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Abstract 
 

The work presented in this thesis aims to implement the recent advances in the material 

science into the field of structural clay products applied to masonry constructions. The 

experimental analysis carried out by the author is focused on the detailed description of the 

heterogeneous microstructure of the fired clay brick, as a function of its composition and 

processing conditions. Multi-field methods of investigation have been combined, from 

standard mechanical tests carried out on bulk material on the macro-scale to novel 

nanoindentation techniques, which infers the mechanical properties of the solids on the nano- 

and micro-scales. Moreover, the complex interplay between the different components of this 

heterogeneous solid is traced with Scanning Electron Microscopy methods or Mercury 

Intrusion Porosimetry. The existing hierarchical ordering of fired brick microstructure is 

framed in the multi-level model, where the building blocks are classified and described with 

reference to the type of morphology present and mechanical characteristics. 

 The statistical indentation method, originally developed for cement based materials is 

extended to the field of structural ceramics. Such an experimental analysis of mechanical 

phase properties is carried out with the aid of Gaussian Mixture Modeling, which together 

with Maximum Likelihood concept and Expectation-Maximization algorithm, provides a 

robust and efficient deconvolution strategy. This deconvolution technique is validated on 

Ordinary Portland Cement, brass alloy and investigated fired brick. The relation between the 

characteristic scale of depth-sensing measurement and the mechanical characteristics inferred 

from the bulk of composite material is presented. Additionally, Buckle’s rule-of-thumb is 

approached with a probabilistic model of biphasic composite materials, which represent 

idealized microstructures. 

 The mechanical properties of the ‘glassy’ matrix of the fired brick are investigated in the 

depth-sensing experiment. Different regimes of the indentation force are considered along the 

experimental campaign. The relation between the morphology of the ‘glassy’ matrix, its 

composition and measured indentation modulus, elastic modulus and indentation hardness is 

studied. Additionally, the composite ‘polycrystalline-amorphous’ nature of the matrix of the 

brick is corroborated and documented in detail. Mechanical properties of other mechanically 

active phases incorporated within the microstructure of the fired clay brick e.g. quartz, rutile 

etc. are assessed and reported. 
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Resumo 
 

O trabalho apresentado nesta tese tem como objectivo a aplicação dos avanços recentes na 

ciência dos materiais aos produtos cerâmicos estruturais usados nas construções de alvenaria. 

A análise experimental realizada pelo autor está focada na descrição detalhada da 

microestrutura heterogénea do tijolo de barro cozido, em função da sua composição e 

condições de processamento. Foram combinados métodos de investigação multi-campo, desde 

ensaios mecânicos padrão realizados no material ao nível da macro-escala, até novas técnicas 

de nano-indentação que inferem as propriedades mecânicas dos sólidos ao nível das escalas 

nano e micro. Adicionalmente, a complexa interacção entre as diferentes componentes deste 

sólido heterogéneo é caracterizada com recurso aos métodos de Microscopia Electrónica de 

Varrimento ou Porosimetria por Intrusão de Mercúrio. O ordenamento hierárquico da 

microestrutura existente nos tijolos cozidos é enquadrado num modelo multi-nível, onde os 

elementos são classificados e descritos com referência ao tipo de morfologia presente e às 

características mecânicas.  

O método de indentação estatística, originalmente desenvolvido para materiais cimentícios, é 

alargado ao campo da cerâmica estrutural. Esta análise experimental das propriedades 

mecânicas da fase é realizada com o auxílio de um Modelo de Mistura de Gauss que, 

juntamente com os conceitos de máxima verosimilhança e algoritmo de Maximização da 

Expectativa, fornece uma estratégia de deconvolução robusta e eficiente. Esta técnica de 

deconvolução é validada em Cimento Portland corrente, em liga de latão e nos tijolos cozidos 

investigados. É apresentada a relação entre a escala característica na medição da profundidade 

e as características mecânicas inferidas a partir da massa de material compósito. 

Adicionalmente, a regra empírica de Buckle é abordada com um modelo probabilístico de 

materiais compósitos bifásicos, que inclui microestruturas idealizadas.  

As propriedades mecânicas da matriz ‘vítrea’ do tijolo cozido são investigadas no ensaio com 

medição da profundidade. Consideram-se diferentes regimes da força de indentação ao longo 

da campanha experimental. É estudada a relação entre a morfologia da matriz ‘vítrea’, 

composição e módulo de indentação medido, módulo elástico e dureza de indentação. 

Adicionalmente, a natureza do compósito ‘policristalino-amorfo’ da matriz do tijolo é 

corroborada e documentada em detalhe. As propriedades mecânicas das outras fases 

mecanicamente activas incorporados na microestrutura do tijolo de barro cozido, por exemplo 

quartzo e rútilo, são avaliadas e descritas. 
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I. Introduction 
 

 

 

 

I.1.  GENERAL CONTEXT 

 

 The development of mankind and growth of civilization have been closely tied to man’s 

ability to make use of materials. This history began with wood in a distant past continued with 

stone, and around 24,000 years ago ceramics were introduced.1 Since then, mankind had the 

ability to transform the plastic mass of clay into a stiff and durable solid. The first ceramic 

crafts were simple objects such as figures (22,000 BC, Moravia, Czech Republic)1 or 

primitive earthenware used in the daily tasks. However, the need of a secure shelter, able to 

protect Man against attacks and climate, has driven him to apply fired clay as a construction 

material. The oldest fired bricks used for housing have been found in Knossos (Crete) and 

dated back to around 4300 BC.1 The potential of ceramics used as a construction material has 

been appreciated ever since remote ages. 

 Nowadays, fired clay brick is a commonly used material, which together with cement or 

lime mortar makes masonry load bearing walls, pillars, infill panels and so on. Fired brick 

possesses several important characteristics, which have made it attractive in the construction 

of housing and other structures. Brick can be crafted as a durable solid, with high stiffness and 

load bearing capacity, and is able to sustain severe thermal and environmental conditions, 

while providing good sound and heat isolation properties, not mentioning the architectural 

aesthetics. However, the way in which the brick material performs is governed by its 

composition and internal microstructure. 

 From this point of view, fired clay ceramics belong to the group of composite materials, 

which possess a high level of heterogeneity with hierarchical ordering of the microstructure. 

The most prominent feature of such material system is the microstructural disorder, reflected 

in the spatial variability of the composition, in diverse properties and geometrical forms of the 

incorporated solid phases2,3 as well as in inherently porosity. It is the microstructural disorder 

which ultimately defines the macroscopic properties. 
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 Such a feature allows the brick to exhibit its attractive properties, but also leads to a 

significant scatter and uncertainty in properties, such as the elasticity modulus, the 

compressive strength or the irreversible expansion. Structural design rules, as an example, 

account for the variability of properties using characteristic values and a partial safety factor. 

The recent developments in materials science aim at a better understanding of the interplay 

between factors like composition of the material, processing of the material and its properties. 

Progress in experimental analysis and analytical tools has driven material engineers towards a 

better representation of the microstructure at multiple length scales.4,5 Such advances refer to 

the direct observation of the material morphology as well as the quantification of mechanical 

properties at different length scales. The effect of material heterogeneity and the material 

constituents on the overall brick performance at the macro-scale may be traced, what opens 

venues in the optimization of the material performance and in tailoring its properties to 

special requirements. 

 This thesis follows this recent approach and contributes to the implementation of material 

science paradigm into the field of structural masonry. Recent developments, originally from 

the science of cement based materials, are transferred to the field of building ceramics and 

applied to study the fundamental blocks of fired clay brick material. The hierarchical ordering 

of brick microstructure is described and arranged in a comprehensive multi-scale model. The 

link between composition, processing and properties is inferred and quantified at the 

sub-micron scale from nanoindentation experiments. The intrinsic mechanical properties of 

the brick constituents are measured and linked to the local morphology and composition. The 

work presented here also produces advances in understanding statistical indentation 

techniques, which represent novel and promising methods for inferring the mechanical phase 

properties in multi-component materials at different length scales. 

 

I.2.  INDUSTRIAL CONTEXT AND RESEARCH MOTIVATION 

 

 Next to concrete and steel, clay brick is the most used construction material on our planet. 

During the last decade the world-wide clay brick production per annum has stand at 24 billion 

units in Europe, 218 billion in Asia, 9 billion in North America and 5 billion in Africa, South 

America and Oceania (see Figure I.1(a-b)).6,7 This ubiquitous presence of masonry brick 

comes at a non-negligible price for the environment, because significant amounts of carbon 

dioxide (CO2) are released into the atmosphere at the production stage. Approximately 

0.25 tons of carbon dioxide is released per each ton of structural clay products.8,9,10 More than 
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90 % of this amount originates from combustion of fossil fuels, e.g. natural gas or petroleum 

coke, in the kiln during the thermal treatment of the green ware. Obviously, this also means 

that only one-tenth of the CO2 emission comes from other sub-processes. The CO2 emission 

for clay brick is only a quarter of the emission in Portland cement production, as one ton of 

cement produces one ton of carbon dioxide.11 However, comparing with concrete, which 

incorporates up to 15 % of cement (1 ton of cement ≈ 8 tons of concrete), the environmental 

footprint of fired clay brick is almost the double. 

 

(a) 

 

(b) 

Figure I.1 Annual production of fired clay brick: a) world-wide brick production (2004) 

(billions of units), b) brick production in selected European countries (2006), according to 

United Nations6 and European Commission statistics7. 

 

 This ecological burden is more pronounced in the present time, when construction 

materials must conform to higher requirements while satisfying a growing world-wide 

consumption. In the recent years, the construction industry worldwide has grown steadily, 

while masonry (either structurally or non-structurally) remains a much used material. The 

growing requirements of material sustainability, energy efficiency and recyclability 

(Figure I.2) call for new developments in the field of brick material science. Such 

developments refer to our understanding of the complex interplay between the composition, 

processing, microstructure and the properties of the fired brick and masonry construction. 

The key challenge for the future appears to be the reduction of the ecological burden of 

the brick without compromising its properties, such as strength, durability, solidity, fire 

protection and low maintenance. 
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Figure I.2 Schematic representation of the concept of modern building brick and structural 

ceramics as an energy efficient, optimized and recyclable construction material. 

 

I.3.  PROBLEM STATEMENT AND ADOPTED APPROACH 

 

 Structural clay products, like brick, represent a complex man-made ceramic material 

system created upon heating a mixture of clay minerals, filler and flux. For a temperature 

above the melting temperature of the clay minerals and the flux component ≈950 [°C] a 

viscous fluid develops leading to consolidation of the green ware.2 Such a fluid phase may be 

a mixture of all elements present in the parent materials, however its core is build up from the 

oxygen, silicon and aluminum. These chemical elements are the principal components of the 

‘liquid bond’, next to alkaline elements like potassium, sodium and other accessories provided 

by the feldspar flux or present as impurities in the raw materials. The multi-component nature 

of the melt, together with the heat energy, provides environment and conditions for the 

crystallization of new phases with different lattice systems and geometrical forms.3 Upon 

cooling below the glass transition temperature, the melt solidifies to form a 

polycrystalline-amorphous matrix (‘glassy’ phase) of the brick, with high degree of 

heterogeneity. The ‘glassy’ phase, which may account for more than half of the total mass of 

the fired brick,3,12 provides the bond for the coarse and fine aggregates, and together with the 

porosity constitute the complex microstructure of a fired clay brick with specific mechanical 

and physical properties. 

This brief description shows in a qualitative way the transformation from the raw 

materials, via processing, to the final microstructure of the fired brick. The composition-

processing-property link is evident (see Figure I.3). Although much has been done in the last 

decades in the field of ceramics, the conceptual theoretical and experimental framework for 
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modeling the mechanical properties of structural ceramics, such as brick, has not yet been 

developed. The lack of such a concept may be attributed to the complexity of this material, as 

well as to the belief that ‘traditional’ ceramics can be crafted according to generally accepted 

empirical rules, with no need for advancement and progress in production. In addition, the 

developments in the science of cement based materials and in design rules for concrete 

structures effectively replaced masonry as a structural material in many developed countries 

and hindered innovative applications in the field. Therefore, this work aims at filling an 

existing gap in masonry science and at implementing the materials science paradigm into the 

masonry field. 

 

 

Figure I.3 Implementation of the material science paradigm into the masonry field, the 

composition-processing-properties link foreseen in the development of sustainable masonry. 

 The adopted approach includes a combination of experimental investigations and 

theoretical modeling. The approach is targeted on the detailed description of the brick 

microstructure at different length scales of observation, starting from ‘nano-scale’, the most 

basic blocks relevant for brick performance, and concluding at the structural scale of 

day-to-day applications, namely ‘meso-scale’. Such description identifies the building blocks 

of the structural ceramics, in the framework of a comprehensive ‘multi-scale’ model, and 

links the origin of the building blocks to the composition and processing technology of brick. 

Multi-field techniques are applied, from standard well know tests in the field of material 

characterization to advanced novel methods at sub-micron scales, where the bulk is 

constrained in much smaller volumes. 
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I.4.  RESEARCH OBJECTIVES 

 

 The approach presented here studies the effect of the composition, processing conditions 

and microstructural details on the mechanical performance of fired clay bricks used in 

masonry. A series of objectives is set forth in order to tackle this scientific problem. These 

objectives are summarized below: 

•  Objective 1: Develop a hierarchical model of fired clay brick microstructure, which 

allows to pin down the effect of composition and processing on the macroscopic 

performance of brick. The thermal treatment of the raw mixture of clay, filler and flux 

provides the fired brick microstructure with large variety, which affects its overall 

performance. Depending on the temperature applied in the firing stage, as well as the 

composition and processing, the neo-crystal phases and porosity appear at different 

material levels with characteristic scales spanning over several orders of magnitude. 

Therefore, a detailed description of masonry brick within the framework of the 

multi-scale model allows one to trace the origin of its mechanical performance, and 

relate it with the green and fired ware composition as well as the manufacturing 

technology. 

• Objective 2: Extension and validation of the Statistical Grid Indentation (SGI) 

technique applied to heterogeneous materials with hierarchical ordering of the 

microstructure. The current developments in the SGI methods originate from the 

implementation of nano-technology into the cement-based materials science. 

SGI provides the experimentalists with the access to the bulk properties at the 

nano-scale, where the ordinary methods of mechanical testing no longer apply. 

However, in order to infer the relevant mechanical properties of the phases 

stochastically distributed in the bulk volume of the multi-phase material, like fired 

clay brick, multiple depth-sensing experiments must be conducted on the material 

surface. Therefore, an adequate statistical approach is required in order to give the 

proper interpretation of the acquired records, to estimate the confidence level of the 

measured properties and to relate the observations to the local chemical and 

mineralogical composition. 

• Objective 3: Study of the mechanical performance of the ‘glassy’ matrix, the principal 

load bearing phase within the microstructure of the brick. The composite nature of the 

‘glassy’ bond existing in the structural ceramics is well known. However, the exact 

mechanical properties of the ‘glassy’ matrix, as well as the effect of the composition 
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on its performance, are still essentially unknown. Due to the sub-micron characteristic 

scale of its bulk and complex distribution over the brick volume, the stiffness and 

strength cannot be assessed with standard methods of material testing. The 

nanoindentation method combined with refined statistical tools overcomes this 

problem and allows to infer in-situ the mechanical characteristics of ‘glassy’ matrix 

from direct tests at sub-micron scale. 

 It is hoped, that the answers to the three objectives above are a good step forward to the 

development of sustainable masonry, with properties tailored to societal needs and 

environmental requirements. 

