
Isabel Cristina da Silva Lopes

Fevereiro de 2011

U
M

in
ho

|2
01

1

Pattern sequencing models in cutting
stock problems

Modelos para sequenciação de padrões
em problemas de corte de stock

Universidade do Minho

Escola de Engenharia

Is
ab

el
 C

ri
st

in
a

da
 S

ilv
a

Lo
pe

s
P

a
tt

e
rn

 s
e

q
u

e
n

c
in

g
 m

o
d

e
ls

 i
n

 c
u

tt
in

g
 s

to
c
k
 p

ro
b

le
m

s
M

o
d

e
lo

s
p

a
ra

 s
e

q
u

e
n

c
ia

ç
ã

o
 d

e
 p

a
d

rõ
e

s
e

m
 p

ro
b

le
m

a
s

d
e

 c
o

rt
e

 d
e

 s
to

c
k

Programa Doutoral em Engenharia Industrial e de Sistemas

Trabalho efectuado sob a orientação do
Professor Doutor José Manuel Vasconcelos
Valério de Carvalho

Isabel Cristina da Silva Lopes

Fevereiro de 2011

Pattern sequencing models in cutting
stock problems

Modelos para sequenciação de padrões
em problemas de corte de stock

Universidade do Minho

Escola de Engenharia

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE APENAS PARA EFEITOS
DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

Universidade do Minho, ___/___/______

Assinatura: __

Acknowledgements

This work was financially supported by the Portuguese Foundation for Science

and Technology (FCT), by the financial program QREN-POPH-Tipology 4.1-

Advanced Formation and European Social Fund and MCTES (Individual grant

ref. SFRH/BD/32151/2006) between 2006 and 2009, and supported by ESEIG

- Superior School of Industrial Studies and Management - Polytechnic Institute

of Porto (PROTEC grant ref. SFRH/BD/49914/2009) between 2009 and 2010.

Este trabalho foi financiado pela FCT - Fundação para a Ciência e a Tecnologia,

através do programa de financiamento QREN-POPH-Tipologia 4.1-Formação

Avançada comparticipado pelo Fundo Social Europeu e por fundos do MCTES

(Bolsa individual com a referência SFRH/BD/32151/2006) entre 2006 e 2009, e

pela Escola Superior de Estudos Industriais e de Gestão do Instituto Politécnico

do Porto (Bolsa PROTEC com a referência SFRH/BD/49914/2009) entre 2009

e 2010.

iii

Pattern Sequencing Models in

Cutting Stock Problems

Abstract

In this thesis, we address an optimization problem that appears in cutting stock

operations research called the minimization of the maximum number of open

stacks (MOSP) and we put forward a new integer programming formulation for

the MOSP.

By associating the duration of each stack with an interval of time, it is

possible to use the rich theory that exists in interval graphs in order to create

a model based on the completion of a graph with edges. The structure of this

type of graphs admits a linear ordering of the vertices that defines an ordering

of the stacks, and consequently decides a sequence for the cutting patterns.

The polytope defined by this formulation is full-dimensional and the main

inequalities in the model are proved to be facets. Additional inequalities are

derived based on the properties of chordal graphs and comparability graphs.

The maximum number of open stacks is related with the chromatic number of

the solution graph; thus the formulation is strengthened by adding the repre-

sentatives formulation for the vertex coloring problem.

The model is applied to the minimization of open stacks, and also to the

minimum interval graph completion problem and other pattern sequencing prob-

lems such as the minimization of the order spread (MORP) and the minimization

of the number of tool switches (MTSP). Computational tests of the model are

presented.

Keywords

Cutting stock, Pattern sequencing, Minimization of open stacks, Interval graphs,

Linear ordering, Minimum interval graph completion.

v

Modelos para Sequenciação de

Padrões em Problemas de Corte

de Stock

Resumo

Nesta tese é abordado um problema de optimização que surge em operações

de corte de stock chamado minimização do número máximo de pilhas abertas

(MOSP) e é proposta uma nova formulação de programação inteira.

Associando a duração de cada pilha a um intervalo de tempo, é posśıvel usar

a teoria rica que existe em grafos de intervalos para criar um modelo baseado

no completamento de um grafo por arcos. A estrutura deste tipo de grafos

admite uma ordenação linear dos vértices que define uma ordenação linear das

pilhas e, por sua vez, determina a sequência dos padrões de corte.

O politopo definido por esta formulação tem dimensão completa e prova-se

que as principais desigualdades do modelo são facetas. São derivadas desigual-

dades adicionais baseadas nas propriedades de grafos cordais e de grafos de

comparabilidades. O número máximo de pilhas abertas está relacionado com

o número cromático do grafo solução, pelo que o modelo é reforçado com a

formulação por representativos para o problema de coloração de vértices.

O modelo é aplicado à minimização de pilhas abertas, e também ao problema

de completamento ḿınimo de um grafo de intervalos e a outros problemas de

sequenciação de padrões, tais como a minimização da dispersão de encomendas

(MORP) e a minimização do número de trocas de ferramentas (MTSP). São

apresentados testes computacionais do modelo.

Palavras Chave: Corte de stock, Sequenciação de padrões, Minimização

de pilhas abertas, Grafo de intervalos, Ordenação linear, Completamento ḿınimo

de grafos de intervalos

vii

Table of Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Main contributions . 3

1.2 Outline . 4

2 Literature Review on Pattern Sequencing 5

2.1 MOSP and related problems 5

2.1.1 MOSP: Minimization of Open Stacks Problem 7

2.1.2 MOOP: Minimization of Open Orders Problem . . . 10

2.1.3 MORP: Minimization of ORder spread Problem . . . 11

2.1.4 MDP: Minimization of Discontinuities Problem . . . 12

2.1.5 MTSP: Minimization of Tool Switches Problem . . . 12

2.1.6 Relationship between the MOSP, MORP and MTSP 13

2.2 IP models for MOSP and related problems 14

2.2.1 Madsen’s approach to the MORP and MDP 14

2.2.2 Bard’s nonlinear integer model for the MTSP 16

2.2.3 Tang and Denardo’s model for the MTSP and MOSP 17

2.2.4 The model of Laporte with Pinto’s approach to MOSP 21

2.2.5 Pinto’s integer programming model 23

2.2.6 Baptiste’s MIP formulation 24

2.2.7 Comparison between some of these models 26

2.3 Other approaches and special cases 27

2.3.1 Yanasse’s work on special cases of the MOSP 27

2.3.2 Heuristics . 30

2.3.3 Dynamic Programming and Genetic Algorithms . . . 34

ix

x TABLE OF CONTENTS

2.4 Conclusions . 35

3 Interval Graphs and Layout Problems 37

3.1 Basic Graph Definitions . 37

3.1.1 Directed and Undirected Graphs 38

3.1.2 Problems with Cliques and Stable Sets 39

3.2 Chordal Graphs . 42

3.2.1 Perfect Elimination Order 42

3.2.2 Split graphs . 44

3.3 Comparability Graphs . 45

3.4 Interval Graphs . 46

3.5 Perfect Graphs . 51

3.6 Graph Layout Measures . 53

3.6.1 Vertex Separation and Minimum Sum Cut 53

3.6.2 Profile . 54

3.6.3 Cutwidth . 55

3.6.4 Bandwidth . 56

3.6.5 Treewidth . 57

3.6.6 Pathwidth . 58

3.7 Linear ordering problem . 59

3.8 Edge Completion Problems 60

3.8.1 Different Classes for H 61

3.8.2 Minimum vs. Minimal 61

3.8.3 Special Classes of Input Graphs 62

3.8.4 Equivalent Problems in Graph Theory 62

3.9 Applications of Graph Layout Problems 63

3.9.1 DNA Physical Mapping 63

3.9.2 Seriation Problem in Archaeology 65

3.9.3 Sparse Matrix Computations 65

3.9.4 GMLP: Gate Matrix Layout Problem 66

3.10 Conclusions . 68

4 An Integer Formulation for the MOSP 69

4.1 Introduction . 69

4.2 The MOSP in a Graph . 70

4.3 A Preview of the Model . 74

4.4 The Decision Variables . 75

4.5 The Inequalities of the Model 77

4.5.1 Linear Ordering of the Vertices 77

TABLE OF CONTENTS xi

4.5.2 Precedences of the Opening and Closing of Intervals . 77

4.5.3 Obtaining an Interval Graph 78

4.6 An objective function to evaluate the MOSP 84

4.7 The integer programming formulation for MOSP 87

4.8 Reducing the Number of Variables in the Model 87

4.9 Conclusions . 90

5 Polyhedral Analysis and Valid Inequalities 91

5.1 Facets of the Polyhedron . 91

5.2 Other Valid Inequalities . 100

5.2.1 Neighbor of Successor Inequalities 100

5.2.2 Co-comparability Graph 102

5.2.3 Chords in k-cycles 106

5.2.4 Coloring the Vertices of the Interval Graph 111

5.3 The Revised Formulation of the Model for MOSP 116

5.4 Computational Tests . 118

5.5 Conclusions . 120

6 Variants of the MOSP Model 123

6.1 A Model for Minimum Interval Graph Completion 124

6.1.1 Introduction . 124

6.1.2 The Formulation of the Model 125

6.1.3 Computational Results for IGC 127

6.2 Minimization of the Stack Occupation 128

6.2.1 Introduction . 128

6.2.2 The formulation of the model 130

6.2.3 Computational results 131

6.3 Minimization of Tool Switches 133

6.4 Conclusions . 135

7 Conclusions and Future Work 137

Bibliography 141

Index 149

List of Symbols

and Acronyms

Symbol/Acronym Description Definition

[uv] Edge from vertex u to vertex v page 37
N(u) Neighborhood of vertex u page 38
N [u] Closed neighborhood of vertex u page 38
N(u) Anti-neighborhood of vertex u page 38
N [u] Closed anti-neighborhood of vertex u page 39
N(U) Anti-neighborhood of a set of vertices U page 39
G Complement graph page 39
Kn Complete graph on n vertices page 39
ω(G) Clique number of graph G page 40
k(G) Clique cover number of graph G page 40
α(G) Stability number of graph G page 40
χ(G) Chromatic number of graph G page 41
Cn Chordless cycle on n vertices page 42
ϕ(u) Linear ordering of vertex u page 43
≺ Precedes page 43
Pred(i) Set of predecessors of vertex i page 43
Succ(i) Set of successors of vertex i page 43
|S| Cardinality of set S page 43
V S(ϕ,G) Vertex Separation of graph G with layout ϕ page 54
SC(ϕ,G) Sum Cut of graph G with layout ϕ page 54
PR(ϕ,G) Profile of graph G with layout ϕ page 54
PR(A) Profile of matrix A page 55
BW (A) Bandwidth of matrix A page 55
BW (ϕ,G) Bandwidth of graph G with layout ϕ page 57
CW (ϕ,G) Cutwidth of graph G with layout ϕ page 56

xiii

xiv LIST OF SYMBOLS AND ACRONYMS

Symbol/Acronym Description Definition

MC(ϕ,G) Modified Cutwidth of graph G with layout ϕ page 56
TW (G) Treewidth of graph G page 58
PW (G) Pathwidth of graph G page 59
∆(G) Maximum degree of a vertex of G page 57
AT Asteroidal Triple page 46
FPT Fixed Parameter Tractable page 13
IP Integer Programming page 2
IGC Interval Graph Completion Problem page 61
IGS Interval Graph Sandwich Problem page 64
GMLP Gate Matrix Layout Problem page 67
KTNS Keep Tool Needed Soonest page 16
LB Lower Bound page 20
LOP Linear Ordering Problem page 59
MDP Minimization of the number of Discontinuities

Problem
page 12

MIP Mixed Integer Programming page 24
MOOP Minimization of the number of Open Orders page 10
MORP Minimization of ORder spread Problem page 11
MOSP Minimization of the number of Open Stacks

Problem
page 7

MTSP Minimization of the number of Tool Switches
Problem

page 12

PAP Pattern Allocation Problem page 6
PSP Pattern Sequencing Problem page 6
TSP Travelling Salesman Problem page 14
UB Upper Bound page 30
VLSI Very Large Scale Integrated Circuits page 66

List of Figures

2.1 A typical automatized sheet cutting system 8

2.2 Counting the number of open stacks of the example in Table 2.1 9

2.3 The solution of the example in Table 2.1 10

3.1 Chromatic number, stability number and clique number 41

3.2 Not an interval graph . 47

3.3 G is a comparability graph but G is not an interval graph . . . 48

3.4 Replacing endpoints to remove coinciding endpoints 49

3.5 The p.e.o. gives the linear ordering of intervals 50

3.6 The p.e.s. is not fit for ordering the intervals 51

3.7 Intersection between subclasses of perfect graphs 53

3.8 A graph with a tree decomposition of width 2 58

3.9 Incidence matrix of Graves vs. Varieties 66

3.10 The Gate Matrix Layout Problem in a VLSI circuit 67

4.1 MOSP Graph of the instance in Table 4.1 71

4.2 Non simultaneous items can share stack space 73

4.3 Interval Graph of the instance in Table 4.1 73

4.4 Interval i opens and closes before j starts 77

4.5 Olariu’s characterization of interval graphs 78

4.6 Interval i closes before j opens, with k simultaneous to i 83

4.7 Interval i closes before j and k open, with k opening before j . 83

4.8 Interval i closes before j and k open, with j opening before k . 83

4.9 Optimal solution of the example from Table 4.1 86

5.1 H must be transitively orientable 102

5.2 MOSP Graph of the instance in Table 5.2 103

5.3 Interval graph of the instance in Table 5.2 104

xv

xvi LIST OF FIGURES

5.4 Optimal solution of the example in Table 5.2 105

5.5 A 4-cycle must have a chord . 106

5.6 5-cycles with two chords: (a) is chordal, (b) is not chordal . . . 107

5.7 Solution of the example in Table 5.2 113

5.8 Interval representations where i is a representative of j and k . 113

5.9 A minimum colored 5-cycle after adding 2 chords 114

6.1 Stack occupation for the instance wbo10101 129

6.2 A two step model to minimize the occupation of stacks 130

6.3 The MOSP graph of Tang and Denardo’s instance 135

6.4 Solution of the MOSP for Tang and Denardo’s instance 135

7.1 MOSP graph of the Miller instance 138

List of Tables

2.1 An example of the MOSP with 8 patterns and 6 items 9

4.1 An instance of the MOSP with 7 cutting patterns and 6 items . 70

4.2 Possible cases when arc [ik] ∈ F 82

5.1 Points P xR
ij and P xL

ij for N = 4 94

5.2 An instance for the MOSP with 5 items and 8 patterns 103

5.3 Computational results for the MOSP models 121

6.1 Results for the minimum interval graph completion 128

6.2 Results for minimizing the stack occupation 132

6.3 Instance of the MTSP with 6 jobs and 9 tools 134

xvii

Chapter 1

Introduction

“The organizational and economical aspects of the cutting
operations show that cutting optimization is not only a mat-
ter of waste minimization, but also a complex planning prob-
lem whose solution has to balance conflicting objectives.”[20]

The work presented in this thesis began with the study of one famous

problem in Operations Research: the cutting stock problem. It was intro-

duced in 1961 by Gilmore and Gomory, who put forward a linear program-

ming model [27]. From then on there has been an increasing number of

papers involving cutting stock operations. There are many different prob-

lems that can emerge from a cutting industry setting.

Cutting stock operations require advanced planning. The classic cutting

stock problem consists in defining the cutting patterns with a cost minimiza-

tion criterion that usually depends on the waste of the cutting process. But

even after the cutting patterns are defined, there is more optimization that

can be done in order to reduce the cost of the operations. The sequence in

which the cutting patterns will be processed on the cutting equipment can

be a relevant factor for the efficiency of the operations, for the organization

of the work area space, for the fulfillment of the customers’ orders on time,

or for the fastness of the deliveries to customers. These concerns gave rise

to several pattern sequencing problems, such as the minimization of open

stacks and the minimization of the order spread.

In literature, pattern sequencing problems have been studied both alone

and integrated with the determination of the cutting patterns. The most

used approach is to solve the problem combining two stages, a first stage

where the cutting patterns are defined and a second stage where the se-

1

2 CHAPTER 1. INTRODUCTION

quence of the implementation of the cutting patterns is decided. This work

is devoted to the second stage, when the cutting patterns are already de-

termined but the sequence in which they will be processed is still an open

issue. The main problem addressed here is the minimization of the maxi-

mum number of open stacks, also called MOSP.

The Minimization of Open Stacks Problem (MOSP) comes from the flat

glass cutting industry, but it also has many applications in other cutting

industries (wooden panels, steel tubes, paper,...) as well as in other fields

such as production planning, VLSI circuit design and in classic problems

from graph theory. The MOSP problem is based on the premise that the

different items obtained from cutting patterns are piled in stacks in the

work area until all items of the same size have been cut. Usually, machines

process one cutting pattern at a time and the sequence in which preset

cutting patterns are processed can affect the number of stacks that remain

around the machine.

Due to space limitations and danger of damages on the stacked items,

it is advantageous to find a sequence for the patterns that minimizes the

number of different items that are being cut and therefore the number of

open stacks.

This problem has been widely studied in literature, but there are several

other pattern sequencing problems, such as the minimization of the order

spread (MORP) and the minimization of discontinuities (MDP).

Most of the pattern sequencing problems are NP-hard problems, which

means that they cannot be solved in polynomial time unless P=NP.

The minimization of open stacks problem is known to have tight relations

with problems in graph theory such as treewidth, vertex separation and the

profile of a matrix. Thus it becomes the next step to learn these graph

concepts. In studying these problems, we found a type of graphs called

interval graphs that will play an important role in this work. They can be

used to describe a solution of the pattern sequencing problems, by modeling

the duration of the intervals in time in which the same piece type is being

cut. Using several properties of this type of graphs we will see that it is

possible to build an integer programming model for the minimization of

open stacks problem.

An Integer Programming (IP) model is a formulation of the problem

that has a linear objective function and linear inequalities and uses only

integer or binary variables.

The linear relaxation of an integer program is the exact same formulation

but without the integrality constraints. Linear programs can be solved by

1.1. MAIN CONTRIBUTIONS 3

the simplex method, but the rounding up of the solution of the linear relax-

ation is not a good method to find the solution of an integer programming

problem, because it does not always lead to the optimal integer solution.

An integer programming model can be solved with a branch and bound

technique. This is an enumeration scheme that searches for an optimal

integer solution by iteratively subdividing the feasible region and comparing

the fractional solutions obtained in the linear relaxation with the integer

solutions. The optimal integer solution is obtained when, at the moment,

the difference between the best integer solution and the best value of the

linear relaxation, called the gap, is proved to be zero.

Commercial solvers can perform satisfyingly branch and bound proce-

dures and numerous heuristics in a very small time.

There are more complex methods for solving integer programming mod-

els, such as column generation and branch and price. These methods are

much more efficient than the simple branch and bound, because they take

advantage of the structure of the problem, but to implement them it is

necessary to create an algorithm specific to each formulation, or at least to

write code to interact with commercial software and adapt it to the problem.

1.1 Main contributions

The main contribution of this thesis is to model the minimization of open

stacks problem using an integer programming new formulation. There have

been approaches to this problem using graphs before, but none used the

addition of arcs to the graph and the properties of interval graphs to achieve

a solution.

MOSP is modeled as an interval graph completion problem. An initial

integer programming model was derived, based on a characterization of

interval graphs by Olariu.

We further strengthened the initial inequalities of the model by combi-

nation and rounding to derive stronger inequalities. We also proved them

to be facets of the interval graph completion problem.

The fact that MOSP is modeled as interval graph completion problem

provides new insight into the structure of the problem. Constraints to cut

non-chordal 4- and 5-cycles can be used to strengthen the model. These

constraints can be derived from the characterization of interval graphs. We

showed that they can also be derived by combination and rounding of the

previous facets of the interval graph completion problem.

4 CHAPTER 1. INTRODUCTION

Last but not the least, we derive a general framework that can be used

to model many related problems.

With the choice being integer programming, the formulation developed

in this work can later be integrated in other integer programming models

for cutting stock problems, namely to create a combined model of the stages

one and two where the cutting stock patterns are defined and sequenced.

1.2 Outline

For the rest of this thesis, in Chapter 2 the pattern sequencing problems are

explained and compared. A literature review on this type of cutting stock

problems is made, emphasizing on the integer programming approaches.

Chapter 3 is dedicated to recall basic graph theory, special types of

graphs such as interval graphs, chordal graphs and perfect graphs, and

graph layout measures of a graph. There is a section that presents and

compares edge completion graph problems such as the minimal fill-in and

the minimum interval graph completion. The last section describes appli-

cations of the graph layout problems in Molecular Biology, Archaeology,

Numerical Analysis and VLSI circuit design.

In Chapter 4 we propose a new integer programming model for the

minimization of open stacks based on the edge completion of the MOSP

graph and the structure of the linear ordering of the vertices in an interval

graph. The main variables and inequalities are presented and a variation

with less variables is discussed.

The formulation is strengthened in Chapter 5. Using simple polyhedral

theory it is proved that most of the inequalities are facets. The model is

investigated further originating a new set of variables related to the coloring

of the vertices to be added to the model and more inequalities are derived.

Computational tests are discussed at the end of the Chapter.

In Chapter 6, the model is applied to different problems. By making

small modifications in the objective function and using only some of the

inequalities, the MOSP model is applied to the minimum interval graph

completion problem. Another pattern sequencing problem that aims to

minimize, not only the number of stacks, but also the order spread (the

minimization of the stack occupation problem) is considered, and the model

is tested.

Finally, Chapter 7 concludes this thesis and presents some directions of

future work.

Chapter 2

Literature Review on Pattern

Sequencing Problems

In this chapter, we present the Minimization of Open Stacks Problem (MOSP)

and some related problems, and refer to their relationship. Then, we focus

on the integer programming models developed for the MOSP and the re-

lated problems, considering that the contributions of this thesis are in this

area of work. We also refer to other approaches used for these problems, as

heuristics, genetic algorithms and dynamic programming.

2.1 The Minimization of Open Stacks Problem

and Related Problems

Cutting Stock problems and Packing problems (C&P) have an identical

structure and are often considered in common. As defined in [60], both of the

problems consist of, given a set of large objects (supply) and a set of small

items (demand) which are defined exhaustively in n geometric dimensions,

selecting some or all small items, grouping them into one or more subsets

and assigning each of the resulting subsets to one of the large objects such

that the geometric condition holds (i.e., the small items of each subset have

to be laid out on the corresponding large object such that all small items

of the subset lie entirely within the large object and the small items do not

overlap), while optimizing a given objective function.

The differences between the two problems rely mainly on the variety

5

6 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

of the small items. The Cutting Stock Problem requires a weakly hetero-

geneous assortment of small items to be allocated to a selection of large

objects with extension fixed in all dimensions. The Bin Packing Problem

is characterized by a strongly heterogeneous assortment of small items that

are to be assigned to a set of large objects. The value, number, or total size

of the necessary large objects has to be minimized in both problems.

Cutting and packing problems have been categorized, the most recent

typology being the one defined by Wäscher et al [60]. In this typology, the

problems studied in this thesis belong to a problem extension, of the pattern

sequencing subtype, because they include additional aspects which extend

the view of planning beyond the core of cutting or packing.

Industrial cutting operations involve taking large objects of standard

sizes (stock material such as wooden panels, paper rolls, aluminium profiles,

flat glass) and cutting them into smaller pieces of different sizes to meet

customers’ demands. A specification of how many small items of each size

will be cut from each large panel and where the cuts will be made defines

a cutting pattern. Each cutting pattern can produce different items or just

several copies of one same item.

Cutting stock problems usually deal with the generation of a set of cut-

ting patterns that minimizes waste. But beyond pattern generation, there

are additional aspects that are important to deal with, in the process of plan-

ning industrial cutting operations. An important issue is the decision of the

processing sequence of the set of patterns on the cutting equipment. Most

probably the first researcher raising awareness of these aspects is Dyson [19].

The Pattern Sequencing Problems (PSP), also referred to as Pattern

Allocation Problems (PAP), consist in finding a permutation of the pre-

determined cutting patterns while optimizing a given objective function.

There are several relevant objective functions: the number of tool changes,

the average order spread, the number of discontinuities, and the number of

open stacks.

A set of m cutting patterns relating n item types can be represented in a

n×m matrix A, whose element aij equals 1 if pattern j contains item i and

equals 0, otherwise. Pattern sequencing problems consist of constructing

a permutation of the columns of this matrix, while minimizing some given

objective function. From the permutation of the columns comes the ordering

for processing the patterns. There are, evidently, m! solutions.

The pattern sequencing problem with the number of stacks as the objec-

tive function to be minimized has been the purpose of most of the papers

on pattern sequencing problems, maybe because the problem itself has a

2.1. MOSP AND RELATED PROBLEMS 7

complex structure and it is very rich in applications to other fields of sci-

ence.

Most of the authors encounter the minimization of the number of open

stacks problem while solving a two stage procedure: first, the classic problem

of finding the best patterns to cut stock sheets of glass, paper or wood

into smaller rectangular pieces is dealt, usually with an waste minimization

purpose, and only after that do they deal with the stage two, which is to

determine the sequence in which those patterns should be cut, in order to

minimize the number of open stacks. There are also researchers who tried

to solve both the problems of pattern generation and pattern sequencing in

an integrated way, and others use the number of open stacks rather as a

constraint than as the objective function.

The number of publications in the subject of pattern sequencing prob-

lems reaches over fifty. Although it is a relatively recent topic, it has been

addressed with many different methods over the last thirty five years. The

purpose of this chapter is to study the cutting stock problems dedicated to

sequencing the cutting patterns with an integer programming perspective.

2.1.1 MOSP: Minimization of the number of Open Stacks

Problem

The Minimization of Open Stacks Problem (MOSP) is a pattern sequencing

problem that was first addressed in 1991 by Yuen [68] and Richardson [70].

It arose in the Australian flat glass industry, but it can appear in other

cutting industries like steel tubes, paper, wooden panels, and others.

Consider a cutting machine that processes just one cutting pattern at a

time. The different items cut from patterns are queued around a machine

in separate stacks. The stack of an item type remains near the machine if

an item of that type still has to be cut from a forthcoming pattern. A stack

is closed and removed from the work area only after all items of that size

have been cut, and immediately before starting to process the next cutting

pattern. During this process, the number of open stacks is counted after a

pattern is completely cut and before any finished stack is removed.

As there are often space limitations around the cutting machines, and

in some cases as in the flat glass industry there is danger of accidental

breakages of the pieces in the partially completed stacks and difficulty in

distinguishing similar items, it becomes important to minimize the maxi-

mum queue of partially cut orders, i.e. to minimize the maximum number

of simultaneously open stacks. That can be achieved simply by finding

8 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

Figure 2.1: A typical automatized sheet cutting system with limited un-
loading stations [46]

an optimal sequence to process the cutting patterns. The minimization of

open stacks problem consists of constructing a sequence of the patterns with

respect to minimizing the number of simultaneously open stacks.

More formally, consider the matrix An×m with the constitution of the

m cutting patterns, whose element aij equals 1 if pattern j contains item

i and equals 0, otherwise. A sequence to process the cutting patterns is

a permutation Π = (π1, ..., πm) of the columns of this matrix, where πj
denotes the pattern that is positioned currently in column j.

A stack i is open at position t of the pattern sequence if

t∑

j=1

aiπj
·
m∑

j=t

aiπj
> 0

We define the MOSP number of a permutation Π = (π1, ..., πm) of the

m patterns as

MOSP (Π) = max
t

{
i :

t∑

j=1

aiπj
·
m∑

j=t

aiπj
> 0

}

The optimal solution of the minimization of open stacks problem is a

permutation Π of the columns of matrix A such that MOSP (Π) is minimum

over all such permutations.

Observe an example of this problem with 8 cutting patterns and 6 items

taken from [67]. The composition of the cutting patterns is described in

Table 2.1.

2.1. MOSP AND RELATED PROBLEMS 9

Table 2.1: An example of the MOSP with 8 patterns and 6 items

If the patterns are processed in the original sequence (Figure 2.2), there

is a point where there are 5 simultaneously open stacks. But if the patterns

are sequenced in a different order, the maximum number of open stacks

may be different. If the ordering of the patterns is as in Figure 2.3, there

are only 4 simultaneous open stacks at most.

Figure 2.2: Counting the number of open stacks of the example in Table 2.1

The applications of the minimization of open stacks problem are usually

in the cutting industry, but this problem can also be found in production

planning as explained in Section 2.1.2, and yet in completely different sce-

narios as VLSI circuits design with the Gate Matrix Layout Problem and

PLA Folding, or in classical problems from Graph Theory such as Path-

width, Modified Cutwidth and Vertex Separation, as we will be seeing fur-

ther ahead.

10 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

Figure 2.3: The solution of the example in Table 2.1

2.1.2 MOOP: Minimization of the number of Open Or-

ders Problem

Consider the case of a manufacturer who has a number of orders from

customers to fulfill. Each order requires the making of different products,

but only one product can be made at a time. A virtual stack is opened

for each client when the first product of that order is processed. The stack

is closed as soon as all products of that order have been manufactured, so

the order is completed and ready to be sent to the client. The setting costs

usually prevent from switching between manufacturing different products,

and transportation costs dissent from partial order deliveries to clients. Also

it is not advisable to have delays on deliveries, because, besides having

resources tied up to stock, it will cause delays on the customers’ payments.

The objective is to find an optimal sequence to manufacture the products

in order to minimize the maximum number of simultaneously open orders.

Manufacturing the products in this optimal sequence reduces the amount

of space needed to store the incomplete orders.

The minimization of the number of open orders, also called MOOP [61],

is just a different perspective of the MOSP problem, but it is the same

problem, whether it is considered in production planning or when sequenc-

ing cutting stock patterns. Comparing the two scenarios, cutting patterns

have the same behaviour as products, and items cut will correspond to cus-

tomers’ orders. While in the MOSP problem we have a real stack for each

piece size that is cut, in this scenario real physical stacks for each order that

is not fully fulfilled may not exist.

2.1. MOSP AND RELATED PROBLEMS 11

2.1.3 MORP: Minimization of ORder spread Problem

The Minimization of Order Spread Problem (MORP) is a pattern sequenc-

ing problem very similar to the MOSP. When considered from the viewpoint

of a cutting stock problem, it also deals with the sequencing of the patterns,

but the problem has an objective function different from MOSP.

In some cases like in the glass cutting industry, the glass pieces have to be

handled and stored individually, which is very time- and storage-consuming

and hence expensive; therefore it is desirable to reduce the handling and

storing costs [45] by reducing the time elapsed between the cutting pieces

correspondent to the same order.

An order from a customer often consists of several items that may be cut

from different stock sheets. A possibility is to create a stack for each cus-

tomer, with the pieces that are being cut, until each order is complete. An

order is completed when the corresponding demand has been met entirely.

The order spread is the distance between the first and the last item cut

that belongs to the same order. The distance can be measured in number

of stock sheets: if the whole order is cut from just one stock sheet, the order

spread is 0, if it is cut completely in two consecutive sheets, the order spread

is 1 [45].

In practice, it is desirable to keep all the pieces cut belonging to one

order as close in time as possible. The objective of the MORP is therefore

to minimize the order spread, that is minimizing the time that a stack

remains open.

According to [23], the MORP can be defined more formally in the fol-

lowing manner.

Consider the matrix An×m, whose element aij equals j if order i is to

be cut from pattern j and equals 0 otherwise, and the permutation Π =

(π1, ..., πm) of the columns of this matrix, which defines the sequence to

process the cutting patterns, where πj denotes the pattern that is cut in

position j.

The spread of order i in the sequence Π is

siΠ = max
j
{aij : aij > 0} −min

j
{aij : aij > 0}

and the average order spread of a pattern sequence Π is

s(Π) =
1

n

n∑

i=1

siΠ

12 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

The MORP problem consists in selecting a pattern sequence that minimizes

the average order spread over all permutations of the patterns.

MORP = min
Π
s(Π)

The minimization of the order spread is related to the minimization of

the bandwidth of a symmetric matrix, which we will discuss in section 3.6.

According to Linhares and Yanasse [44], the MORP may also be defined

as the minimization of the maximum order spread, instead of the average

order spread, as defined above. Both versions are NP-hard problems in the

general case [21, 25].

