptrs := 0;
Vector: Vectors := Vectors’(Indexes => 0);

procedure Push(X: in Integer)
--# global in out Vector, Ptr;
--# in Capacity;
--# derives Ptr from Ptr & Vector from Vector, Ptr, X & null from Capacity;
--# pre Ptr < Capacity;
--# post Ptr = Ptr~ + 1 and Vector = Vector~[Ptr => X];
is
begin

Ptr := Ptr + 1;
Vector(Ptr) := X;
--# accept F, 30, Capacity, "Only used in contract";

end Push;

stack_rule(1) : cap_of(S) may_be_replaced_by fld_capacity(S) .
stack_rule(2) : count_of(S) may_be_replaced_by fld_ptr(S) .
stack_rule(3) : count_of(X) = count_of(Y) - Z may_be_replaced_by fld_ptr(Y) = fld_ptr(X) + Z.
stack_rule(4) : count_of(X) = count_of(Y) + Z may_be_replaced_by fld_ptr(X) = fld_ptr(Y) + Z.
stack_rule(5) : count_of(S) = cap_of(S) may_be_replaced_by fld_ptr(S) = fld_capacity(S).
stack_rule(6) : substack(X, Y) may_be_deduced_from

[V=fld_vector(X), Z=fld_ptr(X)+1, Z=fld_ptr(Y), fld_vector(Y)=update(V, [Z], N)].
stack_rule(7) : substack(X, Y) may_be_deduced_from

[fld_vector(X)=fld_vector(Y), fld_ptr(X)<fld_ptr(Y)].
stack_rule(8) : stack__top(X) = Y may_be_deduced_from

[fld_vector(X) = update(Z, [fld_ptr(X)], Y)] .

Fig. 5. Stack SPARK implementation (fragment) and user-provided rules

SPARK on the other hand has explicit support for refinement. Thus contracts
can be written at a lower level using the state variables, as exemplified by the
Push procedure. Since there are no logical definitions as such in SPARK, the
functions cap_of and count_of will be handled by the user rules stack_rule(1)
and stack_rule(2) that can be applied as rewrite rules in both hypotheses and
conclusions. The user rules 3 to 5 are auxiliary rules; their presence illustrates
the limitations of the Simplifier in applying the previous 2 rewrite rules.

Refinement Verification in SPARK. Invoking the SPARK examiner with both
package and body files will produce a set of verification conditions, establish-
ing a correspondence between specification and implementation contracts in the
classic sense of refinement: given a procedure with specification precondition Ps

(resp. postcondition Qs) and body precondition Pb (resp. postcondition Qb), the
VCs Ps =⇒ Pb and Qb =⇒ Qs will be generated, together with conditions for
correctness of the procedure’s body with respect to the specification (Pb, Qb).

A crucial refinement aspect of our example has to do with the substack
predicate. Note that there is no mention of the predicate at the implementation
level, so we must now provide rules for inferring when a stack is a substack of



typedef struct stack {
int capacity;
int size;
int *elems;

} Stack;

int x, y;
Stack st;

/*@ axiomatic Pilha {
@ logic integer cap_of{L} (Stack st) = st.capacity;
@ logic integer top_of{L} (Stack st) = st.elems[st.size-1];
@ logic integer count_of{L} (Stack st) = st.size;
@ predicate substack{L1,L2} (Stack st) = \at(st.size,L1) <= \at(st.size,L2) &&
@ \forall integer i; 0<=i<\at(st.size,L1) ==> \at(st.elems[i],L1) == \at(st.elems[i],L2);
@ predicate stinv{L}(Stack st) =
@ \valid_range(st.elems,0,st.capacity-1) && 0 <= count_of{L}(st) <= cap_of{L}(st);
@ } */

/*@ requires count_of{Here}(st) < cap_of{Here}(st) && stinv{Here}(st);
@ ensures cap_of{Here}(st) == cap_of{Old}(st) && count_of{Here}(st) == count_of{Old}(st)+1
@ && top_of{Here}(st) == x && substack{Old,Here}(st) && stinv{Here}(st);
@*/

void push (int x) {
st.elems[st.size] = x;
st.size++;

}

/*@ ensures x == \old(y) && y == \old(x);
@*/

swap() {
init(3); push(x); push(y); x = top(); pop(); y = top(); pop();

}

Fig. 6. Stack C implementation (extract) and test function (swap)

another. Writing a rule based on the use of a quantifier (as we did in ACSL)
would not help the Simplifier (although it could be used for interactive proof),
thus we provide instead rule (6) for the specific case when X is a substack of Y
that contains only one more element (fld_vector and fld_ptr correspond to
the fields Vector and Ptr respectively in the stack body), and rule (7) regarding
the case of two stacks represented by the same vector with different counters.
These basically describe what happens in the push and pop operations.