 

I.5.  THESIS OUTLINE 

 

 The structure of the thesis consists of six main parts. In the first part, Chapter I, a general 

introduction is made, including setting forth the research motivation and objectives. The 

second part of the thesis, Chapter II, deals with an experimental approach towards the 

development of the hierarchical model of the brick microstructure. This chapter presents a 

variety of advanced techniques of experimental mechanics and material characterization 

applied to extruded clay brick. The outcome of Scanning Electron Microscopy (SEM) coupled 

with Energy-dispersive X–ray Spectroscopy (EDX), Mercury Intrusion Porosimetry (MIP), 

preliminary Instrumented Nanoindentation tests and macroscopic strength and durability tests 

are summarized in a comprehensive ‘multi-scale’ description of the brick at different 

observation levels.  

The topic of the statistical testing of heterogeneous materials at multiple scales is 

addressed in Chapters III and IV. In Chapter III, the probabilistic formulation is developed to 

aid tracing the homogenization effect observed in the experimental grid indentation on 

heterogeneous solids. The simplified model microstructure of polycrystalline and 

fiber-reinforced materials are constructed, and the influence of the characteristic length scale 

of the indentation test on the measured material response is investigated. The focus of Chapter 

IV is on statistical phase identification in the framework of the multivariate Gaussian Mixture 

Modeling based on the Maximum Likelihood estimation and Expectation Maximization 

algorithm. The proposed deconvolution approach is validated on the basis of experimental 

results representing a broad spectrum of heterogeneous materials, from investigated fired clay 

brick to ordinary cement paste and naval brass alloy. The inference of the number of phases, 
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with the highest probability to occur and compatible with the experimental grid indentation 

data, is outlined.  

The methodology refined in Chapter IV is then applied in the experimental study of the 

mechanical performance of the ‘glassy’ matrix, addressed in Chapter V. The detailed 

experimental protocol of depth-sensing technique is presented together with the measured 

Young’s modulus and hardness of the matrix phase. The composite nature of the ‘glassy’ 

bond is corroborated. Finally, the mechanical properties of the accessory phases incorporated 

within the brick microstructure are indentified.  

The last part, Chapter VI, summarizes the main findings of this study and discusses briefly 

future perspectives. Additional information complementing the ideas developed and 

discussions held in this work are outlined in Appendixes. 
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II. Multi-Technique Investigation of Extruded 

Brick Microstructure 
 

 

 

 

ABSTRACT 

Despite the omnipresence of clay brick as construction material since thousands of years, 

fundamental knowledge about the link between composition, microstructure and mechanical 

performance is still scarce. In this chapter, we employ a variety of advanced techniques of 

experimental mechanics and material characterization for extruded clay brick for masonry, 

that range from Scanning Electron Microscopy (SEM) coupled with Energy-dispersive X–ray 

Spectroscopy (EDX), Mercury Intrusion Porosimetry (MIP), to Instrumented 

Nanoindentation, macroscopic strength and durability tests. We find that extruded clay brick 

possesses a hierarchical microstructure: depending on the firing temperature, a ‘glassy’ matrix 

phase, which manifests itself at sub-micrometer scales in form of neo-crystals of mullite, 

spinel-type phase and other accessory minerals, forms either a granular or a continuum matrix 

phase that hosts at sub-millimeter scale the porosity. This porous composite forms the 

backbone for macroscopic material performance of extruded brick, including anisotropic 

strength, elasticity and water absorption behavior. 
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II.1. INTRODUCTION 

 

 Clay brick, whose origin can be traced back to around 4300BC,1 still finds wide use in 

today’s building industries. Next to concrete and steel, masonry is the most used construction 

material on Earth. Infill panels, masonry veneer and low-rise structural masonry buildings are 

common applications of clay brick.2 However, in contrast to other construction materials 

(cement-based materials, metallic materials, polymer-based composites etc.), the 

implementation of the engineering science approach for masonry has lagged behind, creating 

an increasing gap between wide-spread use and fundamental understanding of masonry. With 

a focus on linking the mechanical performance and durability of contemporary masonry 

materials with basic constituents present at different scales, the overall goal of this paper is to 

contribute to filling this gap. 

 In order to reach this goal, we present results from an extensive experimental campaign 

targeted at the detailed characterization of clay brick over seven orders of magnitude (from 

10-9 [m] to 10-2 [m]), which includes elemental and phase composition, microstructure 

investigations, and mechanical property characterization at nano and macro-scales. The 

elemental and phase composition is determined with the aid of Energy-dispersive X-ray 

Spectroscopy (EDX) and X-ray Diffraction (XRD). The extensive use of Scanning Electron 

Microscopy (SEM) on the polished sections of ceramics allows the capturing of 

microstructural features, from a scale of tens of nanometers to hundreds of micrometers. 

Additionally, Mercury Intrusion Porosimetry (MIP) combined with Digital Image Analysis 

(DIA) of SEM images, proves to be a beneficial mean to characterize pore size distribution, 

void shape and alignment as well as interconnectivity. Furthermore, the mechanical properties 

of this heterogeneous material are investigated with the aid of instrumented nano-indentation 

reinforced with massive grid indentation technique,3,4 in addition to conventional uniaxial 

compression tests at macro-scale. These results are synthesized into a multi-scale model of 

brick, which allows one to pin down the effect of composition and processing on macroscopic 

material performance.  

 

II.2. MATERIALS 

 

 The investigated materials represent two types of solid brick commonly employed in the 

construction industry; facing brick (labeled B1) and general use common brick (labeled B2). 

The facing brick is manufactured in a fully automated fashion. It is fired inside a gas fuelled 
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tunnel kiln for a ~55 [h] firing cycle duration. Maturing of the ware is achieved at 1030 [ºC] 

for about 5.5 [h]. The second type of brick, B2, is an example of a building ceramic, which 

has been produced with a more traditional technology. The green ware is dried in semi-open 

space above running annular kiln of Hoffman type construction. The kiln’s chambers are 

charged with the dried, green brick, which then is fired to the maximum temperature of 

950-980 [ºC]. The cycle from cold-to-cold takes 72 [h] with a maturing time of ~7.5 [h]. Both 

types of investigated brick are shaped with soft extrusion technique (B1-along the height or 

normal to the bed face, B2-along the length or normal to the head face) to attain standard 

brick dimensions 24×11.5×6.5 [cm]. 

 Raw materials for the production of bricks B1 and B2 present chemical and mineralogical 

similarities, with kaolin (K) and muscovite (M) as the main clay mineral species, together 

with K-feldspar microcline (Kf) and some traces of plagioclase series (Pf) in B1, quartz (Q) 

and accessory minerals, such as hematite (H), rutile and calcite (C) (<3 [wt%] in sample B1), 

see Table II.1 and Figure II.1. 

 

Table II.1 Chemical composition [wt%] of the raw materials measured with Wavelength 

Dispersive X-ray Fluorescence (WDXRF). 

Sample Al2O3 SiO2 TiO2 K2O MgO CaO Na2O Fe2O3 LOI 

B1 19.74 60.96 0.96 2.25 0.86 1.49 0.35 5.53 7.65 

B2 18.61 65.96 0.88 2.14 0.51 0.16 0.25 5.28 6.04 

Components with concentration below 0.1 [wt%] are excluded from the table. LOI – loss on ignition. 

 

 

Figure II.1 XRD spectra of B1 and B2 raw materials with phase identification: kaolin (K), 

muscovite (M), microcline (Kf), plagioclase feldspar (Pf), quartz (Q), hematite (H). 



Multi-Technique Investigation of Extruded Clay Brick Microstructure 
___________________________________________________________________________ 

 
14 

II.3. METHODS AND RESULTS 

 

II.3.1. Phase Identification 

 The characteristic feature of structural ceramic materials is their complexity with respect 

to the number of incorporated phases as well as its microstructural arrangement. The first 

aspect may be quite accurately resolved with the aid of XRD, which is well known in the 

earth sciences and other fields.5,6 For this purpose, the samples of investigated materials B1 

and B2 have been prepared in the form of powder passing the standard sieve ASTM No.230 

as well as polished sections of bulk solids. Six powder samples and three polished samples for 

each type of brick were investigated in the Bruker D8 Discover diffractometer, with 

conventional Bragg-Brentano geometry and cupper radiation CuKα. The spectra has been 

collected over 2θ intervals ranging from 5º to 70º degrees, with step size 0.05º and time step 

3 [s]. The phase matching has been carried out using the standard patterns included in the 

database of The International Center for Diffraction Data (ICDD). 

 Both types of investigated brick are composed of common phases: α-quartz (Q), 

K-feldspar (Kf), hematite (H) and mullite (Mu). Mullite seems to be more abundant in the B1 

sample, even if its traces are also recorded in the B2 sample (see Figure II.2). This result is 

due to the higher temperature applied in the firing of the facing brick, which is above 

980 [ºC], considered as the point of formation of γ-Al2O3 spinel-type phase (S) accompanied 

by mullite development from melting kaolinite and muscovite clay minerals.7,8,9,10 Hence, it is 

not surprising that the muscovite mineral is still easily detected in the B2 sample with the 

lower processing temperature. The significant amount of the background signal can be 

attributed to the presence of an amorphous phase, e.g. aluminosilicate glass. The contribution 

of this non-crystalline solid to the brick microstructure increases with the temperature and 

spans from around 10 % in weight for brick fashioned at 900 [°C] to as much as 40 % for 

processing temperature of 1100 [°C]. 11,12 
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Figure II.2 XRD spectra of B1 and B2 with phase identification: α-quartz (Q), K-feldspar 

(Kf), hematite (H) and mullite (Mu). 

 

 The results of this qualitative analysis are supported by the results of EDX elemental 

mapping on polished sections of bulk samples. Distribution maps of silicon (Si), aluminum 

(Al) and other incorporated elements were collected, and the regions close to the theoretical 

composition of quartz (red), feldspar (dark blue) and hematite (violet) could be identified 

(see Figure II.3). The ‘binding phase’ (green and yellow) is a composite of crystals of mullite 

and spinel-type phase embedded in the glass (sample B1). However, the geometrical forms of 

these minerals could not be obtained in this analysis, because of the fine character of the 

crystal structures of sub-micron size as well as the presence of hosting glass. The features of 

this size are below the spatial resolution limit, which is rarely much better than 1 [µm] in this 

type of analysis13 and is implied by the volume of the material probed with the electron beam 

in EDX coupled to conventional SEM microscope. 

 

Figure II.3 Typical EDX composite map of elemental composition of fired brick obtained 

from the tests: quartz (red), feldspar (blue), hematite (violet), aluminosilicate composite 

matrix (green), pocket of aluminosilicate matrix rich in alkali oxides (yellow). 



Multi-Technique Investigation of Extruded Clay Brick Microstructure 
___________________________________________________________________________ 

 
16 

 This phase identification analysis reveals, in a simple manner, how the brick processing 

temperature can affect its mechanical and physical performance. The mechanical strength and 

stiffness may be expected to be higher in sample B1, since the relatively weak backbone of 

the compacted green ware composed of the clay minerals has been transformed into a stronger 

one made of mullite and spinel crystals mainly wrapped in amorphous glass. In contrast, 

sample B2 tends to preserve still the original internal structure, since the phase transformation 

process has not been fully accomplished and a large fraction of clay minerals is still 

detectable. Coarse particles of quartz and feldspar in both materials tend to be the filler, akin 

to gravel aggregates in concrete. 

 

II.3.2. Microstructure 

 Prior to the investigations of the microstructure, a minimum of three samples for each type 

of brick were cored (along the shortest edge of the brick) from the central part of the solid 

unit, and the polished sections were prepared. The preparation procedure includes: 

impregnation under vacuum with low viscosity epoxy resin EpoThin Buehler, coarse grinding 

on the diamond disc 45 [µm] Apex DGD Buehler, and fine polishing with water based 

diamond suspensions grade 9 [µm], 3 [µm] and 1 [µm] applied on perforated pad TexMetP 

Buehler. In the last pass a 0.25 [µm] oil based diamond suspension grade, in exchange with 

colloidal silica, was occasionally used during a short duration. The surfaces oriented along the 

length, width and height of the brick were exposed to microscopic examination. A minimum 

of 12 images for each magnification step (×100≈1238×925 [µm], ×200≈619×463 [µm] and 

×400≈310×231 [µm], image resolution 712×484 and 3584×3301 pixels) was acquired on the 

surface at randomly selected locations, with the Backscattered Electron Detector (BSEM). 

Qualitative and quantitative analysis of the porous domain was carried out on normalized 

binary images constructed via the automatic thresholding procedure proposed by Otsu14,15 and 

implemented into ImageJ, a non-commercial image analysis package.16 

 Additionally, to resolve the nano-crystals of mullite and other phases existing within the 

binding matrix of brick B1 and the aggregates of molten clay structures existing within brick 

B2, chemical etching with 6 % hydrofluoric acid HF was carried out for 1 [min] to 4 [min] 

prior to SEM imaging. 

 The experimental micrographs expose, at different length scales of observation, the 

dominant features of the microstructure of B1 and B2 samples. Both microstructures converge 

to a common pattern at larger length scales. On the other hand, the building blocks present at 

the lowest level considered here (<10-6 [m]) diverge significantly, preserving only the 
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chemical similarity. Hence, each material is characterized by a different type of matrix phase 

(see Figure II.4(a-b) and Figure II.5(a-b)), which hosts larger scale components. 

   

(a)              (b) 

Figure II.4 BSE-SEM micrographs of the sample B1: a) microstructure in the section with 

normal vector oriented along the length of the brick (notice, the extrusion axis is parallel to 

the longer edge of the image), characteristic coarse voids with preferential orientation along 

the green body extrusion direction, b) detailed view at the composite of silt particles (SP), 

polycrystalline-amorphous ‘glassy’ matrix (GM) and finer porosity. 

 

   

(a)              (b) 

Figure II.5 BSE-SEM micrographs of the sample B2: a) microstructure in the section with 

normal vector oriented along the length of the brick (notice, the extrusion axis normal to the 

plane of the image), microstructure with dominant population of finer porosity and rare coarse 

voids, b) detailed view at the ‘granular’ microstructure composed of silt (SP), remnants of 

porous aggregates of clay (CA), early developed pocket of the ‘glassy’ melt (GM) and 

porosity. 
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More specifically, the matrix of facing brick B1 is a composite of amorphous glass, crystals of 

primary mullite (PM) and occasional acicular forms of secondary mullite (SM), spinel-type 

phase and hematite (H) (Figure II.6(a)). The size of incorporated crystals varies from nano- to 

micrometer depending on mineralogy of raw materials and processing conditions, as revealed 

in transmission electron studies (TEM) carried out by other researchers.8,9,17,18,19 

 

 

(a) 

 

(b) 

Figure II.6 Typical detail of investigated microstructures exposed after chemical etching in 

6 % hydrofluoric acid (HF): a) sample B1 with crystals of mullite (PM-primary mullite, 

SM-secondary mullite) and hematite (H), quartz (Q) and epoxy resin (E), etching time 

1 [min], b) detailed look at the fraction of large aggregate of remnants of clay particles (CP) 

existing within the matrix of sample B2, regions (CP+) with apparent formation of new 

geometries in nanometers size from clay laths, etching time 2 [min]. 
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 In contrast, the main matrix components of the B2 sample are porous complexes of 

dehydroxylated and partially molten clay particles (Figure II.6(b)), together with rare local 

clusters of glass reinforced by early developed nano-crystals. The matrix in the B2 sample is 

reminiscent of the green ware (Figure II.5(b)), while a complete new structure has been 

developed in sample B1 upon firing (Figure II.4(b)). Otherwise said, there is a clear structural 

difference in matrix for the brick microstructure as a consequence of the firing process 

(temperature and duration). This observation suggests that the response of both 

microstructures (materials) to prescribed physical and mechanical loads is expected to be 

different, due to the different forms of the matrix present in the two types of clay brick. 