2.1.4 MDP: Minimization of the number of Discontinu-

ities Problem

We say that a discontinuity occurs when an item that is being cut in a given

pattern is not cut in the following pattern and it is cut later again. The

problem of minimization of discontinuities (MDP) is to find a sequence to

process the cutting patterns such that the number of this type of discon-

tinuities is minimum. The difference from the previous problem is that in

this case the duration of the discontinuities is not considered to influence

the cost of the solution, just its existence.

This is a NP-hard problem, and it is also known in the literature as the

Consecutive Blocks Minimization Problem [26].

2.1.5 MTSP: Minimization of the number of Tool Switches

Problem

Also related to the MOSP problem we have the minimization of the number

of tool switches problem (MTSP). This is a job scheduling problem that

arises in flexible manufacturing machines, and it has been applied to the

metal working industry, the cutting operations in a manufacturer of military

avionics and communications equipment, and the mounting operations in

electronic manufacturing of printed circuit boards.

Machines in such systems are capable of different tasks, but may need a

certain combination of tools. This problem involves machines that can hold

a set of tools, which can be changed in order to have the adequate tools for

each job. As these machines only have a capacity for C tools simultaneously,

some tool switching must be made between different tasks sometimes. These

2.1. MOSP AND RELATED PROBLEMS 13

tool changing operations may include retrieval from storage, transportation,

loading and calibration, and have a cost which is proportional to the number

of switches. The MTSP problem consists of finding a sequence of the tasks,

in order to minimize the number of tool switches.

There are usually some assumptions on this scenario [5]: we are schedul-

ing N jobs on a single machine, the number of tools required to process N

jobs is greater than the capacity of the machine processing times, switching

times are independent and batch sizes are small; we also consider that only

one tool is changed at a time, the magazine can accommodate any com-

bination of tools, tool changing times are constant and identical, all tools

weight about the same and each takes only one position in the magazine.

Additionally, job processing is independent of switching and tool wear does

not influence the planning decision.

This is a NP-hard problem for any fixed C ≥ 2, as shown by Crama et

al. as quoted in [16], because it has similarities with the problem of minimal

length traveling salesman path on edge graphs.

It involves machines that can hold a set of tools, which can be changed

in order to have the adequate tools for each job. This problem is similar to

the MOSP problem, where the patterns here are the jobs and the items are

the tools.

2.1.6 Relationship between the MOSP, MORP and MTSP

problems

In this section we will see several relations between these problems.

Only the two perspectives of the MOSP enunciated above (MOSP and

MOOP) are equivalent. The MORP, the MDP and the MTSP are NP-

hard problems that are not equivalent to the MOSP, and not even to each

other. Linhares and Yanasse [44] have presented counterexamples to all the

equivalency conjectures, except for the equivalence between the MTSP and

MDP. They prove that if MTSP is fixed parameter tractable (FPT), then

MDP is also FPT.

Although the MOSP is not equivalent to MTSP in general case, they

are equivalent just if the optimum of the MOSP equals the capacity C of

the machine in the MTSP. Denote the optimum number of stacks in MOSP

by C∗. If C > C∗, an optimal solution for the MOSP is always optimal for

the MTSP, but the converse is not true. If C < C∗, an optimal solution for

the MOSP may not be an optimal solution for the MTSP and vice-versa.

Yanasse [63] proves that the MOSP is not equivalent to the MTSP in a

14 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

general case, but they are equivalent only when C = C∗.

We will see two formulations for the MOSP that were adapted from

formulations originally developed for the MTSP [54, 63].

MORP and MDP are not equivalent, but in the next chapter we will

see an effort made by Madsen [45] to solve the MORP by minimizing the

discontinuities.

2.2 Integer programming models for MOSP and

related problems

In this section we will explain some of the integer programming models that

exist is literature for the minimization of open stacks problem and related

problems.

2.2.1 Madsen’s approach to the MORP and MDP

In an attempt to solve the minimization of order spread problem, Mad-

sen [45] has developed exact models based on the Travelling Salesman Prob-

lem (TSP).

These methods result in decreasing the maximum order spread but some-

times at the cost of increasing the average order spread. The exact formu-

lation was presented by Madsen as a model for the MORP, but in fact

it only solves the MDP because it does not consider the duration of the

discontinuities when counting the order spread.

Madsen also makes an analogy of the order spread with the bandwidth

of a symmetric matrix, rearranging the rows and the columns in order to di-

agonalize the matrix to the maximum. The bandwidth problem is explained

in section 3.6.4.

The method suggested by Madsen [45] is composed of an iterative proce-

dure alternating between stages one (cutting stock problem) and two (pat-

tern sequencing problem). The first stage is suggested to be solved with

Gilmore and Gomory algorithm, and the second stage is solved with a Trav-

elling Salesman Problem approach. Madsen’s objective is to minimize the

order spread and he tries to accomplish it by sequencing the patterns that

contain the same panel type, one after another, without interruptions, until

the demand is fully completed. Let C = {cij} be a symmetric matrix where

cij = k−number of orders on stock sheet i which also occur on stock sheet j

2.2. IP MODELS FOR MOSP AND RELATED PROBLEMS 15

where k is a large constant greater than the maximum number of orders

in common, in order to guarantee that cij ≥ 0, and cii is set to a constant

greater than k. Defining the binary variables

xij =

{
1 if stock sheet j is cut immediately after stock sheet i

0 otherwise

The order spread reduction problem is formulated in the following man-

ner:

min
N∑

i=1

N∑

j=1

cijxij (2.1)

subject to
N∑

i=1

xij = 1 j = 1, ..., N (2.2)

N∑

j=1

xij = 1 i = 1, ..., N (2.3)

∑

i∈S

∑

j∈S

xij ≤ |S| − 1 ∀S ⊂ {1, ..., N} (2.4)

xij ∈ {0, 1} i, j = 1, ..., N (2.5)

The objective function (2.1) is chosen in such a way that variables xij
are set to 1 when cij is minimum, which happens for sheets i and j that

have a large number of panel types in common. The minimization of the

order spread is made with an objective function that chooses to sequence

the patterns that have the maximum number of common panel types.

The inequality (2.2) enforces that there is only one cutting pattern before

j and (2.3) guarantees that there is only one cutting pattern after i. The

left hand side of the inequality (2.4) counts how many adjacencies there are

in any subset S of cutting patterns; the variables satisfy it at equality when

all the cutting patterns in S are adjacent in the sequence.

The weakness of this TSP formulation resides in not adequately model-

ing the distance from the moment the cutting of an order is stopped to the

moment when it is started again. It only reduces the number of discontinu-

ities, i.e, the number of times that an order that was partially completed by

one cutting pattern is not processed in the next pattern. Therefore, it does

not always lead to a solution for the MORP but rather to the MDP.[23]

16 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

2.2.2 Bard’s nonlinear integer model for the MTSP

A paper of Bard [5] uses Nonlinear Integer Programming to solve the MTSP.

Let us recall that the minimization of the number of tool switches problem

(MTSP), consists in selecting the sequence in which to process the N jobs

and the M tools to switch on a machine with only C slots, in order to

minimize the number of tool switches. Bard uses the following variables:

rij =

{
1 if tool i is required for job j

0 otherwise

xjn =

{
1 if job j is assigned to position n

0 otherwise

yin =

{
1 if tool i is on the magazine at instant n

0 otherwise

The mathematical formulation of the problem is

Minimize F (x, y) =
N∑

n=1

M∑

i=1

yi,n(1− yi,n−1)

subject to:
N∑

n=1

xjn = 1 j = 1, ..., N (2.6)

N∑

j=1

xjn = 1 n = 1, ..., N (2.7)

M∑

i=1

yin ≤ C n = 1, ..., N (2.8)

rijxjn ≤ yin ∀i, j, n (2.9)

xjn, yin = 0, 1 ∀i, j, n (2.10)

This formulation has experienced bad results, so the author suggests a

problem reduction combined with heuristics. After a first preprocessing, a

Lagrangian relaxation is executed on conditions (2.9) and the dual of (2.8)

is computed. A Hungarian algorithm along with backward dynamic pro-

gramming transforms the problem in one of order O(N3) or O(NM). Then,

to construct feasible solutions, a policy called ”Keep Tool Needed Soonest

(KTNS)” is used. This policy was introduced by Tang and Denardo [57],

and relies on two principles:

2.2. IP MODELS FOR MOSP AND RELATED PROBLEMS 17

� At any instant no tool is inserted unless it is required for the next job.

� If a tool must be inserted, the tools kept are those needed the soonest.

This policy is proved to minimize the total number of tool switches for the

tool replacement problem and is of order O(MN).

Finally a branch and bound scheme solves the problem resulting in

O(N4M).

With this combined method, good results were obtained. The method

can also be extended for P machines and can include fixed costs. However

the author finds it difficult to include in this model the wear of the tools.

Bard claims that finding the job sequence and tool replacement that mini-

mizes the total number of switches is equivalent to minimizing the makespan,

i.e., the time difference between the start and finish of a sequence of man-

ufacturing tasks.

2.2.3 Tang and Denardo’s model for the MTSP and MOSP

Regarding the MTSP, Tang and Denardo’s work [57] uses integer program-

ming to schedule the N jobs on a single machine with only C slots having

M tools available.

Tang and Denardo consider instant n to be the moment after the nth-job

is processed but before any tools are switched, for n = 1, 2, ..., N − 1, and

use the following variables:

xjn =

{
1 if job j is the nth-job in the sequence

0 otherwise

wni =

{
1 if tool i is on the machine at instant n

0 otherwise

which forms a M × 1 vector Wn giving the tools in the machine at instant

n,

pni =

{
1 if tool i is switched at instant n

0 otherwise

which forms a M × 1 vector Pn showing the tool switches that occur at

instant n,

aji =

{
1 if tool i is required for job j

0 otherwise

18 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

which forms a M × 1 vector Aj representing the set of tools required for

job j. Denote by e a 1 × M vector full of 1’s. Consider also that each

tool magazine has C tool slots and there is no tool sharing among different

machines. The mathematical formulation of the problem is:

Minimize
N−1∑

n=1

ePn (2.11)

subject to eWn = C n = 1, ..., N (2.12)

xjnAj ≤ Wn j = 1, ..., N, n = 1, ..., N (2.13)
N∑

j=1

xjn = 1 n = 1, ..., N (2.14)

N∑

n=1

xjn = 1 j = 1, ..., N (2.15)

Pn ≥ Wn+1 −Wn n = 1, ..., N − 1 (2.16)

xjn ∈ {0, 1} j = 1, ..., N, n = 1, ..., N (2.17)

Wn ∈ {0, 1}M n = 1, ..., N (2.18)

Pn ≥ 0 n = 1, ..., N − 1 (2.19)

In the objective function (2.11), ePn counts how many tool switches

happen at instant n, hence the sum counts the total number of tool switches.

Note that there is no need to make any tool switch at the last instant N .

The reason for the equality in equation (2.12) is the following: as there are

C slots in the machine, it is advantageous to load C tools on the machine

and only switch the necessary ones at each instant. Clearly, if C ≥M , then

there is no need for tool switches.

Inequality (2.13) assures that if job j happens at instant n, then the

necessary tools Aj must be loaded in the magazine at that instant. The

next two inequalities (2.14) and (2.15) assign exactly one job to each instant

and vice versa.

The last inequality (2.16) states that if, at instant n + 1, there is the

need for a tool that was not in the magazine at instant n, which is stated

by an entry of the first vector of the right hand side to be one and the

corresponding entry on the second vector to be zero, then this inequality

forces the corresponding entry in the vector of the left hand side to be one

too, meaning that there is a tool switch at instant n.

The authors reported rather disappointing results, and tried to replace

2.2. IP MODELS FOR MOSP AND RELATED PROBLEMS 19

equation (2.13) with a stronger condition:

N∑

j=1

xjnAj ≤ Wn n = 1, ..., N (2.20)

A solution of this problem would also be a solution of the first, but unfor-

tunately this did not improve the results.

In [41], Laporte points out that the linear relaxation of this model is

always zero when no job is fixed, and therefore it requires almost complete

enumeration.

Another tactic that Tang and Denardo suggested was to consider a sub-

problem, named the Tool Replacement Problem, where the job sequence is

fixed but only the tooling decisions are open. The objective of this problem

is to determine the set of tools to place on the machine at each instant so

that the total number of tool switches is minimized. For this subproblem

the following variables are needed:

� T (i, n) is the set of all instants at (or after) instant n at which tool i

is needed;

� L(i, n) is an integer variable that stands for the first instant at (or

after) instant n at which tool i is needed;

� a vector J such as

Ji =

{
1 if tool i is on the machine at instant n

0 otherwise

Tang and Denardo invoke the “Keep tool needed soonest”policy, de-

scribed in the previous section, to minimize the total number of tool switches.

Tang and Denardo also suggested a graph approach for this problem: to

consider graphs where the nodes represent the jobs, and the length of an

arc ij is the number of tool switches when job i is followed by job j. In

this perspective, every job sequence corresponds to a Hamiltonian path on

the graph, i.e. a path that encounters each node exactly once and visits

all nodes. The length of a Hamiltonian path represents the number of tool

switches in that job sequence.

Minimizing the number of tool switches for a given job sequence is solved

by finding the shortest Hamiltonian path, that is equivalent to solving the

Travelling Salesman Problem, which is NP-complete.

If we denote the fewest possible number of tool switches if job j follows job

i by LB(i, j), the length of the shortest Hamiltonian path is a lower bound

20 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

(LB) to the number of tool switches. One drawback of this lower bound is

that it ignores all tooling decisions before i and after j.

For solving the Job Scheduling problem, this method of finding lower

bounds and consequently generating a good job schedule is used as the first

step of a Greedy Procedure. Before doing this first step, a preprocessing

phase consists in removing the jobs that require a subset of tools also re-

quired for job i, as they can be scheduled in any order immediately after i.

The second step of this heuristic is to determine the tooling decision W J(n)

for any job schedule J , accordingly to the KTNS policy. The third and last

step of this greedy procedure is to execute a perturbation in the sequence,

i.e., to change each job sequence J such that the perturbed job sequence

can be performed by the same sequence of tools that is used to process the

job sequence J.

This Greedy Procedure finds a job sequence J and a tooling decision W J

that is an equilibrium, i.e., for a fixed job schedule J , W J is an optimal

tooling decision for the job schedule J and for a fixed tooling decision W J ,

there is no perturbed job sequence of J that entails less tool switches than

the number of tool switches in J .

Tang and Denardo’s model for the MTSP adapted for the MOSP by

Yanasse

It was suggested in the literature that some adaptations may be done to

the exact models proposed for the MTSP, in order to use those results and

make them suitable models for the MOSP. In [63], Yanasse demonstrates

two propositions that make the model originally proposed by Tang and

Denardo [57], suitable for modeling the MOSP.

As the MTSP is only a problem if the capacity of the machine is less

than the number of tools needed (C < M), then M−C is a lower bound for

the number of tool switches, because all tools must be used at least once.

Considering the jobs as patterns and the tools as panel types, we can

establish a link between the MTSP and the MOSP.

Consider C∗ to be the optimal solution value of the corresponding MOSP.

By construction, if C ≥ C∗ then M −C is the optimal value of the MTSP.

The optimal sequence of the MOSP determines what are the first C tools

to be loaded initially in the C slots of the machine.

Yanasse says that when C < C∗ the optimal value of the MTSP is

strictly greater than the lower bound M − C. This happens because any

sequence of the patterns produces at least C∗ stacks, so if we have only C

2.2. IP MODELS FOR MOSP AND RELATED PROBLEMS 21

slots, C < C∗, at least one switch has to be made to take a tool out of

the magazine temporarily and brought back again afterwards to the tool

magazine. So we must necessarily have more than M −C switches. So the

MOSP can be formulated as

Minimize C (2.21)

subject to
N−1∑

n=1

ePn = M − C (2.22)

and conditions (2.12) to (2.19) (2.23)

Yanasse assumed that, similarly to Tang and Denardo’s model, disap-

pointing computational results would be expected from this model, and he

presented an alternative branch-and-bound scheme instead.

2.2.4 The model of Laporte et al. for the MTSP with

Pinto’s approach to the MOSP

Laporte, González and Semet [41] have developed a model for the Mini-

mization of Tool Switching Problem in job sequencing that can be adapted

to solve the MOSP.

Consider the set of jobs J = {1, ..., n} and the tools T = {1, ...,m}. Let us

denote by Jt the subset of jobs requiring tool t and Tj the subset of tools

in job j. The machine holding capacity of at most c tools at a time means

that c ≥ max
j∈J
{|Tj|}. The binary variables are defined in the following way:

� xij = 1 if job i is immediately followed by job j

� yit = 1 if tool t is in the machine while processing job i

� zit = 1 if tool t is inserted in the machine at the start of job i

22 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

The mathematical model for the MTSP is

Minimize
∑

i∈J

∑

t∈Ti

zit (2.24)

subject to
∑

j∈J∪{0}\{i}

xij = 1 ∀i ∈ J ∪ {0} (2.25)

∑

i∈J∪{0}\{j}

xij = 1 ∀j ∈ J ∪ {0} (2.26)

∑

i,j∈S

xij ≤ |S| − 1 S ⊆ J ∪ {0}, 2 ≤ |S| ≤ n− 1 (2.27)

∑

t∈T

yjt ≤ c ∀j ∈ J (2.28)

xij + yij − yit ≤ zji + 1 ∀i ∈ J ∪ {0}, ∀j ∈ J,∀t ∈ T (2.29)

yit = 1 ∀i ∈ J,∀t ∈ Ti (2.30)

zit = 0 ∀i ∈ J,∀t ∈ T\Ti (2.31)

xij ∈ {0, 1} ∀i, j ∈ J ∪ {0} (2.32)

yit ∈ {0, 1} ∀i ∈ J,∀t ∈ T (2.33)

zit ∈ {0, 1} ∀i ∈ J,∀t ∈ T (2.34)

The constraints (2.25) and (2.26) are the usual Travelling Salesman

Problem (TSP) assignment constraints. The condition (2.27) prevents the

formation of subtours while (2.28) is a capacity constraint. Restriction

(2.29) says that if tool t was not in machine for job i and was not inserted

for j, then job j cannot follow job i and require tool t at the same time.

Restriction (2.30) forces all tools for job j to be in the machine before its

processing and (2.31) prevents switching a tool if it is not needed to execute

a job. Finally, (2.32), (2.33) and (2.34) are the integrality constraints.

To obtain a mathematical model for the MOSP, Pinto [54] modifies the

objective function to

min c (2.35)

and another restriction is added, forcing the number of switches to be the

difference between the total number of tools and the capacity of the machine.

n∑

t=1

m∑

i=1

zit ≤ m− c (2.36)

To improve the lower bounds achieved with the linear relaxation of the

model for the MTSP problem, Laporte et al. [41] recommend using extra

constraints and a lifted objective function. If there is an i∗ ∈ J such that

2.2. IP MODELS FOR MOSP AND RELATED PROBLEMS 23

|Ti∗| = c, then any job j immediately following i∗ will generate |Tj\Ti∗ | tool

switches and therefore zjt ≥ xi∗j for all j 6= i∗ and t ∈ Tj\Ti∗ . By using the

following objective function (2.37), the constraints (2.29) can be removed

for i∗, j 6= i∗, t ∈ Tj\Ti∗ .

min
∑

i∈J

∑

t∈Ti

zit +
∑

i∈J :|Ti|=c

∑

j 6=i

|Tj\Ti|xij (2.37)

When j immediately follows i, a lower bound for the number of tool switches

is lij = max{0, |Ti∪Tj|−c}. If |Tj| = c ∀j ∈ J then this is the actual number

of tool switches and a TSP is obtained in that case.

Laporte et al. suggested also three more valid inequalities that improved

the linear relaxation of the model:
∑

t∈Tj

zjt ≥
∑

i 6=j:|Ti|6=c

lijxij ∀j ∈ J (2.38)

∑

i∈Jt\{j}

xij + zjt ≤ 1 ∀t ∈ T ∀j ∈ J (2.39)

∑

t∈Ti\Tj

yjt ≥ (c− |Ti|)xij ∀i, j ∈ J : |Ti| = c, |Tj| < c (2.40)

The first is a lower bound for the number of tool switches for processing

each job j, the second says that a required tool is introduced at the start of

the job or the previous job already required that tool. The last constraint

(2.40) states that it does not pay to make unnecessary tool switches.

2.2.5 Pinto’s integer programming model based on the

completion of stacks

In [66], a new integer model is presented which aims on the sequence of

the completion of the stacks more than it focus on the sequencing of the

patterns. For that reason the main variables are:

xjn =

{
1 if item j is the nth item to be completed in the sequence

0 otherwise

Consider the same variables of the previous models, plus a constant

K ≥ M , and also a M × 1 vector Sj that stores the information about

related items:

sij =

{
1 if item i and item j are present in the same pattern

0 otherwise

24 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

The integer programming formulation is:

Minimize C (2.41)

subject to eWn ≤ C + n− 1 n = 1, ...,M (2.42)
M∑

j=1

n∑

t=1

xjtSj ≤ KWn n = 1, ...,M (2.43)

M∑

n=1

xjn = 1 j = 1, ...,M (2.44)

M∑

j=1

xjn = 1 n = 1, ...,M (2.45)

xjn ∈ {0, 1} j = 1, ...,M, n = 1, ...,M (2.46)

Wn ∈ {0, 1}M n = 1, ...,M (2.47)

The constraint (2.42) says that the total number of open and closed

stacks at instant n, counted by the left hand side, is less than or equal to

the maximum number of open stacks plus the number of stacks that have

been closed before. The constraint (2.43) determines that, when a stack i

ends, then every item j that appears with item i in a pattern will also form

a stack.

2.2.6 Baptiste’s MIP formulation for the Constraint Mod-

eling Challenge 2005

In 2005 the 5th Workshop on Modeling and Solving Problems with Con-

straints took place at IJCAI 2005 in Scotland. This workshop promoted

a challenge in constraint modeling. The problem to be addressed by the

challenge entrants was the minimization of open stacks problem. This chal-

lenge brought many different approaches to the MOSP, and although most

of them used pure constraint programming, there were also other interesting

approaches, such as local search or dynamic programming, and there was

one entrant that used integer programming.

Philippe Baptiste is one of the participants of the Constraint Modeling

Challenge. He has developed a mixed integer programming (MIP) formu-

lation for MOSP [4], to find a lower bound, and a local search method to

calculate an upper bound, that uses binary variables to assign each pat-

tern to a sequence position and to indicate if each item starts before, ends

2.2. IP MODELS FOR MOSP AND RELATED PROBLEMS 25

after or is in process at the given position in the sequence. The model in-

cludes constraints referring to the start and end variables and the linking

of patterns and items.

Consider

Kcp =

{
1 if item c is cut from pattern p

0 otherwise

The general assignment variables are

xpt =

{
1 if pattern p is sequenced at position t

0 otherwise

There are customer variables referring to the orders starting, ending, or

being in progress at a certain position

sct =

{
1 if stack for item c starts before or at position t

0 otherwise

ect =

{
1 if stack for item c ends after or at position t

0 otherwise

ict =

{
1 if stack for item c is open at position t

0 otherwise

And finally there is the stack variable

σ ∈ {0, ...,m}

that represents the number of open stacks in the solution.

26 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

The mathematical model is

Minimize σ (2.48)

subject to
n−1∑

p=0

xpt = 1 ∀t ∈ {0, ..., n− 1} (2.49)

n−1∑

t=0

xpt = 1 ∀p ∈ {0, ..., n− 1} (2.50)

m−1∑

c=0

ict ≤ σ ∀t ∈ {0, ..., n− 1} (2.51)

sct ≥ sct−1 ∀c ∈ {0, ...,m− 1} ∀t ∈ {0, ..., n− 1} (2.52)

ect ≤ ect−1 ∀c ∈ {0, ...,m− 1} ∀t ∈ {0, ..., n− 1} (2.53)

ict = sct + ect − 1 ∀c ∈ {0, ...,m− 1} ∀t ∈ {0, ..., n− 1} (2.54)

xpt ≤ ict
∀c ∈ {0, ...,m− 1} ∀p ∈ {0, ..., n− 1}
such that Kcp = 1, ∀t ∈ {0, ..., n− 1} (2.55)

xpt ∈ {0, 1} ∀p ∈ {0, ..., n− 1} ∀t ∈ {0, ..., n− 1} (2.56)

sct, ect, ict ∈ {0, 1} ∀c ∈ {0, ...,m− 1} ∀t ∈ {0, ..., n− 1} (2.57)

The constraints (2.49) mean that we can only have one pattern at a time,

(2.50) force all patterns to be sequenced and (2.51) that at any position t,

the number of open stacks is bounded. The restrictions (2.52), (2.53) and

(2.54) guarantee the coherence in the sequence of opening and closing stacks.

The last ones link the sequence of patterns to the stacks that are open.

Some cuts are made to tighten e and s variables, observing that if an

item c appears in q patterns,

q =
n−1∑

p=0

Kcp

hence ec(q−1) ≥ 1 and ∀t ≥ q, ect ≥ 1 − sc(t−q), hence sc(n−q) ≥ 1 and

∀t < n− q, sct ≥ 1− ec(t−q).
Redundant constraints on aggregated items are added, as well as addi-

tional constraints to break symmetry, but Baptiste found that his tentatives

to remove symmetries were complex and ineffective for this MIP approach.

2.2.7 Comparison between some of these models

In this section we will point out advantages and disadvantages of these

models of MOSP and compare lower bounds obtained from them.

2.3. OTHER APPROACHES AND SPECIAL CASES 27

In [66], the model extended to the MOSP by Pinto from Laporte’s MTSP

model is compared to the model extended for the MOSP by Yanasse from

the Tang and Denardo’s model for the MTSP, and the results show that

each of these two models performed better in half of the 20 instances tested,

although the model from Laporte et al. extended for the MOSP presents a

greater variance of runtime. In that paper, these models were also compared

with a new integer model that outperforms both in most of the instances

tested.

The model of Laporte, Gonzalez and Semet with the MOSP approach

of Pinto, shows that the number of variables in the linear relaxation is

O(n2 + nm), although the number of constraints is exponential. With the

additional constraints (2.38) to (2.40), the value of the linear relaxation

rises from 2.91 to 6.0, for an instance where the optimal solution is 7.0.

The model of Baptiste based on MIP with cuts optimally solves medium

size instances. The disadvantages are that the lower and upper bounds have

worse behavior than with specific cuts (it causes either an infeasible or an

optimal solution). Unfortunately he was not able to break many symmetries

with cuts to MIP.

2.3 Other approaches and special cases

The minimization of open stacks problem and the other related pattern

sequencing problems have been addressed using other techniques, such as

heuristics, genetic algorithms and dynamic programming. Some special

cases of the MOSP problem have been specifically studied to help tackle

the problem.

2.3.1 Yanasse’s work on special cases of the MOSP

Yanasse is probably the researcher who has published more papers con-

cerning this problem. Using a graph representation of the problem, he has

proved that there are polynomial algorithms that solve some special cases of

the MOSP, has presented some very good heuristics based on the properties

of the corresponding graphs and has even tried some integrated approaches

of both generating and sequencing the cutting patterns problems.

28 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

MOSP in a graph perspective

A MOSP problem where there are at most two different panel types per

pattern can be represented through a graph that associates nodes to orders

and arcs to patterns [64]. By making each piece type (or customer order)

correspond to a vertex, and considering two vertices to be adjacent if and

only if the corresponding piece types are simultaneously present in a pattern

(or if the corresponding orders include the same product) we obtain a MOSP

graph.

This type of MOSP problems can be seen as a problem of traversing

arcs of the graph. A feasible solution corresponds to a sequence of arcs. A

stack j is opened the first time that an arc incident to vertex j is traversed,

and closed when all arcs incident to j have already been sequenced. In a

MOSP graph where all nodes have degree n or more, there must be at least

n+ 1 open stacks at some time during cutting, making n+ 1 a lower bound

for the solution [64]. This also links the MOSP with the maximum clique

problem, because the size of the maximum clique in a MOSP graph is then

a lower bound for MOSP. The maximum clique problem will be discussed

in section 3.1.2.

The condition of having at most two different panel types per pattern

represents no loss of generality, because a solution of the general case can

be transformed in a solution of the first case in polynomial time (and vice-

versa).

Given a general MOSP problem, a MOSP graph can be obtained by in-

troducing a clique of size k for each pattern composed by k panel types. By

analogy to each arc in the clique, this pattern can be divided in subpatterns

with at most 2 items in each, transforming it in a MOSP graph correspond-

ing to a problem where there are at most 2 items per pattern. In [64],

Yanasse proves that the maximum number of stacks in both problems is

the same.

Polynomial Algorithms for special cases

For the cases of the MOSP where the items being produced belong to at

most two different clients and the corresponding graph is a tree, a 1-tree, or

a 0-1 common vertex polygon, there are polynomial algorithms that solve

the problem [61]. A 1-tree is a connected graph containing exactly one cycle,

and a 0-1 common vertex polygon is a graph that is constituted by polygons

such that any two polygons can have at most one vertex in common.

For trees where each node has degree at most two, which corresponds to

2.3. OTHER APPROACHES AND SPECIAL CASES 29

a graph which is a path with start and end vertices, the strategy is to start

with a node with degree one and then sequence the remaining vertices in

order to finish any open stacks. In a cycle the same process can be used if a

vertex is chosen randomly to be the first stack. For a general tree, or a 0-1

common vertex polygon, a solution is built by appending together optimal

solutions of its subparts and making sure that the number of open stacks is

kept to the least possible. The computational complexity of this algorithm

is bounded by O(n2), where n is the number of patterns [62].

The algorithms presented for these cases are polynomial, however they

give no guarantee that the solution obtained by amending the parts is op-

timal. In fact, in [44] the MOSP is proven to be NP-hard in general.

Preprocessing

The purpose of this phase is to eliminate redundancies and to detect con-

ditions for which a solution can be found in polynomial time. In a prepro-

cessing phase, all components that are trees in a MOSP problem should

be removed, because, as has been discussed, it is possible to order these

components in polynomial time, and incorporate them later into the final

solution.

In a recent paper [67], Yanasse and Senne reviewed some preprocess-

ing operations that can reduce the size of the MOSP problem by finding

dominance or equivalence in the patterns.

We say that a pattern Pj is dominated by another pattern Pi, when

all items that are contained in pattern Pj are also contained in pattern

Pi. In that case, Becceneri et al. [6] proved that we can remove Pj in the

search and insert it in the solution immediately after Pi without increasing

the number of open stacks. To identify dominance between all patterns

requires an effort of at most O(n2m).

A pseudo-equivalence appears in a MOSP graph if there are two differ-

ent nodes i and j such as i has exactly the same neighbors of j, possibly

including themselves. If this is the case, then there is always an optimal

solution of the MOSP where i and j are closed one immediately after the

other [67].

When considering pseudo-equivalence with closed neighborhoods (see

Section 3.1 for a definition), nodes i and j can be considered as if they were

a single node, opening together and closing together, reducing the number

of items in the instance.

When considering simple neighborhoods, it allows to reduce the number

30 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

of patterns. A pattern that contains item i and a pattern that contains

item j can be considered as a single pattern, in the sense that it is possible

to construct a new sequence with these patterns appearing consecutively,

whose maximum number of open stacks is less than or equal to the original

sequence.

Identifying pseudo-equivalence has a complexity of O(m3).

2.3.2 Heuristics

The first works on pattern sequencing problems addressed the MORP prob-

lem. For this problem, Dyson and Gregory [19] developed heuristics based

on the Travelling Salesman Problem. Later, the MOSP became the most

popular pattern sequencing problem and it has been solved with a profusion

of heuristics. We will only present the most relevant ones in this section.

Yuen and Richardson classic heuristics for the MOSP

Yuen and Richardson [69] introduced the minimization of open stacks prob-

lem (MOSP) and presented six heuristics for it. Because of their good

practical behavior in processing time and simplicity, these heuristics were

for a long time considered a classic reference.

The first heuristic presented finds a Lower Bound for the maximum

number of open stacks. As all piece types of a pattern will form incomplete

stacks while this pattern is cut, we can say that a lower bound is the largest

number of piece types in any pattern.