In these rules we make use of the fact that SPARK arrays are logically mod-
eled using the standard theory of arrays [14], accessed through the element and
update operations. In particular the expression update(V, [Z], N) denotes the
array that results from array V by setting the contents of the position with index
Z to be N. Rule (8) concerns the top of a stack after an update operation at the
ptr position. With these rules the Simplifier is able to discharge all VCs.

Verification of C code. Our C/ACSL file now contains a full implementation
of the stack operations, based on the previously given contracts. Let us add to
this a swap function (also shown in Figure 6). Running Frama-C on this file will
generate verification conditions that together assert that the code of the stack
operations and of the swap function conforms to their respective contracts. 38



VCs are generated, only 4 of which, labelled “pointer dereferencing”, are not
discharged automatically. These are safety conditions, discussed below.

Safety Checking. Being able to write exception-free code is a very desirable
feature in embedded and critical systems. In the stack example this is relevant
for array out-of-bounds access, and again the two languages offer different ap-
proaches. An important feature of SPARK is that, using proof annotations and
automatically generated safety conditions, programs can be shown statically not
to cause runtime exceptions. The expression runtime checks (or safety condi-
tions) designates VCs whose validity ensures the absence of runtime errors.

In the SPARK implementation the domain type of the array is a range type
(as are the other state variables), which in itself precludes out-of-bounds access.
The runtime errors that may occur concern precisely the range types: every use
of an integer expression (in particular in assignments and array accesses) will
generate conditions regarding the lower and upper bounds of the expression. For
instance the instruction Ptr := Ptr + 1 in the Push procedure generates a VC
to check that ptr + 1 lies within the range of type Indexes. Such conditions
are generated and automatically discharged in both the swap and the refinement
verification in a completely transparent way.

ACSL on the other hand treats array accesses (and pointer dereferencing
in general) through special-purpose annotations. This is motivated by the very
different nature of arrays in C – in particular they can be dynamically allocated
and no range information is contained in their types. A valid range annotation
in a function precondition expresses that it is safe for the function to access an
array in a given range of indexes. It should also be mentioned that a memory
region separation assumption is used by default when reasoning about arrays.

Frama-C automatically introduces verification conditions for checking against
out-of-bound accesses, thus the 4 VCs left unproved in our example. In order
to address this issue we create a new predicate stinv that expresses a safety
invariant on stacks (the count must not surpass the capacity, and array accesses
should be valid within the range corresponding to the capacity). It suffices to in-
clude this predicate as precondition and postcondition in all operation contracts
(with the exception of the precondition of init) for the safety conditions to be
automatically discharged. The modifications are already reflected in Figure 6.

5 Conclusion

We are of course comparing two very different toolsets, one for a language with
dynamic memory and ‘loose’ compilation, and another for a memory-bounded
language with very strict compilation rules and side-effects explicitly identified
in annotations (not to mention the refinement aspect). From our experience
with SPARK and the study of published case studies the Simplifier does a very
good job of automatically discharging safety conditions. The Simplifier has been
compared with SMT solvers, and the relative advantages of each discussed [9].

While it would be unfair to compare SPARK with Frama-C in terms of the
performance of safety checking (in particular because SPARK benefits from the



strict rules provided by Ada regarding runtime exceptions), we simply state that
safety-checking ACSL specifications requires an additional effort to provide spe-
cific safety annotations, whereas in SPARK runtime checks are transparently
performed. On the other hand a general advantage of Frama-C is the multi-
prover aspect of the VCGen: one can effortlessly export VCs to different provers,
including tools as diverse as SMT solvers and the Coq [12] proof assistant. Fi-
nally, it is important to remark that unlike SPARK, to this date Frama-C has
not, to the best of our knowledge, been used in large-scale industrial projects.

The situation changes significantly when other functional aspects are consid-
ered. Take this example from the Tokeneer project, a biometric secure system
implemented in SPARK and certified according to the Common Criteria higher
levels of assurance (http://www.adacore.com/tokeneer). We were quite sur-
prised to find that the Simplifier is unable to prove C1 from H20:

H20: element(logfileentries__1, [currentlogfile]) =
element(logfileentries, [currentlogfile]) + 1 .