 The composite matrix phase discussed before is an inherent structural element of the 

microstructure at larger scales, 10-6< l <10-4 [m]. At this level new components of the brick 

microstructure become relevant, namely micro-porosity and aggregates of silt. The difference 

in the characteristics of micro-porosity can be directly observed on the SEM micrographs 

previously shown (Figure II.4(a) and II.5(a)) and can be quantified with the aid of DIA 

technique, MIP and standard gravimetric and capillary suction methods (Table II.2). 

 

Table II.2 Average porosity [%] measured with water immersion, MIP and DIA (values in 

brackets represent the coefficient of variation in [%]). 

Sample water immersion1,2 MIP1,3 DIA4 

B1 21.7(5.6) 22.1(1.6) 23.1(6.1) 

B2 23.4(4.9) 23.5(3.5) 22.0(8.6) 

1) apparent porosity, 2) ASTM C67-09,20 3) ASTM D4404–84(2004),21 4) total porosity, size of the observation 
window ×100≈1238×925 [µm]. Minimum number of samples per test Nmin=6. 

 

 The volume occupied by the voids in both samples is comparable with slight increase in 

sample B2, but the pore size distributions curves obtained by DIA exhibit different modality 

and different location of the modes (see Figure II.7(a)). The porosity in sample B1 exhibits a 

unimodal distribution with the mode located at deq≈18 [µm] and a negative skew, where voids 

tend to concentrate toward larger equivalent diameters (log-normal distribution). The voids of 

this sample are within an interval of 1 to 100 [µm]. In contrast, the porosity domain within the 

microstructure of sample B2 exhibits higher variability of voids with respect to the assumed 

equivalent diameter. In this case, a clear bimodality is encountered, which represents two 

families of pores separated by one order of magnitude in size, deq,I≈3 [µm] and deq,II≈30 [µm]. 
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In addition, the entire pore distribution is inscribed within a significantly larger domain. Pores 

with diameters of hundreds of nanometers seem to occupy a non-negligible fraction of the 

total porosity. According to this analysis, sample B1 represents a coarser and more uniform 

porosity distribution, while a more refined structure with larger variation is observed for 

sample B2. 

 

(a) 

  

(b)             (c) 

Figure II.7 Experimental cumulative distribution of the pore size measured with: a) DIA 

based on high resolution micrographs (B1-black, B2-red), b-c) MIP carried out in the single 

intrusion-extrusion cycle on the facing brick B1 and common building brick B2. The solid 

lines represent the fit with the univariate mixture model of two log-normal components 

obtained with Matlab. The correction for the compressibility of the system penetrometer-

mercury-sample not applied. 

 

 This significant difference between the microstructure of the investigated bricks at the 

intermediate material scale is confirmed by mercury intrusion investigation (Figure II.7(b-c)). 

Carried out in low and high pressure regimes with AUTOPORE IV 9510, Micromeritics, six 

specimens of each sample with an average dried mass of 7.5 [g] and volume 3.6 [cm3] were 

studied on the single intrusion-extrusion cycle up to the maximum pressure of 100 [MPa] and 
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an equilibration time of 10 [s]. The MIP results on intrusion confirm the difference in 

modality for the two samples, as well as the tendency of B1 sample towards a coarser porous 

domain than the one incorporated within B2 brick. Similar observation is given by the MIP 

drainage results, although the bimodality becomes less apparent in this case for brick B2. 

Despite the qualitative good agreement of MIP and DIA analysis, there exists an evident 

discrepancy between them, due to the different location of the modes. The peaks obtained on 

intrusion cycle, as well as the entire distribution, tend to shift towards smaller diameters.22 

Such a bias, which is also referred to as the ‘ink bottle effect’, occurs when the void to be 

filled with intruding mercury encounters narrow throats, leading to the misrepresentation of 

the pore as having the diameter of its throats, see Abell et al.23 for a description of this 

phenomenon in complex microstructures of cement-based materials. 

 The last feature of the micro-porosity domain to be discussed here, at observation scale 

10 -6<  l< 10-4 [m], is the preferential orientation along one specific direction. This effect has 

been observed more pronounced in the B1 sample under the SEM microscope (see 

Figure II.4(a)) and may be attributed to the technology of brick shaping by extrusion at the 

green stage. In this process, the plastic mass is forced through a die that is placed in the end of 

the pressure head of the extruder, leading to the development of interlaminar tangent stresses. 

These stresses provoke alignment of the irregular particles along streamlines and the 

occurrence of laminations in the green ware (Figure II.8). Simultaneously, the air pockets 

present within the plastic body, due to the insufficient vacuum inside the de-airing chamber, 

adopt a scalene ellipsoidal form with dominant axis aligned with the extrusion direction. 

 

Figure II.8 Slip-lines and laminations within the plastic mass during processing in the piston 

extruder, adapted from Bartusch and Händle24 with kind permission of Springer Science & 

Business Media. 
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 The results from water absorption experiments by capillary action, carried out 

independently for each different direction, corroborate the microstructural signature related to 

the extrusion technique (Figures II.9). In this setup each cylindrical core φ=2.5 [cm] and 

h=5.0 [cm] (six cores for each direction) are brought in contact with water through its bottom 

face, and the mass of absorbed water is monitored over time.20 

 

 

(a) 

 

(b) 

Figure II.9 Capillary water uptake: a) B1, b) B2. The axes are oriented according to the 

width (X), length (Y) and height (Z) directions. Note that the extrusion directions are Z for B1 

and Y for B2. The apparent, small positive W-intercept at t1/2=0 due to unsealed sides of the 

specimens.25 

 

 The weight change behavior of both samples shows a significant difference with respect to 

the orientation (see Figure II.9(a-b)): samples cored along the direction of extrusion present 

the highest sorptivity (Sz/(Sy,Sx)≈1.5 for B1, Sy/(Sx,Sz)≈1.4 for B2) and significantly diverge 

from the two other groups, in which the trend in water absorption appears to be quite similar 

(Sx/Sy≈1 for B1, Sx/Sz≈1 for B2). The movement of water within the system of micro-voids is 

considerably facilitated along the extrusion direction. Such phenomena may occur if the 

microstructure of the material exhibits an aligned porosity with enhanced interconnectivity or 

a laminar microstructure (see Figure II.4(a) and Figure II.8). Features of this type effectively 

increase the rate of water movement along direction of the alignment (see Figure II.10(a-b)). 
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(a) 

 

(b) 

Figure II.10 Simplified 2D scheme of the model material with capillary voids and suction of 

the water for two different orientations ξ1, ξ2 (capillary tube with uniform section model): 

a) material with preferential orientation of the voids, the length of the average path L1<L2, the 

average number of capillary inlets n1>n2, b) no alignment, distributional isotropy L1≈L2, 

n1≈n2. 

 

 Finally, at larger scales, l > 10-4 [m], SEM images confirm features identified previously 

by other researchers,26,27 namely the presence of coarse aggregates associated with inherent 

fissures as well as discontinuities at the interface of coarse aggregates and ‘glassy’ matrix, 

together with large meso-voids (cracks). The cracks have been attributed to the volume 

contraction during phase transformation of quartz from its β-form to the more stable at room 

temperature α-form, while the discontinuities at the boundaries have been considered to result 

from the mismatch in thermal expansion coefficients between quartz and composite of 

‘glassy’ matrix, silt grains and micro-porosity. 

 

II.3.3. Mechanical Performance 

 Following the analysis of phase composition and microstructural features, the effect of 

composition and microstructure on the mechanical performance of the investigated brick 

samples is addressed using a combination of classical macroscopic strength tests and 

nanoindentation tests. 

 Macroscopic compressive strength fc,i and modulus of elasticity Ei of both materials in 

three directions i=X,Y,Z (see Table II.3) were obtained by standard compression tests on 
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cylindrical samples with a height to diameter ratio of two (h/D=2). A minimum of 12 tests 

was carried out in each direction according to the procedure adopted from.28 Note that it is 

normal practice to report the macroscopic compressive strength of brick, which is a basic and 

much used material property for mechanical characterization, even if the values in different 

directions are not usually reported. 

 

Table II.3. Average Young’s Modulus and Compressive Strength measured at macro-scale. 

Note that the extrusion directions are Z for B1 and Y for B2 (values in brackets represent the 

coefficient of variation in [%]). 

Sample EX
1 EY

1 EZ
1 fc,X

2 fc,Y
2 fc,Z

2 

B1 5.4(11.6) 6.2(10.7) 8.0(5.6) 64.2(11.2) 65.3(18.7) 82.8(13.7) 

B2 2.4(7.7) 3.8(3.9) 2.0(17.5 ) 44.2(10.4) 56.2(10.5) 42.6(8.0) 

BR3 --- 10.4(3.6) 12.7(4.4) --- 51.0(12.0) 56.8(6.4) 

1) [GPa], 2) [MPa], 3) Brick reference reported by Oliveira et al.29. 

 

 As expected, the results show that facing brick type sample B1 has significantly higher 

mechanical properties than the common brick B2 (Table II.3). For instance, the maximum 

strength capacity of B2 is ≈56 [MPa], compared to a strength capacity of ≈83 [MPa] for B1, 

which are values within the expected range for solid clay brick. Due to the high strength, both 

materials exhibit rather brittle failure at the strength limit. 

 A similar trend is observed for the modulus of elasticity, although reported values may be 

somewhat reduced due to the compliance of the experimental setup. In agreement with results 

reported by Oliveira et al.,29 the highest strength and modulus are found along the axis aligned 

with the direction of green body extrusion. The performance of both materials in directions 

perpendicular to the extrusion direction is quite similar. This suggests that extruded bricks 

exhibit at macroscopic level (at least) transverse isotropic elastic behavior characterized by 

five elastic constants.30 

 The macro-scale mechanical behavior is inherently linked to microstructure and 

constituent properties at nano- and micro-scale. In order to quantify this link, the best 

experimental technique able to assess mechanical properties at the smallest and intermediate 

material scales is instrumented indentation,31 employed in form of massive grid indentation 

technique.32 This testing procedure, which originates from the traditional hardness 

measurement developed by Brinell,33 is based on the continuous monitoring of the load and 
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displacement of the hard probe as it is driven and withdrawn from the material at discrete 

locations of a grid lx×ly that spans a specific region on a material surface Lx×Ly 

(Figure II.11(a-c)). The obtained load-displacement diagrams (Figure II.11(a)) allow the 

determination of the material hardness Hi and indentation moduli Mi (Figure II.11(b)) at each 

location (Figure II.11(c)), based on the contact area at maximum load and initial unloading 

stiffness.34,35 

 

 

Figure II.11 Assessment of the mechanical properties by instrumented indentation with 

massive grid concept: a) indentation curves on the fictitious biphasic material, 

b) deconvolution of experimental data, c) the scheme of the experimental grid lx×ly on the 

surface of the material. 

 

 In case of composite materials, the i-th node record of hardness and indentation modulus, 

xi=[Hi;Mi], may belong to one j=1…n of n mechanically active phases Gn with average 

properties ( )j jH ;M . Hence, the statistical analysis (deconvolution) that is carried out on the 

grid dataset (Figure II.11(b)) aims at estimating the number of statistically significant phases, 

as well as their vectors of mean properties with covariance matrices φj=[µj,Σj] and associated 

fractions πj. Recent literature reports a variety of deconvolution strategies applied for this 

purpose.4,32,36 We employ here a multivariate mixture model to identify the number of phases 

and phase properties. Based on the Finite Gaussians Mixture Model (FGMM) (Eq. II.1 and 

(
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Eq. II.2),37,38 the estimation of the parameters is carried out according to the Maximum 

Likelihood (ML) function, via the Expectation Maximization (EM) algorithm,39 with the aid 

of non-commercial program called EMMIX developed by Peel and McLachlan.38,40 

1
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The applicability and efficiency of this experimental approach and statistical analysis 

technique with reference to clay brick is briefly presented next and discussed on the basis of 

results (Figure II.12(a-d)) selected from the experimental campaign on facing brick B1. 

 The porous samples were impregnated with epoxy resin prior to indentation testing. This 

resin impregnation was employed in order to facilitate the preparation of a smooth surface by 

the polishing process, and to be able to identify porosity by contact experiment due to a 

significant lower hardness of the solidified epoxy resin (H≈0.3 [GPa]) compared to the 

hardness of the ‘glassy’ matrix, quartz and other incorporated phases. However, this mismatch 

in hardness and required prolonged polishing time may provoke a rounding of edges of hard 

phases or their removal, which may entail some ill-conditioned measurements. A fine 

statistical analysis is required to identify and isolate such tests from the overall analysis. 

 The qualitative picture regarding the phases within the investigated region in this 

particular analysis is given by the BSEM micrograph (Figure II.12(a)). Three main 

components can be distinguished (confirmed by EDX analysis), namely silt aggregates 

(quartz), ‘glassy’ matrix and porosity filled with hardened epoxy resin. Each of the 

components has distinct mechanical properties. However, while the hardened epoxy resin and 

quartz may be considered as homogeneous phases at this scale, the ‘glassy’ matrix developed 

within facing brick B1 is a composite material, in which fine nano-crystals of mullite and 

other accessory minerals are incorporated and are bonded by aluminosilicate glass.17,18,41,42 

 In the chosen experimental setup the indentation mesh spans a region Lx×Ly=60×54 [µm] 

and includes N×M=41×37 indentation points. The indentations with Berkovich diamond tip 

are force controlled, with a maximum force of P=2.25 [mN] provoking penetration depths 

between ≈130 [nm] for hard grains and ≈700 [nm] for soft epoxy filling the pores. The CSM 

nanoindentation tester equipped with the temperature and moisture controlled enclosure has 

been used. The statistical deconvolution of the data in the form ‘as received’ (including 

abnormal measurements) is presented in the form of a scatter diagram in the H-M plane 
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together with simultaneous allocation of data into statistically significant groups 

(Figure II.12(d)). Using a Bayesian Information Criterion (BIC),43 it is possible to identify 

a minimum value of BIC for seven normal components. 

 

 

Figure II.12 Massive Grid Indentation on sample B1: a) BSEM micrograph of local 

microstructure with outline of the grid N×M = 41×37, lx = ly = 1.5 [µm], P = 2.25 [mN], 

τloading = τunloading =5 [mN/min], tdwell =5 [s], b) probabilistic map of mechanical phases, 

c) indentation imprints, d) deconvolution with Gaussians Mixture Modeling. 

 

 The first four clusters have mean hardness and indentation moduli significantly lower than 

the rest. Such statistically significant phases are associated with indentation on pores filled by 

epoxy. In contrast, the remaining three clusters represent indentations on (i) the bulk ‘glassy’ 

(b) (a) 

(d) (c) 
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matrix, H5=9.9 [GPa], M5=87.3 [GPa], and (ii) different aggregates of quartz, H6=13.4 [GPa], 

M6=88.6 [GPa] and H7=14.5 [GPa], M7=103.4 [GPa]. This hypothesis is validated by the 

microstructural phase map shown on BSEM image and its statistical reproduction based on a 

cluster analysis of the indentation data, subjected to direct comparison (Figure II.12(a-b)). 

According to this analysis, the aggregates of quartz are properly recognized (red and orange) 

as well as the group of indents that represent the binding matrix (yellow). Additionally, it is 

noticed that the experimental records allocated to the first four groups are linked to pores 

intruded by epoxy. In turn, this group may also include some abnormal measurements 

(imperfect contact detection, fracture etc.), which in general fall in the lower range of 

measured quantities. 