The next heuristic uses graph theory to detect disjoint subgroups of

patterns which have piece types exclusive to their group. This can be used

to break the problem in several smaller problems, one for each group of

patterns. Having that solved, the optimal final sequence is an arbitrary

articulation of the optimal sequences in the subgroups. Each pattern is

represented by a node of a graph and an arc joining two nodes means that

there is at least one piece common in those patterns. The disjoint subgroups

of patterns will be the disjoint connected components of the graph. The

disjoint connected components can be found computing the nth-power of the

sum of the adjacency matrix of the graph with the corresponding identity

matrix.

The third heuristic uses an Upper Bound (UB) and incorporates back-

tracking. The initial value for the Upper Bound is best chosen from the best

solution given by one of the six heuristics. A tree search is made to find the

2.3. OTHER APPROACHES AND SPECIAL CASES 31

optimum queue number. When we identify a node that has a number of

open stacks equal to or exceeding the upper bound, we must exclude that

node and all its subnodes, as they will not improve the upper bound. If it

is so, we go back up in the tree to the next valid unsearched subsequence

(this is called back tracking). The upper bound is revised when a complete

sequence of patterns has been traversed and its maximum number of open

stacks is less than the current Upper Bound. In that case the Upper bound

is tested against the Lower Bound and if they are equal then the optimum

has been found.

A fourth heuristic tests if there are other nodes in the tree that have

no common stacks with the current node. Those can be excluded from

the current search because they will not improve the solution. In the first

heuristic we have assured that all patterns are linked in the graph, so there

is always a pattern with at least one piece type in common with the current

open stacks.

The next heuristic consists in comparing the number of open stacks in a

subsequence of patterns at the origin of the tree with the number obtained

from reversing that subsequence of patterns. If the maximum number of

open stacks in the reverse order is greater than or equal to that already

searched, then the reversed subsequence needs not to be investigated.

The last heuristic rearranges the patterns accordingly to their involve-

ment with other patterns. If we consider

δij =

{
1 if piece i is in pattern j

0 otherwise

and

oi =
∑

j

δij

as the number of patterns in which piece i occurs, than for any pattern j,

the involvement with other patterns can be measured by

Pj =
∑

i

oiδij

and the patterns are ordered by their ascending Pj values.

The third heuristic from Yuen and Richardson was, for over a decade,

used as a reference to compare the performance of the new heuristics being

generated for this problem.

32 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

A model for the MOSP by Becceneri, Yanasse and Soma

Becceneri, Yanasse and Soma [6] have presented heuristics and a branch-

and-bound exact method for MOSP.

According to them, the problem should first be pre-processed by viewing

the input data of an instance as a graph, removing all components that are

trees, making a dominance analysis among patterns and finding cliques in

its structure. The dominance relations between the nodes of the graph lead

to a partial ordering of the stacks, determining the order in which they

should be closed. After this analysis, the Heuristic of Minimal Cost Node

should be applied, subsequently the Arc Contraction Heuristic to find lower

bounds and, finally, a Branch-and-bound technique should be executed to

obtain an optimal solution. Let us see in more detail how these procedures

work.

Heuristic of minimal cost node

The Minimal Cost Node heuristic finds an order for the patterns by travers-

ing the arcs of the graph using the least quantity of arcs to close a node. In

this heuristic, all vertices are first ordered by non-decreasing order of the

number of arcs needed to close that node and a search is made for adjacent

nodes that have arcs not yet traversed.

While all arcs of the graph have not yet been sequenced:

� take the arc of the first two adjacent vertices

� close any node with no remaining arcs

� search for adjacent nodes that have arcs not yet traversed and se-

quence those arcs

This heuristic generates a sequence of arcs and a maximum number of open

stacks ξ
′
.

Arc contraction heuristic

Now we check the minor of the graph for equivalent nodes (nodes that

have the same neighborhood). According to the authors, if a problem has

a feasible solution, it is possible to construct another solution where the

equivalent nodes appear consecutively and the maximum number of open

stacks is less than or equal to the original sequence. The Arc Contraction

heuristic finds equivalent nodes and performs a contraction of the arcs with

2.3. OTHER APPROACHES AND SPECIAL CASES 33

vertices which have the smallest indexes. It also calculates a lower bound

for MOSP, based on identifying the minor as a clique. This lower bound for

MOSP is the maximum of the following numbers:

� Maximum number of pieces in any pattern

lbp = Max {|Pj| : j = 1, . . . , n}

� Open stacks for all pieces with a common pattern with v

lbd = 1 + Min {degree (v) : v is a vertex of Gp}

� Identifying the minor Gp as a clique

lbc = Max {i : Kiis a minor of Gp}

While the minor Gp is not a clique and |Gp| > lb = Max {lbp, lbd}

1. sort the vertices in a non-decreasing order

2. check the minor of the graph for equivalent nodes (nodes that have

the same neighbourhood)

3. contract the arc with vertices which have the smallest indices (delete

one of that vertices and all arcs incident to it)

4. update the lower bound

This process should be applied until exhaustion, preserving the hierarchy

of relations (the last ones to be contracted are the first to be added to the

solution).

Branch and bound

Finally, this exact method executes a branch and bound approach on the

minor obtained from the heuristics above in order to reach for an optimal

solution. If ξ
′ 6= lb then the equivalent nodes are deleted and with the

heuristic of Arc Contraction a new lbc is determined. Then, a branch-and-

bound on the minor Gp is executed to obtain an optimal solution. Finally,

the deleted equivalent nodes and the vertices of D are inserted into the final

sequence.

34 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

Ashikaga’s heuristic based on Hamiltonian circuits

Another heuristic to solve the MOSP has been developed recently by Ashik-

aga [2]. It explores the fact that the MOSP graph has large cliques and high

edge density and suggests an heuristic based on the extension-rotation algo-

rithm of Pósa (1976) to obtain Hamiltonian circuits. An initial path for the

algorithm is defined by the vertices that form a maximal clique, which is

built by finding iteratively in the complement graph a vertex with minimum

degree and removing its neighborhood.

Comparison of heuristics for the MOSP

Compared to the heuristics proposed by Yuen and Richardson, the model

of Becceneri, Yanasse and Soma was able to find better solutions with the

Smaller Cost Node heuristic than with Yuen3, but it needs much larger

computational effort, yet being less than 5 minutes. For matrices with a

large number of 1’s in each line of the matrix (C) the quality of the lower

bound/solution is quite good, but for smaller values of C the gap is relatively

large. This model visits less nodes than non optimized branch and bound

and uses significantly less time (some cases 7 times faster). However, the

arc contraction heuristic may produce different bounds depending on the

nodes chosen for contraction.

Ashikaga’s heuristic has been compared with these heuristics and it is

the fastest available presently. According to the author, this heuristic dom-

inates the other two heuristics in terms of mean errors, possesses smaller

complexity order and it has a simpler implementation.

2.3.3 Dynamic Programming and Genetic Algorithms for

the MOSP

The methods suggested for the MOSP include local search, some tentatives

of applying genetic algorithms and a very successful model using dynamic

programming. There is also a variety of constraint programming implemen-

tations submitted for the Constraint Modeling Challenge 2005 [56].

Foerster and Wäscher compared the performance of simulated anneal-

ing and a traditional 3-opt procedure in randomly generated instances of

the MORP, and recommend the use of simulated annealing [23]. Fink and

Voss studied several pattern sequencing problems and addressed the mini-

mization of open stacks and the minimization of average order spread using

heuristics based on tabu search and simulated annealing [21].

2.4. CONCLUSIONS 35

Authors Faggioli and Bentivoglio suggest the use of greedy heuristics

combined with tabu search and generalized local search to solve the MOSP [20].

They have tested this methods in real instances from a furniture manufac-

turer.

Oliveira and Lorena applied a constructive genetic algorithm to the

MOSP using 2-opt population training based on the greedy procedure of

Faggioli and Bentivoglio [50, 49].

Banda and Stuckey won the Constraint Modeling Challenge with a dy-

namic programming approach to MOSP [3]. This method is highly effective

because, by investigating only the minimum stacks for each subset of pat-

terns, it reduces the raw search space from |P |! to 2|P |, where P is the set of

cutting patterns. In [11], Cambazard and Jussien suggest an improvement

to the dynamic programming approach by using nogood recording schemes,

which explore the structure of the MOSP problem in terms of inconsistent

sequences of patterns. The nogood recording technique is also used in [13]

by Chu and Stuckey, combined with a branch-and-bound strategy based on

choosing which stack to close next and several pruning schemes, to create

an exact solver for the MOSP that it is faster than the previous ones.

2.4 Conclusions

As we are specially interested in pursuing an integer programming approach

to pattern sequencing problems, we analyzed more thoroughly the papers

using this technique. The work of Yanasse [63] adapts to the MOSP a model

originally thought for a similar problem (MTSP) by Tang and Denardo [57].

There is also an IP model by Laporte et al. [41] for the MTSP based on

TSP, that is solved with linear relaxation, branch-and-cut and branch-and-

bound, that later was adapted to the MOSP by Pinto [54]. And there is a

MIP formulation by Baptiste [4] for the MOSP, submitted to the Constraint

Modeling Challenge.

We discussed special properties in the structure of the MOSP problem

that allow preprocessing procedures, such as trees in the MOSP graph,

dominance between cutting patterns and pseudo-equivalency.

Some other methods for solving pattern sequencing problems were also

briefly reviewed, as Yuen and Richardson’s first heuristics for the MOSP [70],

dynamic programming approaches by Banda and Stuckey [3], and the latest

heuristic by Ashikaga [2] which is currently the fastest.

The inspection of the papers on this subject, like [44], suggested some

36 CHAPTER 2. LITERATURE REVIEW ON PATTERN SEQUENCING

relationships between the minimization of open stacks problem and graph

layout problems. In the search for ideas that could be used to derive a new

integer programming model for the minimization of open stacks problem, it

became important to deepen the study of graph theory, namely the concepts

behind perfect graphs and layout measures. In the next chapter the main

results from this theory are recalled, along with interesting applications in

Biology, Archeology and Computer Science.

Chapter 3

Interval Graphs and Linear

Layout Problems

The main problems that are addressed on this thesis are solved here by

using a special type of graphs called interval graphs. This chapter presents

the main theory on interval graphs and discusses some problems concerning

the layout of a graph that are somehow connected to the pattern sequencing

problems.

3.1 Basic Graph Definitions

Let us start by recalling some definitions and notations that will be useful

to study interval graphs.

Definition 3.1.1. A graph G = (V,E) consists of a set V (that we call the

set of vertices or nodes) and a set E of tuples from V × V , i.e, E = {e =

[vw] : v, w ∈ V } (that we call edges or arcs).

An edge with both endpoints on the same vertex is called a loop. An

edge e = [uv] is a multiedge or k-fold edge if there exists exactly k edges

e1, e2, ..., ek such that e1 = e2 = ... = ek = [uv]. For k = 2, or k = 3, it is

called a double edge, or a triple edge, respectively. We call a graph with no

loops or multiedges a simple graph.

In this work, all graphs that will be used are assumed to be simple

graphs.

37

38 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

3.1.1 Directed and Undirected Graphs

Definitions 3.1.2. A directed graph or digraph is a graph G = (V,E) in

which every edge in E may have a direction defined, so that E is a collection

of ordered pairs of elements in V . In a directed(oriented) edge [vw], the first

vertex v is called the tail and the last vertex w is called the head. For a

given vertex v ∈ V , the number of edges where v is a head is called the

indegree and denoted by indeg(v), and the number of edges where v is a

tail is called the outdegree and denoted by outdeg(v).

Definition 3.1.3. The graph G−1 = (V,E−1) is said to be the reversal of

G if

E−1 = {[uv] ∈ V × V : [vu] ∈ E}
A graph G = (V,E) is called undirected if E = E−1.

A graph G = (V,E) is called oriented if E
⋂
E−1 = ∅.

In this work, we will be mostly using undirected graphs; for this reason,

from this point forward, if nothing is said otherwise, by graph we mean an

undirected graph and we will use without distinction [uv] and [vu].

Definition 3.1.4. Two vertices v, w ∈ V are adjacent if [vw] is an edge.

Two edges are adjacent if they share a common vertex.

The neighborhood of a vertex is the set of its adjacent vertices. As we

are considering simple graphs, in which we do not allow edges from a vertex

to itself, one vertex does not belong to its own neighborhood. So it is usual

to also define the closed neighborhood of a vertex if we want to include it.

Definition 3.1.5. For a given vertex u ∈ V , we define the neighborhood or

adjacency set of u as:

N(u) = {v ∈ V : [uv] ∈ E}

and define the closed neighborhood of v as:

N [u] = {u}
⋃

N(u)

We can also name the set of vertices that are not adjacent to any neigh-

bors of a given vertex.

Definition 3.1.6. For a given vertex u ∈ V , we define the anti-neighborhood

of u as:

N(u) = V \
(
N(u)

⋃
{u}
)

3.1. BASIC GRAPH DEFINITIONS 39

We can also extend this definition to the closed anti-neighborhood :

N [u] = N(u)
⋃
{u}

and define the anti-neighborhood of a set of vertices U ⊆ V :

N(U) = {v ∈ V : [uv] /∈ E ∀u ∈ U}

Definition 3.1.7. We define the degree of a vertex v ∈ V to be the number

of times that v is an endpoint of an edge. A graph is said k-regular if every

vertex has degree k.

In a simple graph, the degree of a vertex v is also the cardinality of

N(v).

Definition 3.1.8. The complement of G is the graph G = (V,E) where

E = {[uv] ∈ V × V : u 6= v ∧ [uv] /∈ E}

Hence the complement graph is formed by the vertices together with the

missing edges. When a graph has no missing edges, it is called a complete

graph:

Definition 3.1.9. A graph is complete if every pair of distinct vertices are

connected by one edge.

The complete graph on n vertices is usually denoted by Kn. As it con-

tains all possible edges such that the graph is simple, the number of edges

is
(
n
2

)
.

3.1.2 Problems with Cliques and Stable Sets

There are several problems that are commonly studied in the field of Graph

Theory, some of which we will find useful to apply to the MOSP problem.

Let us recall the most relevant ones.

Maximum Clique Number

This is a common graph problem that consists in finding the maximum

number of vertices that form a clique in a graph.

Definitions 3.1.10. A clique is a set C of vertices of a graph G such that

all pairs of vertices in C are adjacent.

40 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

A clique C is maximal if there is no clique of G which properly contains

C as a subset. A clique is maximum if there is no clique of G of larger

cardinality.

The size of the maximum clique in a graph G is called the clique number

and it is denoted by ω(G).

Minimum Clique Cover

This problem consists in finding a set of cliques to cover all the vertices in

the graph.

Definition 3.1.11. A clique cover of a graph G is a set of cliques such that

every vertex in G belongs to one clique.

The size of the minimum clique cover is called the clique cover number

and it is denoted by k(G).

Maximum Independent Set

For this problem we are interested in finding a set with the maximum num-

ber of nonadjacent vertices.

Definition 3.1.12. A stable set or independent set of a graph G is a subset

I of vertices such that no edge has both endpoints in I.

The number of vertices in a stable set of maximum cardinality is called

the stability number and it is denoted by α(G).

Given a graph G = (V,E) and a subset S of V , S is a clique of G if and

only if S is a stable set of G.

As a consequence of this, for any graph G, we have:

ω(G) = α(G)

Most of the methods for finding the clique number of a graph are based on

finding independent sets in the complement graph.

There are more general relationships between these graph measures. For

example, it is valid that

α(G) ≤ k(G)

since every vertex of a maximum stable set must be contained in a different

partition segment in any minimum clique cover.

3.1. BASIC GRAPH DEFINITIONS 41

Chromatic Number

This is the famous problem of determining how many different colors are

necessary to color the vertices of a graph using different colors for adjacent

vertices.

Definition 3.1.13. A proper k-coloring of G = (V,E) is a partition of the

vertices V = X1 ∪X2 ∪ ... ∪Xk such that each Xi is a stable set.

In a proper k-coloring there is an assignment of integers {1, 2, ..., k}
(corresponding to k different colors) to the vertices V such that for any

edge the two endpoints have been assigned different colors.

The smallest number k such as G has a k-coloring is called the chromatic

number of G and it is denoted by χ(G).

a

b

c

d

eG

ω(G) = 3

k(G) = 2

χ(G) = 3

a

b

c

d

eG

α(G) = 3

k(G) = 3

χ(G) = 2

Figure 3.1: Chromatic number, stability number, clique cover number and
clique number of a graph and its complement graph

As a stable set in a graph G corresponds to a clique in the complement

graph G, we have, for any graph G, the equality:

χ(G) = k(G)

For any graph G, there is also a lower bound for the chromatic number

ω(G) ≤ χ(G),

because if it contains a clique of size k then we need at least k different

colors to color the vertices in that clique.

For general graphs the minimum coloring problem is NP-complete [26].

However, for a special type of graphs that we will see further ahead called

interval graphs, linear time algorithms are known for coloring interval graphs

with a minimum number of colors.

42 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

3.2 Chordal Graphs

Chordal graphs will play an important role in the models that we will present

for solving the MOSP.

Definitions 3.2.1. A path is a sequence of vertices [v0, v1, ..., vk] such that

[vi−1vi] is an edge for i = 1, ..., k and its length is the number of edges in

the sequence. If no vertex is repeated, it is called a simple path.

A graph is connected if there exists a path from any vertex to any other

vertex in the graph. A connected component of a graph is a maximal sub-

graph that is connected.

Longest path

A common graph problem is to find the longest simple path in G, i.e., a

path with the maximum number of edges and such that no vertex appears

on it twice.

Definitions 3.2.2. A path that begins and ends at the same vertex is

called a cycle. If no vertex occurs more than once, the cycle is called a

simple cycle. A graph without any cycle is called a forest. A graph with n

vertices is a tree if it is a forest and it has exactly n− 1 edges.

A simple cycle [v0, v1, ..., vk, v0] is said to be chordless if [vivj] /∈ E for i

and j differing by more than 1 mod k+ 1. The chordless cycle on n vertices

is usually called a n-cycle and denoted by Cn.

Definition 3.2.3. A graph is a chordal graph if it does not contain an

induced k-cycle for k ≥ 4.

The name “chordal”comes from the fact that in every simple k-cycle

with k ≥ 4 that may exist in this graph, there must be a chord , which is an

edge between two non-consecutive vertices of the cycle.

Because of its geometric properties, these graphs are also called trian-

gulated graphs.

Being chordal is a hereditary property inherited by all the induced sub-

graphs of G.

3.2.1 Perfect Elimination Order

Chordal graphs can be recognized by finding a special type of vertices and

applying an iterative procedure to its induced subgraphs.

3.2. CHORDAL GRAPHS 43

Definition 3.2.4. A vertex v ∈ V is called simplicial if its neighborhood

N(v) induces a complete subgraph of G, i.e. N(v) is a clique (not necessarily

maximal).

From Dirac (1961), as cited in [28], it is known that simplicial vertices

appear in all chordal graphs:

Theorem 3.2.5. Every chordal graph G has a simplicial vertex and if G is

not a complete graph then it has two nonadjacent simplicial vertices.

Definition 3.2.6. Given a graph G = (V,E), such that |V | = N , a linear

ordering of the vertices is a bijective function ϕ : V → {1, ..., N}. The

reversed linear ordering, ϕR : V → {1, ..., N}, is a linear ordering such that

ϕR(u) = N − ϕ(u) + 1.

A linear ordering of the vertices of a graph is sometimes called a layout

of the graph, a numbering, a linear arrangement or a labeling of the vertices.

We will also use the symbol ≺ to express the linear ordering on the set of

vertices.

Definitions 3.2.7. Given a graph G = (V,E) and a linear ordering ϕ of

its vertices, we say that vertex i precedes vertex j, and denote by i ≺ j, if

ϕ(i) < ϕ(j). We denote the set of predecessors of a vertex by Pred(i) =

{j ∈ N(i) : ϕ(j) < ϕ(i)} and the set of successors by Succ(i) = {j ∈ N(i) :

ϕ(j) > ϕ(i)}.

This ordering of the vertices can also lead to edge directions, directing

the edge [ij] if i ≺ j. If the graph is simple then |Pred(v)| = indeg(v) and

|Succ(v)| = outdeg(v), where |.| designates the cardinality of the set.

Definition 3.2.8. A linear ordering σ = [v1, v2, ..., vn] of the vertices of a

graph G = (V,E) is called a perfect elimination scheme (or p.e.s.) if each

vi is a simplicial vertex of the induced subgraph Gvi,...,vn .

A simplicial vertex can start a perfect elimination scheme, or start a

similar linear ordering called a perfect elimination order:

Definition 3.2.9. [7] A perfect vertex elimination order (or p.e.o.) is a

linear ordering of the vertices of the graph in which the sets of predecessors

of each vertex Pred(i) form a clique, ∀i ∈ V .

In a perfect elimination scheme, each of the sets Succ(i) are complete

sets. In a perfect elimination order, the sets Pred(i) are complete. This

44 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

means that if ϕ is a perfect elimination order, then the reversed ordering

ϕR may not be a perfect elimination order as well, but it will be a perfect

elimination scheme. The reason for this is because the set of predecessors

of a vertex for a given linear ordering is the set of successors of that vertex

for the reversed linear ordering, since:

ϕR(j) > ϕR(i)⇔ N − ϕ(j) + 1 > N − ϕ(i) + 1⇔ ϕ(j) < ϕ(i)

Definition 3.2.10. A subset S ⊂ V is a vertex separator for nonadjacent

vertices a and b (or an (a, b)-separator) if the removal of S from the graph

separates a and b into distinct connected components. If no proper subset

of S is an (a, b)-separator, then S is a minimal vertex separator for a and b.

All the minimal vertex separators of a chordal graph are cliques [28]:

Theorem 3.2.11. Let G be an undirected graph. The following statements

are equivalent:

(i) G is chordal

(ii) G has a perfect vertex elimination scheme. Moreover, any simplicial

vertex can start a perfect scheme.

(iii) Every minimal vertex separator induces a complete subgraph of G.

The equivalence of items (i) and (ii) is due to Fulkerson and Gross [24].

Chordal graphs can thus be characterized by the existence of a perfect

elimination scheme. This gives origin to an iterative procedure to recognize

chordal graphs: locating a simplicial vertex and eliminating it from the

graph, then locating a new simplicial vertex and eliminating it too, and by

repeatedly doing this, at the end no vertices remain. If at some stage there

are no more simplicial vertices it means that the graph is not chordal.

As cited in [28], this procedure was used by Lueker (1974) and Rose and

Tarjan (1975) to write a linear time algorithm to recognize chordal graphs.

Theorem 3.2.12. Chordal graphs can be recognized in linear time.

3.2.2 Split graphs

Definition 3.2.13. An undirected graph G = (V,E) is a split graph if there

is a partition V = S+K of its vertex set into a stable set S and a complete

set K.

3.3. COMPARABILITY GRAPHS 45

There is no restriction on edges between vertices of S and K and the

partition may not be unique. Since a stable set of G is a complete set of G,

we have that G is a split graph if and only if G is a split graph. But the

reason for mentioning this type of graphs is the existence of a strong relation

between split graphs and chordal graphs, due to Földes and Hammer (1977),

as quoted in [28].

Theorem 3.2.14. For an undirected graph G the following conditions are

equivalent:

(i) G is a split graph

(ii) G and G are chordal graphs

(iii) G contains no induced subgraph isomorphic to 2K2, C4, or C5.

3.3 Comparability Graphs

Comparability graphs are a special case of graphs that can be transitively

oriented.

Definition 3.3.1. A comparability graph is an undirected graph G =

(V,E) in which each edge can be assigned a one-way direction in such a

way that the resulting oriented graph (V, F) satisfies:

[uv] ∈ F ∧ [vw] ∈ F ⇒ [uw] ∈ F ∀u, v, w ∈ V

This transitive orientation is acyclic, i.e., a comparability graph does

not contain any directed cycle. With the orientation fixed, a comparability

graph is also called a partially ordered set or poset.

Definition 3.3.2. A graph G is said a co-comparability graph if G is a

comparability graph.

An undirected graph that is simultaneously a comparability and a co-

comparability graph is a special type of graph called permutation graph.

Theorem 3.3.3. [28] Comparability graphs can be recognized in linear time.

46 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

3.4 Interval Graphs

In this section we recall Golumbic’s [28] definition of an interval graph and

some other concepts and theorems that will be used in our model.

Definition 3.4.1. An interval graph is an undirected graph G such as its

vertices can be put into a one-to-one correspondence with a set of intervals

I of a linearly ordered set (like the real line) such that two vertices are

connected by an edge of G if and only if their corresponding intervals have

nonempty intersection. I is called an interval representation for G.

Graphs which represent intersecting intervals on a line are an useful

concept for us because if we associate each open stack of our MOSP problem

to an interval in the real line (the interval of time that the stack stays open),

then we can associate a solution of the MOSP to an interval representation

of an interval graph.

Being an interval graph is a hereditary property, i.e., an induced sub-

graph of an interval graph is an interval graph. The decision of whether a

given graph is an interval graph can be carried out in linear time.

Besides the definition, there are some theorems that we can use to

characterize interval graphs. Lekkerkerker and Boland (1962) characteri-

zation [42] focusses on the fact that an interval graph cannot branch into

more than two directions nor circle back onto itself.

Theorem 3.4.2. [28] An undirected graph G is an interval graph if and

only if the following two conditions are satisfied:

(i) G is a chordal graph and

(ii) any three vertices of G can be ordered in such a way that every path

from the first vertex to the third vertex passes through a neighbor of

the second vertex.

The last sentence in this theorem introduces the concept of asteroidal

triple:

Definition 3.4.3. An independent set of three vertices is an asteroidal

triple (AT) if between each pair of vertices in the triple there is a path that

avoids the neighborhood of the third vertex. A graph is asteroidal triple

free or AT-free if it contains no asteroidal triple.

3.4. INTERVAL GRAPHS 47

Using this terminology, Theorem 3.4.2 says that a graph is an interval

graph if and only if it is chordal and AT-free. The AT-free structure of

interval graphs has been used to develop a linear time algorithm to recognize

interval graphs [15].

a b

d e

g

f

c

Figure 3.2: Not an interval graph

The graph in Figure 3.2 is not an interval graph because it contains an

asteroidal triple: the vertices a, b, c. A path from a to b is a, d, g, e, b which

avoids N(c) = f .

Some other characterizations of interval graphs are known, namely the

following theorem (Gilmore and Hoffman, 1964) as cited in [28]:

Theorem 3.4.4. Let G be an undirected graph. The following are equiva-

lent:

� G is an interval graph

� G is chordal and G is a comparability graph

� The maximal cliques of G can be linearly ordered such that, for every

vertex v of G, the maximal cliques containing v occur consecutively.

This theorem remarks that the complement of an interval graph is a

comparability graph. However, the reverse does not hold, i.e., the comple-

ment of a comparability graph is not always an interval graph.

The last sentence in theorem 3.4.4 is related to another characterization

of interval graphs by Fulkerson and Gross (1965), which refers to the clique

matrix of a graph.

Definition 3.4.5. The clique matrix of a graph is the incidence matrix of

the maximal cliques versus the vertices of the graph. The entries of the

clique matrix are of the form aij = 1 if vertex j belongs to the maximal

clique i.

48 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

a

b c

d

f e

a

b

c

d

f

eG G

Figure 3.3: G is a comparability graph but G is not an interval graph

Definition 3.4.6. A matrix of zeros and ones is said to have the consecutive

1’s property for columns if its rows can be permuted in such a way that the

1’s in each column occur consecutively.

Theorem 3.4.7. [24] An undirected graph G is an interval graph if and

only if its clique matrix M has the consecutive 1’s property for columns.

This property is not only present in the clique matrix, but also in the

adjacency matrix of an interval graph (Tarjan, 1976) as cited in [8].

Theorem 3.4.8. G = (V,E) is an interval graph if and only if there exists

an ordering of G such that the associated adjacency matrix A verifies:

∀i ∈ {1, ..., N} aij = 1 for j = fi(A), fi(A) + 1, ..., i

where fi(A) = min{j : aij 6= 0}

We will also find it very interesting to use an alternative characterization

of interval graphs by Olariu[15] that uses the linear ordering of the vertices

as well.

Theorem 3.4.9. A graph G = (V,E) is an interval graph if and only if

there exists a linear ordering ϕ : V → {1, ..., N} such that ∀i, j, k ∈ V :

ϕ(i) < ϕ(j) < ϕ(k) we have [ik] ∈ E ⇒ [ij] ∈ E.

This characterization is the one that we will use in our model for the

MOSP to assure that the graph of the solution is an interval graph.

Definition 3.4.10. An edge [ik] is called an umbrella if there is a vertex j

such that i ≺ j ≺ k and [ij] /∈ E. A linear order that satisfies the condition

of Olariu’s characterization of interval graphs is said to be umbrella free.

3.4. INTERVAL GRAPHS 49

i• •• •j k

The ordering of the maximal cliques in an interval graph referred to in

theorems 3.4.4 and 3.4.9 will allow us to set an interesting ordering for the

vertices, helped by the following theorems from [7].

Theorem 3.4.11. An interval graph G has an interval representation such

that all endpoints of intervals are distinct integers.

Proof. Suppose there are t ≥ 2 intervals with coincident endpoints at x.

These endpoints of the intervals can be of four types:

� Intervals I1, ..., Ik have open right endpoints at x

� Intervals Ik+1, ..., Il have closed left endpoints at x

� Intervals Il+1, ..., Is have closed right endpoints at x

� Intervals Is+1, ..., It have open left endpoints at x

In all cases replace the endpoint of interval Ii at x for an endpoint at x+ i
t
ε

(
(
]
]
[
[
)
)

(
(

]
]

[
[

)
)

x x

Figure 3.4: Replacing endpoints to remove coinciding endpoints [7]

Once all endpoints are distinct, sort the endpoints and assign them

distinct integers from the set 1, 2, ..., 2n in sorted order.

50 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

By using, for instance, the left endpoints of the intervals, we can define

a natural ordering of the vertices of the graph: declare i ≺ j if the left

endpoint of interval i precedes the left endpoint of interval j. Therefore,

we can assign edge directions based on this vertex order, choosing to direct

each edge from left to right, directing the edge [ij] if i ≺ j.

For an interval graph with an interval representation such that all end-

points are distinct, if the vertices are ordered by the left endpoint of the

intervals, every maximal clique referred to in Theorem 3.4.4 occurs consec-

utively and has the form Pred(u) ∪ {u} for some vertex u.

But not every set Pred(u) ∪ {u} has to be a maximal clique:

Lemma 3.4.12. [7] Let v1, ..., vn be perfect elimination order. Then C =

Pred(vi)∪vi is not a maximal clique if and only if there exists a successor vj
of vi such that vi is the last predecessor of vj and indeg(vj) = indeg(vi) + 1.

The perfect elimination order of the vertices of the graph can give origin

to a linear ordering of the left endpoints of the intervals of an interval

representation constructed for the graph.

Given an interval graph and some vertex vi represented by an interval

that starts at si, Pred(vi) is the set of all vertices representing intervals that

start before si and do not end before si. Therefore, all these intervals contain

the point si, and hence overlap each other, which means that Pred(vi) is a

clique and therefore the vertex order is a perfect elimination order [7].

a

b

d

e

fc

a

b

c

f

d

e

Figure 3.5: The p.e.o. a, b, c, d, e, f gives the linear ordering of the left
endpoints of the intervals

The vertex ordering defined by the left endpoints of the intervals creates

in fact the sequence of cliques that will appear in the interval graph, and

that we are interested in finding, in order to discover the solution of a MOSP

problem.

It is known that an interval graph H is chordal and it has at least two

simplicial vertices where a perfect vertex elimination scheme can be started.

3.5. PERFECT GRAPHS 51

Locating a simplicial vertex and eliminating it will create another simplicial

vertex and its subsequent elimination and so on.

A perfect elimination scheme is not appropriate for ordering the left

endpoints of the intervals, as can be confirmed in Figure 3.6. In fact, the

order in which the intervals must start can be set by following the reverse

order of the eliminated vertices, which is a perfect elimination order.

a

b

d

e

fc

f e c

d a

b

Figure 3.6: The p.e.s. f, e, d, c, b, a is not fit for ordering the left endpoints
of the intervals

The reverse of a p.e.o. is always a p.e.s and vice versa. Generally,

the reverse of a p.e.o. is not a p.e.o.; this is only true for proper interval

graphs [51], which are interval graphs where no interval properly contains

another.