-> C1: element(logfileentries, [currentlogfile]) -
element(logfileentries__1, [currentlogfile]) = - 1 .

Simple as it is, our case study has shown that the Simplifier’s ability for
reasoning with logical functions and user-provided rules is quite limited. Also,
our experiences with more ‘algorithmic’ examples involving loop invariants show
that Frama-C is quite impressive in this aspect. For instance fairly complex
sorting algorithms, involving nested loops and assertions with quantification, can
be checked in Frama-C in a completely automatic manner, with no additional
user-provided axioms or rules. In this respect it is our feeling that the SPARK
technology needs to be updated or complemented with additional tools.

To sum up our findings, the effort that goes into verifying safe runtime execu-
tion is smaller in SPARK, whereas the situation seems to be reversed when the
specification and automatic verification of other functional aspects is considered.

One aspect that our running example has not illustrated is related to aliasing.
Reasoning about procedures with parameters passed by reference is typically
difficult because such a procedure may access the same variable through different
lvalues, for instance a procedure may access a global variable both directly and
through a parameter. In SPARK such situations are rejected by the Examiner
after data-flow analysis, so verification conditions are not even generated.

In C such programs are of course considered valid, but note that these situa-
tions can only be created by using pointer parameters, and it is possible to reason
about such functions with pointer-level assertions. For instance, a function that
takes two pointer variables may have to be annotated with an additional pre-
condition stating that the values of the pointer parameters (not the dereferenced
values) are different. We have stressed the importance of the use of state labels
in ACSL; for reasoning about dynamic structures, serious users of Frama-C will
also want to understand in detail the memory model underlying ACSL and the
associated separation assumptions, which is out of our scope here.

Finally, we should mention that other tools are available for checking C
code, such as VCC [4]. Many other verification tools exist for object-oriented
languages; Spec# [2] is a good example.



Acknowledgment. This work was supported by project RESCUE, funded by FCT
(PTDC/EIA/65862/2006).

References

1. John Barnes. High Integrity Software: The SPARK Approach to Safety and Secu-
rity. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

2. Michael Barnett, Robert DeLine, Manuel Fähndrich, Bart Jacobs, K. Rustan M.
Leino, Wolfram Schulte, and Herman Venter. The Spec# Programming System:
Challenges and Directions. In Bertrand Meyer and Jim Woodcock, editors, Pro-
ceedings of VSTTE’05, volume 4171 of Lecture Notes in Computer Science, pages
144–152. Springer, 2005.

3. Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yan-
nick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language. CEA
and INRIA. Preliminary design (version 1.4, October 29, 2008).

4. Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A Practical
System for Verifying Concurrent C. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel, editors, Proceedings of TPHOLs’09, volume 5674 of
Lecture Notes in Computer Science, pages 23–42. Springer, 2009.

5. Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. Ergo: a Theorem
Prover for Polymorphic First-order Logic Modulo Theories, 2006. LRI, Univ. Paris-
Sud/CNRS, and INRIA.

6. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a Theorem Prover for
Program Checking. J. ACM, 52(3):365–473, 2005.

7. Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus Plat-
form for Deductive Program Verification. In Werner Damm and Holger Hermanns,
editors, Proceedings of CAV’07, volume 4590 of Lecture Notes in Computer Science,
pages 173–177. Springer, 2007.

8. C. A. R. Hoare. An Axiomatic Basis For Computer Programming. Communications
of the ACM, 12:576–580, 1969.

9. Paul B. Jackson, Bill J. Ellis, and Kathleen Sharp. Using SMT Solvers to Verify
High-integrity Programs. In AFM ’07: Proceedings of the second workshop on
Automated formal methods, pages 60–68, New York, NY, USA, 2007. ACM.

10. Gary T. Leavens. Tutorial on JML, the Java Modeling Language. In R. E. Kurt
Stirewalt, Alexander Egyed, and Bernd Fischer, editors, Proceedings of ASE’07,
page 573. ACM, 2007.

11. Claude Marché. Jessie: an Intermediate Language for Java and C Verification. In
Aaron Stump and Hongwei Xi, editors, Proceedings of PLPV’07. ACM, 2007.

12. The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2008. Version 8.2.

13. Bertrand Meyer. Applying “Design by Contract”. IEEE Computer, 25(10), 1992.
14. John C. Reynolds. Reasoning about arrays. Commun. ACM, 22(5):290–299, 1979.