 To confirm the initial conclusions, a filtering of experimental data was carried out with 

respect to the possible deviations from continuous load-displacement curves P∝hm,34 which 

typically point to degenerated measurements, such as fracture under the indenter, soft-on-hard 

behavior or other anomalies (Figure II.13(a-c)). The filtered dataset was then deconvoluted 

again using the described cluster algorithm (Figure II.13(d-e)). The following main 

observations may be drawn: the group of records with the lowest hardness and modulus is 

enlarged leading to a shift in the vector of mean properties H1=0.3→0.4 [GPa] and 

M1=17.5→20.0 [GPa], and the families G2 and G3 previously indentified are absent in the 

deconvolution of the filtered data set. Hence, the data of these two groups establish a 

statistically significant set, which was identified in the original analysis. Moreover, next to the 

rare events on grains of quartz and matrix, the set of ill conditioned indentation events 

includes mostly the ones located within the void domain in close proximity (boundary zone) 

of the ‘glassy’ matrix or quartz (see Figures II.12(b) and Figure II.13(d)). The latter groups do 

not experience significant alterations in mean properties as well as allocation of the records 

upon data filtering. 

 The experimental indentation modulus of the quartz phase obtained from this analysis 

appears to be very close to the stiffness values reported in the literature for single crystal of 

quartz (C33≈106 [GPa] and C11≈87 [GPa]).44 The first of the mean values M6≈87 [GPa] 

associated with the quartz phase approaches C11 and is around 10 % higher than Young’s 

modulus in this direction E11≈79 [GPa], while the second M7≈103 [GPa] is just slightly lover 

than C33, but becomes equal to E33≈103 [GPa]. Additionally, the average value of both means 

is in close proximity of the Voight-Reuss-Hill average Epol≈99 [GPa].44 However, it must be 

emphasized at this point that the indentation modulus M for crystal materials is considered to 
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represent some average of elastic constants, which additionally depends on the orientation of 

the indented surface with respect to the material axes.34,45 Therefore, it does not correspond 

directly to any of the referred stiffness values. 

 

 
        (d)            (e)      

Figure II.13 Filtering of experimental data: a,b,c) examples of abnormal load displacement 

curves, d) map of the identified phases with location of abnormal measurements 

(black phase), e) deconvolution of the grid dataset free of degenerated records. 

 

The measured hardness of quartz is consistent with literature hardness H(001)≈13÷14 [GPa].34 

Estimated mechanical properties of the ‘glassy’ matrix, H3≈10 [GPa], M3≈85 [GPa], are larger 

than values reported for soda-lime-silica glass (H≈6 [GPa], E≈70 [GPa]→M≈74 [GPa])34 and 

fused silica (H≈8 [GPa], E≈72 [GPa]→M≈74 [GPa])34. On the other hand, comparing with the 

properties of aluminosilicate glass (HV≈6 [GPa]→H≈6.5 [GPa], E≈89 [GPa]→M≈94 [GPa])33 

the hardness of matrix is still significantly higher, but its stiffness appears to be lower. These 

enhanced mechanical properties may be attributed to the presence of nano-crystals within the 

‘glassy’ matrix as well as to the multi-component character of incorporated glass.17,41 It is 

known that the incorporation of alkali oxides or iron, as well as reduction in silica content 

within the matrix may alter hardness and modulus of glass, e.g. basaltic glass (H≈8.6 [GPa], 

M≈97 [GPa]).46,47 

 Finally, it is worth mentioning that the resultant indentation (see Figure II.12(c)) depth 

h≈200 [nm] on the ‘glassy’ matrix phase activates an interaction volume of a characteristic 

size d=3h-5h=0.6-1.0 [µm].48 Hence, d appears to be between three and five times larger that 

the nano-crystals of primary mullite, hematite and spinel, for which the maximum size of 
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observed crystals in sample B1 seems to be d0
1≈200 [nm], up to two times larger than the size 

of acicular crystals of secondary mullite d0
2≈500 [nm]. The secondary type is occasionally 

observed within large pockets of the ‘glassy’ matrix rich in alkaline impurities, causing 

excessive growth of this needle shaped form. Studies carried out by other researchers17,41,42 

confirm this observation, and specify the limiting size of primary mullite derived from 

kaolinite and muscovite clay as being <100 [nm], and as being <1 [µm] for secondary mullite. 

Given this size, it is unlikely that nanoindentation operated to a depth h≈200 [nm] will be able 

to actually probe ‘pure’ properties of primary or secondary mullite, as well as glass, but rather 

a composite response that may include effects of fine-scale porosity. 

 

II.4. DISCUSSION 

 

 The complexity of clay brick microstructure requires the use of a multi-technique 

approach to identify the link between chemical and mineralogical composition, microstructure 

and mechanical performance. The results presented in this paper provide new insight into the 

multi-level and multi-component morphology of these silica and alumina rich ceramic 

material systems, which can be associated with distinct materials scales (Figure II.14), as 

detailed next. 

 

II.4.1. Level “0” (<<<<10-6 [m]) 

 A good starting point for the multi-scale structure of brick is the ‘glassy’ matrix phase, 

which manifests itself at sub-micrometer scales in form of neo-crystals of mullite, γ-Al2O3 

spinel-type phase and other accessory minerals. Such crystals, qualitatively identified with 

XRD, may reach hundreds of nanometers in size. As the SEM microscopy study on 

chemically etched sections revealed, these crystals are present in different geometrical forms, 

from cubic structures like in case of primary mullite and hematite, to acicular forms in the 

case of secondary mullite. These crystals are hosted by an amorphous phase and form a 

nano-composite with chemical and mechanical similarity to aluminosilicate glass with 

addition of alkaline oxides, as revealed by EDX analysis and instrumented grid indentation. 

Such a composite tends to develop upon the application of temperatures significantly above 

950 [°C] and is present in the microstructure of the facing brick type B1. For lower 

temperatures, dehydroxylated muscovite was still observed in the diffraction spectra of B2 

brick, which suggests that the phase transformation was not completed. Further studies of this 
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material based on SEM micrographs confirm this hypothesis, exposing significant fraction of 

residual, partially molten clay particles assembled in aggregates, next to the initial ‘glassy’ 

melt. So observed clay aggregates within B2 sample tend to form ‘grains’ defined here as 

‘grains type A’, whereas the early developed polycrystalline-amorphous matrix in the regions 

of high chemical potential are specified as ‘grains type B’ (Figure II.14). 

Figure II.14 Hierarchical think-model of facing clay brick B1 (T≈1050 [°C] (left)) and 

common brick B2 microstructures (T≈950 [°C] (right)). 
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II.4.2. Level “I”: Primary Brick (<10 -4 [m])  

 At sub-millimeter scale, matrix and porosity form a porous composite material whose 

behavior drives much of the macroscopic performance of clay brick materials. We therefore 

coin this scale as the “Primary Brick” scale. Depending on processing temperature and level 

“0” morphology, the structure of the “Primary Brick” may possess either a disordered 

granular morphology or a continuous matrix morphology with pore inclusions: the granular 

morphology is characteristic of brick B2, composed of level “0” grains (type A and B) and silt 

particles; a continuous matrix morphology is characteristic of the high-temperature fired 

facing brick B1, which possesses a continuous polycrystalline-amorphous binding matrix with 

silt and pore inclusions. These two morphological forms are inherently related to the porosity 

that dominates this scale, and which, according to results of MIP, DIA and gravimetric 

methods, may occupy up to one-third of the bulk material.  

 MIP and DIA results indicate that the micro-porosity spans a large range of scales from 

hundreds of nanometers to tens of micrometers, with modes clearly defined. A broad pore 

distribution is present in sample B2, which was produced at a temperature close to the melting 

temperature. The clear modes in the pore-size distributions are indicative of a coarse porosity 

development that can be attributed to the proximity of the firing temperature and the melting 

temperature. On the other hand, a significant fraction of fine voids is also found reminiscent 

of an inter-granular porosity incorporated between the remnants of clay particles. 

 Another important feature, which is encountered in this morphology, is the preferential 

orientation of voids, which are rarely spherical. This feature of the porosity is attributed to the 

extrusion technique employed to shape the brick at its green stage. In fact, forming of the 

material in the extruder tends to align irregular particles and to alter the form of originally 

spherical voids. As a result, the coarse porosity that builds up on the expense of smaller void 

coalescence tends to align along the extrusion direction, which affects physical and 

mechanical properties at macro-level. This alteration has been independently demonstrated in 

water absorption tests and macro-mechanical tests, in which the capillary water uptake, the 

Young’s modulus and the strength, measured along the different material axes, show strong 

evidence of a macroscopic anisotropic behavior. 

 

II.4.3. Level “II”: Secondary Brick (<10-2 [m])  

 The top level of the proposed hierarchical material description is defined by the 

“Secondary Brick” structure, which is common for both materials B1 and B2. At this 

sub-centimeter scale, the “Primary Brick” composite hosts fractured grains of coarse sand, 
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discontinuous interface and possibly meso-voids. The discontinuity at the interface of the sand 

particles can be attributed to the thermal mismatch between host matrix and sand (mostly 

quartz) grains. 

 

II.5. CONCLUSIONS 

 

 It has been demonstrated, that extruded clay brick is a complex ceramic system with a 

hierarchical microstructure. The multi-scale nature of this composite can be dissected into 

three scales: Level “0”  (<10-6 [m]), “Primary Brick” (<10-4 [m]) and “Secondary Brick” 

(<10-2 [m]). Depending on the brick firing temperature, the level “0” represents the 

nano-composite of ‘glassy’ matrix or assembly of dehydroxylated, partially molten clay 

aggregates and initial melt. The ‘glassy’ matrix tends to develop in the brick fired at 

temperatures significantly above melting temperature of the raw clay minerals. This 

temperature assures the formation of the amorphous binding phase, as well as crystallization 

of primary and secondary mullites, hematite and other accessory minerals in the nanometers 

size, as revealed by XRD and SEM micrographs studies. These crystal phases tend to enhance 

the hardness of the ‘glassy’ matrix; but it leaves the measured elastic properties in close 

proximity to that of the aluminosilicate glass, as demonstrated by instrumented grid 

indentation technique. The structure of “Primary Brick” is defined at sub-millimeter scale, 

where matrix, silt and porosity form a porous composite, whose behavior drives much of the 

macroscopic mechanical and physical performance of extruded brick. Depending on both, the 

morphology at level “0” and the processing temperature, the structure of the “Primary Brick” 

exhibits either a granular morphology or continuous matrix morphology with pore inclusions. 

The granular morphology with finer micro-porosity prevails when the firing temperature 

approaches the melting temperature, whereas the continuous morphology with coarser voids 

is inherent to bricks fashioned at significantly higher temperatures. Due to shaping technology 

of the green brick by extrusion, the micro-porosity exhibits a preferential orientation along the 

extrusion direction. Therefore, the water suction along this specific path is significantly 

enhanced compared to the other two orthogonal directions. A similar trend has been observed 

for the modulus of elasticity and strength, and suggests that extruded brick at macroscopic 

level follows (at least) transverse isotropy. The top level in the proposed hierarchical 

description represents the structure at sub-centimeter scale of “Secondary Brick”. The 

fractured coarse aggregates of sand, as well as peripheral cracks at the interface of the coarse 
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particles and the composite represented by “Primary Brick” are the main microstructural 

features at this material scale. 

 The results of the multiscale technique thus applied to brick shed new light on the 

complex interplay at multiple scales between composition, processing and macroscopic 

performance of masonry materials. This should make it possible, in the close future, to fine 

tailor this omnipresent construction material for specific use and performances. 
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III. Homogenized Material Response and the 

Distribution of the Indentation Modulus as 

a Geometrical Probability Problem. An 

Approach to Buckle’s Rule of Thumb for 

Heterogeneous Materials 
 

 

 

 

ABSTRACT 

It this work the probabilistic approach is formulated in order to model the homogenization 

effect observed in the experimental grid indentation on heterogeneous solids. For this 

purpose, the simplified model microstructures of polycrystalline and fiber-reinforced 

materials are considered. Following the probabilistic partitioning of the region occupied by 

the bulk, the discrete distributions of the effective modulus are constructed. The influence of 

the characteristic length scale of the indentation interaction volume on the measured material 

response is investigated. The statistical homogenization and phase separation is discussed on 

the basis of results gathered from proposed analytical approach and Monte-Carlo simulations. 

Finally, the Buckle’s principle for heterogeneous materials is validated. 
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III.1. INTRODUCTION 

 

 Recent developments in theoretical and experimental material science open new venues in 

the engineering and the design of complex material systems. Rapid advances of the measuring 

devices provide experimentalists with the access to the very refined structures of solids, 

whose characteristic scales differ by several orders of magnitude from the bulk observed at 

ordinary scale. Therefore, engineering of new high-tech materials, or commonly applied 

materials, is no longer restricted to the macro-level, but may be initiated at the smallest 

material scales, where the basic chemo-mechanical components can be identified. Such a 

micro-mechanics based approach becomes efficient and suitable to study heterogeneous 

materials (whether man-made, geological or biological) with different application purposes. 

Examples include omnipresent clay brick, concrete or wood as well as advanced composites, 

such as superconducting wires (Figure III.1) and fiber reinforced ceramic composites 

(Figure III.2). 

 

Figure III.1 Binary metal-matrix metal-filament composite Nb-Ti/Cu superconducting (SC) 

wire used for the fabrication of accelerator magnet coils in Large Hadron Collider (LHC), 

image adopted from Scheuerlein et al..1 

The mentioned examples represent a quite broad spectrum of materials, even if they have one 

feature in common: the hierarchical ordering of the microstructure. Due to this fact, the bulk 

solid may be broken down to the material blocks representing specific morphologies. Each of 

such blocks is associated with a unique length scale L, which in the mechanical sense 

manifests itself by different mechanical performance (stiffness and strength). To identify such 

material levels and link them to in vivo mechanical performance of the bulk, the combination 

of microscopy techniques and experimental mechanics is required. For this purpose, the 

implementation of the nano-science into material engineering science led to the development 

of the instrumented indentation method. This experimental method provides unprecedented 
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access to micro-mechanical properties of small material volumes, which could not be 

achieved in conventional tests as the common uniaxial compression or uniaxial tension tests. 

 The idea of the instrumented indentation method is simple: by pushing the hard probe of 

the indenter, the volume of the bulk beneath becomes deformed in a way governed by the 

mechanical properties of the solid. The indentation modulus, as well as the material hardness, 

are calculated on the basis of the P-h (indentation force-indentation depth) experimental 

curve.2 The properties obtained are considered to represent the average quantities from the 

volume of the bulk activated by the probe, the so-called interaction volume. Therefore, the 

properties are valid at the length scale corresponding to the size of the interaction volume 

d≈3h-4h.3 By changing the indentation depth h, the properties from the different material 

levels may be extracted, and all existing blocks can be properly classified in the mechanical 

sense. On the other hand, probing the material at different indentation depths, from macro 

toward micro and nano-scale, allows continuous monitoring of the variation of the considered 

material parameters. As a consequence the homogenization process (or upscaling) within the 

heterogeneous solids can be observed directly in the test. However, in order to fulfill the goal 

of identifying the structural blocks and measure the inherent properties at some well defined 

material scale, the proper choice of the suitable indentation depth is required. 

 

Figure III.2 Hierarchical microstructure of the continuous-fiber ceramic composite, adopted 

from Zok.4 

 Heterogeneous material, by definition, represents a complex system, where the features of 

diverse origins, forms and size may be incorporated with different volume fractions. 

Therefore, to minimize the interference of the other structural blocks in the measured 

parameters, and to be certain that the parameters are inherent characteristics of the identified 

phase, this choice is of crucial importance. 

 A common approach to this problem is the rule known as 1/10 or Buckle’s rule of thumb 

originally proposed for the system of a thin film on a substrate.5 This principle, extended 

further to heterogeneous materials, states that in order to assess the inherent phase properties, 
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the indentation depth h should be at most 1/10 of the characteristic size of the microstructure 

D.6 Above this limit, and when the mismatch in the phase properties of the substrate Es and of 

the film Ef is significant Es / Ef ∉[0.2;5], the interference is likely to occur and the composite 

response may prevail. This hypothesis has been extensively used in the instrumented 

indentation of multi-scale and multi-component materials providing satisfactory results.7 

However, to the knowledge of the author, its analytical proof has lacked behind, except in the 

case of a thin film on a substrate.8,9 Therefore, the work presented here contributes to fill this 

gap and validates the 1/10 principle for the case of heterogeneous solids, in the framework of 

linear elasticity and probability theory. To achieve this goal, the real indentation experiment 

on a composite material has been discretized to a form that provides a relatively clear and 

simple mathematical description. 