Although every interval graph has a perfect elimination order, the re-

verse does not hold. For example, trees may not be interval graphs (for

example Figure 3.2), but have a p.e.o. because they are chordal graphs.

3.5 Perfect Graphs

Interval graphs are part of a more general class of graphs beautifully called

perfect graphs.

Definition 3.5.1. A graph G = (V,E) is a perfect graph if it satisfies both

the properties:

(i) ω(GA) = χ(GA) ∀A ⊆ V

(ii) α(GA) = k(GA) ∀A ⊆ V

Actually, it is sufficient to show one of these properties, as the Per-

fect Graph Theorem (Lovász, 1972) implies that these two properties are

equivalent.

52 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

Theorem 3.5.2. (Perfect Graph Theorem) [28] A graph G is perfect

if and only if its complement G is perfect.

An odd length cycle is called an odd hole and its complement is called

an odd anti-hole.

Conjecture 3.5.3. (Strong Perfect Graph Conjecture) A graph is

perfect if and only if it does not have an odd hole or an odd anti-hole as an

induced subgraph.

This conjecture was posed in 1961 by Claude Berge and it was proved

by Chudnovsky, Seymour, Robertson and Thomas in 2003 [14].

Theorem 3.5.4. [28] Every comparability graph G is a perfect graph.

To see this let us define on the oriented graph G = (V, F) the height

function

h(v) =

{
0 if v is a sink

1 + max{h(w) : [vw] ∈ F} otherwise

A sink is a vertex of the oriented graph that has outdegree zero. This is

always a proper coloring of the vertices of a graph. The number of colors

used is equal to the number of vertices in the longest path of F .

If G is a comparability graph with a transitive orientation F , every path

in F will correspond to a clique of G because of transitivity. So in this case,

the height function will yield a coloring which uses exactly ω(G) colors,

which is the best possible. As being a comparability graph is hereditary,

the clique number and the chromatic number are also equal for all induced

subgraphs of G. As the complement of an interval graph is a comparability

graph, then interval graphs are perfect.

The computational complexity of finding perfect graphs is due to Cornuéjols,

Li and Viskovic (2003), as quoted in [7]:

Theorem 3.5.5. There is a polynomial time algorithm to test whether a

graph is perfect.

Many problems which are generally NP-hard, can be solved in polyno-

mial time when circumscribed to perfect graphs.

Theorem 3.5.6. [7] On a perfect graph, the problems Clique, Coloring and

Maximum Independent Set can be solved in polynomial time.

3.6. GRAPH LAYOUT MEASURES 53

Perfect Graphs

Chordal Graphs

Comparability
Graphs

Co-Comparability
Graphs

Interval Graphs

Permutation
Graphs

Imperfect
Graphs

Figure 3.7: Intersection between subclasses of perfect graphs

3.6 Graph Layout Measures

The linear ordering of the vertices of a graph is also called the layout of

the graph, because when the vertices are arranged by that ordering, there

are several measurements that naturally can be taken and used to describe

geometric properties of the graph.

3.6.1 Vertex Separation and Minimum Sum Cut

Imagine all vertices of the graph in a horizontal line, ordered from left to

right by its linear ordering or layout ϕ. That is the motivation for defining,

for each integer i, the sets of the vertices on the left and on the right of i.

54 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

Definition 3.6.1. The vertex cut or separation at position i of ϕ is

δ(i, ϕ,G) = |{u ∈ L(i, ϕ,G) : ∃v ∈ R(i, ϕ,G) : uv ∈ E}|

where L(i, ϕ,G) = {u ∈ V : ϕ(u) ≤ i} and R(i, ϕ,G) = {u ∈ V : i < ϕ(u)}

The vertex cut counts the number of vertices on the left of i (including

i) that are connected by an edge to any vertex on the right of i.

Definition 3.6.2. The vertex separation of a layout ϕ of a graph G is the

maximum vertex cut:

V S(ϕ,G) = max
i∈{1,...,n}

δ(i, ϕ,G)

The vertex separation problem consists of finding a layout of G that

minimizes the vertex separation.

Definition 3.6.3. The sum cut of a layout ϕ of a graph G is the sum of

all vertex cuts:

SC(ϕ,G) =
∑

i∈{1,...,n}

δ(i, ϕ,G)

The minimum sum cut problem consists of finding a layout of G that

minimizes the sum cut.

3.6.2 Profile

Definition 3.6.4. The profile of a graph G = (V,E) with a layout ϕ is

PR(ϕ,G) =
∑

u∈V

(
ϕ(u)− min

v∈N [u]
ϕ(v)

)

where N [u] = {u} ∪ {v ∈ V : [uv] ∈ E}.

The profile minimization problem consists of finding a layout of G with

minimum profile.

Representing the reversed ordering of the vertices by ϕR, we have

PR(ϕ,G) = SC(ϕR, G)

because, in the reversed ordering ϕR, each vertex u contributes one unit

ϕ(u) − min
v∈N(u)

ϕ(v) times to the sum cut [18]. Hence Profile Minimization

and Minimum Sum Cut are equivalent problems.

3.6. GRAPH LAYOUT MEASURES 55

Definition 3.6.5. The adjacency matrix of a graph G = (V,E) on n ver-

tices is a nÖn symmetric matrix A such that each row or column of A is a

vertex of G and [uv] ∈ E iff auv 6= 0.

Definitions 3.6.6. The column height Pj of column j of a matrix A is [40]

Pj =

{
0 if aij = 0 for 1 ≤ i ≤ j

j − i if i is the smallest integer such that aij 6= 0

The profile of the matrix A is

PR(A) =
n∑

j=1

Pj

and the bandwidth of the matrix A is

BW (A) = max
j=1,...,n

Pj

The profile of a matrix A is equivalent to the profile of the graph G

for which A is the adjacency matrix, and the bandwidth of a matrix A is

equivalent to the bandwidth of the graph G for which A is the adjacency

matrix.

Definition 3.6.7. The envelope of the adjacency matrix A of a graph is:

Env(A) = {[ij] : fi(A) ≤ j < i} where fi(A) = min{j : aij 6= 0}

An adjacency matrix has a full envelope if

aij 6= 0 ∀[ij] ∈ Env(A)

If A is the adjacency matrix of the graph with the vertices sorted by the

linear ordering, the total number of edges in the envelope of the matrix is

equal to the profile of the graph.

3.6.3 Cutwidth

Definition 3.6.8. The edge cut at position i of ϕ is

θ(i, ϕ,G) = |{[uv] ∈ E : u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G)}|

56 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

The edge cut counts the number of edges connecting a vertex on the left

of i with a vertex on the right. If the vertex i itself is not included in the

left set, we have the modified edge cut.

Definition 3.6.9. The modified edge cut at position i of ϕ is

ζ(i, ϕ,G) = |{[uv] ∈ E : u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G) ∧ ϕ(u) 6= i}|

Definition 3.6.10. The cutwidth of a layout ϕ of a graph G is the maxi-

mum edge cut:

CW (ϕ,G) = max
i∈{1,...,n}

θ(i, ϕ,G)

A graph has cutwidth at most k if its vertices can be ordered as v1, ..., vn
such that every cut in this order crosses at most k edges. More precisely,

for any 1 ≤ j < n there can be at most k edges [vivl] such that i ≤ j < l.

Definition 3.6.11. The modified cutwidth of a layout ϕ of a graph G is

the sum of all modified edge cuts:

MC(ϕ,G) =
∑

i∈{1,...,n}

ζ(i, ϕ,G)

The cutwidth problem and the modified cutwidth problem consist of

finding a layout ofG that minimizes the cutwidth and the modified cutwidth,

respectively.

Computing the cutwidth is NP-hard in general [18], but testing whether

a given graph has cutwidth at most k can be done in linear time in n but

exponential time in k.

3.6.4 Bandwidth

The bandwidth of a graph is the maximum length of an edge of the graph,

when the length is measured using the linear ordering of the vertices.

Definition 3.6.12. Given a layout ϕ of a graph G = (V,E) and an edge

[uv] ∈ E, the length of [uv] on ϕ is

λ([uv], ϕ,G) = |ϕ(u)− ϕ(v)|

3.6. GRAPH LAYOUT MEASURES 57

Definition 3.6.13. The bandwidth of a layout ϕ of a graph G is the max-

imum length of any edge:

BW (ϕ,G) = max
[uv]∈E

λ([uv], ϕ,G)

The bandwidth problem consists of finding a layout of G that minimizes

the bandwidth.

A graph G has bandwidth at most k if we can permute the vertices in

such a way that all entries in the resulting adjacency matrix are within k

positions of the diagonal.

For a graph G with n vertices and a linear ordering of the vertices ϕ,

there are some known bounds for these layout measures.

SC(ϕ,G) ≤ nV S(ϕ,G) ⇒ minSC(ϕ,G) ≤ nminV S(ϕ,G)

V S(ϕ,G) ≤ nBW (ϕ,G) ⇒ minV S(ϕ,G) ≤ minBW (ϕ,G)

CW (ϕ,G) ≤ ∆(G)BW (ϕ,G) ⇒ minCW (ϕ,G) ≤ ∆(G) minBW (ϕ,G)

where ∆(G) is the maximum degree of a vertex of G.

3.6.5 Treewidth

The treewidth is a layout measure that counts the number of adjacent ver-

tices of a given graph G that we can group together and replace each group

by a vertex of a tree T appropriately built from G by connecting the vertices

of the tree T that are covering the same vertices of the graph G.

Definition 3.6.14. A tree decomposition of a graph G = (V,E) is a tree

T = (I, F) where each node i ∈ I has a label Xi ⊆ V such that:

�

⋃

i∈I

Xi = V . We say that all vertices are covered.

� For any edge [vw] there exists an i ∈ I with v, w ∈ Xi. We say that

all edges are covered.

� For any v ∈ V the nodes in I containing v in their label form a

connected subtree of T. We call this the connectivity condition.

A given tree can be the tree decomposition of several different graphs.

The graph implied by a tree decomposition is the graph obtained by adding

all edges between vertices that appear in a common label.

58 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

a b c

d

e f

g

h

a d e a e f a f b b c

g e h

Figure 3.8: A graph with a tree decomposition of width 2 [9]

Definition 3.6.15. Given a tree decomposition T = (I, F), the width of

the tree decomposition is max
i∈I
|Xi| − 1.

Definition 3.6.16. The treewidth of a graph G is the minimum k such that

G has a tree decomposition of width k:

TW (G) = min

{
max
i∈I
|Xi| − 1 : T = (I, F) is a tree decomposition of G

}

The treewidth problem consists in, given k ≥ 0 and a graph G, finding

if TW (G) ≤ k.

Notice that each clique in a graph must be part of at least one node in

the tree decomposition, and hence the clique number minus one is a lower

bound for treewidth. For this reason, all trees have treewidth 1.

Lemma 3.6.17. [9] If G is chordal then G has a tree decomposition of

width ω(G)− 1.

The minimum degree and the degeneracy of a graph are lower bounds

for the treewidth:

δ(G) ≤ TW (G)

δD(G) = max
H⊆G

δ(H) ≤ TW (G)

Computing the treewidth is a NP-hard problem [1, 10].

3.6.6 Pathwidth

Definitions 3.6.18. A graph G has pathwidth bounded by k if G has a

tree decomposition T of width k such that T is a path. This is also called

a path decomposition of width k.

3.7. LINEAR ORDERING PROBLEM 59

Computing the pathwidth is NP-hard in general but, for a given constant

k, testing whetherG has pathwidth bounded by k can be done in linear time.

From the definition, we immediately have TW (G) ≤ PW (G).

Any graph of bandwidth at most k also has pathwidth at most k.

3.7 Linear ordering problem

Another layout problem that comes up in a complete digraph Dn = (V,E)

on n nodes is the Linear Ordering Problem (LOP). This problem consists

in finding a linear ordering of the vertices such that the number of directed

edges in the graph that are not in accordance with this ordering is mini-

mized. This can be done by associating a cost value to each directed edge.

The linear ordering problem belongs to the class of NP-hard combinatorial

optimization problems.

Definition 3.7.1. Given the complete digraph Dn = (V,An) on n nodes,

we define a tournament in An to be a subset of arcs of An containing, for

every pair of nodes i, j ∈ V , either the arc [ij] or [ji] but not both. An

acyclic tournament is a tournament without directed cycles.

An acyclic tournament corresponds to a linear ordering of the vertices

and vice-versa, well-defined by the indegree of the nodes.

An integer programming formulation has been studied [30, 55, 22] for

the linear ordering problem. The main variables are defined as:

xij =

{
1 if vertex i precedes vertex j

0 otherwise

The objective function is computed for all permutations π of the n ver-

tices in the digraph with the costs defined by

cij =

{
1 if arc [ij] exists

0 otherwise

The linear ordering problem has the following integer formulation:

min
π∈S(n)

∑

i,j∈A

cijxij (3.1)

subject to xij + xji = 1 ∀i, j ∈ V, i < j (3.2)

xij + xjk + xki ≤ 2 ∀i, j, k ∈ V, i < j, i < k, j 6= k (3.3)

0 ≤ xij ≤ 1 ∀i, j ∈ V, i < j (3.4)

xij ∈ {0, 1} ∀i, j ∈ V, i < j (3.5)

60 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

The first statement (3.2) means that, in the linear ordering, either vertex

i is before j or vice versa, reducing this to a minimal equation system.

The inequalities (3.3) are called the 3-dicycle inequalities and along with

the first equations guarantee that the graph is free from cycles. The last

inequalities (3.4) are called hypercube constraints. The inequalities (3.3)

and (3.4) define facets (see Section 5.1 for a definition) of the linear ordering

polytope [30]. For n ≤ 5 the linear ordering polytope is completely described

by these inequalities, but for n ≥ 6 more constraints are needed [55].

For every integer k ≥ 3 a digraph (V,A) of order 2k is called a simple

k-fence if the vertices can be partitioned in two sets U = {u1, ..., uk} and

W = {w1, ..., wk} such that

A =
k⋃

i=1

(
{[uiwi]} ∪ {[wiv] : v ∈ U\{ui}}

)

For n ≥ 6 and the arc set A ⊆ An of a simple k-fence, k ≥ 3, the simple

k-fence inequality is ∑

[ij]∈A

xij ≤ k2 − k + 1

Let M be the arc set of a simple Möbius-ladder in Dn consisting of

k ≥ 3 dicycles C1, ..., Ck of length four such that each pair of adjacent

dicycles (C1, Ck) and (Ci, Ci+1)∀i = 1, ..., k−1 intersects in exactly one arc,

say [aibi]∀i = 1, ..., k and such arcs form a matching in Dn. The simple

Möbius-ladder inequality is

∑

[ij]∈M

xij ≤ 3k − k + 1

2

The simple k-fence inequalities and the Möbius-ladder inequalities define

facets of the linear ordering polytope on n vertices [30].

3.8 Edge Completion Problems

An edge completion problem consists in, given a graph G = (V,E), finding a

supergraph H = (V,E∪F) with the same set of vertices V and an extra set

of edges F (called the fill edges) that are added to the previously existing

ones E, chosen in a way such as H belongs to some predefined class of graphs

C , like chordal graphs, interval graphs, split graphs, while optimizing some

cost function, like the number of added edges |F |, or the clique number of

the graph ω(H). Note that we consider E ∩ F = Ø for distinguishing the

fill edges in F from the original ones in E.

3.8. EDGE COMPLETION PROBLEMS 61

3.8.1 Different Classes for H

Several edge completion problems have been studied in literature, concern-

ing different aimed classes of graphs C and different cost functions to opti-

mize.

The class of chordal graphs is the most popular class of edge completions.

If the desired supergraph H of G is required to be chordal, H is called a

triangulation of G.

Another class for edge completion problems can be the class of interval

graphs. If the supergraph H is required to be an interval graph, the edge

completion problem is called an interval graph completion.

Edge completion problems where C is the class of AT-free graphs [39],

split graphs [32], proper interval graphs [35] and comparability graphs [33]

have also been studied.

3.8.2 Minimum vs. Minimal

These problems can also vary regarding the cost function that is selected to

optimize. For example, if the cost function is one less than the size of the

largest clique ω(H)−1, its optimization can lead to problems like treewidth

or pathwidth.

There exists a triangulation H = (V,E ∪ F) of G with maximum clique

sizes k + 1 if and only if the treewidth of G is k [9]. By Lemma 3.6.17, the

treewidth of a graph G coincides with min
H

ω(H) − 1 for all triangulations

H of G.

Theorem 3.8.1. The treewidth is the problem of finding a triangulation H

of G that minimizes the size of the largest clique ω(H)− 1. The pathwidth

problem consists of finding an interval graph completion that minimizes also

ω(H)− 1.

Definition 3.8.2. A minimum C -completion of G = (V,E) is a supergraph

H = (V,E ∪ F) ∈ C that minimizes the number of added edges |F |.

A triangulation of G that minimizes the number of added edges |F | is

called a minimum triangulation or minimum fill-in, and an interval graph

completion that minimizes the number of added edges |F | is called a mini-

mum interval graph completion (IGC).

The minimum fill-in is a NP-hard problem, as well as the minimum

interval completion, the treewidth and the pathwidth problems. Most re-

62 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

searchers choose to address an easier problem that is related to these, which

is to find a minimal fill-in or a minimal interval graph completion [31].

Definition 3.8.3. A minimal C -completion of G = (V,E) is a supergraph

H = (V,E ∪ F) ∈ C such that every H ′ = (V,E ∪ F ′) for F ′ ⊂ F is not a

C -completion of G.

In the case of minimal triangulations, it is equivalent to saying that the

removal of a single fill edge of a solution H will result in loosing chordality.

For the problem of finding a minimal interval graph completion that does

not hold, i.e. removing a single fill edge of a minimal interval graph com-

pletion H of G might give a subgraph that it is not interval, but removing

more than a single fill edge might give an interval graph completion of G.

A solution to the minimum completion problem must always be a mini-

mal completion, but minimal triangulations or interval completions do not

imply that the number of edges is minimum.

3.8.3 Special Classes of Input Graphs

These problems have been studied for special classes of input graphs like

trees, caterpillars, two-layer stars, complete bipartite graphs, AT-free graphs,

split graphs [43, 47, 52] and for graphs obtained from graph operations

[40, 58]. The parameterized versions of these problems have been addressed

considering bounded clique size, bounded number of fill edges, and fixed

number of colors [35].

These problems can also be posed in two different ways: a decisional way

that is, given a graph G, to decide whether or not there exists any set of

edges F such that H belongs to the class of graphs C that we want, and the

cost is a parameter that does not exceed some given integer value k, or the

optimization version of the problem, that is to find the actual set of edges

F that makes H ∈ C , while optimizing the cost. The decisional version

of the minimum interval graph completion problem has been proved to be

NP-complete in [17, 43]. In this thesis we will focus on the optimization

version of these problems.

3.8.4 Equivalent Problems in Graph Theory

The minimum interval graph completion problem is known to be equivalent

to two other layout problems: the profile minimization problem and the

minimum sum cut problem.

3.9. APPLICATIONS OF GRAPH LAYOUT PROBLEMS 63

It has been proved by Billionnet [8] that the profile minimization prob-

lem is equivalent to the interval graph completion problem, using the con-

secutive 1’s characterization of interval graphs.

The problem of minimizing the profile of a graph is equivalent to finding

a linear ordering that minimizes the envelope of the adjacency matrix of

the graph with the vertices sorted by that linear ordering. As a result of

Theorem 3.4.7, an adjacency matrix with a full envelope corresponds to

an interval graph; hence the problem is equivalent to finding the minimum

number of edges to add to the graph to obtain an interval graph, which is

the minimum interval graph completion problem.

And because the profile minimization problem is equivalent to the sum

cut problem, the minimum interval graph completion problem is equivalent

to the sum cut problem as well.

3.9 Applications of Graph Layout Problems

Graph Layout problems like bandwidth, pathwidth, cutwidth, profile and

minimum interval graph completion have several applications.

The minimum interval graph completion problem has applications in

Biology as in the problem of DNA physical mapping [29], and in Archaeology

as in the sequence dating or seriation problem [36].

In Numerical Analysis, both profile and bandwidth have applications

as a computer storage problem for sparse matrix computations in solving

systems of linear equations [40].

There is a linear layout problem that appears in the context of VLSI

circuits design, called the Gate Matrix Layout Problem (GMLP), that is

equivalent to several problems such as the MOSP, vertex separation, mod-

ified cutwidth and pathwidth [44].

We can also apply the minimum interval graph completion problem to a

situation in the cutting stock industry, related to the minimization of open

stacks problem (MOSP) as we will see in section 6.2.

3.9.1 DNA Physical Mapping

In Molecular Biology, the study of DNA requires that a chromosome must

be cut in small fragments called clones and later reconstituted the original

sequence. But in the fragmentation process the information about the order

of the segments is lost. The information that exists is about the overlapping

of pairs of segments and it is based on experiments. In DNA physical

64 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

mapping, the problem of sequence reconstruction consists in reconstructing

the relative position of the fragments along the DNA chain, based on the

information of intersection of pairs of clones and assuming that the DNA

chain assigns a linear order to the segments of the chromosome, like Seymour

Benzer conjectured in 1959 and has later been proved correct.

To determine if two clones intersect, some experiments can be made with

the fragments and a set of characteristics is determined for each - this is

called the fingerprinting of the clone. If the fingerprints of two clones are

sufficiently similar, they are considered to intersect each other. Ideally, this

overlap information is measured in probability, but the simplified version

admits only three cases:

1. the two clones must intersect (intersection probability=1)

2. the two clones must not intersect (intersection probability=0)

3. it is not known if the two clones intersect or not (intersection proba-

bility=0,5)

By considering that each vertex is a clone and there is a given edge in

case 1, a forbidden edge in case 2, and a possible fill edge in case 3, this

problem corresponds to the Interval Graph Sandwich Problem [34].

Definition 3.9.1. Given a vertex set V and two disjoint sets of edges E∗

and Ef over V , a graph G(V,E) with E∗ ⊂ E ⊂ Ef is called a sandwich

graph for (V,E∗, Ef), where Ef is the set of edges which are disallowed in G.

The Interval Graph Sandwich Problem (IGS) consists in finding a sandwich

graph for (V,E∗, Ef) that is an interval graph.

If all fragments have equal length, like experiments with phage or cosmid

clones, the problem reduces itself to the problem of unit interval sandwich

that is not equivalent.

In the case that the clones are grouped in sets where each set of clones is

obtained by complete digestion of the genome using one or more restriction

enzymes, then all clones in a set must be disjoint so that the corresponding

vertices of the graph can be assigned different colors. The set of forbidden

edges is given implicitly by the coloring of the vertices. This problem is

equivalent to the colored interval graph sandwich problem [29].

3.9. APPLICATIONS OF GRAPH LAYOUT PROBLEMS 65

3.9.2 Seriation Problem in Archaeology

The sequence dating or seriation problem has been formulated by Flinders

Petrie in 1899 to face a situation of 900 pre-dynastic Egyptian graves found

with 800 varieties of pottery [37, 38]. The problem consists in assigning a

date to each grave, and to the objects found in it.

Each variety of pottery is an artifact type or a stylish feature in objects

buried throughout the cemetery that can be ascribed to a defined segment

of time - the period that those objects were ’in fashion’ - which is unknown.

The graves may not be actual graves, but may also be any other form of

archaeological deposit associated with a single point in time, also unknown.

Under the premises that two graves that lie together in true temporal

order of events are more likely to have similar contents, we can date the

graves and consequently determine the intervals of time corresponding to

the varieties of objects contained there. Normally, a precise date of the

object is not obtained, but just a sequence of the intervals of time of each

variety in a chronological series, therefore the name “sequence dating”or

“seriation”.

An instance of this problem with g graves and v varieties of pottery can

be put in an incidence matrix

A = [aij] i=1,..,g
j=1,...,v

of graves vs. varieties defined by

aij =

{
1 if grave i contains pottery of variety j

0 otherwise

The problem is solved by reordering the rows of this matrix in order

to put, simultaneously in each column, all the 1’s together. The solution

matrix gives the original chronology of the graves and assigns a range of

dates to each object.

There is a solution for the problem if the incidence matrix has the

consecutive-ones property [24].

As a tribute to Flinders Petrie, an incidence matrix which displays con-

secutive ones in every column, without needing any rearrangement, is called

a Petrie Matrix.

3.9.3 Sparse Matrix Computations

Interval graphs are also used in Numerical Analysis for minimizing the com-

puter storage needed in solving systems of linear equations AX = B where

66 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

V arieties V arieties

G
ra

ve
s

1 2 3 4 5 6
A 1 1 0 1 0 0
B 0 0 0 1 1 1
C 0 1 1 1 0 1
D 1 1 0 0 0 0

G
ra

ve
s

1 2 3 4 5 6
D 1 1 0 0 0 0
A 1 1 0 1 0 0
C 0 1 1 1 0 1
B 0 0 0 1 1 1

Figure 3.9: Incidence matrix of Graves vs. Varieties before and after rear-
rangement

A is a sparse matrix. The usual procedures for solving systems of linear

equations repeatedly perform computations on the system matrix A. If A

is sparse, most of this computations are unnecessarily performed with zeros,

and can be avoided by keeping track only of the nonzero entries of A.

To save space storing the nonzero entries, it is advisable to record only

the row to which that entry belongs and the distance from the diagonal in

the row.

We say that a matrix is banded if all non-zero entries are grouped close

to the main diagonal of the matrix. If the matrix does not have small band,

we may permute rows and columns to translate the original system AX = B

into an equivalent system A′X ′ = B′ where A′ is a symmetric matrix with

smaller band than A.

The profile of the matrix represents the total amount of storage needed.

The bandwidth of the matrix represents the maximum length of a column

stored, which is a crucial factor, because the execution time of solving the

system of equations is proportional to the sum of squares of the column

heights.

3.9.4 GMLP: Gate Matrix Layout Problem

Many linear layout problems were motivated by Very Large Scale Integra-

tion (VLSI) circuits design.

The general VLSI layout problem consists in, given a set of modules,

placing them on a board in a non-overlapping manner (placement problem)

and wiring together the terminals on different modules according to a given

wiring specification and in such a way that the wires do not interfere among

them (routing problem) [18].

This type of circuit consists in a set of vertical wires called gates , with

3.9. APPLICATIONS OF GRAPH LAYOUT PROBLEMS 67

Figure 3.10: The Gate Matrix Layout Problem in a VLSI circuit [44]

transistors (the dots in Figure 3.10), and horizontal wires called nets that

connect all gates that have transistors in the same position. Altering the

sequence of the gates (as in Figure 3.10 (b)) does not change the logic

equation of the circuit, so it is possible to rearrange the gates in order to

compact the circuit in less area. This can be done if more than one net is

accommodated in the same horizontal physical row, called a track , as it is

shown in Figure 3.10 (c).

The Gate Matrix Layout Problem (GMLP) is a VLSI layout problem in

which the objective is to find an optimal sequence of the gates in order to

minimize the number of tracks to implement the circuit.

A VLSI circuit can be modeled with a graph in which the vertices repre-

sent modules and the edges represent the wires. The square of the cutwidth

of the graph gives a lower bound for the area needed for the corresponding

VLSI layout.

There are also other relations between the GMLP and other layout mea-

sures of the corresponding graph [18]:

minV S(G) = minPW (G) = minGMLP (G) + 1

In GMLP, the horizontal metal wire of a net starts at the first gate on

the left and passes through all “gates”of the circuit to the last gate on the

right of the net, occupying physical space on the circuit board. In MOSP, a

“stack”is open at the moment the first item is cut and stays open until the

last item equal to that is cut, occupying physical space during that period

of time. The number of tracks needed for GMLP is the same as the number

of stacks simultaneously open in the MOSP, and these two problems are

equivalent [44].

68 CHAPTER 3. INTERVAL GRAPHS AND LAYOUT PROBLEMS

3.10 Conclusions

The graph theory that combines perfect graphs and linear layout measures

is very rich. There are dozens of papers produced in the last fifty years about

this subject, studying it from its structural form, or from its computational

point of view. This theory has been applied to several different subjects as

Molecular Biology, Archeology, Numerical Analysis, or Circuits Design.

Combining the characterization of interval graphs given by Olariu, with

the theory behind the linear layout of a graph, and the interval graph com-

pletion problem, it is possible to develop a mathematical programming

model that will be presented in the following chapters, which has appli-

cations in the industrial problems described in Chapter 2.

Chapter 4

An Integer Programming

Formulation for the MOSP

In this chapter we present an integer programming formulation for the

MOSP based on interval graphs and the existence of a perfect vertex elim-

ination scheme. We first associate the MOSP problem with a graph with

a vertex for each item stack and with an arc between two vertices if there

is a pattern that produces both items. We solve the MOSP by converting

this graph into an appropriate interval graph and defining an ordering of

the vertices based on a sequence of cliques.

4.1 Introduction

Consider a cutting machine that processes just one cutting pattern at a time.

The items already cut that are equal are piled in stacks by the machine.

The stack of an item type remains near the machine if there are more items

of that type to be cut in a forthcoming pattern. A stack is closed and

removed from the work area only after all items of that size have been cut,

and immediately before starting to process the next cutting pattern. After

a pattern is completely cut and before any stack is removed the number

of open stacks is counted. The maximum number of open stacks for that

sequence of patterns is called the MOSP number .

There are often space limitations around the cutting machines, there is

danger of damages on the stacked items, difficulty in distinguishing similar

items, and in some cases there are handling costs of removing the stack

69

70 CHAPTER 4. AN INTEGER FORMULATION FOR THE MOSP

temporarily to the warehouse. It is advantageous to minimize the number

of open stacks, and that can be done simply by finding an optimal sequence

to process the cutting patterns.

MOSP has been proved to be a NP-hard problem [44].

This problem has applications in several cutting industries like steel

tubes, paper, flat glass, wooden panels, as well as in production planning

(for rapidly fulfilling the customers’ orders as we explain in Section 2.1.2),

and also in other fields such as VLSI Circuit Design with the Gate Matrix

Layout Problem and PLA Folding, as referred to in Section 3.9.4, and in

classical problems from Graph Theory presented in Section 3.6 such as Path-

width, Modified Cutwidth and Vertex Separation. All of these problems are

explained in the previous chapters of this work.

4.2 The MOSP in a Graph

As suggested in [61], an instance of the MOSP can be associated with a

graph having a vertex for each item that is cut and an edge between two

vertices if the corresponding items are present in the same cutting pattern.

A pattern with k different items will correspond to a clique of size k in

the MOSP graph, because the k vertices must be connected to each other.

As an example, we will see an instance of the MOSP with seven patterns

and six different items, presented in Table 4.1.

Patterns: P1 P2 P3 P4 P5 P6 P7

Item 1 X X X
Item 2 X X
Item 3 X
Item 4 X X X X
Item 5 X X
Item 6 X

Table 4.1: An instance of the MOSP with 7 cutting patterns and 6 items

This instance originates a MOSP graph with 6 vertices, one correspond-

ing to each item, and with edges between the vertices (items) that belong

to the same pattern.

Notice that, for example, 2 is an item produced only by the cutting

patterns P2 and P3, so vertices 2 and 4 are connected because pattern P2

produces both items 2 and 4, and 2 and 5 are connected because those items

are both contained in pattern P3.

4.2. THE MOSP IN A GRAPH 71

13

5

2 4

6

Figure 4.1: MOSP Graph of the instance in Table 4.1

To optimize the number of stacks, it is convenient to find the best se-

quence to process the cutting patterns. Considering that the patterns do

not appear explicitly in the MOSP graph constructed in this way, how will

we find that sequence for the cutting patterns? We will focus on finding a

sequence to open the stacks, rather than on sequencing the cutting patterns,

as seen on section 2.3.1. That is not a problem, because it is possible to

take a solution for the ordering of the vertices of the graph and construct

a sequence for the corresponding cutting patterns [64]. A linear ordering

of the vertices sets an ordering for the opening of the stacks; following this

ordering, a pattern will be put in the sequence when it is the first time that

all vertices corresponding to all items present in that pattern have been

opened.

When there are some patterns with only one item that is also produced

by another pattern, we say that the first pattern is contained in the second

pattern. It has been proved by Yanasse [63] that this type of patterns can

be removed from the problem and inserted later in the solution just before

the patterns in which they were contained.

There are some other situations that, due to their simplicity, can be

removed from the original problem while solving it and inserted later in the

solution. Items that are present in just one pattern will appear in the graph

as isolated vertices if that pattern does not include any other item. In this

case, that pattern can be the first or last in the sequence, and it will open

and close a stack without any other stacks open at that same time, so it

does not increase the maximum number of simultaneously open stacks.

If a pattern produces only one item type, but that item is also present in

other cutting patterns (like patterns P6 or P7 in Table 4.1), then that pat-

tern should be sequenced just before the first of the patterns containing that

item, and the number of simultaneously open stacks will not increase [63].

In this example, pattern P6 is contained in patterns P1 and P4, and

pattern P7 is contained in patterns P2, P4 and P5. This instance can be

reduced to only five relevant patterns (P1, P2, P3, P4 and P5) generating

72 CHAPTER 4. AN INTEGER FORMULATION FOR THE MOSP

the same graph. Pattern P6 can be sequenced in the solution just before

the first of the patterns P1 and P4 in which it is contained, and pattern P7

just before the first of the patterns P2, P4 and P5, without increasing the

MOSP number. If there would exist a pattern that was not contained in

another pattern, then it should be the first or the last in the sequence, it

would open and close a stack without any other stacks open at that same

time, so it would not increase the MOSP number.

It is sufficient to solve MOSP instances with at most two items per pat-

tern [61]. If there are more then two items per pattern, we can subdivide it

in subpatterns with two items, one corresponding to each arc. The solution

of this new problem with only two items per pattern can be transformed in

a solution of the original problem in polynomial time [61].

A feasible solution of this problem corresponds to a sequence of arcs in

the graph. Using that sequence of arcs, a stack j is open when it is the first

time that an arc with an end in j is traversed and the stack is closed when

all arcs with an end in j have been traversed. Going along the sequence of

arcs, and the corresponding order of the opening of the stacks, we sequence

a pattern Pi of the original problem as soon as all nodes corresponding to

all items in Pi have been opened.

For the example in Table 4.1, if the patterns are sequenced by their

natural ordering P1P2P3P4P5P6P7, there is a period of time when there are

four open stacks simultaneously. If the ordering of the patterns is changed,

the number of open stacks can be lowered.

A possible solution is the sequence of vertices 2-5-4-6-1-3 that corre-

sponds to the stacks opening and also to a sequence of patterns P3P7P2P5P6P4P1.

As there are some stacks that are not simultaneous at any time, like 3

and 4, or 1, 2 and 6, those stacks can use the same stack space; hence this

sequence of patterns gives a maximum of three simultaneously open stacks,

that is the optimum for this instance, as can be observed in Figure 4.2.

This means that it is natural to associate the lifetime of a stack in

the solution with intervals of time measured not in minutes or hours but

measured in terms of the patterns in the sequence.

We have seen that we can start solving a MOSP problem with a graph,

and that in the solution of the problem we can consider an interval for the

time that each stack is open.

By associating each open stack of our MOSP problem to an interval in

the real line (the interval of time that the stack stays open), we can associate

a solution of the MOSP to an interval representation of an interval graph.

An interval graph can be associated to the set of intervals in the solution

4.2. THE MOSP IN A GRAPH 73

2

5

4

6

1

3

2

5

4

6 1

3

K

Figure 4.2: Non simultaneous items can share stack space

and the MOSP graph will be modified in order to become an interval graph.

We will use some properties of interval graphs to find the solution of MOSP

instances.

For the example mentioned before in Figure 4.1, the interval graph cor-

responding to the solution displayed in Figure 4.2 has the same vertices

and edges of the MOSP graph and two additional edges, as depicted in Fig-

ure 4.3. This is an interval graph completion (as explained in Section 3.8.1)

of the original MOSP graph. The fill edge [54] was added to make the graph

chordal, because it is a chord of the previous 4-cycle 1, 4, 2, 5. The fill edge

[56] was added to eliminate the asteroidal triple 3, 2, 6, transforming the

MOSP graph in an AT-free graph. In the original MOSP graph 3, 2, 6 is an

AT because 3, 5, 2 is a path from vertex 3 to vertex 2 that does not pass

through any neighbor of vertex 6. With the edge [56] now vertex 5 is a

neighbor of vertex 6.

13

5

2 4

6

Figure 4.3: Interval Graph of the instance in Table 4.1

As discussed in Section 3.4, the vertex order defined by the left endpoints

of the intervals is related to the sequence of cliques that will appear in the

interval graph of the solution of a MOSP problem.

We will use in our model inequalities derived from the characterization

in Theorem 3.4.9 to guarantee that the graph obtained in the solution of

the problem is an interval graph.

74 CHAPTER 4. AN INTEGER FORMULATION FOR THE MOSP

4.3 A Preview of the Model

For an instance of the problem, we first build a graph G = (V,E), associat-

ing each item cut from the patterns to a vertex and creating an arc joining

vertex i and j if and only if items i and j are cut from the same pattern.

This graph may not be an interval graph at the start, but we will add some

arcs to it in such a way that it will become one. We need this graph to

become an interval graph because, if we associate each item to the interval

of time in which the stack of that item is open, we can use the graph to

model what intervals should occur simultaneously and what intervals should

precede others. According to the sequence in which the cutting patterns are

processed, there may be more or less open stacks simultaneously. Each arc

of the future interval graph means that, for a period of time, the two stacks

(the respective vertices of the arc) will remain both open. The initial graph

contains only the arcs that must be there, in any possible sequence in which

the patterns can be processed. The rest of the arcs that are added later

to the graph will differ according to the sequence of the patterns. It is the

choice of these arcs that defines which are the other simultaneously open

stacks. Our model consists in finding out which edges should be added

to the original MOSP graph G = (V,E) in order to get an interval graph

H = (V,E ∪ F) that minimizes the maximum number of simultaneously

open stacks.

The model is based on the assumption that it is always possible to add

more arcs to G without losing the optimum value of the associated MOSP

problem.

Consider the following graph G with five vertices and six arcs.

1

•

•

•8
88888888

4•

���������

•

3

2

��������� 5

>>>>>>>>>

The complement graph Ḡ has the same vertices of G and the arcs that

G does not have:

4.4. THE DECISION VARIABLES 75

1• •

•

4

•

3•

2 5

In Ḡ there are 4 arcs to orientate. If the conjecture is true, than one can

add more arcs to the graph G, without losing the optimum value, and thus

having less arcs in Ḡ to give an orientation. We want to find the minimum

number of arcs that we need to add in G in order to have less arcs in Ḡ

without altering the optimum value.

In the corresponding MOSP problem, intervals 1 and 4 do not overlap be-

cause there is no arc between vertex 1 and vertex 4. In this case the optimum

is 3.

3

1

2 4

5

One can postpone the closing of interval 1 until interval 5 begins, without

modifying the value of the optimum, but having to add the arc between

vertices 1 and 4. Adding this type of arcs does not change the optimum

and this results in less arcs in Ḡ to orientate.

1•

•

4•

•

3•

2 5

4.4 The Decision Variables

We set an ordering for opening the stacks by assigning a number to each

item cut, with a bijective function ϕ : V → {1, ..., N}. This linear ordering

76 CHAPTER 4. AN INTEGER FORMULATION FOR THE MOSP

of the vertices is set by the decision variables xij:

xij =

{
1 if ϕ(i) < ϕ(j)

0 otherwise
∀i, j ∈ V

Notice that xii = 0 for any i ∈ V and also that we have

xij = 1⇔ xji = 0

These variables are setting an orientation into the arcs, for us to keep track

of the sequence of the items in the current instance. If xij = 1 then item i

starts being cut before the item j is, even though the corresponding stacks

may overlap or not, i.e., in spite of having an arc between the two vertices

or not.

The other decision variables that will be used are concerned to the arcs

that are necessary to add to the original graph G = (V,E) to get an interval

graph H = (V,E ∪ F) and, together with variables x, determine which

intervals will overlap in the desired interval graph. To decide which of these

additional arcs are to be added, we define a variable yij for each arc ij that

did not exist before in the graph:

yij =

{
1 if [ij] /∈ F and ϕ(i) < ϕ(j)
0 if [ij] ∈ F or ϕ(i) ≥ ϕ(j)

∀i, j ∈ V : [ij] /∈ E

Notice that yij is 1 when the arc [ij] is NOT added, because the variable

yij works like an “eraser”variable. To get an interval graph, if we decided

to add to the original graph all the arcs that were missing, and then remove

some of them - the ones that we do not need to have an interval graph, then

variable y is 1 for these additional arcs which are to be removed.

Variables y depend on the linear ordering of vertices, so it follows that

there is an anti-reflexive relation:

yij = 1⇒ yji = 0

When yij = 1, the arc [ij] is not needed in the interval graph, so, by

definition of interval graph, if there is not an arc [ij], then the intervals

i and j do not intersect. Consequently, one of the intervals should finish

before the other one starts. As i ≺ j, the interval i opens and finishes before

the interval j starts. It means that the stacks for items i and j will never

be open at the same time, so they can share the same stack space, as seen

in Figure 4.4.

We will use the variable K ∈ N to denote the maximum number of

simultaneously open stacks.

4.5. THE INEQUALITIES OF THE MODEL 77

Item i Item jyij = 1

Figure 4.4: Interval i opens and closes before j starts

4.5 The Inequalities of the Model

Now we study the relations between the binary integer variables x and y

and the integer variable K, to build the inequalities for our model.

4.5.1 Linear Ordering of the Vertices

The linear ordering of the vertices brings two basic constraints [55, 22] that

were already presented in Section 3.7. The first one is an equation that

states that either vertex i precedes vertex j or vice-versa. This is expressed

by:

xji + xij = 1 ∀i, j ∈ V : i 6= j (4.1)

The second one prevents directed 3-cycles, by stating that if vertex i

precedes vertex j and vertex j precedes vertex k, than vertex i should

precede vertex k. This transitivity property of the linear ordering can be

expressed by:

xij + xjk + xki ≤ 2 ∀i, j, k ∈ V : i 6= j 6= k (4.2)

4.5.2 Precedences of the Opening and Closing of the In-

tervals

An important remark upon the variables yij is that they establish the prece-

dences between the closing and opening of the intervals.

As one of the conditions for the variable yij to be equal to 1 is that

vertex i precedes vertex j, equal to say that xij = 1, then we must have:

yij ≤ xij ∀i, j ∈ V : i 6= j, [ij] /∈ E (4.3)

When yij = 1, the arc [ij] is not needed in the interval graph; so, by

definition of interval graph, if there is not an arc [ij] then intervals i and j

do not intersect. Consequently, one of the intervals should finish before the

other one starts. As yij ≤ xij, we must also have xij = 1, determining that

the interval i opens and finishes before the interval j starts.

78 CHAPTER 4. AN INTEGER FORMULATION FOR THE MOSP

yij = 1 ⇒ xij = 1

i j

4.5.3 Obtaining an Interval Graph

To guarantee that the graph H = (V,E ∪F) is an interval graph, we use in

the model the characterization given in Theorem 3.4.9, to express relations

between the binary variables yij and xij. Recall that the referred Theorem

characterizes interval graphs as graphs in which the vertices can be linearly

ordered in such a way that, for any three vertices i, j, k such that i ≺ j ≺ k,

if [ik] ∈ E then [ij] ∈ E.

i j k

⇑

Figure 4.5: Olariu’s characterization of interval graphs

We will consider three different vertices i, j, k ∈ V that do not form a

clique in the original MOSP graph, and analyze in what circumstances the

arcs [ik] and [ij] exist or have to be added. Let us separate the analysis in

two cases:

� arc [ik] ∈ E

� arc [ik] /∈ E

Case 1: arc [ik] ∈ E

Let us suppose that arc [ij] /∈ E, otherwise H already obeys the condition

needed in an interval graph. If i ≺ j ≺ k then as [ik] ∈ E then for H to be

an interval graph it must be [ij] ∈ F .

When xij = 1, an arc [ij] will belong to the graph H if yij = 0. Clearly, if

xij = 1, then yji = 0. Olariu’s characterization can be expressed as follows.

For each arc [ij] /∈ E, the value of the corresponding variable yij should

obey:

4.5. THE INEQUALITIES OF THE MODEL 79

yij + xij + xjk ≤ 2.

The inequality states that, if vertex i precedes j and vertex j precedes k,

or equivalently xij = xjk = 1, then the variable yij must be equal to 0, i.e.

arc [ij] ∈ F , as in Figure 4.5.

This inequality can be strengthened as follows. Combine the inequality

with the inequalities yij ≤ xij and xjk ≤ 1 to obtain:

yij + xij + xjk ≤ 2

yij − xij ≤ 0

xjk ≤ 1

2yij + 2xjk ≤ 3

Divide both sides by 2 and, as the variables are integers, we can round

the fractional part of the right hand side to obtain a stronger inequality:

yij + xjk ≤ 1

Because xkj = 1− xjk, this inequality is equivalent to the constraint in

binary variables equivalent to the logical implication yij ⇒ xkj.

yij ≤ xkj ∀i, j, k ∈ V, [ij] /∈ E, [ik] ∈ E (4.4)

We have assumed that i ≺ j ≺ k but this is valid too if i ≺ j but k ≺ j,

because we have xkj = 1. If j ≺ i then xij = 0 and by (4.3) we have yij = 0

and the inequality is also valid.

In fact, when there is the arc [ik] in the initial graph, but not the arc

[ij] (it is indifferent if the arc [kj] exists or not), this means that intervals

i and k must overlap.

i

j

k

If yij = 1, then interval i will close before interval j starts. As interval

k must overlap interval i, because [ik] ∈ E, k must be already open when j

starts. So we must have xkj = 1, as depicted in the next figure.

80 CHAPTER 4. AN INTEGER FORMULATION FOR THE MOSP

yij = 1 ⇒ xkj = 1

i j

k

In the example previously presented in this chapter, the vertices 2, 6 and

4 form a set in these conditions, because [24] ∈ E but [2, 6] /∈ E. Hence, in

the model for this example there is the inequality:

y26 ≤ x46

In the solution, as can be observed in Figure 4.2, interval 2 opens and closes

before interval 6 opens (y26 = 1) and the linear ordering is 2 ≺ 4 ≺ 6.

Note that if both arcs [ik] and [jk] ∈ E and xik = xjk = 1, then both i

and j are predecessors of k. Following the definition of an interval graph,

the predecessors of k must form a clique. In the model, that is equivalent to

having yij = yji = 0, meaning that there should be an arc between vertices i

and j.

xjk = 1 means that interval j opens before interval k. As [ik] ∈ E,

interval k must overlap with interval i, even if i opens before j starts. Then

interval i cannot be closed before j starts because i has to wait till k starts.

The situation is captured in the following picture.

xik = xjk = 1 ⇒ yij = yji = 0

i

j

k

In the example being analyzed, the set of vertices 5, 4 and 1 will admit

in the model the inequality:

y54 ≤ x14

As in the solution the linear ordering of these vertices is 5 ≺ 4 ≺ 1, this

inequality forces y54 = 0 meaning that the arc [54] is added to the graph,

as can be seen in Figure 4.3.

4.5. THE INEQUALITIES OF THE MODEL 81

This could be modeled as the following constraint:

yij + yji + xik + xjk ≤ 2

or equivalently

yij + yji ≤ (1− xik) + (1− xjk)

However, this constraint is a combination of the constraints yij ≤ xkj
and yji ≤ xki, and therefore it is weaker than considering both constraints

separately.

Case 2: arc [ik] /∈ E

On the other hand, the arc [ik] may not be originally in the set of arcs E, but

may be added to it to make the graph chordal, as a result of other constraints

in the model. In this situation, [ik] ∈ F , we will have the variable yik taking

the value 0, and the function (xik − yik) taking the value 1, meaning that

arc [ik] is added to the set.

In this second case, also consider [ij] /∈ E, because otherwise the result

was guaranteed.

Clearly, Olariu’s characterization should also apply to this case.

Therefore, for each arc [ij] /∈ E, the value of the corresponding vari-

able yij can be constrained as follows:

yij + (xik − yik) + xjk ≤ 2.

The inequality states that, if both vertices i and j precede k, or equiva-

lently xik = xjk = 1, when the variable yik is set to 0 by another constraint

(meaning that the arc [ik] is added to the graph G) then the variable yij
must also be equal to 0 (meaning that [ij] ∈ F or i does not precede j).

This inequality can be strengthened as follows. Combine the inequality

with the following inequalities from the linear ordering polytope, as well as

a non-negativity constraint, to obtain:

yij + xik − yik + xjk ≤ 2

xij − xik + xjk ≤ 1

yij − xij ≤ 0

−yik ≤ 0

2yij + 2xjk − 2yik ≤ 3

82 CHAPTER 4. AN INTEGER FORMULATION FOR THE MOSP

By dividing both sides by 2, and rounding the fractional part of the

righthand side, we obtain:

yij + xjk − yik ≤ 1

This inequality is equivalent to a constraint in binary variables equiva-

lent to the logical implication yij ⇒ xkj ∨ yik :

yij ≤ xkj + yik ∀i, j, k ∈ V, [ij], [ik] /∈ E (4.5)

Supposing that i ≺ j ≺ k, this means that xjk = 1 or equivalently

xkj = 0. If we decide to add the arc [ik], then yik = 0 and the inequality

forces yij = 0, meaning that we must also add the arc [ij] for the graph to

be an interval graph.

This inequality is also true if the arc [ik] is not added because then

yik = 1 and yij would be free.

This inequality is also valid in all other possible orderings of the vertices

i, j, k as can be seen in Table 4.2.

Vertices yij ≤ xkj + yik
i ≺ j ≺ k 0 0 0
i ≺ k ≺ j free 1 0
j ≺ i ≺ k 0 0 0
j ≺ k ≺ i 0 0 0
k ≺ i ≺ j free 1 0
k ≺ j ≺ i 0 1 0

Table 4.2: Possible cases when arc [ik] ∈ F

In the second, fifth and sixth cases (k ≺ j), the adding of the arc [ik] to

the graph does not force to add the arc [ij]. In the remaining three cases

where j ≺ i, the inequality yij ≤ xij (4.3) forces yij = 0.

In fact, if yij = 1, meaning that i ends before j starts, then xkj = 1 mean-

ing that k should start before j, as shown in Figures 4.6 and 4.7, or yik = 1,

meaning that i should end before k starts, as depicted in Figures 4.7 and

4.8.

In the example, the three vertices 6, 1 and 3 originate the inequality

y61 ≤ x31 + y63

4.5. THE INEQUALITIES OF THE MODEL 83

yij = 1 xkj = 1 yik = 0

i j

k

Figure 4.6: Interval i closes before interval j opens, with interval k being
simultaneous to interval i and opening before j

yij = 1 xkj = 1 yik = 1

i j

k

Figure 4.7: Interval i closes before intervals j and k open, with interval k
opening before interval j

yij = 1 xkj = 0 yik = 1

i j

k

Figure 4.8: Interval i closes before intervals j and k open, with interval j
opening before interval k

6

1

3

As in the solution the linear ordering of these vertices is 6 ≺ 1 ≺ 3, if the

arc [63] was added, then the arc [61] should also be added. In this case both

of the arcs were not added, making these three variables equal to one.

84 CHAPTER 4. AN INTEGER FORMULATION FOR THE MOSP

4.6 An objective function to evaluate the MOSP

Consider K to be the maximum number of open stacks. At each node,

except at the first K ones, there is an interval that begins and one that

ends, so that all the cliques in the sequence of the perfect elimination order

are maximal, except the first K ones. And because every appearance of a

vertex in these cliques must be consecutive and there are N instants in the

sequence, at each instant only one vertex changes. This change corresponds

to the closing of an interval and the beginning of another.

The precedences of the opening and closing of the intervals are declared

by the variables yij. If we sum up the variables yij we can count the prece-

dences between the intervals. For every vertex j, the sum
N∑

i=1

yij counts how

many intervals finish before interval j starts and the sum
N∑

j=1

yij counts how

many intervals will start after i finishes. The vertex that finishes first is the

one that has the greatest
N∑

j=1

yij.

If we associate each opening of an interval to an instant of time, this

last sum
N∑

j=1

yij says how long we must wait since the opening of i until

the end of processing all intervals. The instant of closing of the interval i is

N −
N∑

j=1

yij, i.e. , the number of intervals that must be started minus the

number of intervals that will start after interval i closes. For example, a

vertex with
N∑

j=1

yij = 2 means that there are two vertices that start after i

finishes, each at a different instant in time. The last instant of this interval

is N −
N∑

j=1

yij = N − 2.

If we sum up the variables xij we will find the position of each vertex

in the sequence of vertices. For every vertex i, the sum
N∑

j=1

xij counts how

many vertices come after i in the ordering, i.e., the number of intervals that

will start after i starts. Computing for every vertex i the sum
N∑

j=1

xij and

ordering those sums, we get the sequence in which the orders should open:

4.6. AN OBJECTIVE FUNCTION TO EVALUATE THE MOSP 85

the vertex i having the highest sum
N∑

j=1

xij corresponds to the first order

to open, because vertex i precedes all the other vertices j. The lowest sum

equals zero and corresponds to the last vertex to open.

For every vertex j, the sum
N∑

i=1

xij counts how many vertices precede

j, i.e., the number of intervals that start before i starts. If we want to

know which interval opens at instant t we just have to find the vertex j

such that
N∑

i=1

xij = t− 1. The beginning of an interval j happens at instant

N∑

i=1

xij + 1. It is the number of intervals that have started before j plus the

interval j itself. So the number of intervals that are open at that instant

is
N∑

i=1

xij + 1−
N∑

i=1

yij because we need to subtract the number of intervals

that have already been closed before that instant.

This leads to a set of functions that can be used to evaluate the MOSP

number:

N∑

i=1
i 6=j

xij −
N∑

i=1
[ij]/∈E

yij + 1 ≤ K ∀j = 1, ..., N (4.6)

Each function provides a lower bound for the MOSP, being K the maxi-

mum of those functions. The objective function of the model is to minimize

K.

If one puts each interval in a line, as in Figure 4.9, the number of lines

that we have open when an interval starts is a lower bound for the maximum

number of open stacks.

In the example presented before, when interval 5 starts, the number of

open stacks turns to two,

j = 5 :
∑

xij −
∑

yij + 1 = 1− 0 + 1 = 2 ≤ 3

which is a lower bound for the MOSP (which is three). The same inequality,

correspondent to the moment that interval 1 starts, gives a better lower

bound. At that instant, there are four intervals already open (2, 5, 4 and

6) but two of those have already closed (intervals 2 and 6). Hence the

inequality is:

j = 1 :
∑

xij −
∑

yij + 1 = 4− 2 + 1 = 3 ≤ 3

86 CHAPTER 4. AN INTEGER FORMULATION FOR THE MOSP

2

5

4 3

6 1

Figure 4.9: Optimal solution of the example from Table 4.1

There are 6 cliques in the sequence of the perfect elimination order,

such that every appearance of a vertex in these cliques is consecutive. The

sequence of cliques is:

{2}, {2, 5}, {2, 5, 4}, {6, 5, 4}, {1, 5, 4}, {1, 5, 3}

The first 2 cliques are not maximal, the remaining of them are maximal

cliques with size 3, which is the optimum for this instance of the MOSP.

4.7. THE INTEGER PROGRAMMING FORMULATION FOR MOSP 87

4.7 The integer programming formulation for

MOSP

Given an instance of the minimization of open stacks problem with N items,

we start by building the correspondent MOSP graph G = (V ;E) with

|V | = N and |E| = M . Combining all that has been said in the previous

sections, our basic new mathematical formulation for the MOSP problem

is:

Minimize K

Subject to:

xij + xji = 1 ∀i, j = 1, ..., N with i 6= j (4.7)

xij + xjk + xki ≤ 2 ∀i, j, k = 1, ..., N with i 6= j 6= k (4.8)

yij ≤ xij ∀i, j = 1, ..., N with i 6= j and [ij] /∈ E (4.9)

yij ≤ xkj ∀i, j, k = 1, ..., N with [ij] /∈ E, [ik] ∈ E (4.10)

yij − yik ≤ xkj ∀i, j, k = 1, ..., N with [ij], [ik] /∈ E (4.11)
N∑

i=1
i 6=j

xij −
N∑

i=1
[ij]/∈E

yij + 1 ≤ K ∀j = 1, ..., N (4.12)

xij ∈ {0, 1} ∀i, j = 1, ..., N with i 6= j (4.13)

yij ∈ {0, 1} ∀i, j = 1, ..., N with i 6= j, [ij] /∈ E (4.14)

K ∈ N (4.15)

4.8 Reducing the Number of Variables in the

Model

The variables xij were defined for every i, j = 1, ..., N such that i 6= j, but

it is possible to use only half of these variables, defining xij only for i < j,

because all the other variables are defined by consequence by the equation

(4.7). This will make some changes in four of the remaining inequalities,

because (4.8) to (4.12) have to be rewritten using only the variables xij such

that i < j.

The inequality (4.8) is equivalent to the six following expressions avoid-

88 CHAPTER 4. AN INTEGER FORMULATION FOR THE MOSP

ing the removed variables:

xij + xjk + xki ≤ 2

⇔ xij + xjk − xik ≤ 1 if i < j < k (4.16)

⇔ xik + xkj − xij ≥ 0 if i < k < j (4.17)

⇔ xki + xij − xkj ≤ 1 if k < i < j (4.18)

⇔ xkj + xji − xki ≥ 0 if k < j < i (4.19)

⇔ xji + xik − xjk ≥ 0 if j < i < k (4.20)

⇔ xjk + xki − xji ≤ 1 if j < k < i (4.21)

Clearly inequalities (4.16), (4.18), and (4.21) are the same (just using

different index letters) and inequalities (4.17), (4.19), and (4.20) are the

same too. Hence inequality (4.8) gives origin to two inequalities when con-

sidering only half the variables xij:

xij + xjk − xik ≥ 0 ∀i, j, k ∈ V with i < j < k (4.22)

xij + xjk − xik ≤ 1 ∀i, j, k ∈ V with i < j < k (4.23)

The linking inequality (4.9) is kept for i < j but has to be different if

j < i, so it gives rise to the two following inequalities:

yij ≤ xij ∀i, j ∈ V with i < j, [ij] /∈ E (4.24)

yij + xji ≤ 1 ∀i, j ∈ V with j < i, [ij] /∈ E (4.25)

The Olariu inequalities in the model will also have to be analyzed be-

cause they use the variables xij. The first one, (4.10) is unfolded in two

inequalities as the previous one:

yij ≤ xkj ∀i, j, k ∈ V with k < j, [ij] /∈ E, [ik] ∈ E (4.26)

yij ≤ 1− xjk ∀i, j, k ∈ V with j < k, [ij] /∈ E, [ik] ∈ E (4.27)

Now let us analyze the second Olariu inequality (4.11). For every i, j, k ∈
V such that [ij], [ik] /∈ E, because previously we had both the variables xjk
and xkj, then we must have both the inequalities:

yij − yik ≤ xkj ∀i, j, k = 1, ..., N with k < j, [ij], [ik] /∈ E (4.28)

yik − yij ≤ xjk ∀i, j, k = 1, ..., N with j < k, [ij], [ik] /∈ E (4.29)

4.8. REDUCING THE NUMBER OF VARIABLES IN THE MODEL 89

Each of these inequalities will be kept or rewritten according to the case

j < k or k < j. The first one is equivalent to:

yij − yik ≤ xkj

⇔ yij − yik − xkj ≤ 0 if k < j

⇔ yik − yij + xkj ≥ 0 if k < j (4.30)

⇔ yij − yik ≤ 1− xjk if j < k

⇔ yij − yik + xjk ≤ 1 if j < k (4.31)

And the second one is

yik − yij ≤ xjk

⇔ yik − yij ≤ 1− xkj if k < j

⇔ yik − yij + xkj ≤ 1 if k < j (4.32)

⇔ yik − yij − xjk ≤ 0 if j < k

⇔ yij − yik + xjk ≥ 0 if j < k (4.33)

There is no need for all of these, because some of them are equivalent;

we can use only (4.30) and (4.32) if the indexes i, j, k chosen are such that

k < j, or use (4.31) and (4.33) if j < k.

All the other inequalities in the model use only the variables yij so they

can be kept. In summary, the model with reduced number of variables is

Minimize K

Subject to:

0 ≤ xij + xjk − xik ≤ 1 ∀i, j, k = 1, ..., N, i < j < k (4.34)

yij − xij ≤ 0 ∀i, j = 1, ..., N, i < j, [ij] /∈ E (4.35)

yij + xji ≤ 1 ∀i, j = 1, ..., N, j < i, [ij] /∈ E (4.36)

yij − xkj ≤ 0 ∀i, j, k = 1, ..., N, k < j[ij] /∈ E, [ik] ∈ E (4.37)

yij + xjk ≤ 1 ∀i, j, k = 1, ..., N, j < k[ij] /∈ E, [ik] ∈ E (4.38)

0 ≤ yik − yij + xkj ≤ 1 ∀i, j, k = 1, ..., N, k < j, [ij], [ik] /∈ E (4.39)

0 ≤ yij − yik + xjk ≤ 1 ∀i, j, k = 1, ..., N, j < k, [ij], [ik] /∈ E (4.40)
j−1∑

i=1

xij +
N∑

i=j+1

(1− xji)−
N∑

i=1
[ij]/∈E

yij + 1 ≤ K ∀j = 1, ..., N (4.41)

xij ∈ {0, 1} ∀i, j = 1, ..., N with i < j (4.42)

yij ∈ {0, 1} ∀i, j = 1, ..., N with i 6= j and [ij] /∈ E (4.43)

K ∈ N (4.44)

90 CHAPTER 4. AN INTEGER FORMULATION FOR THE MOSP

For a graph G = (V,E) with |V | = N and |E| = M , the number of

variables x is now N(N−1)/2, the number of variables y is N(N−1)−2M ;

hence the dimension of the polytope is 3N(N − 1)/2− 2M .

4.9 Conclusions

In this chapter we forged an integer programming model to solve the min-

imization of open stacks problem. The model is based on the fact that an

instance of the problem can be put in a MOSP graph and that the solution

of the problem corresponds to a set of intervals that match the duration of

the stacks. The model is basically adding more arcs to the MOSP graph to

create an interval graph and deciding which intervals should start before the

other intervals. The objective function minimizes the maximum number of

simultaneous intervals using a lower bound derived from an analysis of the

linear ordering of the intervals. This is a very basic model and additional

inequalities should be added to strengthen it. In the next chapter we will

analyze the inequalities presented here in the light of polyhedral theory and

will test the model with commercial software on benchmark instances from

literature.

Chapter 5

Polyhedral Analysis and Other

Valid Inequalities

This chapter aims at consolidating the model for the MOSP that was pre-

sented in the previous chapter. We start by proving that many of the

inequalities presented are facets and then explore some properties of inter-

val graphs to derive more inequalities for the model. We end the chapter

discussing computational results of the several presented versions of the

model.

5.1 Facets of the Polyhedron

In this section we will analyze which inequalities of the model are facets. If

the polyhedron PIGC defined by inequalities (4.34) to (4.43) is full-dimensional,

we can prove that an inequality is a facet by exhibiting 3N(N − 1)/2− 2M

affinely independent points of P that satisfy it at equality.

Let us start by recalling the main concepts in polyhedral theory.

Definition 5.1.1. A set of points x1, ..., xk ∈ Rn is affinely independent if

the unique solution of

k∑

i=1

αix
i = 0

k∑

i=1

αi = 0

(5.1)

is αi = 0 for i = 1, ..., k.

91

92 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

Linear independence implies affine independence but the converse is not

true:

Proposition 5.1.2. [48] The following statements are equivalent:

1. The k points x1, ..., xk ∈ Rn are affinely independent

2. The k − 1 directions x2 − x1, ..., xk − x1 are linearly independent

3. The k vectors (x1, 1), ..., (xk, 1) ∈ Rn+1 are linearly independent

Definitions 5.1.3. A polyhedron P ⊆ Rn is the set of points that satisfy a

finite number of linear inequalities, that is, P = {x ∈ Rn : Ax ≤ b} where

(A, b) is a m × (n + 1) matrix. A polyhedron is bounded if there exists an

ω ∈ R+ such that

P ⊆ {x ∈ Rn : −ω ≤ xj ≤ ω ∀j = 1, ..., n}

A polytope is a bounded polyhedron. A polyhedron P is of dimension k,

denoted by dim(P) = k, if the maximum number of affinely independent

points in P is k+1. A polyhedron P ⊆ Rn is full-dimensional if dim(P) = n.