 Accordingly, the interaction volume is modeled as a cubic form with characteristic size d, 

the composite materials represent idealistic heterogeneous solids and the effective elastic 

modulus follows the law of mixture. Under these assumptions, the partitioning in the 

probabilistic sense is carried out on the domain of the bulk. Each of such subsets represents 

the location of the interaction volume of size d, for which the random variable Eff takes the 

values in the prescribed limits. At transient given d value, varying from the size approaching 

zero to the scale of the representative cell D (analogy with the observation window), the 

discrete distribution of probability masses is calculated. The evolution of the discrete 

probability distributions with respect to the characteristic length of the interaction volume 

describes the homogenization effect in the statistical sense and in the framework of the 

proposed methodology. Likewise, in the real experiment, the separation of the phases or 

convergence towards a unified material response may be reproduced. Therefore, the relation 

between the characteristic length scale D and the indentation depth h permits to evaluate the 

Buckle’s principle applied to model microstructures. The analytical approach presented next 

is strengthened with the results of a Monte-Carlo simulation, which provides access to the 

homogenization (separation) at scales much above the scale of the Representative Elementary 

Volume (REV) for multi-phase materials. 

 

III.2. MODELS FOR HETEROGENEOUS MATERIALS 

 

 The two adopted model microstructures represent commonly encountered morphologies in 

composite materials. The checker-board model (Figure III.3(a)) is an idealization of the 
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polycrystalline type solid, while the fiber reinforced composite material has been approached 

with the fiber-board model (Figure III.3(b)). 

 It is known that polycrystalline materials, e.g. metals, by definition are made up of grains 

‘stuck’ together by grain boundaries. Grains come in diverse shapes and sizes, which are 

strongly affected by the processing conditions and elemental composition.10 Due to this 

complexity, severe simplifications have been done regarding the size, as well as the shape of 

the grains, so that the problem is treatable in the context of this work. Therefore, each phase is 

considered isotropic, the grains have cubic form and the grains are distributed in a periodic 

manner providing equal volume fractions. The second model represents a biphasic composite 

material with the fibers embedded in the continuous matrix. In this fiber-matrix morphology 

both constituents are assumed isotropic, and the case of perfect interface bond is considered. 

Embedded fibers feature a common circular section and the same direction of alignment. As a 

result of the assumptions made, the randomness of the heterogeneities in both morphologies 

became suppressed, creating deterministic microstructures. 

 

Figure III.3 Investigated model microstructures: a) idealization of the polycrystalline 

morphology represented by a checker board model, b) idealization of the fiber reinforced 

composite morphology represented by a fiber-board model. Note that the cell considered has 

j times the size of a characteristic length D. 

 

III.3. DEFINITION OF THE EXPERIMENTAL PROCEDURE 

 

 The virtual indentation experiment is carried out on the material model defined on the 

fixed region ℜ0 = ℜ1+ ℜ2 in ℜ3 Euclidean space, which may be finite or infinite and is 

occupied by a continuously distributed, biphasic composite material (Figure III.4(a)). Both 

incorporated phases, which occupy ℜ1 and ℜ2 respectively, are considered isotropic and 

(a) (b) 

fD
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linear elastic, however with distinct stiffness properties L1=(3K1,2µ1) and L2=(3K2,2µ2), 

where the subscripts 1 and 2 indicate the phases. The symbolic notation for fourth-order 

isotropic stiffness tensors L (Eq. III.1) in terms of bulk K=E/3(1-2µ) and shear µ=E/2(1+ν) 
moduli has been adopted.11 The division of the body volume among the phases follows the 

condition c1+c2=1, where ci stands for the volume fraction of i-th phase. 

3 2 (3 ,2 )h dK Kµ µ= + ⇒L I I L  III.1 

 

(a) 

 

(b) 

Figure III.4 Model of a biphasic material (a), division of ℜ0 into discrete sets of the points in 

ℜ3 Euclidean space (b). 

The trial of statistical experiment DDDD includes three stages. In the first stage a random point 

O(x,y,z) is drawn from the region ℜ0. Next, the fictitious indentation interaction volume is 

placed in a way that its center is located at O(x,y,z). The interaction volume is assumed to be 

of cubic form with the characteristic length scale d. Finally, the volume fraction c1 of Phase 1 

bounded within the interaction cube is estimated and used for the calculation of the effective 

modulus of elasticity Eeff according to the Voigt upper bound solution (Eq. III.2). These two 

random variables are the outcomes of a single trial of the experiment. In order to construct the 

relative frequency diagram of the later random variable, which is one of the main objectives 

of this study, the experiment DDDD  is repeated sufficiently large number of times N→∞, and the 

gathered results are sorted into the user specified mutually exclusive intervals, bins. The 

adopted procedure tends to mimic the real indentation experiment, in which the independent 

measurements are taken in the nodal points of a large indentation grid. 

1 1 2 2effE c E c E= +  III.2 

This strategy has been applied in the virtual indentation study based on 3D images of an 

idealized two-phase material as well as in images of hardened cement paste (HCP) acquired 
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by focused ion beam nanotomography (FIB-nt).12 However, in the present research work, 

rather than using a computer code like in the mentioned reference, an alternative procedure, 

which leads to an analytical solution is proposed and is used to study the homogenization 

effect in the grid indentation technique. 

 The procedure to follow relies on the concept of partition of region ℜ0 into the finite 

number of subsets AAAA1,AAAA2,…………,AAAAm,, where m ≥ 3 is a odd natural number (Figure III.4(b)). Such 

a partition HHHH=[AAAA1,AAAA2,…………,AAAAm] is considered to be a collection of mutually exclusive subsets AAAAi, 

meaning that any two arbitrary sets within HHHH  have no common element, and theirs union 

equals ℜ0 (Eq. III.3).13 

1 2 0 { }m i j i j+ + + = ℜ = ∅ ≠…A A A AA  III.3 

A subset AAAAi of HHHH includes all elementary events ω (points O(x,y,z)∈ℜ0), such that the 

experimental realization of the random variable C(ω) falls into the corresponding interval l i or 

is constant C(ω)=c0, if l i={c0} where c0∈〈0;1〉 (Figure III.5). In other words, the material that 

occupies ℜ0 is divided into the regions AAAAi, such that the volume fraction c1 of Phase 1 within 

the interaction volume of size d whose center O(x,y,z)∈AAAAi, varies within related interval l i or 

may be independent from the location, if C({ω}∈AAAAi) = const.. 

 

Figure III.5 Division of the domain of the random variable C(ω)∈〈0;1〉 into finite intervals 

with boundary values and distribution of probability masses P({ω}). 
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 As a way of illustration of this concept, the partitioning of checkerboard material 

(Figure III.6(a)), as well as uniaxial fiber reinforced composite (Figure III.6(b)), are 

presented. In these two working cases the original material domains ℜ0 have been discretized 

into five subsets HHHH=[AAAA1,AAAA2,AAAA3,AAAA4,AAAA5] . The first AAAA1={O∈ℜ0|C(ω)=0}  and the last 

AAAA5={O∈ℜ0|C(ω)=1}  sets represent the locations of the interaction volume, which is 

composed of pure Phase 2 (c1 = 0, white) or pure Phase 1 (c1 = 1, gray). As a consequence, 

the measured effective modulus within each of these regions is independent on the position 

and receives the value Eeff = E2 in AAAA1 and Eeff = E1 in AAAA5. The remaining subsets of HHHH 

correspond to the locations of the interaction cube such that the volume fraction c1 varies in 

the prescribed limits, l2=(0;1/3〉, l3=(1/3;2/3〉 and l4=〈2/3;1), respectively. Automatically, 

according to the definition of the effective modulus (Eq. III.2) the following intervals for 

measured effective moduli have been defined (Eq. III.4) for AAAA2,AAAA3,AAAA4 subsets. 

( ( ) )2 1 2 1 1 2 1 2
2 3 4 2 2 1 2 1 2 1 2 1 13 3 3 3 3 3 3 3

{ , , } { ; , ; , ; }E E El l l E E E E E E E E E E= + + + +  III.4 

 

 At this point, it may be easily seen that in order to construct the relative frequency 

diagrams of random variables c1 or Eeff, i.e. the probability of a random variable being an 

element of bin l i shall be calculated. According to the classical definition,13 the probability 

P(Li) of an event Li, such that O(x,y,z)∈AAAAi or equivalently C(ω)∈l i, is given by the ratio 

P(Li)=NLi / N, where N is the number of all outcomes of an experiment and NLi  is the number 

of outcomes that are favorable to the event Li. Obviously, the number of possible outcomes 

that favor event Li is infinite, and the volume V can be used as a measure of infinity. This 

leads to a probability of Li, which is the volume fraction c1∈l i, or effective moduli Eeff ∈ li
E, 

measured within the interaction volume of length d,, and whose center is drawn at random 

from region ℜ0 of biphasic material, given by the ratio P(Li)=NLi / N. Here VLi is the volume 

occupied by the subset AAAAi, and V is the total volume of the composite material. 
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(a) 

 

(b) 

Figure III.6 Planar and isometric views of the partition scheme of model biphasic materials 

(E2 < E1) into five disjoint subsets m=5: a) checker-board material, b) uniaxial fiber reinforced 

material. Regions labeled AAAA1 (Phase 2, Eeff = E2), AAAA2 (Eeff ∈ l2
E), AAAA3 (Eeff ∈ l3

E), AAAA4 (Eeff ∈ l4
E), 

AAAA5 (Phase 1, Eeff = E1). 

 

III.3.1. Cubic Indentation Interaction Volume Assumption 

 Another simplification in the present study is that the indentation interaction volume is 

assumed to take the cubic form. This assumption implies that the entire material within the 

cubic volume exhibits the same strain field. Hence, the elastic modulus follows the law of 

mixture or Voigt upper bound solution expressed by Eq. III.2. However, it is known from the 

solutions of theory of elasticity and contact mechanics that the real strain and stress fields, 

which arise due to contact of the solid with the rigid probe, are far more complex.14,15 
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 As an example, the indentation stress fields for conical indentation within the elastic solid 

are presented below (Figure III.7(a-c)). Based on this solution, it is easily seen that the stress 

within the interior diminishes gradually into the bulk of the solid and along the radial 

direction following spherical trajectories. 

 

(a) 

 

(b) 

 

(c) 

Figure III.7 Elastic stress fields provoked by the conical indentation on a homogeneous and 

isotropic solid calculated for Poisson’s ratio ν = 0.26, an indention angle α and an indention 

depth δ: a) σ1 principal stress trajectories, b) σ3 principal stress trajectories and 

c) representation of indentation geometry, adopted from Fischer-Cripps.14 Radial distance r 

and vertical distance z are normalized to the contact radius a. The stress is expressed in terms 

of the mean contact pressure pm. 

The strain and the strain energy fields follow similar trends, suggesting a more realistic 

representation of the interaction volume in the form of a hemisphere. Additionally, due to 

variation of the mentioned elastic fields, the material beneath the indenter probe does not 

contribute to the ‘effective’ material response in the same way as the material from the lower 

levels of the exited volume of the bulk.16 Therefore, a weighting function would be required 

in order to take this effect into account. Being aware of the nature of the interaction volume 

and the possible impact of the adopted simplification on the ‘effective’ response, the cubic 

form has still been adopted as a first order approximation due to its simplicity. 

 

 

III.4. ANALYSIS OF EXPERIMENTAL RESULTS 

 

III.4.1. Checkerboard Microstructure 

 The example of the partitioning of the checkerboard microstructure into five subsets has 

been pictured on Figure III.6(a). However, a formulation to calculate the discrete probabilities 
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Pi for arbitrary odd partitions HHHH=[AAAA1,AAAA2,…………,AAAAm], where m=3,5,7,…, is derived next. Consider 

a checkerboard microstructure with checker size D, such that its total length is jD 

(Figure III.3(a)). Assuming the number of checkers per edge is an even number j, the volume 

fraction of each phase is 50 %. Hence, the volume occupied by biphasic material and 

available for testing with an interaction cube of size d is V(d)=(jD-d)3. The so-called ‘testing 

volume’ approaches the total volume V=(jD)3 of ℜ0 in the limiting case 
d 0

V lim V(d)
→

= . 

 The volume of each phase incorporated into the material model is 

V1(d)=V2(d)=0.5j3(D-d)3. In the next step, the volume corresponding to each of the sets within 

partition HHHH  and linked to the composite response is calculated. This fraction of the material 

may be divided into three structural building blocks (Figures III.8(a-c)). The first block relates 

to the corner points, which are common for 8 checkers. In this block the portions of the 

volume corresponding to the subsets [AAAA2,…………,AAAAm-1] are enclosed in the cube centered at the 

corner point with the length of the edge d (Figure III.8(a)). The division of this cubic volume 

among the influence zones is governed by the bounding surfaces z=f(x,y) given by 

Eq. III.5(a), whose pictorial representation is outlined on Figures III.9(a-c). 

31
( , ) ( )

2 4

d
z f x y

xy
α= = −  III.5(a) 

 

(a) 

 

(b) 

 

(c) 

Figure III.8 Geometrical building blocks of the checker board composite zone partition, with 

the examples of the boundary surfaces z: a) corner point element, b) line element, c) face 

element. 

The symmetry conditions permit to reduce the problem to one eight of the mentioned cubic 

volume, which is the sub-volume within a single checker. In the reduced problem, the 
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function z=f(x,y) is given in the new coordinate system {ξ1,ξ2,ξ3} by Eq. III.5(b), with its 

origin translated from the corner point by the vector 1 1 1
2 2 2

; ;d d d =  v  (see Figure III.9(a-c)), 

leading to: 

3 2
1 2 1 2

3 1 2 2
1 2 1 2

( ) 2
( , )

2 ( ) 4

d d d
f

d d

α ξ ξ ξ ξξ ξ ξ
ξ ξ ξ ξ

− + +
= =

− + +
 III.5(b) 

 

   

Figure III.9 Schematic representation of the surfaces of the constant volume fraction z=f(x,y), 

within the ‘checkers’, seen in different perspectives. Surface z=f(x,y) obtained for j=4, 

D=32 [µm], d=30 [µm], m=7. the light blue surface represents the locations O(x,y,z) for which 

c1=0.2, while dark blue surface corresponds to c1=0.4. 

 

The volume Qi bounded by the f(ξ1,ξ2|α), and the planes πξ1,ξ2, πξ1,ξ3 and πξ3,ξ2 is given by 

Eq. III.6(a), where i=2,3,…,(m-1)/2 and M=(m-2). 

1 2

1
1 2 2 1 1 2

1,

( )( 1)
( , ) 0 0

2i
d di d

Q f d d
M d

ξ ξ

α ξξ ξ ξ ξ ξ ξ
ξ

−−= ≤ ≤ ≤ ≤
−∫∫  III.6(a) 

Based on this integral formula, the composite volumes of this structural block, corresponding 

to the given partition scheme, are given as: 

18 ( )I
i I i iV N Q Q−= −  III.6(b) 

where Q1=0, Q(m+1)/2=(d/2)3 and NI=(j-1)3 is a multiplication factor, which corresponds to the 

total number of corner points shared among eight checkers. 