Full-dimensional polyhedra have a unique minimal description using a

finite set of linear inequalities. This inequalities are necessary, which means

that if one of those inequalities is removed, the resulting polyhedron is not

the same, and sufficient, which means that every valid inequality that is not

a positive multiple of one of these inequalities is redundant.

Definitions 5.1.4. The inequality πx ≤ π0 (or (π, π0)) is a valid inequality

for P if it is satisfied by all points in P . If πx ≤ π0 and µx ≤ µ0 are two

valid inequalities for P , we say that πx ≤ π0 dominates µx ≤ µ0 if there

exists u > 0 such that π ≥ uµ and π0 ≤ uµ0 and (π, π0) 6= (uµ, uµ0).

Note that if πx ≤ π0 dominates µx ≤ µ0 then

{x ∈ Rn
+ : πx ≤ π0} ⊆ {x ∈ Rn

+ : µx ≤ µ0}

Definition 5.1.5. If πx ≤ π0 is a valid inequality for P and F = {x ∈ Rn
+ :

πx = π0}, F is called a face of P and we say that πx ≤ π0 represents or

defines the face. A face F of P is called a facet of P if dim(F) = dim(P)−1.

Proposition 5.1.6. [59] If P is full-dimensional, a valid inequality πx ≤ π0

is necessary in the description of P if and only if it defines a facet of P .

5.1. FACETS OF THE POLYHEDRON 93

So for full-dimensional polyhedra, πx ≤ π0 defines a facet of P if and

only if there are n affinely independent points of P satisfying it at equality.

Now let us use this definitions to find out which inequalities in our model

represent facets of the polytope.

It has been proved in [30] that the 3-dicycle inequalities (4.34) and the

trivial inequalities 0 ≤ xij ≤ 1 are facets of the linear ordering polytope.

But in our model there are other inequalities that dominate these trivial

inequalities in some cases.

Proposition 5.1.7. For i, j ∈ V, i < j the inequality xij ≥ 0 is not a facet

of PIGC if [ij] /∈ E or if ∃k ∈ V : [kj] /∈ E ∧ [ki] ∈ E.

Proof. If [ij] /∈ E then inequality (4.35) is valid and dominates xij ≥ 0. If

∃k ∈ V : [kj] /∈ E∧ [ki] ∈ E then inequality (4.37) can be written swapping

indexes i and k as

ykj − xij ≤ 0

which dominates xij ≥ 0.

Proposition 5.1.8. For i, j ∈ V, i < j the inequality xij ≤ 1 is not a facet

of PIGC if [ij] /∈ E or if ∃k ∈ V : [ki] /∈ E ∧ [kj] ∈ E.

Proof. If [ij] /∈ E the inequality (4.36) dominates xij ≥ 0. If ∃k ∈ V : [ki] /∈
E ∧ [kj] ∈ E, the inequality (4.38) can be written as

yki + xij ≤ 1

which dominates xij ≤ 1.

To prove which of the valid inequalities in the model define facets, we

will need to define some special points. We start by observing that the linear

ordering of the vertices allows us to have points with a special structure on

the variables x.

In all points defined from now on, consider that the first variables are

the variables xij ordered for each j from 2 to N and for i from 1 to j − 1

and then the variables y (ordering is irrelevant for now).

P = (x12, x13, x23, x14, x24, x34, ..., x1N , ..., x(N−1)N ; ..., yij, ...)

Consider the point P 0 such that ∀i, j ∈ V, i < j xij = yij = yji = 0; it

corresponds to a layout of the graph where all vertices are in the opposite

natural order.

P 0 = (0, ..., 0; 0, ..., 0)

94 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

Points that have all variables y and the first variables x equal to zero

and the remaining variables x equal to one are feasible points. Let P xR
ij be

such that xij = 1, ∀a < i xaj = 0, ∀a > i xaj = 1, ∀b < j ∀a < b xab = 0,

∀b > j ∀a < b xab = 1 and ∀l,m : [lm] /∈ E ylm = 0.

P xR
ij = (0, ..., 0, 1, ..., 1; 0, ..., 0)

This is a feasible point because it corresponds to the specific ordering of the

vertices in which each vertex b such that b > j is at position b, vertex j is

at position j − i+ 1, and each vertex b such that b < j is at position j − b
if i ≤ b or at position j − b+ 1 if i > b.

Also, points that have all variables y and the last variables x equal to

zero and the remaining variables x equal to one are feasible points. Let P xL
ij

be such that xij = 1, ∀a < i xaj = 1, ∀a > i xaj = 0, ∀b < j ∀a < b xab =

1, ∀b > j ∀a < b xab = 0 and ∀l,m : [lm] /∈ E ylm = 0.

P xL
ij = (1, ..., 1, 0, ..., 0; 0, ..., 0)

This is a feasible point because it corresponds to the layout of the vertices

in which each vertex b such that b > j is at position N + 1− b, vertex j is

at position N + 1 − j + i, and each vertex b such that b < j is at position

N + 1− j + b if i ≥ b or at position N + 1− j + b+ 1 if i < b.

For N=4, these points are illustrated in Table 5.1, but there are many

other configurations for the variables x that produce feasible points.

Point x12 x13 x23 x14 x24 x34 y Layout
P xR

12 1 1 1 1 1 1 0,...,0 1234
P xR

13 0 1 1 1 1 1 0,...,0 2134
P xR

23 0 0 1 1 1 1 0,...,0 2314
P xR

14 0 0 0 1 1 1 0,...,0 3214
P xR

24 0 0 0 0 1 1 0,...,0 3241
P xR

34 0 0 0 0 0 1 0,...,0 3421
P 0 0 0 0 0 0 0 0,...,0 4321
P xL

12 1 0 0 0 0 0 0,...,0 4312
P xL

13 1 1 0 0 0 0 0,...,0 4132
P xL

23 1 1 1 0 0 0 0,...,0 4123
P xL

14 1 1 1 1 0 0 0,...,0 1423
P xL

24 1 1 1 1 1 0 0,...,0 1243
P xL

34 1 1 1 1 1 1 0,...,0 1234

Table 5.1: Points P xR
ij and P xL

ij for N = 4

5.1. FACETS OF THE POLYHEDRON 95

Define the points P y
ij such that yij = 1 and all other variables y are zero.

The variables x must be determined in order to satisfy the inequalities.

Having yij = 1 implies that xij = 1 if i < j (or xji = 0 if j < i) to satisfy

(4.35) and (4.36). Besides, to satisfy inequalities (4.37) to (4.40), for every

vertex k we must have xkj = 1 if k < j (or xjk = 0 if j < k). This

corresponds to a layout where vertex j is the last in the sequence. There is

more than one possibility for the values of the variables x in this point, but

in this case it is not important which one we choose, as long as it is feasible.

P y =

 A

1 · · · 0
...

. . .
...

0 · · · 1

 =

(
A
∣∣∣ I

)

Proposition 5.1.9. The polyhedron PIGC is full-dimensional.

Proof. There are 3N(N−1)/2−2M variables in the polyhedron and consid-

ering the set of all points P 0, P xL, P y we have 1+N(N−1)/2+N(N−1)−2M

affinely independent points.

0 · · · 0 0 · · · 0

1 · · · 0
...

. . .
...

1 · · · 1

O

A

1 · · · 0
...

. . .
...

0 · · · 1

Proposition 5.1.10. The 3-dicycle inequalities (4.34) are facets of PIGC.

Proof. The 3-dicycle inequalities (4.34) are facets of the linear ordering

polytope, which means that there is a square matrix B using only the

variables x such that

(
B

∣∣∣∣ O
)

are N(N −1)/2 affinely independent points

that satisfy each of the inequalities (4.34) at equality. Considering also the

points P y with suitable values for the x variables, we have 3N(N−1)/2−2M

affinely independent points.
(

B O

A I

)

96 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

Proposition 5.1.11. The precedence inequalities (4.35) and (4.36) are

facets of PIGC.

Proof. Define the points P 1
ij such that xij = 0, the remaining variables x

are of the form P xL or P xR, and all variables y are zero. This comprehends

N(N − 1)/2− 1 points.

P 1
ij =

1 · · · 0 0 0 · · · 0
...

. . .
...

...
... · · · ...

1 · · · 1 0 0 · · · 0

0 · · · 0 0 1 · · · 1
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 1

O

Consider the point P 2
ij such that yij = 1, all other variables y are zero,

xij = 1 if i < j (or xji = 0 if j < i) and, for every other vertex k, xkj = 1 if

k < j and xjk = 0 if j < k. This point corresponds to a case where vertex

j is the last in the linear ordering.

Define the points P 3
ij such that xij = yij = 0 and the other variables y

correspond to the identity matrix. The remaining variables x are properly

set to make this a feasible point. If ylm = 1 then xlm = 1 and, for every

vertex r, xrm = 1 if r < m or xmr = 0 if m < r. These are N(N−1)−2M−1

points where j precedes i and m is the last vertex in the ordering.

P 3
ij =

 C

0
...

0

D

1 · · · 0
... · · · ...

0 · · · 1

Let the points P 4
ji be all the points of the form P xL or P xR such that

xji = 1, and with variables y equal to zero. These are N(N − 1)/2 linearly

independent points.

P 4
ji =

1 · · · 1 1 1 · · · 1
...

. . .
...

...
... · · · ...

0 · · · 1 1 1 · · · 1

1 · · · 1 1 0 · · · 0
...

. . .
...

...
.

...

1 · · · 1 1 · · · 1 0

O

The points P 0, P 1
ij, P

2
ij, P

3
ij satisfy (4.35) at equality and form a set of 3N(N−

1)/2− 2M affinely independent points, hence it is a facet of PIGC .

5.1. FACETS OF THE POLYHEDRON 97

Point x xij x yij y

P 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

P 1
ij

1 · · · 0
...

. . .
...

1 · · · 1

0 · · · 0
...

. . .
...

0 · · · 0

0
...

0

0
...

0

0 · · · 0
... · · · ...

0 · · · 0

1 · · · 1
...

. . .
...

0 · · · 1

0
...

0

0
...

0

O

P 2
ij · · · 1 · · · 1 0 · · · 0

P 3
ij C

0
...

0

D

0
...

0

1 · · · 0
...

. . .
...

0 · · · 1

The points P 4
ji, P

2
ij, P

3
ij satisfy (4.36) at equality and form a set of 3N(N−

1)/2− 2M affinely independent points, proving that it is a facet of PIGC .

Point x xji x yij y

P 4
ji

1 · · · 1
...

. . .
...

0 · · · 1

1 · · · 1
...

. . .
...

1 · · · 1

1
...

1

1
...

1

1 · · · 1
... · · · ...

1 · · · 1

0 · · · 0
.

...

· · · 1 0

0
...

0

0
...

0

O

P 2
ij · · · 0 · · · 1 0 · · · 0

P 3
ij C

1
...

1

D

0
...

0

1 · · · 0
...

. . .
...

0 · · · 1

Proposition 5.1.12. The Olariu inequalities (4.37) to (4.40) are facets of

PIGC.

Proof. Let P 5
kj,ij be the point such that ykj = yij = 1, xkj = 1, all other

variables y are zero and the remaining variables x are set accordingly to

satisfy all inequalities.

Consider also the points P 6
kj,ij such that ykj = yij = 0, xkj = 0, all other

variables y are set as in P y and the remaining variables x are set accordingly

to satisfy all inequalities.

98 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

Define the points P 7
jk,ij such that yjk = yij = 0, xjk = 1, all other

variables y are set as in P y and the remaining variables x are set accordingly

to satisfy all inequalities.

Let P 8
ij,ik be the point such that yij = yik = 0, xkj = 0, all other variables

y are zero and the remaining variables x are set accordingly to satisfy all

inequalities.

Define the points P 9
ij,ik such that yij = yik = 0, xkj = 0, all other

variables y are set as in P y and the remaining variables x are set accordingly

to satisfy all inequalities.

Assume that P 10
ikj is the point such that yij = yik = 1, xkj = 1, all other

variables y are zero and the remaining variables x are set accordingly to

satisfy all inequalities.

Let P 11
ijk be the point such that yik = 1, xkj = 0, all other variables

y are zero and the remaining variables x are set accordingly to satisfy all

inequalities.

Define the points P 12
ikj such that yij = yik = 0, xkj = 1, all other variables

y are set as in P y and the remaining variables x are set accordingly to satisfy

all inequalities.

Inequality (4.37) is a facet because P 1
kj, P

2
ij, P

5
kj,ij, P

6
kj,ij are 3N(N −

1)/2− 2M affinely independent points that satisfy it at equality.

Point x xkj x yij ykj y

P 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0

P 1
kj

1 · · · 0
...

. . .
...

1 · · · 1

0 · · · 0
...

. . .
...

0 · · · 0

0
...

0

0
...

0

0 · · · 0
... · · · ...

0 · · · 0

1 · · · 1
...

. . .
...

0 · · · 1

0
...

0

0
...

0

0
...

0

0
...

0

O

P 2
ij · · · 1 · · · 1 0 0 · · · 0

P 5
kj,ij · · · 1 · · · 1 1 0 · · · 0

P 6
kj,ij A

0
...

0

B

0
...

0

0
...

0

1 · · · 0
...

. . .
...

0 · · · 1

Inequality (4.38) is a facet because P 4
jk, P

2
ij, P

2
jk, P

7
jk,ij are 3N(N−1)/2−

2M affinely independent points that satisfy it at equality.

5.1. FACETS OF THE POLYHEDRON 99

Point x xjk x yij yjk y

P 4
jk

1 · · · 1
...

. . .
...

0 · · · 1

1 · · · 1
...

. . .
...

1 · · · 1

1
...

1

1
...

1

1 · · · 1
... · · · ...

1 · · · 1

0 · · · 0
.

...

· · · 1 0

0
...

0

0
...

0

0
...

0

0
...

0

O

P 2
ij · · · 0 · · · 1 0 0 · · · 0

P 2
jk · · · 1 · · · 0 1 0 · · · 0

P 7
jk,ij A

1
...

1

B

0
...

0

0
...

0

1 · · · 0
...

. . .
...

0 · · · 1

The first part of (4.39) is a facet because P 0, P 1
kj, P

2
ij, P

8
ij,ik, P

9
ij,ik are

3N(N − 1)/2 − 2M affinely independent points that satisfy it at equality.

The second part of (4.40) is equivalent to this, it merely uses xjk instead of

xkj; hence it is also a facet.

Point x xkj x yij yik y

P 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0

P 1
kj

1 · · · 0
...

. . .
...

1 · · · 1

0 · · · 0
...

. . .
...

0 · · · 0

0
...

0

0
...

0

0 · · · 0
... · · · ...

0 · · · 0

1 · · · 1
...

. . .
...

0 · · · 1

0
...

0

0
...

0

0
...

0

0
...

0

O

P 2
ij · · · 1 · · · 1 0 0 · · · 0

P 8
ij,ik · · · 0 · · · 1 1 0 · · · 0

P 9
kj,ij A

0
...

0

B

0
...

0

0
...

0

1 · · · 0
...

. . .
...

0 · · · 1

The second part of (4.39) is a facet because P 4
kj, P

10
ikj, P

11
ijk, P

12
ikj are 3N(N−

1)/2− 2M affinely independent points that satisfy it at equality. The first

part of (4.40) is equivalent to this, it just uses xjk instead of xkj; hence it

is also a facet.

100 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

Point x xkj x yij yik y

P 4
kj

1 · · · 1
...

. . .
...

0 · · · 1

1 · · · 1
...

. . .
...

1 · · · 1

1
...

1

1
...

1

1 · · · 1
... · · · ...

1 · · · 1

0 · · · 0
.

...

· · · 1 0

0
...

0

0
...

0

0
...

0

0
...

0

O

P 10
ikj · · · 1 · · · 1 1 0 · · · 0

P 11
ijk · · · 0 · · · 0 1 0 · · · 0

P 12
jkj A

1
...

1

B

0
...

0

0
...

0

1 · · · 0
...

. . .
...

0 · · · 1

5.2 Other Valid Inequalities

The inequalities that we have seen so far are sufficient to have a valid model

and to guarantee that the solution will be an interval graph. But we can

strengthen our model by adding some constraints related to additional prop-

erties of interval graphs.

5.2.1 Neighbor of Successor Inequalities

The MOSP model can be strengthened with the following three inequalities

that can be proved simply by observing that in an interval graph both

variables on the left are not allowed to be simultaneously equal to one

without contradicting Theorem 3.4.9.

yij + yki ≤ 1 ∀i, j, k ∈ V with [ij], [ik] /∈ E, [jk] ∈ E (5.2)

yij + yjk ≤ 1 ∀i, j, k ∈ V with [ij], [jk] /∈ E, [ik] ∈ E (5.3)

yij + ylk ≤ 1 ∀i, j, k, l ∈ V with [ij], [kl] /∈ E, [jl], [ik] ∈ E (5.4)

The inequality (5.2) says that a neighbor of the successor of vertex i,

which is vertex k, cannot end before vertex i opens.

If both the variables on the left hand side of the inequality (5.2) were

yij = yki = 1, then the three vertices were linearly order as in k ≺ i ≺ j.

5.2. OTHER VALID INEQUALITIES 101

As [jk] ∈ E, Theorem 3.4.9 would force to have the arc [ki] ∈ F , asserted

by yki = 0, which contradicts the initial assumption.

k i j

⇑

The inequality (5.3) states that if vertex k is a neighbor of vertex i, it

cannot open after the closing of a successor of vertex i, which is represented

by vertex j.

If both the variables on the left hand side of the inequality (5.3) were

yij = yjk = 1, then the linear order of the three vertices would be i ≺ j ≺ k.

As [ik] ∈ E, Theorem 3.4.9 would force adding the arc [ij] ∈ F , making

yij = 0, which is absurd.

i j k

⇑

Finally, the inequality (5.4) declares that a neighbor l of the successor

j of vertex i cannot close before the neighbor k of vertex i opens.

If the two variables are considered 1 as in yij = ylk = 1, then the linear

order of the four vertices should satisfy i ≺ j and l ≺ k. Now there are two

possible cases.

If j ≺ k, as [ik] ∈ E, by Theorem 3.4.9 then [ij] ∈ F , making yij = 0,

which is absurd.

i j kl

⇑

If k ≺ j, then the linear ordering would be l ≺ k ≺ j and the existence

of the arc [jl] ∈ E would make the arc [lk] ∈ F , stated by ylk = 0 which is

absurd.

102 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

i jkl

⇑

5.2.2 Co-comparability Graph

For the solution graph H = (V,E ∪ F) to be an interval graph, its com-

plement H must be a comparability graph. The ordering of the vertices

must respect transitivity in the complement graph and must not have di-

rect cycles. If the arcs [ij] and [jk] exist in the complement graph, with an

orientation i ≺ j and j ≺ k , then if the arc [ik] exists, it must be oriented

as in i ≺ k.

i j k

⇓ ⇓H

Figure 5.1: H must be transitively orientable

The transitivity of the relation between the variables y comes from the

comparability graph property and forces an ordering of the vertices. If a

direction is defined in an arc of a graph, that will determine the flow of all

the other ones. The variables y define the complement graph, because yij
equals 1 when the arc [ij] /∈ F , hence it exists in the complement graph

H and the orientation of the vertices is i ≺ j. The transitivity in H is

expressed by

yij = yjk = 1⇒ yik = 1

This can be assured by the following statement for every i 6= j 6= k such as

the arcs [ij], [ik], [jk] did not exist in the initial MOSP graph:

yij + yjk − 1 ≤ yik ∀i, j, k ∈ V, [ij], [jk], [ik] /∈ E (5.5)

For example, consider the following graph. If we define an ordering of

the vertices from A to B, then B must come after C because otherwise

having A to B and B to C by transitivity we should also have the arc A

to C, which does not exist. By similar reasons, the other arcs have the

5.2. OTHER VALID INEQUALITIES 103

following orientations: C to D and A to D.

A• •>

•

 B

D C
•

� � � � �

A• •>

•
∨

B

D C
•<

∧� �

� �

Let us analyze another example, an instance of the MOSP problem with

five different items and eight patterns taken from [18, p.322].

Patterns: P1 P2 P3 P4 P5 P6 P7 P8
Item 1 X X X X
Item 2 X X
Item 3 X X
Item 4 X X X
Item 5 X X X

Table 5.2: An instance for the MOSP with 5 items and 8 patterns

This instance originates a MOSP graph with 5 vertices, one correspond-

ing to each item, and with edges between the vertices (items) that belong

to the same pattern.

5 1

42

3

Figure 5.2: MOSP Graph of the instance in Table 5.2

The graph correspondent to this instance is not yet an interval graph.

We need to add more arcs so it will become chordal and its complement

graph will become a comparability graph.

Initially, the complement graph of the MOSP graph in Figure 5.2 is:

1• •2 •3 •4 •5

104 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

If we set an orientation on the first arc of the complement graph, for

example, from vertex 1 to vertex 2, it will mean that y12 = 1.

1• •>
2 •3 •4 •5

Because H must be a comparability graph, one of the following must

happen:

y32 = 1 ∧ y23 = 0 or y32 = y23 = 0

meaning that either an arc exists in H linking vertices 2 and 3 with orienta-

tion from vertex 3 to 2, or that arc does not even exist. This will correspond

to the inequality

y12 + y23 ≤ 1

and to another inequality to be an interval graph

y21 − y23 ≤ x31

This last inequality means that, for example, if y21 = 1 and x13 = 1 then

y23 = 1. In terms of the intervals, this says that if interval 2 closes before

interval 1 opens and interval 1 opens before interval 3 opens, then interval

2 closes before interval 3 opens.

A possible solution for this instance of the problem corresponds to, in

the end of the process of finding a solution, having the arc [45] removed from

the complement graph and the linear ordering as in the following picture:

H 1• •>
2• •<

3• •>
4 5•

The complement of this graph is the interval graph H that corresponds

to the solution of the problem:

5 1

42

3

Figure 5.3: Interval graph corresponding to the solution of the instance in
Table 5.2

An ordering defined for the vertices of the complement graph H will

correspond to the same ordering for the vertices of the interval graph H.

5.2. OTHER VALID INEQUALITIES 105

The interval graph of this instance can then be sketched with the vertices

in a straight line sorted by their linear ordering.

H 1• •> •

>

>

5
>

>

>

3 4• •>
2

In this graph, the perfect elimination scheme would first eliminate vertex

2 and its associated arcs.

1• •> •

>

>

5
> •

>

3 4

Then vertex 4 should be eliminated, resulting in:

1• •> •

>

5
>

3

After that, one would eliminate vertex 3, followed by vertex 5 and finally

vertex 1.

1• •>
5

1•
The reverse order of the perfect elimination scheme sets the order of the

beginning of the intervals: 1-5-3-4-2.

1

5

3

4

2

1

5

3 4

2

MOSP=3
Figure 5.4: Optimal solution of the example in Table 5.2

This sequence of vertices corresponds to the sequence of patterns P1-

P6-P3-P7-P8-P2-P4-P5.

As there are some stacks that are not simultaneous at any time, like 3

and 4, or 1 and 2, those stacks can use the same stack space, hence this

sequence of patterns gives a maximum of three simultaneously open stacks,

that is the optimum for this instance, as can be seen in Figure 5.4.

106 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

5.2.3 Chords in k-cycles

Another way to reinforce the model is to reduce the number of arcs that

are added to the original MOSP graph. If the graph G is completed to

become an interval graph, it has to be chordal, so in every k-cycle for k ≥ 4

sufficient chords must be added. In a 4-cycle defined by the ordered vertices

{ijkl}, we need to add at least one of the arcs in the diagonal.

i l

kj

Figure 5.5: A 4-cycle must have a chord

In the complement graph there will remain the other diagonal arc, or

none, whose existence is flagged by the variables y. The need to add one of

the arcs [ik], [ki], [jl] or [lj] can be expressed by the restriction:

yik + yki + yjl + ylj ≤ 1

∀[ik], [jl] /∈ E, [ij], [jk], [kl], [li] ∈ E
(5.6)

Lemma 5.2.1. Constraints (5.6) can be derived from the Olariu’s con-

straints (4.10).

Proof. Consider the following Olariu’s inequalities:

yik ≤ xlk, yjl ≤ xkl

yik ≤ xjk, ylj ≤ xkj

yki ≤ xli, yjl ≤ xil

yki ≤ xji, ylj ≤ xij

Therefore,

yik + yjl ≤ 1

yik + ylj ≤ 1

yki + yjl ≤ 1

yki + ylj ≤ 1

5.2. OTHER VALID INEQUALITIES 107

Furthermore,

yik + yki ≤ 1

ylj + yjl ≤ 1

The six constraints combined enforce that, when a binary variable ypq,

with pq ∈ {lj, jl, ik, ki} takes the value 1, all the other variables in the set

take the value 0. Therefore, the constraint (5.6) for the non-chordal 4-cycle

follows.

In fact, the constraint is a clique constraint derived from a 4 vertex

incompatibility graph: each vertex corresponds to a y variable and each of

the six edges corresponds to a constraint that states that we can only select

one of the vertices at the ends of the edge. The graph is a clique, and only

one of the vertices can be selected.

yik• •−

•�
��
��

yki

yjl

~~~~~~~
ylj
•

     

@@@@@@@

A 5-cycle needs at least two chords, but not any chord will do, because

the two chords must share a vertex, as in Figure 5.6(a).

(a) (b)

i
j

k

l

m

i
j

k

l

m

Figure 5.6: 5-cycles with two chords: (a) is chordal, (b) is not chordal

In a 5-cycle defined by the ordered vertices {ijklm}, the inequality

should be:

yil + yli + yik + yki + yjl + ylj + yjm + ymj + ymk + ykm ≤ 3

∀[ik], [il], [jl], [jm], [km] /∈ E, [ij], [jk], [kl], [lm], [mi] ∈ E
(5.7)

The number 3 comes from the fact that we need at least 2 chords from the

possible 5 chords, so there must be at most 3 chords left in the complement

graph, causing the defined variables y to sum at most 3.

Lemma 5.2.2. Constraints (5.7) can be derived from the Olariu’s con-

straints (4.10).



108 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

Proof. Consider the following Olariu’s inequalities in a 5-cycle {ijklm}:
ymk ≤ xik, ymk ≤ xlk, ymk ≤ xmk
yli ≤ xki, yli ≤ xmi, yli ≤ xli
yki ≤ xli, yki ≤ xji, yki ≤ xki
yjl ≤ xil, yjl ≤ xkl, yjl ≤ xjl
yil ≤ xjl, yil ≤ xml, yil ≤ xil
ymj ≤ xlj, ymj ≤ xij, ymj ≤ xmj
ykm ≤ xjm, ykm ≤ xlm, ykm ≤ xkm
ylj ≤ xmj, ylj ≤ xkj, ylj ≤ xlj
yjm ≤ xkm, yjm ≤ xim, yjm ≤ xjm
yik ≤ xmk, yik ≤ xjk, yik ≤ xik

Therefore, summing up in groups of two the inequalities from the first

column,

ymk + yli ≤ 1

yki + yjl ≤ 1

yil + ymj ≤ 1

ykm + ylj ≤ 1

yjm + yik ≤ 1

Furthermore, summing up the inequalities in the second column that

refer to symmetric variables x, we have:

yjm + yli ≤ 1

ymj + yki ≤ 1

yik + ylj ≤ 1

yjl + ymk ≤ 1

ykm + yil ≤ 1

Combining in pairs the inequalities in the third column we get:

yil + yli ≤ 1

yik + yki ≤ 1

yjl + ylj ≤ 1

yjm + ymj ≤ 1

ykm + ymk ≤ 1



5.2. OTHER VALID INEQUALITIES 109

And finally crossing the inequalities in the first column with the corre-

spondent inequalities in the third column we obtain ten more inequalities:

yil + ylj ≤ 1

yli + yik ≤ 1

yik + ykm ≤ 1

yki + yil ≤ 1

yjl + yli ≤ 1

ylj + yjm ≤ 1

yjm + ymk ≤ 1

ymj + yjl ≤ 1

ykm + ymj ≤ 1

ymk + yki ≤ 1

The 25 constraints combined enforce that, when a binary variable ypq,

with pq ∈ {ik, ki, il, li, jl, lj, jm,mj, km,mk} takes the value 1, only two

more of the other variables in the set can take the value 1. Therefore, the

constraint (5.7) for the non-chordal 5-cycle follows.

In fact, the constraint can be derived from a 10 vertex incompatibility

graph: each vertex corresponds to a y variable and each of the 25 edges

corresponds to a constraint that states that we can only select one of the

vertices at the ends of the edge. In this graph there is a central symmetry,

each vertex has degree 5, and we can only select at most three vertices.

ymj

yilyli

ymk

ykm

ylj

yjl yki

yik

yjm



110 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

Similar constraints can be made to k-cycles of greater order that can be

found in the initial graph. For the resulting graph to be chordal, we will

need to add to each k-cycle only the appropriate k − 3 chords. Not every

choice of k − 3 chords works, as we can see in the following picture.

ij

k

l m

n

A 6-cycle with two chords that is not chordal

ij

k

l m

n

A 6-cycle with two chords that is chordal

This result is easily proved by induction. For any 4-cycle we just need

to add one directed arc between two of the non-adjacent vertices. Let us

assume that in any k-cycle, for k ≥ 4, we just need to add k − 3 arcs to

make it chordal. Given a (k + 1)-cycle, we start by adding an arc between

one of the vertices and, not the next, but the second following vertex in the

cycle.

i
j

k

l

m
n

o

A 7-cycle with a chord becomes a 6-cycle and a 3-cycle

We get a 3-cycle and a remaining k-cycle, so by induction this remaining

k-cycle needs k − 3 arcs to become chordal, giving a total of k − 2 arcs to

the (k + 1)-cycle to become chordal.



5.2. OTHER VALID INEQUALITIES 111

If we had chosen to add a different chord to the (k+ 1)-cycle, we would

obtain a i-cycle and a (k + 3 − i)-cycle, for 3 ≤ i ≤ k. In the i-cycle we

would need to add i− 3 arcs and in the (k + 3− i)-cycle k − i arcs, giving

a total number of arcs:

1 + (i− 3) + (k − i) = k + 2 = (k + 1)− 3

proving the result.

Hence for a k-cycle to be chordal, we just need to add k−3 chords. But

we may need to have more than these k− 3 chords, if we also want it to be

an interval graph. We need the extra arcs to have the sequence of cliques.

So the number or chords we add in a k-cycle must be greater than or equal

to k − 3.

The sum of the variables y defined must be at most the number of arcs

in a clique of size k minus the lateral arcs that form the cycle, minus the

k − 3 necessary chords, performing a total of:

k(k − 1)

2
− k − (k − 3) =

(k − 3)(k − 2)

2

Hence the inequality for a general k-cycle is:

∑

i,j∈k-cycle
[ij]/∈E

yij ≤
(k − 3)(k − 2)

2

5.2.4 Coloring the Vertices of the Interval Graph

The value of the optimum of the MOSP is equal to the size of the biggest

clique in the solution graph ω(H) and, because interval graphs are perfect

graphs, it is equal to the chromatic number of the graph χ(H), which is

the number of colors needed to assign to the vertices of the graph such that

there are no two adjacent vertices of the same color.

To explain the relations between the intervals horizontally, we will add an

extra set of variables z, based on the asymmetric representatives formulation

for the vertex coloring problem by Campêlo et al. [12].

Definition 5.2.3. Given a graph G = (V,E), a linear ordering of V , and a

coloring of V such that adjacent vertices have different colors, we say that

a vertex i ∈ V is a representative if i precedes all other vertices with the

same color of i. We say that vertex i ∈ V represents vertex j ∈ V if i and

j have the same color and if i is a representative.



112 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

For example, in the graph correspondent to Figure 5.4, vertex 3 would

represent vertex 4.

If we assign colors to the vertices of the desired interval graph, such that

no two adjacent vertices have the same color, we can count the maximum

number of simultaneously open stacks by counting the minimum number of

different colors needed, because simultaneously open stacks will get different

colors, and stacks that do not overlap can have the same color.

The variables that we will use are:

zij =

{
1 if vertex i represents vertex j
0 otherwise

∀i, j ∈ V : [ij] /∈ E

Note that if i ∈ V is a representative then zii = 1.

Therefore the number of different colors is counted by the number of

representatives vertices:
N∑

i=1

zii = K (5.8)

There is also a constraint to set that all N vertices must have representatives

N∑

i=1
[ij]/∈E

N∑

j=1
[ij]/∈E

zij = N (5.9)

but each vertex has only one representative:

N∑

i=1
[ij]/∈E

zij = 1 ∀j = 1, ..., N (5.10)

A vertex i represents a vertex j (zij = 1) only if i is a representative vertex

zij ≤ zii ∀i, j = 1, ..., N with [ij] /∈ E (5.11)

and only if i and j share the same stack (yij = 1):

zij ≤ yij ∀i, j = 1, ..., N with [ij] /∈ E (5.12)

In the previous example (see Figure 5.7), vertex 3 can only represent

vertices 2 or 4, which is stated by inequalities (5.12), because variables y32

and y34 are the only non-null variables of type y3j in the solution, and only

if z33 = 1, which means that interval 3 is the “leader”of a new stack.

If there is a vertex that represents more than one vertex, then all those

vertices must share the same stack space. That possibility happens only

when variables y become 1.



5.2. OTHER VALID INEQUALITIES 113

H
5 1

42

3

1

5

3 4

2

 

Figure 5.7: Colored interval graph and interval representation of the solution
of the example in Table 5.2

Consider three non adjacent vertices i, j, k ∈ V such that in the solution

i is a representative vertex of j and k. In that case, [jk] /∈ F and all

three vertices must share the same stack space. Inequality (5.12) is not

enough, because it only forces yij = 1 and yik = 1 saying that i and j

are not simultaneous intervals, neither i and k. But j and k must not be

simultaneous too, because they share the same color. So either j finishes

before k starts (making yjk = 1) or k finishes before j starts (ykj = 1).

i k j

or

i j k

Figure 5.8: Possible interval representations for an interval graph where
vertex i is a representative of vertices j and k

Conversely, if [jk] ∈ F then yjk = ykj = 0, making impossible for vertex

i to represent both the vertices j and k. The corresponding inequality is

then:

zij + zik ≤ yjk + ykj + 1

∀i, j, k ∈ V : [ij], [ik], [jk] /∈ E
(5.13)

If there are more than three vertices in this situation, the inequalities

(5.12) force the representative vertex to close before every one of its repre-

sented vertices opens, and inequalities (5.13) allow each pair of the repre-

sented vertices to share the same stack by forcing one of the variables y in

the pair to be 1. The transitivity of the linear ordering extends this sharing

of the stack for all the represented vertices.



114 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

A vertex in the anti-neighborhood of each clique can represent only one

vertex of the clique. For a vertex i in the anti-neighborhood of a 2-clique

{jk} we have the inequality

zij + zik ≤ zii
∀i, j, k ∈ V : [ij], [ik] /∈ E, [jk] ∈ E

(5.14)

There is a similar inequality for a 3-clique {jkl}

zij + zik + zil ≤ zii
∀i, j, k, l ∈ V : [ij], [ik], [il] /∈ E, [jk], [kl], [lj] ∈ E

(5.15)

and for a 4-clique {jklm}

zij + zik + zil + zim ≤ zii
∀i, j, k, l,m ∈ V : [ij], [ik], [il], [im] /∈ E, [jk], [jl], [jm], [kl], [km], [lm] ∈ E

(5.16)

In our example, we can see in Figure 5.7 that there is a 2-clique {2, 4}
which originates the inequality

z32 + z34 ≤ z33

which means that vertex 3, which is in the anti-neighborhood of that clique,

can only represent vertex 2 or vertex 4 and only if 3 is a representative, i.e.,

interval 3 can use the same stack space as interval 2 or interval 4 but not

both, and only if interval 3 is the “leader”of that stack (see Figure 5.4).

We can also derive an inequality for coloring the induced cycles of the

graph. In a 5-cycle we need to add at least 2 chords, maintaining the

minimum number of colors 3, as depicted in Figure 5.9.

i

j

k

l

m

Figure 5.9: A minimum colored 5-cycle after adding 2 chords

In result, there is a maximum of two pairs of vertices with the same

color; therefore we can have at most 2 vertices that represent other vertices



5.2. OTHER VALID INEQUALITIES 115

of that 5-cycle, making the sum of the variables z involved in this cycle at

most 2.

zil + zli + zik + zki + zjl + zlj + zjm + zmj + zmk + zkm ≤ 2

∀i, j, k, l,m ∈ V : [ij], [jk], [kl], [lm], [mi] ∈ E and [ik], [il], [jl], [jm], [km] /∈ E
(5.17)



116 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

5.3 The Revised Formulation of the Model for

MOSP

Given an instance of a MOSP problem, let the graph G = (V ;E) be the

associated graph and |V | = N and |E| = M . The mathematical formu-

lation that was presented in Chapter 4 can now be improved considering

the variables and the inequalities explained in the previous sections of this

Chapter.

Therefore, our revised integer programming formulation for the MOSP

combines the basic inequalities of the model studied in the previous chapter,

either in their first form (4.7) to (4.15), or using the reduced number of

variables (4.34) to (4.44), with the new inequalities (5.2) to (5.17) developed

in this chapter.

Minimize K

Subject to:

0 ≤ xij + xjk − xik ≤ 1 ∀i, j, k = 1, ..., N, i < j < k (5.18)

yij − xij ≤ 0 ∀i, j = 1, ..., N, i < j, [ij] /∈ E (5.19)

yij + xji ≤ 1 ∀i, j = 1, ..., N, j < i, [ij] /∈ E (5.20)

yij − xkj ≤ 0 ∀i, j, k = 1, ..., N, k < j, [ij] /∈ E, [ik] ∈ E (5.21)

yij + xjk ≤ 1 ∀i, j, k = 1, ..., N, j < k, [ij] /∈ E, [ik] ∈ E (5.22)

0 ≤ yik − yij + xkj ≤ 1 ∀i, j, k = 1, ..., N, k < j, [ij], [ik] /∈ E (5.23)

0 ≤ yij − yik + xjk ≤ 1 ∀i, j, k = 1, ..., N, j < k, [ij], [ik] /∈ E (5.24)
j−1∑

i=1

xij +

N∑

i=j+1

(1− xji)−
N∑

i=1
[ij]/∈E

yij + 1 ≤ K ∀j = 1, ..., N (5.25)

yij + yki ≤ 1 ∀i, j, k = 1, ..., N with [ij], [ik] /∈ E, [jk] ∈ E (5.26)

yij + yjk ≤ 1 ∀i, j, k = 1, ..., N with [ij], [jk] /∈ E, [ik] ∈ E (5.27)

yij + ylk ≤ 1 ∀i, j, k, l = 1, ..., N with [ij], [kl] /∈ E, [jl], [ik] ∈ E (5.28)

yij + yjk − yik ≤ 1 ∀i, j, k = 1, ..., N with [ij], [jk], [ik] /∈ E (5.29)

yik + yki + yjl + ylj ≤ 1
∀i, j, k, l = 1, ..., N with i 6= j 6= k 6= l,

[ik], [jl] /∈ E, [ij], [jk], [kl], [li] ∈ E
(5.30)

yil + yli + yik + yki + yjl+

+ylj + yjm + ymj + ymk + ykm ≤ 3

∀i, j, k, l,m = 1, ..., N with i 6= j 6= k 6= l 6= m,

[ik], [il], [jl], [jm], [km] /∈ E, [ij], [jk], [kl], [lm], [mi] ∈ E
(5.31)



5.3. THE REVISED FORMULATION OF THE MODEL FOR MOSP 117

N∑

i=1

zii = K (5.32)

N∑

i=1
[ij]/∈E

N∑

j=1
[ij]/∈E

zij = N (5.33)

N∑

i=1
[ij]/∈E

zij = 1 ∀j = 1, ..., N (5.34)

zij ≤ yij ∀i, j = 1, ..., N with [ij] /∈ E (5.35)

zij + zik − yjk − ykj ≤ 1 ∀i, j, k = 1, ..., N with [ij], [ik], [jk] /∈ E (5.36)

zij ≤ zii ∀i, j = 1, ..., N with [ij] /∈ E (5.37)

zij + zik ≤ zii ∀i, j, k = 1, ..., N with j < k, [ij], [ik] /∈ E, [jk] ∈ E (5.38)

zij + zik + zil ≤ zii
∀i, j, k, l = 1, ..., N with j < k < l,

[ij], [ik], [il] /∈ E, [jk], [kl], [lj] ∈ E
(5.39)

zij + zik + zil + zim ≤ zii
∀i, j, k, l,m = 1, ..., N with j < k, j < l, k < m,

[ij], [ik], [il], [im] /∈ E, [jk], [jl], [jm], [kl], [km], [lm] ∈ E
(5.40)

zil + zli + zik + zki + zjl+

+zlj + zjm + zmj + zmk + zkm ≤ 2

∀i, j, k, l,m = 1, ..., N with i 6= j 6= k 6= l 6= m,

[ik], [il], [jl], [jm], [km] /∈ E, [ij], [jk], [kl], [lm], [mi] ∈ E
(5.41)

xij ∈ {0, 1} ∀i, j = 1, ..., N with i < j (5.42)

yij ∈ {0, 1} ∀i, j = 1, ..., N with i 6= j, [ij] /∈ E (5.43)

zij ∈ {0, 1} ∀i, j = 1, ..., N with [ij] /∈ E (5.44)

K ∈ N (5.45)

In this formulation, the optimum value for the MOSP is represented by

K, and expression (5.25) assures it has a lower bound. Inequalities (5.18)

choose the linear ordering of the vertices.

The statements (5.19) to (5.24) relate the variables x and y. The impli-

cation between closing precedences and opening precedences is settled by

(5.19) and (5.20). The following, (5.21) to (5.24) have to do with the charac-

terization of an interval graph by Olariu, which is reinforced by inequalities

(5.26) to (5.28).

Inequality (5.29) declares that the complement graph has to be a com-

parability graph. Equations (5.30) and (5.31) add the necessary number of

chords in 4-cycles and 5-cycles, respectively.

The coloring of the stacks is expressed by inequalities (5.32) to (5.41).

The first of these inequalities identifies the number of colors as the number



118 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

of simultaneously open stacks. The next two inequalities (5.33) and (5.34)

say that every vertex has one and only one representative.

The inequalities (5.35) and (5.36) relate the y variables with the z vari-

ables. The first one states that if a vertex represents another vertex then

they cannot be adjacent in the interval graph, and the second inequality

says that if two vertices are represented by a same third vertex, they have

the same color and thus there must not be any arc between them.

The next four inequalities (5.37) to (5.40) are concerned with the number

of representatives that can exist in the anti-neighborhood of a clique, and

(5.41) restrict the number of representatives that can exist in a 5-cycle.

Last, (5.42), (5.43) and (5.44) state that both the variables x, y and z

are binary integers, y, z are defined only for items that are not present in

the same pattern, and (5.45) defines the integer variable that counts the

number of simultaneous open stacks.

5.4 Computational Tests

The original integer programming model with all the inequalities discussed

in this chapter and the version with reduced number of variables were tested

on the instances of the Constraint Modeling Challenge 2005, available at:

http://www.cs.st-andrews.ac.uk/∼ipg/challenge/instances.html

The instances were provided by the participants in the challenge and present

different kinds of difficulty, such as size, sparseness and symmetry. Com-

putational tests were performed with ILOG OPL Development Studio 5.5

on an IntelrCore2 Duo T7200@2.00GHz 0.99GB RAM. For each instance,

the best objective value found by the model, the best lower bound, the gap,

the number of nodes of the search tree and the runtime were recorded.

In small instances we found the optimal solution in just a few seconds.

In larger instances we found the optimal solution in a few seconds as well,

but it takes too long to prove that it is optimal, specially in instances with

many symmetries. In really large instances the models could not be started

because there was not enough memory to handle so many variables and

inequalities.

The model with reduced number of variables improved the gap and the

runtime in some of the larger instances, but not in all of them. The cells in

green in Table 5.3 represent the cases where the reduced model improved

the gap, the runtime or the number of nodes.

http://www.cs.st-andrews.ac.uk/~ipg/challenge/instances.html


5.4. COMPUTATIONAL TESTS 119

According to the charts, the reduced model performed slightly better in

terms of runtime and number of nodes in the branching, but the difference

between the models is not significant.



120 CHAPTER 5. POLYHEDRAL ANALYSIS AND VALID INEQUALITIES

5.5 Conclusions

In this Chapter we proved that the basic model proposed for the minimiza-

tion of open stacks is a full-dimensional polytope with most of the valid

inequalities in it representing facets. We have developed more inequalities

and have added them to the model to strengthen the formulation. Finally

we have presented computational results for the two versions of the model

discussed for the minimization of open stacks.



5.5. CONCLUSIONS 121

Instance
No. 

Items 
(N)

Best 
Objective 

Value 

Best 
LB

Gap
Runtime 

(s)

Nodes in 
search 

tree

Best 
Objective 

Value 

Best 
LB

Gap
Runtime 

(s)

Nodes in 
search 

tree

Harvey wbo_10_10_1 10 3 3 0% 11,06 0 3 3 0% 64,78 0

Harvey wbo_10_20_1 10 5 5 0% 5,50 209 5 5 0% 4,78 106

Harvey wbo_10_30_1 10 6 6 0% 3,75 190 6 6 0% 3,00 121

Harvey wbop_10_10_1 10 3 3 0% 1,76 0 3 3 0% 1,00 0

Harvey wbop_10_20_10 10 5 5 0% 3,26 44 5 5 0% 3,79 55

Harvey wbp_10_10_30 10 9 9 0% 1,50 0 9 9 0% 0,75 0

Simonis 10_10_1 10 5 5 0% 3,50 65 5 5 0% 2,82 76

Simonis 10_10_50 10 5 5 0% 2,85 19 5 5 0% 2,50 19

Simonis 10_20_100 10 6 6 0% 0,50 0 6 6 0% 0,87 0

Simonis Problem 10_20_150 10 9 9 0% 0,75 0 9 9 0% 0,84 0

Wilson nwrsSmaller4_1 10 3 3 0% 0,75 0 3 3 0% 1,03 0

Wilson nwrsSmaller4_2 10 4 4 0% 0,54 0 4 4 0% 1,09 0

Harvey wbo_15_15_1 15 3 3 0% 17,07 10 3 3 0% 18,76 6

Harvey wbo_15_30_1 15 4 4 0% 3,65 0 4 4 0% 13,89 0

Harvey wbop_15_30_15 15 11 11 0% 997,04 21433 11 11 0% 272,29 5540

Harvey wbp_15_15_1 15 4 4 0% 1,51 0 4 4 0% 3,76 0

Harvey wbp_15_15_35 15 14 14 0% 1,53 0 14 14 0% 1,54 0

Simonis 15_15_200 15 11 11 0% 2,29 0 11 11 0% 2,26 0

Simonis 15_15_90 15 11 10 9% 3127,75 148083 11 11 0% 3086,39 174768

Simonis 15_30_100 15 14 14 0% 0,75 0 14 14 0% 1,35 0

Simonis Problem 15_15_100 15 11 11 0% 177,17 5056 11 11 0% 272,53 7834

Wilson nwrsSmaller_4 15 7 7 0% 7,82 11 7 7 0% 2,67 0

Wilson nwrsSmaller4_3 15 7 7 0% 1,25 0 7 7 0% 4,00 0

Harvey wbo_20_10_1 20 6 5 17% 826,09 361 6 5 17% 1307,15 696
Harvey wbo_20_20_1 20 3 3 0% 20,04 0 3 3 0% 18,87 0
Harvey wbop_20_10_10 20 8 6 25% 868,25 284 8 7 13% 806,00 460
Harvey wbop_20_10_15 20 12 9 25% 1646,03 1936 12 12 0% 516,03 507
Miller 20 13 11 15% 1985,75 1871 13 9 30% 1923,10 3017
Shaw Instance_1 20 14 12 14% 1950,50 6237 14 12 14% 1951,51 6757
Shaw Instance_10 20 13 11 15% 1929,78 5051 13 10 23% 1935,01 4950
Shaw Instance_2 20 12 12 0% 1897,75 3349 12 11 8% 1981,75 3214
Shaw Instance_3 20 14 12 14% 1981,75 7344 14 12 14% 1982,50 6397
Simonis Problem 20_10_1 20 9 7 22% 1892,51 1422 9 7 22% 1941,28 1609
Simonis Problem 20_20_100 20 19 19 0% 3,50 0 19 19 0% 4,25 0
Wilson nrwsLarger_1 20 12 12 0% 13,00 0 12 12 0% 4,31 0
Wilson nrwsLarger4_2 20 12 12 0% 14,29 5 12 12 0% 5,03 0
Wilson nrwsLarger_3 25 10 10 0% 8,75 0 10 10 0% 148,60 10
Wilson nrwsLarger_4 25 16 14 13% 1413,50 720 16 14 13% 188,10 38
Wilson SP_1 25 9 8 11% 378,10 2934 9 8 11% 1979,75 49
Harvey wbo_30_15_1 30 7 6 14% 2193,63 2 7 6 14% 2191,26 1
Harvey wbo_30_30_1 30 4 3 25% 1907,06 0 4 3 25% 1934,75 0
Simonis 30_10_1 30 13 9 31% 1681,28 2 12 9 25% 1605,05 100
Simonis 30_15_100 30 27 27 0% 30,71 0 27 27 0% 46,78 3
Simonis Problem 30_30_1 30 21 13 38% 2990,03 54 24 13 45% 1927,45 0

Mean 7% 681,95 4697,55 6% 640,12 4916,66

Reduced MOSP ModelOriginal MOSP Model

Table 5.3: Computational results for the MOSP models





Chapter 6

Variants of the MOSP Model

Having developed a fully functional integer programming model for the

minimization of open stacks problem, we now explore some variants of the

model discussed in the previous Chapters.

The main idea behind the integer programming model presented is the

completion of the MOSP graph with suitable fill edges, with the purpose

of constructing an interval graph. There are several edge completion prob-

lems documented in Section 3.8. Here we address the Minimum Interval

Graph Completion, which searches for the minimum number of fill edges

that should be added to a graph to obtain an interval graph. With small

changes in the objective function and using some of the previous constraints,

we can build an integer programming model for this problem in Graph The-

ory.

Noticing that in most instances there are alternative optimal solutions

for the MOSP, we tried to take the problem further and added a second

step with a new objective function: the minimization of the order spread.

This pattern sequencing problem similar to the MOSP was presented in sec-

tion 2.1.3 and it is also related with the minimum interval graph completion

problem.

There is also another pattern sequencing problem called the Minimiza-

tion of Tool Switches which is addressed in this Chapter, using the similar-

ities between this problem and the MOSP.

At the end of each section we will present some computational results

and short conclusions.

123



124 CHAPTER 6. VARIANTS OF THE MOSP MODEL

6.1 An Integer Programming Model for the Min-

imum Interval Graph Completion Problem

Several edge completion problems have been studied in literature, consisting

of, given a graph G = (V,E), finding a supergraph H = (V,E∪F ) with the

same set of vertices of G and belonging to some predefined class of graphs

C .

The most popular of these problems is called the minimum fill-in prob-

lem (or minimum triangulation), where we want to obtain a chordal graph

H adding the least number of edges |F |. As this problem is NP-hard, it

is frequent to address the minimal fill-in problem that is a polynomially

computable related problem, where it is required only that H is such that

no proper subgraph is chordal.

If H is required to be an interval graph, we can define analogously the

minimum and the minimal interval graph completion problems.

The minimum interval graph completion problem (IGC) has applications

in Cutting Stock Industry, in Archaeology, in DNA physical mapping and

in Numerical Analysis. Two other graph problems equivalent to this have

been studied independently in literature: the minimum sum cut problem

and the profile minimization problem.

In this section we present an integer programming formulation for solv-

ing the minimum interval graph completion problem recurring to a charac-

terization of interval graphs that produces a linear ordering of the maximal

cliques of the solution graph.

6.1.1 Introduction

The minimum interval graph completion problem and similar problems have

been studied widely in terms of complexity, addressed with heuristics and

approximation algorithms, and treated for special classes of input graphs.

However, there have been few integer programming approaches for solving

these type of problems.

In this thesis we propose an integer programming formulation to solve

the minimum interval graph completion problem, based on inequalities from

a known IP model for the linear ordering problem, and new inequalities

inspired on a characterization of interval graphs that uses a linear ordering

of the vertices.



6.1. A MODEL FOR MINIMUM INTERVAL GRAPH COMPLETION 125

The decision variables xij defined as

xij =

{
1 if ϕ(i) < ϕ(j)

0 otherwise
∀i, j ∈ V

set a linear ordering ϕ : V → {1, ..., N} for the vertices and the variables

yij defined only for the possible fill edges [ij] /∈ E

yij =

{
1 if [ij] /∈ E and [ij] /∈ F and ϕ(i) < ϕ(j)

0 if [ij] /∈ E and [ij] ∈ F or ϕ(i) ≥ ϕ(j)

decide which intervals will overlap in the desired interval graph H.

We will not need the variables zij because the number of stacks is irrel-

evant in the minimum interval graph completion problem. The objective is

simply completing the graph with the smallest number of edges to obtain

an interval graph.

The sum of all variables y gives the number of edges that are not added

to the graph G when completing it to an interval graph H. By maximizing

this sum, we get a minimum number of added edges.

The characterization of interval graphs by Olariu and the linear ordering

inequalities will be the main part of the model. We can use just the basic

inequalities from section (4.7), or we can benefit from the improvements

made to the model, such as the reduced number of variables presented in

section (4.8) and the additional inequalities that we derived in section (5.2),

namely the ones that originated from properties of interval graphs.

6.1.2 The Formulation of the Model

Given a graph G = (V ;E) with |V | = N and |E| = M , we compose the

following new mathematical formulation for the minimum interval graph

completion problem using the original variables x and y and the additional

inequalities that strengthen the model.



126 CHAPTER 6. VARIANTS OF THE MOSP MODEL

Maximize
∑

[ij]/∈E

yij

Subject to: xij + xji = 1 ∀i, j ∈ V (6.1)

xij + xjk + xki ≤ 2 ∀i, j, k ∈ V (6.2)

yij ≤ xij ∀i, j ∈ V with [ij] /∈ E (6.3)

yij ≤ xkj ∀i, j, k ∈ V with [ij] /∈ E, [ik] ∈ E (6.4)

yij − yik ≤ xkj ∀i, j, k ∈ V with [ij], [ik] /∈ E (6.5)

yij + yki ≤ 1 ∀i, j, k ∈ V with [ij], [ik] /∈ E, [jk] ∈ E (6.6)

yij + yjk ≤ 1 ∀i, j, k ∈ V with [ij], [jk] /∈ E, [ik] ∈ E (6.7)

yij + ylk ≤ 1 ∀i, j, k, l ∈ V with [ij], [kl] /∈ E, [jl], [ik] ∈ E (6.8)

yij + yjk − 1 ≤ yik ∀i, j, k ∈ V with [ij], [jk], [ik] /∈ E (6.9)

yik + yki + yjl + ylj ≤ 1 ∀i, j, k, l ∈ V with [ik], [jl] /∈ E, [ij], [jk], [kl], [li] ∈ E (6.10)

yil + yli + yik + yki + yjl + ylj+

+yjm + ymj + ymk + ykm ≤ 3

∀i, j, k, l,m ∈ V with [ij], [jk], [kl], [lm], [mi] ∈ E

and [ik], [il], [jl], [jm], [km] /∈ E
(6.11)

xij ∈ {0, 1} ∀i, j ∈ V with i 6= j (6.12)

yij ∈ {0, 1} ∀i, j ∈ V with [ij] /∈ E (6.13)

We use the linear ordering polytope inequality (6.1) to state that either

ϕ(i) < ϕ(j) or ϕ(j) < ϕ(i), and (6.2) to force the transitivity of the linear

ordering:

ϕ(i) < ϕ(j) ∧ ϕ(j) < ϕ(k)⇒ ϕ(i) < ϕ(k).

The logical implication between variables y and x is stated by (6.3).

Olariu’s characterization of interval graphs is in (6.4) and (6.5), strength-

ened by (6.6)-(6.8). Inequality (6.9) guarantees that the complement graph

of H is a comparability graph and inequalities (6.10) and (6.11) add the

necessary number of chords to chordless cycles of sizes 4 and 5.

This model has N(N−1) binary variables xij and N(N−1)−2M binary

variables yij (because for each one of the M edges [ij] ∈ E the corresponding

variables yij and yji do not exist), therefore the total number of variables

in the model is 2N(N − 1)− 2M .

If we choose to use the reduced number of variables and the correspon-

dent inequalities, we would have to change the first five inequalities in this

model:



6.1. A MODEL FOR MINIMUM INTERVAL GRAPH COMPLETION 127

Maximize
∑

[ij]/∈E

yij

Subject to: (5.18) to (5.24)

(6.6) to (6.11)

xij ∈ {0, 1} ∀i, j = 1, ..., N with i < j

yij ∈ {0, 1} ∀i, j = 1, ..., N with i 6= j, [ij] /∈ E

In this case, the total number of variables is 3N(N − 1)/2− 2M .

6.1.3 Computational Results for IGC

The model was tested on graphs appropriately built from the instances of

the Constraint Modeling Challenge 2005, available at

http://www.cs.st-andrews.ac.uk/∼ipg/challenge/instances.html

Computational tests were performed with ILOG OPL Development Stu-

dio 5.5 on an IntelrCore2 Duo T7200@2.00GHz 0.99GB RAM. We tested

each instance with both the original model and the reduced version of the

model: the optimal solution, the number of nodes of the search tree and

the runtime are recorded in Table 6.1.

As the model maximizes the sum of all variables y, which is the number

of arcs that do not exist in H, the number of fill edges |F | in the solution,

that is the minimum number of edges for an interval completion H of G,

was also registered. Clearly, the sum of the optimal solution with |E| and

|F | is equal to the number of edges in a complete graph.

In all of the instances tested, the optimal solution was reached and

proved optimal, using both of the models presented in this paper. In small

and medium instances the optimal solution was found in just a few sec-

onds or minutes. Unfortunately, for larger instances there was not enough

memory to handle the model. Comparing the results of the original for-

mulation with the reduced model, we can see that the runtime and the

number of nodes in search tree are similar for most of the instances. In

some instances the reduced model was able to decrease the runtime, or the

number of nodes. This did not happen with all of the instances, because in

IP it is really more important to strengthen the lower bound from the linear

programming relaxation rather than to reduce the number of variables.

http://www.cs.st-andrews.ac.uk/~ipg/challenge/instances.html


128 CHAPTER 6. VARIANTS OF THE MOSP MODEL

Table 6.1: Computational results of the IP model for the minimum interval
graph completion problem

6.2 Minimization of the Stack Occupation

The model we have developed for the minimization of open stacks can be

used in another pattern sequencing problem, where the objective is to find

an optimal sequence to process the cutting patterns in order to minimize

the occupation of the stacks.

6.2.1 Introduction

The problem we address here is similar to minimizing the flow time of the

orders: besides having the minimum number of open stacks, we also want

to minimize the sum of the time that the stacks remain open within the

system.

The sequence in which preset cutting patterns are processed can affect



6.2. MINIMIZATION OF THE STACK OCCUPATION 129

the flow and total completion time, so it is desirable to optimize the occu-

pation of the stacks to eliminate unnecessary dispersion.

A solution can also be modeled by an interval graph exhibiting a set of

intervals that match the duration of stacks. Hence we can benefit from the

IP model discussed in the previous chapters and, with small modifications,

use it to reduce the occupation of the stacks. This goal will be achieved by

adding the least number of edges to the interval graph.

Recall the minimization of order spread problem discussed in section 2.1.3.

Most of the authors define the MORP as the minimization of the average

stack spread, which is the time between the opening and the closing of each

stack, measured in number of patterns.

The minimization of the stack occupation comprehends both the objec-

tives from the minimization of the order spread and the minimization of the

number of open stacks.

When considering the MOSP, it is usual to find more than one optimal

solution, in the sense that there is more than one sequence of the cutting

patterns that achieves the same maximum number of open stacks. We may

be interested in choosing between these optimal solutions of the MOSP

according to a different criterion. A natural choice is the minimization of

the order spread.

In Figure 6.1 we can see two optimal solutions concerning the minimiza-

tion of open stacks problem that have different total stack occupation.

Figure 6.1: Number of open stacks and total stack occupation for the in-
stance wbo10101

Our model consists in finding out which arcs should be added to the



130 CHAPTER 6. VARIANTS OF THE MOSP MODEL

original MOSP graph G = (V,E) in order to get an interval graph H =

(V,E ∪F ) that minimizes the stack occupation while keeping the minimum

number of simultaneously open stacks.

The model we present is divided in two steps. In a first step, the min-

imum number of open stacks is determined, and then in a second step, we

search for a new sequence of the patterns that improves the total stack

spread while using the optimal number of open stacks.

Figure 6.2: A two step model to minimize the occupation of stacks

6.2.2 The formulation of the model

In the first step the formulation is the same as in section 5.3, with the