 The second building block considered is a line element (see Figure III.8(b)), meaning that 

it is a sub-volume of the composite zone shared along the common line of four checkers. 
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Similarly, and due to existing symmetry, the calculations are reduced to the domain of one 

checker only. Therefore, the areas of the cross-sections of the line element blocks, which 

correspond to the sub-sets [AAAA2,…………,AAAAm-1] are given for i=2,3,…,(m-1)/2 as: 

1

1
1 1

1

( ) ( 1)
0

2i
d d i d

S d
d M

ξ

α ξ ξ ξ
ξ

− −= ≤ ≤
−∫  III.7(a) 

Consequently, the related volumes are calculated as a product of the area of the section and 

the actual length of the line element and read: 

14 ( )( )II
i II i iV N S S D d−= − −  III.7(b) 

where S1=0, S(m+1)/2=(d/2)2 and NII=3j(j-1)2 is a multiplication factor that corresponds to the 

total number of edges shared among four checkers. 

 The last defined component is a face element (Figure III.8(c)). This building block is 

situated on the surface common for two adjacent checkers. Due to the symmetry, the single 

domain of the checker may be considered. The unknown volumes corresponding to the given 

partition of the composite zone are given below: 

22 ( )III
i III

d
V N D d

M
= −  III.8 

where VIII
(m+1)/2=0.5NIIId(D-d)2/M and NIII=3j2(j-1) is a multiplication factor, that corresponds 

to the total number of planes shared among two checkers. 

 This last component makes the solution complete, hence the appropriate final volumes 

may be calculated for each discrete set within the assumed partition by: 

1
( )

2
I II III

k k k kV V V V= + +  III.9 

where k=2,…,(m-1)/2, V1=0.5j3(D-d)3, V(m+1)/2=(VI
(m+1)/2+VII

(m+1)/2+VIII
(m+1)/2). The symmetry 

condition Vi=Vm+1-i is adopted in order to resolve the solution for the entire HHHH. Finally, the 

desired discrete masses of probability that correspond to [AAAA1,…………,AAAAm-1] are calculated according 

to the definition P(Li)=VLi /V. The discrete distributions may be constructed now for any size 

of the interaction volume d within domain 〈0,D〉 given an arbitrary, odd number of discrete 

intervals m (see Figures III.10(a-c)). 
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(a) 

 
(b) 

 
(c) 

Figure III.10 Evolution of the discrete probability distribution of elastic modulus with respect 

to the interaction volume size d for checkerboard model for j=4 : a) m=5, b) m=7 and c) m=9. 

The assumed mechanical properties are: E1=120 [GPa] for Phase 1 and E2=50 [GPa] for 

Phase 2, equal volume fractions c1=c2=0.5. 

 

III.4.2. Unidirectional Fiber Composite Microstructure 

 The illustrative example of the partition scheme applied to the uniaxial fiber reinforced 

composite material has been outlined on Figure III.6(b). In this case, the problem of finding 

the probability masses corresponding to discrete partition HHHH  is independent of the fiber 

direction. As a result, the volume fraction may be replaced by the surface fraction in the plane 

normal to the axis of the alignment and used as an equivalent measure of the probability. 

Taking into account this simplification, the surface fraction of each subset AAAAi corresponding to 

the assumed partition HHHH  is calculated next. 

 At the local scale of a single cell (Figure III.11(a)) the subsets AAAAi are defined with the aid 

of the loci Bi-1,i, where i=1,…,m with m being the number of discrete subsets. Each, so defined 

locus represents the geometrical location of the center O(x,y) of the interaction volume d, for 

which the appropriate condition imposed on the bounded volume fractions is satisfied, e.g. 

loci B01 and B12 represent outer and inner sets of configurations of points O(x,y) whose 

coordinates satisfy condition cf=0, where the subscript f indicates that the material is the fiber. 

The first mentioned contour is simply the square with the length of the edge (D–d/2). The 

basic unit of the locus B12 is a composite line with three components: the segment [0;d]  with 

the origin (1/2(Df+d);0), the segment [d;0]  with the origin (0;1/2(Df+d)) and the segment of 

the circular arch with radius Df /2 and the center at (d/2;d/2) (Figure III.11(b)). The symmetry 

conditions are employed to complete and close this contour over the entire domain of the cell. 
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(a) 

 

(b) 

 

(c) 

Figure III.11 Schematic representation of the unitary fiber cell and its partition into the 

discrete regions and boundaries (a), the pictorial definition of boundaries B12 (b) and B45 (c). 

 In the center of the REV lays the contour line B45, which is a set of points O(x,y) where 

cf=1, meaning that the entire interaction volume is occupied by the fiber material only. In this 

case, the building block of the segment is a circular arch of radius Df /2 and center at 

(-d/2;-d/2), bounded in the first quarter of the coordinate system of the unit cell (see 

Figure III.11(c)). As usual, the conditions of symmetry are used to complete and close this 

contour line. 

 The discretization of the composite material response domain into a finite number of 

sub-regions is linked to the remaining internal contours, which in this particular case are 

defined as B23 and B34 (see Figure III.11(a)). These two contours represent the locations of the 

interaction volume corresponding to the specific proportions of incorporated fractions of the 

matrix and fiber materials. Therefore, the volume element with a center located at the first 

locus B23 fulfills the condition cf=1/3, while the B34 satisfies the condition cf=2/3 (see Figures 

III.12(a-b)). 

 
(a) 

 
(b) 

Figure III.12 Schematic representation of the boundaries B23 and B34 corresponding to mixture 

response (a) and definition of translation vector with components (∆x, ∆y) (b). 
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 Such a discretization is a particular case that corresponds to the probability mass 

distribution with m=5, but in case of more refine division (higher number of discrete values) a 

more general condition for each locus may be defined cf=αi, where αi∈(0,1) depends on the 

division number m. 

 The calculation of this type of contour lines has been executed within the Matlab 

programming environment, for which the appropriate code has been developed. In the first 

stage the interaction volume of size d is positioned with its center located at the y-axis and one 

of the edges tangents to the locus of the fiber. The appropriate vector of translation (0,∆y), and 

as a consequence O(x,y), is found by solving the following equation: 

2
y iS dα∆ → =  III.10 

where S is the area of intersection of the interaction volume region and the fiber 

(see Figure III.12(b)) and αi is the given fraction of the fiber material incorporated within 

interaction volume. For this purpose, both geometrical features have been defined as 

polygonal regions within the Matlab code, and the problem has been solved with the aid of the 

mapping toolbox, which allows to perform set operations on polygonal regions 

(‘polybool’ function). The equation Eq. III.10 has been solved with build-in numerical solver 

(‘fzero’ function). To find additional points of the desired locus, the region of interaction 

volume is translated by a small increment ∆x along the x-axis with respect to the last found 

point. At this new location the required value of the y-translation ∆y is found as a root of 

Eq. III.10. Since the problem has also symmetry properties along the axis inclined π/4 to the 

main axes, the process of finding the unknown contour is continued until the centre of the 

interaction volume lays on this symmetry axis. The remaining parts of the loci are constructed 

using the symmetry conditions. 

 Having all the necessary boundaries known, the calculation of the area and surface 

fraction of the appropriate regions AAAAi corresponding to the partition HHHH is executed. The main 

results of the implemented strategy are presented in two complementary ways. The first one 

corresponds to the evolution of the assumed partition HHHH with respect to the interaction volume 

size d (see Figures III.13(a-f) and III.15(a-c)). The second representation focuses on the 

distribution of discrete probability mass among the chosen intervals of effective modulus as 

well as its variation with increasing size of the interaction volume d (see Figures III.14(a-b) 

and III.16(a-b)). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure III.13 Evolution of the partition (m=7) within the fiber matrix composite board 

obtained for Df=25 [µm], Dcell=40 [µm] and the number of cells Nx×Ny=3×3, with respect to 

the size of the interaction volume d [µm]: a) d=0, b) d=5, c) d=10, d) d=15, e) d=20 and 

f) d=25. 

 

 

(a) 

 

(b) 

 

(c) 

Figure III.14 Evolution of the discrete probability distribution of elastic modulus with respect 

to the interaction volume size d for fiber reinforced model (Df=25 [µm], Dcell=40 [µm], m=7): 

a) Nx×Ny=3×3, b) Nx, Ny → ∞. Influence of the number of the unit cells j within the 

investigated domain on the discrete probability values (c). The assumed mechanical properties 

are: E1=120 [GPa] for fiber and E2=50 [GPa] for matrix, equal volume fractions c1=c2=0.5. 

j 
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Two cases of the fiber board configuration are considered. In both configurations the diameter 

of the fiber is kept constant Df=25 [µm], but the size of the cell Dcell varies from 40 [µm] to 

50 [µm]. As a consequence, the resultant volume fractions of fiber are cf =0.19 and cf =0.3. 

The effect of the increasing number of cells on the discrete distribution of the effective 

modulus is also investigated, and the results are shown on Figure III.14(c) and Figure 

III.16(b). 

 
(a) 

 
(b) 

 
(c) 

Figure III.15 Evolution of the partition (m=7) within the fiber matrix composite board 

obtained for Df=25 [µm], Dcell=50 [µm], and the number of cells Nx×Ny=3×3 with respect to 

the size d of the interaction volume: a) d=25 [µm], b) d=30 [µm], c) d=35 [µm]. 

 

 

(a) 
 

(b) 

Figure III.16 Evolution of: a) the discrete probability distribution of elastic modulus with 

respect to the size of the interaction volume d for fiber reinforced model (Df=25 [µm], 

Dcell=50 [µ], m=7), b) selected probability masses with respect to the number of cells 

Nx, Ny → ∞. The assumed mechanical properties are: E1=120 [GPa] for fiber and E2=50 [GPa] 

for matrix, equal volume fractions c1=c2=0.5. 
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III.5. DISCUSSION 

 

III.5.1. Interaction Volume Size (Indentation Depth) vs. Measured Effective Response 

 The virtual experimental results gathered with the aid of the applied model give an insight 

in the relation between the size of the interaction volume d and the effective response of the 

material, defined by Eq. III.2. Hence, the results obtained for the two considered model 

microstructures follow the same universal principle, which the statistical grid indentation 

technique applied to the heterogeneous materials relies on; if the indentation depth h (related 

to d in the model) is much smaller than the characteristic size of the phases h<<D, then the 

single grid indentation test gives access to the material properties of either Phase 1 or 

Phase 2.6 

 Therefore, a bimodal distribution of probability masses, and as a consequence the 

effective material response in the investigated biphasic composite microstructures, must be 

obtained when the interaction volume size d tends to zero. This principle is independent of the 

type of microstructure probed or the phase properties. The magnitude of the peaks in this 

limiting case corresponds to the volume fractions of each individual constituent. In opposition 

to this asymptotic state, the excitation of a larger volume of the bulk by the probe leads to the 

gradual decrease in the volume of the material, where the pure phase properties may be still 

attained for an increasing d value. 

 By continuously increasing the ratio d/D, the volume of the bulk with the access to the 

mixture response starts to prevail, diminishing to zero the chances of obtaining Eeff= E1 or E2. 

However, the homogenized modulus of elasticity is not attained yet at this point and requires 

the indentation activation volume to increase further and to approach the size of the 

Representative Elementary Volume (REV), called here dREV. When d approaches dREV, the 

probability mass accumulates within and around the discrete interval, where the homogenized 

modulus is included. Upon further increase of d, the unimodal distribution with the mode at 

the center on the mentioned interval dominates, changing ultimately into a single peak and 

constant probed values.  The increase in homogenization material response is inherently 

related to the change of the dispersion of the results Eeff within the obtained experimental 

distribution. A good picture of this phenomenon is given by the variation of the range of 

experimental distribution of effective modulus with respect to the characteristic scale of the 

interaction volume d (see Figures III.17(a-b)). This measure of the statistical dispersion is not 

affected by the type of the distribution of the experimental data. Therefore, it appears to be a 
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suitable measure of phase homogenization (separation) along different scales as well as for 

identification of the material blocks with different mechanical properties. 

 

(a) 

 

(b) 

Figure III.17 Homogenization (separation of scales) for statistical grid indentation on 

multi-phase materials. Variation of the range of Eeff: a) with characteristic scale of interaction 

volume on biphasic material, b) for multiphase material with double material levels (periodic 

microstructure, fiber reinforced composite model). Results obtained with a Monte-Carlo 

simulation in which, for every size d of the interaction volume, N=300 virtual measurements 

were made at random locations. 

 As was stated, the trends hold irrespectively of the model microstructure and the 

mechanical properties. However, the results indicate that the passage, from the bimodality 

(d→0) towards the unimodality (d→dREV) with transient discrete distributions, depends on the 

type of the microstructure considered (see Figure III.10(b), Figures III.14(a-b) and  Figure 

III.16(a)). This issue requires further discussion. 

 Consider the checker board morphology, in which the volume of the material is 

distributed equally among the both constituents c1=0.5 and the two adjacent checkers belong 

to different phases. Under these conditions, for any interaction volume of size d and model 

partition HHHH  of the mixture response area, the region of the material associated with the central 

interval AAAA(m+1)/2 corresponds to the highest probability mass, excluding AAAA1 and AAAAm intervals at 

this point. The result is the direct consequence of the geometrical constrains of this 

morphology, for which the volume representing this specific interval dominates over the 

remnants within the composite zone. This trend is independent on the actual size of the 

interaction cube d=〈0;D〉. However, by increasing d the probability mass accumulates more in 
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the central interval, leading to a monotonic rise of this peak (homogenization peak; 

Eeff=0.5(E1+E2) above the other discrete values. This observation is independent from the 

number of discrete bins within the partition (see Figure III.10(a-c)). For the size of the 

interaction volume d equal to 32 times the size of the checker D, the chances of probing 

Phase 1 or Phase 2 are zero. Below this threshold, the experimental distribution spans over 

the entire domain of the effective moduli. 

 The characteristic feature of the checker board case was the continuous presence of the 

homogenized peak, which could be indentified for any transient distribution (for any value of 

d=〈0;D〉) due to its predominant character in composite class. Moreover, the distribution of 

the volume fractions of phases is symmetric c1=c2=0.5, and the characteristic length of the 

heterogeneity represented by the checker size D is equal for both phases. 

 Different results are obtained in the second investigated morphology representing uniaxial 

fiber-matrix composite. In this case, the way the homogenized response peak is complex and 

appears to depend not only on d but also on the division of volume fractions among the matrix 

and the fiber within the unit cell. Obviously, the volume fraction of each phase changes 

automatically with the change in the diameter of the fiber Df, or equivalently with a change in 

the size of the cell Dcell. Consequently, the chances of probing pure fiber response (Phase 1) 

or matrix (Phase 2) diminish to zero for different sizes of the interaction volume, which 

depends on the cell parameters. According to this, the fiber properties are no longer accessible 

if d approaches the limit value given as dF≈0.71Df, while for the matrix the threshold is 

dM≈Dcell-0.71Df . The first threshold represents the maximum size of the cube inscribed within 

the circular fiber. The second threshold corresponds to the maximum size of the interaction 

volume within the domain of the matrix, located at the corner point of the basic cell (central 

point between four fibers). Additionally, the remaining discrete values must diminish to zero 

in a way governed by their distance from the interval where the homogenized modulus is 

located. When the interaction cube reaches the ‘critical’ size given as 
2

f

i

D
Ad π

α= , where α 

stands for the volume fraction corresponding to the upper contour of the discrete subset, the 

associated mass goes to zero affecting the subsequent distributions to follow. 

 

III.5.2. Sample Size Effect: Asymptotic Analysis 

 The probabilistic homogenization model formulated in this work assumes that the region 

occupied by the solid is finite, that the material is periodic and that the number of the unit 

cells j along the edge is defined. Therefore, the total volume of the sample of material is 
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V=(jD)3. However, in order to keep the interaction volume within the domain of the material, 

the actual region of the bulk where the testing cube may be located must be reduced, 

providing an actual volume V(d)=(jD-d)3, satisfying 
0

lim ( )
d

V V d
→

= . This type of boundary 

constraint provokes a size effect, in which the discrete probability masses depend on the 

population of the unit cells incorporated within the virtual volume exposed to testing 

(see Figures III.14(c) and III.16(b)). The impact of the size effect reduces with increasing 

number of the cells (heterogeneities) incorporated within the tested region. Consequently, the 

discrete probabilities converge towards asymptotic values, and the size dependency 

substantially diminishes. It appears that the results of the studied idealistic microstructures 

may be considered free of size effect, if the minimum number of the unit cells along the edge 

of the model is j≈25 for the checker board and j≈50 for the fiber microstructure. For a size of 

the virtual bulk above this limit the obtained results approximate the infinite body case. 

 

III.5.3. An Approach to 1////10 Buckle’s Rule-of-Thumb for Heterogeneous Materials 

 The solution of contact mechanics are derived from an infinite half-space model with 

spatially uniform mechanical properties. Therefore the estimations obtained in the indentation 

test represent the average quantities taken over the activated volume with the characteristic 

length d located beneath the indenter probe. A good estimate between the size d and the 

indentation depth h, at which the measurements were taken, is d≈3h-4h for Berkovich 

indenter.3,6 According to this rough estimation, one would expect phases to be identifiable on 

the experimental distribution at h1/10=3.2 [µm] corresponding to the interaction volume size 

d=9.6-12.8 [µm] for the checker-board microstructure with the checker size D=32 [µm]. 

 The results confirm this expectation (see Figures III.10(a-c) and III.18(a)). For the 

interaction volume size approaching the mentioned range, the probability of probing Phase 1 

and Phase 2 is above the significance level of 10 % (P1+P2=22-33 %). In addition, the model 

discrete distribution incorporates two additional modes clearly defined at the locations E1 and 

E2, next to the homogenization peak. Further decrease in the ratio d/D amplifies both peaks, 

lowering significantly the chance to obtain a mixture material response, represented by the 

probability mass P12=1-P1+P2. This implies a clear bimodal distribution. 
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(a) 

 
(b) 

 
(c) 

Figures III.18 Discrete probability distributions corresponding to the limiting values of the 

interaction volume size d associated with the 1/10 rule-of-thumb: a) checker-board 

microstructure j→∞, m=9, b) fiber composite model cf = 0.3, c) fiber composite model 

cf ≈ 0.10. 

 In the second working example the choice of the satisfactory h relates to the two cell 

parameters, namely the diameter of the fiber Df and the size of the cell Dcell or equivalently the 

fiber spacing distance L. Hence, the estimation of the 1/10 indentation depth is obtained on 

the basis of min{ Df, L}. Consider the case min{Df, L}=L valid for all the cell configurations 

for which cf ≥ 0.2. According to this rule, the indentation depth h=1.5 [µm], which 

corresponds to the first of the investigated cell geometries with {Df=25 [µm], L=15 [µm], 

giving cf =0.3}, should be suitable to correctly depict the elastic properties of both 

constituents of the bulk. This depth entails an interaction volume d=4.5-6.0 [µm]. It may be 

observed that the size of the interaction volume from this range corresponds to the probability 

of probing a fiber Pf=0.14-0.18, giving exposed between 47 % up to 60 % of the maximum 

intensity Pf
max(d→0)=cf of this peak (Figure III.18(b)). The matrix phase may be identified 

much easier, since it is present in the significantly larger fraction cm=0.7. Both phases are 

represented with clearly defined peaks in the bimodal distribution, whose separation and 

exposure increases with decreasing parameter d. 

 The separation of the fibers might increase, while keeping constant the diameter of the 

fiber min{Df, L}=Df, and this case is represented by a model with Df=25 [µm] and L=35 [µm] 

giving cf=0.13 (Figure III.18(c)). In such a situation, the 1/10 rule implies the indentation 

depth h=2.5 [µm], what entails the interaction volume d=7.5-10 [µm] for the fiber phase to be 

identifiable. Because of the low volume fraction cf, the related peak in the distribution spectra 

may be hindered and unidentified if the number of the discrete intervals is very small. 

However, the satisfactory separation and intensities of the peaks could be provided with a 
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more refined distribution. Alternatively, the indentation depth should be reduced to provide 

better separation and diminish the fraction of the records corresponding to the composite 

behavior. 

 

III.6. CONCLUSIONS 

 

 This work represents an approach toward better understanding of the link between the 

characteristic scale of the measurement in the instrumented statistical indentation and the 

effective material properties obtained from the direct experiment on heterogeneous solids. It 

has been shown that the outcomes of the indentation experiment are scale and microstructure 

dependent. Providing that the characteristic scale of the interaction volume is sufficiently 

small when compared with the characteristic size of the incorporated phases, the inherent 

properties of the phases may be assessed. This trend holds up to the limiting value of the 

indentation depth, which is specified by the 1/10 principle. 

 The results obtained on simplified polycrystalline and fiber-matrix microstructures prove 

the use of Buckle’s rule to approximate the upper threshold for any microstructure. Above this 

limit, the volume of the material, where the mixed response is assessed, starts to prevail. 

Therefore, the modes corresponding to the pure phase properties diminish significantly and 

may become indistinguishable. As a result, the experimental distribution may adopt different 

forms, depending how the microstructure is ordered. This evolution corresponds to the 

homogenization effect, which can be captured in the developed probabilistic frame. 
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IV. Assessment of Nanomechanical Phase 

Properties of Heterogeneous Materials by 

Means of the Maximum Likelihood 

Approach and Nanoindentation 
 

 

 

 

ABSTRACT 

The statistical grid indentation technique on heterogeneous materials is extended by the 

implementation of the bivariate Gaussian Mixture Model and Maximum Likelihood concept 

as a primary tool in the deconvolution analysis. Current deconvolution strategies reported in 

the literature are shortly reviewed. Next, the theoretical background for the Maximum 

Likelihood based deconvolution in bivariate space is briefly outlined. Following this 

introduction, the applicability of the proposed deconvolution approach is addressed on the 

basis of experimental results representing broad spectrum of materials, from naval brass to 

ordinary cement paste and masonry clay brick. The mechanical properties of α-, β-phase of 

naval brass, hydration products of ordinary cement paste, as well as polycrystalline-

amorphous ‘glassy’ matrix phase and other additional phases incorporated in clay brick, are 

estimated. Clustering of the grid observations within each of these materials is executed based 

on a posteriori probability criterion, in which probabilistic maps of the indented region are 

constructed and linked with compositional (atomic number contrast) backscattered electron 

micrograph of indented surface, as well as the compositional maps prepared with the 

energy-dispersive x-ray spectrometer. As a last step, the inference of the number of phases 

with the highest probability to occur and compatible with the grid indentation data set is 

outlined. Finally, the results obtained in the frame of the proposed bivariate mixture modeling 

based on the maximum likelihood estimation are compared with the estimations from other 

deconvolution strategies reported in the literature. 
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IV.1. INTRODUCTION 

 

 Current conventional methods of material characterization, e.g. uniaxial compression and 

tension test or indirect tension test (Brazilian test), allow measuring the elastic properties and 

strength of the materials at their macro scale. Although it is convenient to use this 

methodology in the final stage of the macro characterization of a composite material, 

frequently it is desired to know the mechanical characteristics of the composite components in 

order to predict its macro behavior, to avoid redundant testing, to better understand the 

material and to develop new tailored or eco-efficient materials. Many composites, such as 

cement-based materials or ceramics, follow a multi-scale micromechanical scheme, where the 

microstructure and material phases depend on the length-scale of observation. In such 

situations it is of interest to find the mechanical properties of the fundamental building blocks 

of the material as well as the material domains at the intermediate observation scales. 

 Experimentalists are forced to access material phases much below the ordinary 

macro-scale, reaching the nanometers scale and use refined experimental techniques, being 

one of those the instrumented indentation combined with grid indentation analysis. The origin 

of this method comes from the traditional hardness test developed by Brinell, in order to 

evaluate the quality of produced steel.1 He forced a hard probe to produce a visible imprint on 

the surface of the tested material. The ratio of the force applied P and the projected area of 

contact Ac defines the material hardness H=P/Ac. It was shown by Tabor2 that the hardness or 

average pressure under the indenter is correlated to the uniaxial yield stress σ by a factor C, as 

H=Cσ. This fundamental idea remains in the instrumented indentation, although recent 

developments in material science have called for significant modifications of the method in 

order to satisfy the growing experimental demands. The combination of the high resolution 

recording devices (sensors and actuators) allow continuous monitoring of the loads and 

displacements on the indenter as it is driven and withdrawn from a material. Typically, two 

material properties are derived from the indentation curve (P-h curve), namely the indentation 

hardness H and the indentation modulus M,3,4 and the latter is related with the elastic modulus 

of the indented solid. 

 The simplicity of this experimental approach combined with the high accuracy of the 

results, as well as good repeatability, made the technique widely used in the last decades for 

the characterization of different materials. Examples include human soft and mineralized 

tissue,5,6 coatings to polymers.7,8 Most of these studies address instrumented indentation on 

single phase materials. In addition, if the investigated material is of composite nature, the 
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phases are of sufficient size and exhibit well defined boundaries.9,10 This allows placing the 

indenter probe on a specific target and running statistically relevant number of measurements 

in a common fashion. Obviously, this is not the case for a large group of known multi-scale 

composite materials like concrete, shale or fired clay brick and many others. Such materials 

are a class of complex chemo-mechanical materials with a high degree of heterogeneity from 

atomistic scales to the macroscopic scales.11,12 Thus, in order to obtain the relevant 

mechanical characteristics of the material domains from the lowest accessible scales, one 

must ensure the conditions under which the probed volume of material is representative, the 

so-called Representative Elementary Volume (REV).13 In addition, existing phases have 

unclear boundaries and are randomly distributed within the volume. These facts have driven 

towards the extension of instrumented indentation analysis to structurally heterogeneous 

materials and the implementation of the statistical grid indentation technique.14,15,16 

 The grid indentation technique consists on the continuous probing of the material in the 

nodal points of a designed grid, spanned over the representative region of material. The large 

set of acquired data is analyzed by statistical means, what makes the identification of 

mechanically relevant phases possible, as well as allows to define the phase’s packing density 

and morphology. In addition, the relation between the volume fractions of incorporated 

phases may be estimated. Since the final result of the grid indentation depends on the data 

analysis tools, the choice of the proper statistical approach for data processing is of crucial 

importance. 

 This manuscript addresses the problem of the grid indentation data analysis for 

heterogeneous materials. The first part of this chapter presents a detailed state of the art of the 

grid indentation and its fundamental assumptions. It also includes review of the current 

techniques applied in order to analyze the experimental outcomes in the qualitative and 

quantitative way. The subsequent part of the chapter deals with the application of the 

Maximum-Likelihood Approach for the sake of phase properties estimation with regard to the 

Gaussian Mixture Model. Afterwards, the estimation of the number of phases according to 

Bayesian Information statistics is considered. Following this approach, the internal data 

clustering is presented based on a posteriori probability criterion. The classification of 

abnormal observations is also discussed. Finally, the proposed method is compared with 

current deconvolution strategies reported in the literature. 
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IV.2. INSTRUMENTED GRID INDENTATION ON HETEROGENUOU S SOLIDS 

 

 The instrumented grid indentation technique proposed by Constantinides et al.14,17 

emerged from experimental investigations in cement based materials, with the objective to 

extract the mechanical and morphological characteristics of calcium-silicate-hydrate (C-S-H) 

nanocomposites.11,18,19 In order to do this, an experimental protocol to measure the intrinsic 

properties on each scale has been proposed. One of the basic assumptions of this strategy is 

the existence of a REV, for which the constitutive relation between the stress and strain is 

independent of the length scale of analysis represented by indentation depth.11 This 

independency is assured by the micromechanics scale separability condition, which must hold 

for the representative volume (Eq. IV.1): 

( , , )d L h a D≪ ≪  IV.1 

where (h,a) are the indentation depth and radius, D is a characteristic microstructural length 

scale and d is the characteristic size of the (largest) heterogeneity included within REV 

(see Figure IV.1). Provided that this relation holds, an indentation experiment executed to an 

indentation depth h gives access to the material properties associated with the characteristic 

length scale L. In general, for indentation depths h << D the experimentalist assesses the 

intrinsic phase properties, while for h >> D the composite properties are probed. 

 

Figure IV.1 General representation of the indentation within multi-phase heterogeneous 

material: P - indentation force, h - indentation depth, Ac - projected area of contact, d and 

D - characteristic lengths of the incorporated heterogeneities, L - characteristic length scale of 

the REV representative volume. 
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 Since the indentations are executed on a grid spanned over a defined region of a material, 

the internal spacing of the indents within the grid must assure the independency of successive 

measurements. In other words, the grid spacing lx, ly (see Figure IV.2(a)) should be larger than 

the characteristic size of the residual impression.14 In the result, the probability of probing the 

specific phase equals its surface fraction. Additionally, if the grid spans over a region of 

material that is large enough to be considered as a representative, the surface fractions 

approach the volume fraction for the random heterogeneous materials.20 

 At each i-th point of the grid the P-h curve is recorded, which is used for calculation of the 

indentation modulus Mi and hardness Hi, where i=1…N with N as total number of executed 

indentations in the single grid experiment. This pair of values is the experimental realization 

xi=[Hi, Mi] of the random variable X. A possible outcome of a single indentation trial is xi 

belonging to one of the g phases present within investigated region (see Figure IV.2(a)). 

Hence, the set of all possible outcomes of X defines the experiment sample space S in 

Eq. IV.2:21,22 

{ }}{ 1[ , ] , , gS M H G G= = ∈x x …

 
IV.2 

 

(a) 

 

(b) 

Figure IV.2 Scheme of the grid indentation approach for multi-phase materials proposed by 

Constantinides (a),11 the low indentation depths h << D give an access to mechanical 

properties of individual phases, for each grid point the vector of properties is obtained in the 

form xi=[Hi, Mi]. The final result is a multimodal bivariate distribution (b). 

 Phases are considered to be material domains specified by distinct pairs of indentation 

modulus and hardness values on average µµµµj=[Hj, Mj], j=1…g. The material heterogeneity 

together with imperfections of the probed surface and instruments leads to inherent scatter of 

the results in the domain of single phase Gj. Therefore, x within a phase Gj is distributed 

yl
xl
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around its expected value and may be modeled with a corresponding distribution function 

fj=f j(x;ϕϕϕϕj), where ϕϕϕϕj is a vector of unknown distribution parameters. The probability density 

function (p.d.f) of an observation vector x in S can therefore be represented in the finite 

mixture form by Eq. IV.3 (Figure IV.2(b)):23 

1 1

( ; ) ( ; ) , 1, 0
g g

j j j j j
j j

f fπ π π
= =

= = ≥∑ ∑x ψ x φ

 
IV.3 

where the πj,…,πg are weighting factors of each phase and ψψψψ denotes the vector of all 

unknown parameters ψψψψ=[πj,…,πg,ϕϕϕϕj,…,ϕϕϕϕg] associated with f1,…,fg. The adopted distribution 

function fj considered here is a multivariate normal distribution, hence ϕϕϕϕ consists of the 

elements of the mean vectors µµµµj and the distinct elements of the covariance matrices ΣΣΣΣj. To the 

end of this discussion the outcome of the grid indentation is considered to follow a Gaussian 

Mixture Model (GMM), and the determination of an estimate ψ̂  of its vector of parameters ψψψψ 

is one of the main objectives of this work. 