objective to minimize the maximum number of open stacks.

STEP1: Minimize K

Subject to: (5.18) to (5.45)

Let us denote the optimal number of open stacks found by MOSP ∗.

Then, in the second step, the objective becomes the minimization of the

stack spread.

To minimize the average order spread is equivalent to minimizing the

total stack spread. This is also equivalent to minimizing the number of

fill-in zeros obtained in the matrix of the description of the cutting patterns

after the columns have been rearranged to match the sequence in which the

patterns will be processed.

This is done by minimizing the number of arcs that are added to the

MOSP graph in order to obtain an interval graph. As the variables yij are

1 when an arc is not added to the graph, we can minimize the number

of added arcs by maximizing the sum of the variables yij. Therefore the

objective function in step 2 is:



6.2. MINIMIZATION OF THE STACK OCCUPATION 131

max
∑

[ij]/∈E

yij (6.14)

To guarantee that the optimal number of open stacks does not increase

from step 1 to step 2, some of the inequalities have to be modified. The

inequality that carried the main lower bound for the MOSP in step 1, (5.25),

must now force the number of open stacks at each instant to be less than

or equal to the optimal number of open stacks found in step 1, MOSP ∗.

N∑

i=1
i 6=j

xij −
N∑

i=1
[ij]/∈E

yij + 1 ≤MOSP ∗ ∀j ∈ V (6.15)

The number of colors should also be the optimal number of stacks found

previously in step 1, thus the inequality that counts the number of col-

ors (5.32) must be altered to:

N∑

i=1

sii = MOSP ∗ (6.16)

Statement (5.45) is removed and the remaining inequalities in the model

are maintained.

STEP2: Maximize
∑

[ij]/∈E

yij

Subject to: (5.18) to (5.24)

(6.15)

(5.26) to (5.31)

(6.16)

(5.33) to (5.44)

6.2.3 Computational results for the minimization of the

occupation of the stacks

The model for the minimization of the occupation of the stacks was tested

on the instances of the Constraint Modeling Challenge and the results are

presented in Table 6.2.

In the second step we were able to obtain the optimal solution in every

instances tested. This second step allowed to reduce the order spread in

almost every instance, while maintaining the same optimal number of open



132 CHAPTER 6. VARIANTS OF THE MOSP MODEL

Instance
Number 
of items 

|V|

Number 
of 

patterns

Best obj. 
value 

MOSP

Best 
LB 

MOSP
Gap

#arcs 
added 

|F|

Nodes in 
search 

tree

Runtime 
(s)

Best obj. 
value 
ysum

Gap
#arcs 
added 

|F|

Max # 
open 

stacks

Nodes in 
search 

tree

Runtime 
(s)

Harvey wbo_10_10_1 10 10 3 3 0% 6 0 11,06 31 0% 4 3 1 1,82
Harvey wbo_10_30_1 10 30 6 6 0% 9 190 3,75 12 0% 9 6 0 0,75
Simonis 10_20_100 10 20 6 6 0% 5 0 0,50 16 0% 0 6 0 0,89
Wilson nwrsSmaller4_1 10 20 3 3 0% 0 0 0,75 28 0% 0 3 0 1,01
Wilson nwrsSmaller4_2 10 20 4 4 0% 0 0 0,54 23 0% 0 4 0 0,54
Harvey wbo_15_15_1 15 15 3 3 0% 8 10 17,07 86 0% 4 3 0 2,25
Harvey wbo_15_30_1 15 30 4 4 0% 9 0 3,65 72 0% 8 4 0 2,26
Simonis 15_15_100 15 15 11 11 0% 17 5056 177,17 18 0% 10 11 0 1,75
Wilson nwrsSmaller4_3 15 25 7 7 0% 5 0 1,25 52 0% 0 7 0 1,54
Wilson nwrsSmaller4_4 15 25 7 7 0% 5 11 7,82 40 0% 1 7 0 1,37
Harvey wbo_20_10_1 20 10 6 5 17% 14 361 826,09 129 0% 11 6 20 49
Harvey wbo_20_20_1 20 20 3 3 0% 14 0 20,04 164 0% 7 3 14 49,76
Miller 20 40 13 13 0% 58 14245 18731,73 34 0% 56 13 188 382,53
Shaw Instance_1 20 20 14 14 0% 38 167846 45323,62 45 0% 21 14 0 9,4
Wilson nrwsLarger4_1 20 30 12 12 0% 12 0 13,00 46 0% 3 12 0 3,29
Wilson nrwsLarger4_2 20 30 12 12 0% 6 5 14,29 46 0% 1 12 0 3,06
Wilson nrwsLarger4_3 25 60 10 10 0% 2 0 8,75 162 0% 2 10 0 8,01
Wilson nrwsLarger4_4 25 60 16 14 13% 30 720 1413,50 65 0% 26 16 0 10,79
Wilson SP_1 25 25 9 8 11% 70 200 378,10 197 0% 25 9 26 445,28
Harvey wbo_30_15_1 30 15 7 6 14% 47 2 2193,63 312 0% 40 7 15 1161,5
Harvey wbo_30_30_1 30 30 4 3 25% 20 0 1907,06 399 0% 7 4 28 1171,3
Simonis 30_15_100 30 15 27 27 0% 18 0 30,71 20 0% 4 27 0 21,04

Min Open Stacks Problem Min Stacks Occupation

Table 6.2: Results for the two step model for minimizing the stack occupa-
tion

stacks. This reduction was very significant in many cases, decreasing around

75% of the number of added edges.



6.3. MINIMIZATION OF TOOL SWITCHES 133

6.3 Minimization of Tool Switches

The model developed in this thesis for the MOSP can be compared with

the models from Tang and Denardo [57] and Laporte and Semet [41] that

were originally developed for the MTSP. In [41] it is mentioned that the

model of Laporte seriously improved the lower bound of Tang’s model on

a particular instance. We adapted our model to the MTSP to compare the

value of the linear relaxation of our model with the values described in that

paper.

Recall that there are similarities between the minimization of open stacks

and the minimization of tool switches. The jobs can act as cutting patterns

that need to be sequenced and the tools can act as piece types. The intervals

in the solution will correspond to the intervals of time during each tool is

loaded in the machine.

It was discussed previously in Section 2.1.6 that the MOSP and the

MTSP are not equivalent problems, unless the capacity of the machine is

equal to the optimal solution of the MOSP. So, to adapt our model to be

able to solve the MTSP we have to change the objective function and add

a constraint to say that the maximum number of stacks is equal to the

capacity of the machine C.

K = C (6.17)

A tool switch occurs each time that an interval i ends and another

interval j starts, while i and j share the same stack. This corresponds to

two vertices in the graph with the same color and the first vertex i being a

representative of the second vertex j, if the first interval i is the leader of

the stack. If it is not, then there is a third vertex k that is the leader of

that stack and that represents vertex j. Actually, in that case there are two

tool switches from k to i and from i to j. The first tool switch is defined

by i being represented by k, and the second tool switch is declared by j

being represented by k. Each tool switch is counted by that vertex being

represented by a different vertex, thus the number of tool switches can be

counted by the number of pairs of representative-represented vertices.

In our model this is captured by the variables zij that say when a vertex

represents the color of another. The sum of all variables zij such that i 6= j

counts the number of tool switches. The objective function will then be:

min
N∑

i=1

N∑

j=1,j 6=i

zij (6.18)



134 CHAPTER 6. VARIANTS OF THE MOSP MODEL

However, our model will have a limited use in this problem. If the

capacity of the tool magazine is smaller than the minimum number of open

stacks, the MOSP can only be used to determine a lower bound for the

number of tool switches:

Proposition 6.3.1. [63] Let M be the number of tools, C the capacity of the

tool magazine, v the minimum number of tool switches and C∗ the optimal

solution value of the corresponding MOSP. If C < M then LB4 := M − C
is a lower bound on the number of tool switches. The optimal value of the

MTSP is strictly greater than the lower bound LB4 when C < C∗, that is,

v > LB4 if C < C∗.

Since C∗ is the minimum number of stacks produced by any sequence of

the jobs, if we have less tool slots, C < C∗, at least one of the stacks must

be interrupted to make one tool switch and resumed again later when that

tool is brought back to the tool magazine.

This is what happens in the following example.

The instance addressed in [57] has 10 jobs and 9 tools (which corresponds

to an instance of the MOSP with 10 patterns and 9 items) but, due to

the dominance of patterns, the instance can be reduced to six patterns as

presented in Table 6.3.

Jobs J1 J2 J3 J4 J5 J6
Tool 1 1 1 0 1 0 1
Tool 2 0 0 1 0 0 1
Tool 3 0 1 0 0 1 0
Tool 4 1 0 0 0 0 1
Tool 5 0 1 0 1 1 0
Tool 6 0 0 1 0 0 0
Tool 7 0 0 1 1 0 0
Tool 8 1 0 1 0 1 0
Tool 9 1 0 0 1 0 0

Table 6.3: Instance of the MTSP with 6 jobs and 9 tools

The optimal solution of this instance is 7. The value of the linear re-

laxation in Tang and Denardo’s model is zero. Laporte and Semet found a

value of the linear relaxation equal to 1.9 by using their first model. With

additional constraints they were able to increase it to 2.91, and using a lifted

objective function they obtained a value of 6.0 for the linear relaxation.

With this instance, the MOSP has a minimum value of 5 simultaneous

open stacks, but the capacity of the machine is C = 4; thus a solution



6.4. CONCLUSIONS 135

of the MTSP with only 4 open stacks is infeasible in our model, because

constraint 6.17 would always be violated.

In fact, the MOSP graph has a clique of size 5, which is formed by tools

{1, 5, 7, 8, 9}, (in a lighter color in Figure 6.3), hence it is impossible to find

a sequence with only 4 open stacks.

1

2

3
4

5

6

7
8

9

Figure 6.3: The MOSP graph of Tang and Denardo’s instance

In this case, our model can only be used to find a lower bound for the

minimum number of tool switches. It found that the optimal value of the

MOSP problem, C∗ = 5, is less than the capacity of the tool magazine,

C = 4; thus by Proposition 6.3.1 we have LB4 = M − C = 9− 4 = 5 and,

because C < C∗, it must be v > LB4 = 5, and therefore we have v ≥ 6.

The lower bound obtained in this case for the number of tool switches is 6,

which is the same lower bound obtained by Laporte et Semet.

Figure 6.4: Solution of the MOSP for Tang and Denardo’s instance

6.4 Conclusions

In this chapter we have explored the model developed in the previous chap-

ters in using it to similar but different problems. With slight changes in the



136 CHAPTER 6. VARIANTS OF THE MOSP MODEL

formulation and in the objective function, the model could be run for the

Minimum Interval Graph Completion Problem and for the Minimization

of the Stacks Occupation, and could be used to find lower bounds for the

Minimization of the Tool Switches Problem.



Chapter 7

Conclusions and Future Work

The main integer programming models available in the literature concerning

pattern sequencing in cutting stock problems were studied and compared.

The focus was set on the integer programming models, but we also re-

ferred to other approaches using heuristics, genetic algorithms and dynamic

programming. This research evidenced some relationships between the min-

imization of open stacks problem and graph layout problems. It led to the

study of the graph theory related with perfect graphs and linear ordering

models that could be used to derive a model for the minimization of open

stacks problem.

A new integer programming formulation was developed for the MOSP,

based on the edge completion of a MOSP graph and on a characterization

of interval graphs that uses a perfect elimination ordering of the vertices.

It was proved that most of the basic inequalities of the model are facets

of the polytope. The model was strengthened with more inequalities based

on properties of interval graphs. The computational results obtained with

ILOG OPL Studio software for these alternative formulations of the model

were discussed. Finally, some variations of the model and applications to

other problems in pattern sequencing and in graph layout were explored.

As further work, there is still room for improvements in the model. One

of the topics that should be addressed is the reduction of symmetry in

the sequence of the patterns, which is a crucial factor for improving the

runtime. Even in instances with a small number of vertices, the existence

of symmetry makes the finding of the optimal solution and the proof of

optimality more difficult and time consuming. We have experienced that

issue with the Miller instance in Figure 7.1. One way to reduce symmetry is

137



138 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

to choose an opening order for the neighbors of the first vertex to close and

to include that in the model, no matter what vertex closes first. Clearly,

all the neighbors of the first vertex to close must open beforehand, and, for

instances with a large value of the MOSP, there are many permutations of

the opening order.

Figure 7.1: MOSP graph of the Miller instance

This work focused mainly on the formulation of a good integer program-

ming model. The tests to validate the model were made only with standard

commercial software. A natural direction from here is to derive stronger

models applying decomposition techniques for solving integer programming



139

problems, such as column generation with Dantzig-Wolfe decomposition, or

Lagrangian relaxation.

We did a polyhedral analysis of the main constraints and showed them

to be facets. However, there are more valid inequalities as, for instance, the

4-cycle and 5-cycle chordal constraints discussed in section 5.2.3 and the

neighbor of successor inequalities presented in section 5.2.1, that should be

further analyzed to check if they are facets or dominated faces.

The pattern sequencing problems addressed in this work are treated us-

ing the usual academic conventions of this type of problems, in order to ob-

tain an all-purpose model that may be applied in many industry settings. In

the real industry there are often many other important limitations, such as

the saw time of the cutting process, or the existence of a maximum number

of items that can be piled in a stack. Those constraints were not considered

here and may have impact on the desired solution; thus it would be inter-

esting to adapt this model to a real case study, with all the implications it

would bring.

A future objective is the development of the main model presented in

this thesis to tackle the cutting stock problem and the pattern sequencing

problem in one integrated procedure, similarly to what has been done by

Pinto and Yanasse in [65], or Pilleggi, Morabito and Arenales in [53].

Other possibilities of further work are to explore graph theory problems

similar to the minimum interval graph completion, namely the minimum

fill-in problem and the colored interval sandwich problem.





Bibliography

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods,
8(2):277–284, 1987. [cited at p. 58]

[2] F. Ashikaga and N. Soma. A heuristic for the minimization of open stacks
problem. Pesquisa Operacional, 29(2):439 – 450, 2009. [cited at p. 34, 35]

[3] M. G. Banda and P. J. Stuckey. Dynamic programming to minimize the
maximum number of open stacks. Informs Journal On Computing, 19:607–
617, 2007. [cited at p. 35]

[4] P. Baptiste. Simple mip formulations to minimize the maximum number
of open stacks. In Constraint Modelling Challenge, pages 9–13, Edinburgh,
Scotland, July 31 2005. IJCAI 2005. [cited at p. 24, 35]

[5] J. F. Bard. A heuristic for minimizing the number of tool switches on a flexi-
ble machine. IIE Transactions, 20(4):382–391, December 1988. [cited at p. 13,

16]

[6] J. C. Becceneri, H. H. Yanasse, and N. Y. Soma. A method for solving
the minimization of the maximum number of open stacks problem within a
cutting process. Computers & Operations Research, 31(14):2315–2332, 2004.
[cited at p. 29, 32]

[7] T. Biedl. CS 762: Graph-theoretic algorithms – Lecture notes of a graduate
course. University of Waterloo, September 2005. [cited at p. 43, 49, 50, 52]

[8] A. Billionnet. On interval graphs and matrice profiles. RAIRO. Recherche
opérationnelle, 20(3):245–256, 1986. [cited at p. 48, 63]

[9] H. L. Bodlaender and A. M. Koster. Treewidth computations I. Upper
bounds. Information and Computation, 208(3):259 – 275, 2010. [cited at p. 58,

61]

141



142 BIBLIOGRAPHY

[10] H. L. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on
graphs of bounded treewidth. The Computer Journal, 51(3):255–269, 2008.
[cited at p. 58]

[11] H. Cambazard and N. Jussien. Techniques rétrospectives pour résoudre le
minimum open stacks problem. In Actes JFPC 2006, pages 89–98, 2006.
[cited at p. 35]

[12] M. Campêlo, V. A. Campos, and R. C. Corrêa. On the asymmetric rep-
resentatives formulation for the vertex coloring problem. Discrete Applied
Mathematics, 156(7):1097 – 1111, 2008. GRACO 2005 - 2nd Brazilian Sym-
posium on Graphs, Algorithms and Combinatorics. [cited at p. 111]

[13] G. Chu and P. Stuckey. Minimizing the maximum number of open stacks
by customer search. In I. Gent, editor, Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming, volume
5732 of LNCS, pages 242–257. Springer-Verlag, 2009. [cited at p. 35]

[14] M. Chudnovsky, N. Robertson, P. D. Seymour, and R. Thomas. Progress
on perfect graphs. Mathematical Programming, 97(1):405–422, July 2003.
[cited at p. 52]

[15] D. G. Corneil, S. Olariu, and L. Stewart. The ultimate interval graph recogni-
tion algorithm? (extended abstract). In Symposium on Discrete Algorithms,
pages 175–180, 1998. [cited at p. 47, 48]

[16] Y. Crama. Combinatorial optimization models for production scheduling
in automated manufacturing systems. European Journal of Operational Re-
search, 99(1):136 – 153, 1997. [cited at p. 13]

[17] J. Dı́az, A. Gibbons, M. Paterson, and J. Toran. The minsumcut problem. In
F. Dehne, J. Sack, and N. Santoro, editors, Algorithms and Data structures,
volume 519 of Lecture Notes in Computer Science, pages 65–79, 1991. 2nd
Workshop on algorithms and data structures (WADS91), Ottawa, Canada,
Aug 14-16, 1991. [cited at p. 62]

[18] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems. ACM
Computing Surveys, 34(3):313–356, September 2002. [cited at p. 54, 56, 66, 67,

103]

[19] R. G. Dyson and A. S. Gregory. The cutting stock problem in the flat glass in-
dustry. Operational Research Quarterly, 25(1):41–53, Mar 1974. [cited at p. 6,

30]



BIBLIOGRAPHY 143

[20] E. Faggioli and C. A. Bentivoglio. Heuristic and exact methods for the
cutting sequencing problem. European Journal of Operational Research,
110:564–575, 1998. [cited at p. 1, 35]

[21] A. Fink and S. Voss. Applications of modern heuristic search methods to
pattern sequencing problems. Computers & Operations Research, 26(1):17–
34, 1999. [cited at p. 12, 34]

[22] S. Fiorini. 0, 1/2-cuts and the linear ordering problem: Surfaces that de-
fine facets. SIAM Journal on Discrete Mathematics, 20(4):893–912, 2006.
[cited at p. 59, 77]

[23] H. Foerster and G. Wascher. Simulated annealing for order spread mini-
mization in sequencing cutting patterns. European Journal of Operational
Research, 110(2):272–281, OCT 16 1998. [cited at p. 11, 15, 34]

[24] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs.
Pacific J. Math., 15:835–855, 1965. [cited at p. 44, 48, 65]

[25] M. Garey, R. Graham, D. Johnson, and D. Knuth. Complexity results
for bandwidth minimization. SIAM Journal on Applied Mathematics,
34(3):477–495, 1978. [cited at p. 12]

[26] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, New York,
1979. [cited at p. 12, 41]

[27] P. C. Gilmore and R. E. Gomory. A linear programming approach to the
cutting-stock problem. Operations Research, 9(6):849–859, 1961. [cited at p. 1]

[28] M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic
Press, New York, 1980. [cited at p. 43, 44, 45, 46, 47, 52]

[29] M. C. Golumbic, H. Kaplan, and R. Shamir. On the complexity of DNA
physical mapping. Advances in Applied Mathematics, 1994. [cited at p. 63, 64]

[30] M. Grötschel, M. Jünger, and G. Reinelt. Facets of the linear ordering
polytope. Mathematical Programming, 33(1):43–60, Sept. 1985. [cited at p. 59,

60, 93]

[31] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathe-
matics, 306(3):297 – 317, 2006. [cited at p. 62]

[32] P. Heggernes and F. Mancini. Minimal split completions. Discrete Applied
Mathematics, 157(12):2659 – 2669, jun 2009. Second Workshop on Graph
Classes, Optimization, and Width Parameters. [cited at p. 61]



144 BIBLIOGRAPHY

[33] P. Heggernes, F. Mancini, and C. Papadopoulos. Minimal comparability
completions of arbitrary graphs. Discrete Applied Mathematics, 156(5):705
– 718, 2008. [cited at p. 61]

[34] H. Kaplan, R. Shamir, and R. Tarjan. Tractability of parameterized comple-
tion problems on chordal and interval graphs: minimum fill-in and physical
mapping. In 35th Annual Symposium on Foundations of Computer Science
Proceedings, pages 780–791, Nov 1994. [cited at p. 64]

[35] H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized com-
pletion problems on chordal, strongly chordal, and proper interval graphs.
Siam Journal On Computing, 28(5):1906–1922, May 1999. [cited at p. 61, 62]

[36] D. Kendall. Incidence matrices, interval graphs and seriation in archeology.
Pac. J. Math., 28:565–570, 1969. [cited at p. 63]

[37] D. G. Kendall. Some problems and methods in statistical archaeology. World
Archaeology, 1(1):68–76, Jun. 1969. [cited at p. 65]

[38] D. G. Kendall. Abundance matrices and seriation in archaeology. Probability
Theory and Related Fields, 17(2):104–112, June 1971. [cited at p. 65]

[39] T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in
of asteroidal triple-free graphs. Theoretical Computer Science, 175(2):309 –
335, 1997. [cited at p. 61]

[40] Y.-L. Lai and K. Williams. A survey of solved problems and applications
on bandwidth, edgesum, and profile of graphs. Journal of Graph Theory,
31(2):75–94, 1999. [cited at p. 55, 62, 63]

[41] G. Laporte, J. J. S. González, and F. Semet. Exact algorithms for the job
sequencing and tool switching problem. IIE Transactions, 36:37–45, 2004.
[cited at p. 19, 21, 22, 35, 133]

[42] C. Lekkerkerker and J. Boland. Representation of a finite graph by a set
of intervals on the real line. Fundamenta Mathematicae, 51:45–64, 1962.
[cited at p. 46]

[43] Y. Lin and J. Yuan. Profile minimization problem for matrices and graphs.
Acta Mathematicae Applicatae Sinica (English Series), 10(1):107–112, Jan
1994. [cited at p. 62]

[44] A. Linhares and H. H. Yanasse. Connections between cutting-pattern se-
quencing, VLSI design, and flexible machines. Computers & Operations
Research, 29(12):1759–1772, 2002. [cited at p. 12, 13, 29, 35, 63, 67, 70]



BIBLIOGRAPHY 145

[45] O. B. Madsen. An application of travelling-salesman routines to solve
pattern-allocation problems in the glass industry. The Journal of the Oper-
ational Research Society, 39(3):249–256, March 1988. [cited at p. 11, 14]

[46] R. Morabito and L. Belluzzo. Optimising the cutting of wood fibre plates
in the hardboard industry. European Journal of Operational Research,
183(3):1405 – 1420, 2007. [cited at p. 8]

[47] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some
edge modification problems. Discrete Applied Mathematics, 113(1):109 –
128, 2001. [cited at p. 62]

[48] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization.
Wiley Interscience Series in Discrete Mathematics and Optimization. John
Wiley & Sons Inc, New York, 1999. [cited at p. 92]

[49] A. Oliveira and L. Lorena. Sequencing cutting patterns and VLSI gates by
population training algorithms. 2003. [cited at p. 35]

[50] A. C. Oliveira and L. A. Lorena. 2-Opt Population Training for Minimization
of Open Stack Problem, volume 2507 of Lecture Notes in Artificial Intelli-
gence, chapter Advances in Artificial Intelligence, pages 313–323. Springer,
2002. [cited at p. 35]

[51] B. Panda and S. Das. A linear time recognition algorithm for proper in-
terval graphs. Information Processing Letters, 87(3):153–161, August 2003.
[cited at p. 51]

[52] S.-L. Peng and C.-K. Chen. On the interval completion of chordal graphs.
Discrete Applied Mathematics, 154(6):1003 – 1010, 2006. [cited at p. 62]

[53] G. Pileggi, R. Morabito, and M. Arenales. Abordagens para otimização
integrada dos problemas de geração e sequenciamento de padrões de
corte: caso unidimensional. Pesquisa Operacional, 25(3):417–447, 2005.
[cited at p. 139]

[54] M. J. Pinto. Algumas contribuições à resolução do problema de corte in-
tegrado ao problema de sequenciamento dos padrões. PhD thesis, Instituto
Nacional de Pesquisas Espaciais, São José dos Campos, Brasil, Junho 2004.
[cited at p. 14, 22, 35]

[55] G. Reinelt. A note on small linear-ordering polytopes. Discrete and Com-
putational Geometry, 10(1):67–78, Dec. 1993. [cited at p. 59, 60, 77]

[56] B. Smith and I. Gent. Constraint modelling challenge 2005. In The Fifth
Workshop on Modelling and Solving Problems with Constraints, IJCAI 05,
Edinburgh, Scotland, July 2005. [cited at p. 34]



146 BIBLIOGRAPHY

[57] S. C. Tang and E. V. Denardo. Models arising from a flexible manufacturing
machine, part I: Minimization of the number of tool switches. Operations
Research, 36(5):767–777, September-October 1988. [cited at p. 16, 17, 20, 35,

133, 134]

[58] Y. P. Tsao and G. J. Chang. Profile minimization on compositions of
graphs. Journal of Combinatorial Optimization, 14(2-3):177–190, Oct. 2007.
[cited at p. 62]

[59] L. Wolsey. Integer Programming. Wiley Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons Inc, New York, 1998.
[cited at p. 92]

[60] G. Wäscher, H. Haußner, and H. Schumann. An improved typology of
cutting and packing problems. European Journal of Operational Research,
183(3):1109 – 1130, 2007. [cited at p. 5, 6]

[61] H. H. Yanasse. Minimization of open orders - polynomial algorithms for some
special cases. Pesquisa Operacional, 16(1):1–26, June 1996. [cited at p. 10, 28,

70, 72]

[62] H. H. Yanasse. An exact algorithm for the tree case of the minimization of
open orders problem. In XXIX Simpósio Brasileiro de Pesquisa Operacional,
page 100, Salvador, Brazil, 22-24 October 1997. [cited at p. 29]

[63] H. H. Yanasse. On a pattern sequencing problem to minimize the maximum
number of open stacks. European Journal of Operational Research, 100:454–
463, 1997. [cited at p. 13, 14, 20, 35, 71, 134]

[64] H. H. Yanasse. A transformation for solving a pattern sequencing prob-
lem in the wood cut industry. Pesquisa Operacional, 17(1):57–70, 1997.
[cited at p. 28, 71]

[65] H. H. Yanasse and M. J. P. Lamosa. An integrated cutting stock and sequenc-
ing problem. European Journal of Operational Research, 183(3):1353–1370,
2007. [cited at p. 139]

[66] H. H. Yanasse and M. J. Pinto. Uma nova formulação para um problema
de sequenciamento de padrões em ambientes de corte. In INPE, editor,
XXXV SBPO, pages 1516–1524, Natal, Brazil, November 4th to 7th 2003.
[cited at p. 23, 27]

[67] H. H. Yanasse and E. L. F. Senne. The minimization of open stacks problem:
A review of some properties and their use in pre-processing operations. Eu-
ropean Journal of Operational Research, 203(3):559 – 567, 2010. [cited at p. 8,

29]



BIBLIOGRAPHY 147

[68] B. J. Yuen. Heuristics for sequencing cutting patterns. European Journal of
Operations Research, 55(2):183–190, November 1991. [cited at p. 7]

[69] B. J. Yuen. Improved heuristics for sequencing cutting patterns. European
Journal of Operational Research, 87(1):57 – 64, 1995. [cited at p. 30]

[70] B. J. Yuen and K. V. Richardson. Establishing the optimality of sequenc-
ing heuristics for cutting stock problems. European Journal of Operations
Research, 84:590–598, 1995. [cited at p. 7, 35]





Index

adjacency matrix, 55
adjacent vertices, 38
affinely independent, 91
anti-neighborhood, 38
arc, 37
asteroidal triple, 46
AT-free, 46

banded matrix, 66
bandwidth of a graph, 57
bandwidth of a matrix, 55
Bin Packing Problem, 5
branch-and-bound, 3

chord, 42
chordal graph, 42
chordless cycle, 42, 106
chromatic number, 41
clique, 39
clique matrix, 47
clique number, 40
closed neighborhood, 38
co-comparability graph, 45, 102
coloring, 41, 111
comparability graph, 45
complement graph, 39
complete graph, 39
consecutive 1’s property, 48
Consecutive Blocks Minimization, 12
cutting pattern, 6
Cutting Stock Problem, 5
cutwidth, 56
cycle, 42

degree, 39

digraph, 38
directed graph, 38
discontinuity, 12
DNA physical mapping, 64
dominance of patterns, 29

edge, 37
edge completion problem, 60
edge cut, 55
edge length, 56
envelope of the adjacency matrix, 55
equivalence of nodes in MOSP graph, 29

face, 92
facet, 92
fill edge, 60, 76
full envelope, 55
full-dimensional, 92

gate, 66
Gate Matrix Layout Problem, 67
graph, 37

Hamiltonian path, 19

indegree, 38
independent set, 40
Integer Programming, 2
interval graph, 46, 78
interval graph completion, 61
Interval Graph Sandwich Problem, 64
interval representation, 46
IP formulation for Minimum IGC, 126
IP formulation for MOSP, 87, 89, 116

linear ordering, 43, 75

149



150 INDEX

Linear Ordering Problem, 59
lower bound, 85

Möbius-ladder, 60
maximal clique, 40
Minimal fill-in, 62
Minimal Interval Graph Completion, 62
Minimization of Discontinuities, 12
Minimization of Open Orders, 10
Minimization of Open Stacks, 7, 69
Minimization of Order Spread, 11, 129
Minimization of Stack Occupation, 128
Minimization of Tool Switches, 12, 133
Minimum fill-in, 61
Minimum Interval Graph Completion, 61,

124
Minimum Sum Cut Problem, 54
Minimum triangulation, 61
Mixed Integer Programming, 24
modified cutwidth, 56
modified edge cut, 56
MOSP graph, 28, 70
MOSP number, 8, 69, 85

neighborhood, 38
net, 67
node, 37
NP-hard, 2

odd anti-hole, 52
odd hole, 52
open stack, 8
order spread, 11
oriented graph, 38
outdegree, 38

path, 42
path decomposition, 58
pathwidth, 58
Pattern Allocation Problem, 6
Pattern Sequencing Problem, 6
perfect elimination order, 43
perfect elimination scheme, 43
perfect graph, 51
polyhedron, 92
polytope, 92
predecessor, 43
Profile Minimization Problem, 54

profile of a graph, 54
profile of a matrix, 55
pseudo-equivalence, 29

representative vertex, 111

sandwich graph, 64
sequence dating problem, 65
seriation problem, 65
simple k-fence, 60
simplicial vertex, 43
split graph, 44
stability number, 40
stable set, 40
successor, 43
sum cut, 54

Tool Replacement Problem, 19
tool switch, 12
tournament, 59
track, 67
Travelling Salesman Problem, 14
tree, 42
tree decomposition, 57
treewidth, 58
triangulated graph, 42
triangulation, 61

umbrella, 48
undirected graph, 38

valid inequality, 92
vertex, 37
vertex cut, 54
vertex separation, 54
vertex separator, 44
VLSI Layout Problem, 66


	Página 1
	Página 2
	Página 3
	Página 4
	PhD.pdf
	List of Figures
	List of Tables
	1 Introduction
	1.1 Main contributions
	1.2 Outline

	2 Literature Review on Pattern Sequencing
	2.1 MOSP and related problems
	2.1.1 MOSP: Minimization of Open Stacks Problem
	2.1.2 MOOP: Minimization of Open Orders Problem
	2.1.3 MORP: Minimization of ORder spread Problem
	2.1.4 MDP: Minimization of Discontinuities Problem
	2.1.5 MTSP: Minimization of Tool Switches Problem
	2.1.6 Relationship between the MOSP, MORP and MTSP

	2.2 IP models for MOSP and related problems
	2.2.1 Madsen's approach to the MORP and MDP
	2.2.2 Bard's nonlinear integer model for the MTSP
	2.2.3 Tang and Denardo's model for the MTSP and MOSP
	2.2.4 The model of Laporte with Pinto's approach to MOSP
	2.2.5 Pinto's integer programming model
	2.2.6 Baptiste's MIP formulation
	2.2.7 Comparison between some of these models

	2.3 Other approaches and special cases
	2.3.1 Yanasse's work on special cases of the MOSP
	2.3.2 Heuristics
	2.3.3 Dynamic Programming and Genetic Algorithms

	2.4 Conclusions

	3 Interval Graphs and Layout Problems
	3.1 Basic Graph Definitions
	3.1.1 Directed and Undirected Graphs
	3.1.2 Problems with Cliques and Stable Sets

	3.2 Chordal Graphs
	3.2.1 Perfect Elimination Order
	3.2.2 Split graphs

	3.3 Comparability Graphs
	3.4 Interval Graphs
	3.5 Perfect Graphs
	3.6 Graph Layout Measures
	3.6.1 Vertex Separation and Minimum Sum Cut
	3.6.2 Profile
	3.6.3 Cutwidth
	3.6.4 Bandwidth
	3.6.5 Treewidth
	3.6.6 Pathwidth

	3.7 Linear ordering problem
	3.8 Edge Completion Problems
	3.8.1 Different Classes for H
	3.8.2 Minimum vs. Minimal
	3.8.3 Special Classes of Input Graphs
	3.8.4 Equivalent Problems in Graph Theory

	3.9 Applications of Graph Layout Problems
	3.9.1 DNA Physical Mapping
	3.9.2 Seriation Problem in Archaeology
	3.9.3 Sparse Matrix Computations
	3.9.4 GMLP: Gate Matrix Layout Problem

	3.10 Conclusions

	4 An Integer Formulation for the MOSP
	4.1 Introduction
	4.2 The MOSP in a Graph
	4.3 A Preview of the Model
	4.4 The Decision Variables
	4.5 The Inequalities of the Model
	4.5.1 Linear Ordering of the Vertices
	4.5.2 Precedences of the Opening and Closing of Intervals
	4.5.3 Obtaining an Interval Graph

	4.6 An objective function to evaluate the MOSP
	4.7 The integer programming formulation for MOSP
	4.8 Reducing the Number of Variables in the Model
	4.9 Conclusions

	5 Polyhedral Analysis and Valid Inequalities
	5.1 Facets of the Polyhedron
	5.2 Other Valid Inequalities
	5.2.1 Neighbor of Successor Inequalities
	5.2.2 Co-comparability Graph
	5.2.3 Chords in k-cycles
	5.2.4 Coloring the Vertices of the Interval Graph

	5.3 The Revised Formulation of the Model for MOSP
	5.4 Computational Tests
	5.5 Conclusions

	6 Variants of the MOSP Model
	6.1 A Model for Minimum Interval Graph Completion
	6.1.1 Introduction
	6.1.2 The Formulation of the Model
	6.1.3 Computational Results for IGC

	6.2 Minimization of the Stack Occupation
	6.2.1 Introduction
	6.2.2 The formulation of the model
	6.2.3 Computational results

	6.3 Minimization of Tool Switches
	6.4 Conclusions

	7 Conclusions and Future Work
	Bibliography
	Index