 

 

IV.3. REVIEW OF STANDARD ESTIMATION METHODS 

 

IV.3.1. Probability Distribution Function (PDF) 

 One of the first attempts to estimate the vector of unknown parameters ψψψψ was the standard 

error minimization procedure based on empirical frequency distributions (histograms).11,14,19 

In this approach, each component of the vector x is assumed to represent the independent, 

uncorrelated random variable x=H,M. Following this assumption the model univariate mixture 

for each variable may be represented as:  

1 1
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x x
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is the distribution function for indentation modulus or hardness within single phase. Therefore 

µj
x and (sj

x)2 stand for the mean value and the variance of x variable within phase j, and are the 

components of vector of unknown parameters ϕϕϕϕj
x. Next, the histograms, which represent the 

discrete values Fi
x=H,M of indentation moduli and hardness, are constructed from the set of 
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the experimental records. The number of the histogram’s intervals m and their size may be 

approximated according to the rule proposed by Scott (Eq. IV.6),24,25 originally developed for 

normally distributed random variables: 

3
0 3.486 /h Nσ≈  IV.6 

where h0 is a size of the bin, σ is an estimate of the standard deviation and N stands for 

number of data points. To find an estimate ψ̂  of ψψψψ=[πj,…,πg,ϕϕϕϕj
H,ϕϕϕϕj

M,…,ϕϕϕϕg
H,ϕϕϕϕg

M], where 

πj,…,πg are weighting factors of each phase and ϕϕϕϕ consists of µj
x and sj

x, one must solve the 

problem of minimization of the sum of residual errors in the form given by: 

2
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over all discrete points i=1…m of` experimental distributions Fi
x=H,M. An application of this 

approach is presented below, on the experimental data obtained from the grid indentation on 

naval brass (CDA 464) reported by Randall et al..26 Naval brass contains two primary phases, 

α and β, whose mechanical properties are known to be indistinguishable by standard 

microindentation techniques. Therefore, the grid indentation was applied in order to extract 

mechanical characteristics of mentioned phases at sub-micron scale. The deconvolution of the 

experimental records with the p.d.f technique estimates the vectors of properties to be 

Hα=2.27 [GPa], Mα=134.41 [GPa] and Hβ=2.83 [GPa], Mβ=122.85 [GPa] 

(see Figures IV.3(a-b)). The corresponding weight of each phase is πα=0.59 and πβ=0.41, 

respectively. 

 

(a) 

 

(b) 

Figure IV.3 Histogram based estimation of distribution parameters, experimental massive grid 

analysis on polished brass (naval brass CDA 464),26 grid N×M=20×20, maximum 

load 2 [mN], lx=ly=5 [µm]: a) histogram distribution of H and its fit, b) histogram distribution 

of M and its fit. 
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IV.3.2. Cumulative Distribution Function (CDF) 

 The deconvolution technique introduced in the previous section is based on the 

construction of the empirical frequency distribution. It has been widely recognized that the 

change in the size of the bin, or the shift in the initial point of the histogram, affects the 

probability discrete values.22,25 As a consequence, the estimation of the model parameters is 

also affected, and an alternative approach has been proposed:15,27 instead of probability 

density functions, the cumulative distribution functions c.d.f has been used. The entire c.d.f 

based deconcolution technique begins with the generation of the experimental cumulative 

distribution functions Eq. IV.8 for variables M and H, which are considered independent and 

uncorrelated. Let N be the total number of indentation tests in a single grid experiment and 

{H i} and {M i} for i=1…N the sorted values of the measured quantities. The N points of the 

empirical c.d.f for modulus and hardness, denoted by Dx where x=H,M, are obtained from the 

following definition: 

1
2

( ) , 1x i
i i N N

D x i N= − = …
 IV.8 

Once the empirical cumulative distributions are constructed the model c.d.fs are specified 

holding the assumption of Gaussian type distribution, for which the adopted c.d.fs are in the 

form of: 
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and the model c.d.f is given by: 

1 1
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The estimate ψ̂  of unknown model parameters vector ψψψψ=[πj,…,πg,ϕϕϕϕj
H,ϕϕϕϕj

M,…,ϕϕϕϕg
H,ϕϕϕϕg

M] is 

determined by the minimization of a least square problem, in which the residual is the 

difference between empirical cumulative and model cumulative distributions: 

2

, 1 1
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i x i x j j

x M H i j
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IV.11 

The postulated minimization problem is strengthened with the additional condition given by 

Eq. IV.12 and regarding the ‘statistical phase contrast’ to avoid significant overlap of two 

neighboring Gaussian distributions. This condition also implies the coupling of mean 

properties to represent a single phase, Mj < Mj+1 and Hj < Hj+1 respectively. 
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1 1
x x x x
j j j js sµ µ + ++ ≤ −

 IV.12 

As usual, the condition of global minimum must be satisfied in order to consider the vector ψ̂  

as a correct solution of estimation problem. The case of grid indentation carried out on the 

Ordinary Portland Cement paste (OPC) is presented next (see Figures IV.4(a-b)). The 

experimental c.d.fs are fitted with a four component c.d.f mixture, which represents the 

primary hydration products low-density and high-density calcium-silica-gels phases, 

(LD-C-S-H, HD C-S-H) HLD=0.51 [GPa], MLD=16.44 [GPa], and HHD=0.95 [GPa], 

MHD=27.76 [GPa], as well as ultra-high-density C-S-H (UHD C-S-H) and non-reacted clinker 

phases, HUHD=1.71 [GPa], MUHD=42.30 [GPa], and HCL=4.75 [GPa], MCL=86.47 [GPa]. 

 

 

(a) 

 

(b) 

Figure IV.4 Deconvolution of cement paste grid indentation data, experimental massive grid 

analysis on polished cement paste (w/c=0.4): a) c.d.f deconvolution of H, b) c.d.f 

deconvolution of M. 

 

IV.4. MAXIMUM LIKELIHOOD APPROACH (MLA) 

 

IV.4.1. Estimation of Parameters via Incomplete Data Concept 

 The strategies reviewed in the previous paragraph rely on the assumption of the univariate 

mixture to model the distribution of each of the measured quantities Eq. IV.4 and Eq. IV.10. 

As it has been shown on the experimental data of naval brass and OPC, such an approach may 

lead to the estimation of the phase mechanical properties, which exhibits good agreement with 

the literature data obtained with other, independent experimental methods. However, this 

assumption does implicate two independent statistical experiments, one for each measured 

property, with the outcomes being uncorrelated. According to the definition given in Eq. IV.2, 

the sample space of the random variables obtained with the grid indentation experiment are 
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the vectors in the form xi=[Hi, Mi]. This means that the hardness of the phase and the 

indentation modulus are the outcomes of the single experiment. As a consequence, the 

probability and its density are the bivariate functions defined in the ℜ 2 space H×M. To 

account for this, the bivariate Gaussians Mixture Model23,28,29 is proposed next to model the 

grid indentation outcomes. Consequently, the assessment of nanomechanical phase properties 

by means of the Maximum Likelihood (ML) supported with Expectation-Maximization 

(EM)30 algorithm applied to nanoindentation is introduced as a primary estimation tool. 

Additionally, the inference of a number of statistically relevant components within ML frame, 

as well as grid indentation data clustering, is introduced. 

 The first use of ML based estimation for a mixture model has been attributed to Rhao,23,31 

who used it for the case of two univariate distributions with equal variances. Further 

developments were carried along the years and led to the implementation of the ML and EM 

algorithm for different cases of mixtures in a large diversity of fields like biology, medicine or 

social sciences.23,32 This technique proved its usefulness not only in the estimation of mixture 

parameters, but also in the cluster analysis of data due to its inherent ability to identify the 

internal structure of a data set for which no prior information is provided regarding the 

components properties and their structures. In particular, efficient iterative solutions of the 

ML equation via the EM algorithm are well established and widely adopted to study finite 

mixtures of Gaussians components. This methodology is readily applicable to the analysis of 

massive grid indentations results, where the experimental data exhibit the structured form due 

to indentation within a heterogeneous material. 

 The modeling of grid indentation data with the assumption of mixture of normal 

components begins by considering each indentation event xi=[Hi, Mi] to be the realization of 

the random vector variable X, which defines an appropriate sample space, see Eq. IV.2. In 

practice, X contains the random variables corresponding to p=2 measurements taken at the 

i-th node of the experimental grid. Hence, X=(X1
T,…,Xn

T)T is a an n-tuple of points in ℜ 2 with 

related realization vector x=(x1
T,…,xn

T)T. The corresponding distribution function f(x;ψψψψ) of a 

g component finite mixture is given in the form defined by Eq. IV.3, whereas the components 

densities take now the form of the following bivariate Gaussian distribution: 

}{
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IV.13 



Chapter IV 
___________________________________________________________________________ 

 
75 

The indentations xi are assumed to be independent and identically distributed 
. .

1, , ~
i i d

n…X X F  

realizations of random variable.23,28,29 The likelihood function for the vector of unknown 

parameters ψψψψ, formed from the grid indentation data x, is denoted by L(ψψψψ) and given in log 

form as: 

1

log ( ) log ( ; )
n

j
j

L f
=

=∑ψ x ψ

 
IV.14 

The Maximum Likelihood based estimation of vector ψψψψ requires solving the likelihood 

equation given by: 

log ( ) / 0L∂ ∂ =ψ ψ  IV.15 

The application of the EM algorithm to the problem above requires the introduction of an 

additional set of variables Z, whose realization z is given by Eq. IV.16. This serves as a vector 

of labels of observations by defining the component in the mixture model from which the 

random vector x is withdrawn, as a type of binary indicator. 
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IV.16 

This conceptualization allows to formulate the estimation problem as an incomplete-data 

problem (unknown data labels, variable z), for which the complete-data log-likelihood 

function for ψψψψ is constructed as: 

}{
1 1

log ( ) log log ( ; )
g n

c ij i i j i
i j

L z fπ
= =

= +∑∑ψ x φ

 
IV.17 

The components of the label vector z are treated as missing data. The estimation of 

distribution parameters with EM algorithm proceeds iteratively in two steps: expectation (E) 

and maximization (M).23,30,33 The E-step handles the addition of Z by taking the conditional 

expectation of the complete-data log-likelihood log(Lc(ψψψψ)) given the observed data x and 

using the current fit ψψψψ(k) for ψψψψ, as: 

{ }( ) ( )
( )( ) 1 ( ; )k k
k

ij ij i jE Z pr Z τ= = =
ψ ψ

x x x ψ
 

IV.18 

The current posterior probability τi(xj;ψψψψ(k)) that the j-th member of the indentation sample 

belongs to one of the components of the mixture is given by the Bayes Theorem: 
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IV.19 

for i=1,…,g and j=1,…,N. The M-step aims at the global maximization of the complete 

likelihood function with respect to vector ψψψψ over the parameter space Ω, given the expectation 

Eψψψψ
(k)(Zij |x) calculated in the E-step. The current fitting for the mix proportions, and the 

component means and covariance matrices are calculated explicitly as: 
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IV.20(b) 
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IV.20(c) 

The E- and M-steps are alternated repeatedly until the difference in the likelihoods changes by 

an arbitrary small amount in the case of convergence of the sequence of likelihood values. As 

was shown by Dempster,30 the ML estimate is non-decreasing on each iteration of EM 

algorithm and converges in the sequence of likelihood values to a fixed point in the parameter 

space. An additional feature of this approach is the probabilistic clustering of indentation data 

into g groups, obtained in terms of the fitted posterior probabilities of component 

memberships. Allocation of the indentation records x to the specific model’s group is 

achieved by assigning each data point to the mixture component to which it is the highest 

estimated posterior probability of belonging, expressed by the Bayes rule of allocation rB(xj): 

( ) ( ) ( )B j i j h jr i if τ τ= ≥x x x
 IV.21 

where rB(xj)= i implies that the j-th record within the indentation grid is assigned to the 

i-th statistically and mechanically relevant component existing within the investigated region 

of the material, i=h=1,…,g and j=1,…,N. The reader is referred to references23,28,29,33 for 

detailed discussions of ML method and EM algorithm.  

 The applicability of this approach to the grid indentation data analysis is demonstrated 

next on the grid indentation data from ordinary Portland cement paste and masonry clay brick 

investigated by the author. The estimation of distribution parameters is carried out with a non-

commercial program for statistical mixture analysis EMMIX, developed by 

McLachlan et al..34,35 
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IV.4.2. Application to Cement Paste 

 The first application considers the OPC data previously deconvoluted with the c.d.f. based 

estimation method in Section IV.3.2. The experimental grid indentation data are now 

presented in the form of a scatter diagram on the H×M plane (Figure IV.5(a)). 

 

(a) 

 

(b) 

Figure IV.5 Maximum Likelihood based deconvolution of the grid indentation data on OPC: 

a) global plot of the experimental records, with a zoom focus on the domain of hydration 

products, b) deconvoluted and clustered experimental data with biphasic nature of silica gels 

exposed. H-indentation hardness, M-indentation modulus. 

It is evident on the global view, that the data cover a wide range of hardness values (up to 

12 [GPa]) and indentation modulus (up to 150 [GPa]). However, the dominant fraction is 

concentrated in the subdomain with upper thresholds of H=5 [GPa] and M=60 [GPa], 

recognized to give the characteristic domain of cement hydration products C-S-H.18,19 The 

applied bivariate mixture model to describe the OPC is based on the assumption of existence 

of four distinguishable, statistically significant components g=4, similarly to the estimation 

based on the c.d.f. function (Figure IV.4). It is also hypothesized, that among these 

components may be measurements that do not represent the real mechanical phase but rather 

can be classified as a ‘statistical noise’. This issue will be addressed in the subsequent part. 

Referring to the deconvolution procedure, the application of the EM algorithm leads to the 

estimation of the mean values of each underlying component µµµµj, the associated covariance 

matrices ΣΣΣΣj and finally the weights πj (Table IV.1). The execution of the 

expectation-maximization algorithm from a large number of different, randomly selected 

starting values of ψψψψ , indicated as ψψψψ(0), minimizes the possibility that the obtained solution 

represents only a local minimum. 
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Table IV.1 Mechanical phase properties of the OPC assessed with the ML based 

deconvolution 

PHASE H1 σH M1 σM rH,M
2 ϕ3 π 

LD C−S−H 0.48 0.13 16.67 3.56 0.65 -1.42 0.22 

HD C−S−H 0.97 0.29 28.24 7.03 0.73 -1.75 0.61 

UHD 1.98 0.4 47.39 11.47 -0.07 0.15 0.08 

CLINKER 5.67 2.84 91.62 32.09 0.80 -4.08 0.09 

1-properties estimated in [GPa], 2-the linear (Pearson) correlation coefficient rH,M=cov(H,M)/(σHσM), 3-angle of 
inclination of the equal probability density ellipses tan(2ϕ)=2cov(H,M)/((σH)2-(σM)2). Clockwise is positive and 
values are given in degrees of arc °. 

 

 The graphical representation of the ML estimation, as well as the result of allocation based 

on fitted posterior probabilities Eq. IV.21 to specific model groups, are demonstrated on 

Figure IV.5(b). According to these results, the biphasic nature of the hydration products is 

apparent, given by two independent clusters of experimental data. The distributions of records 

from both types of C-S-H components are characterized by positive cov(H,M). Additionally, 

the Pearson’s correlation coefficient rH,M approaches ≈0.7, what suggests quite strong 

positive, linear dependence between hardness and elastic modulus within each C-S-H phase. 

The third component, namely UHD, may be considered as the composite phase which 

incorporates portlandite (CH) mineral. Its density distribution and related cluster are 

characterized by significant higher dispersion of the data points than the two previously 

described hydration products. Moreover, the close proximity of the Pearson’s product to zero 

defines a marginal correlation of H and M for this phase. The last component is of 

experimental noise type, as a material noise, which incorporates atypical and rare 

observations, which fall out of the general trend and are spread over a large H-M domain. 

This set includes rare indentation records on unhydrated components of cement (Albite, 

Belite, C3S, C2S etc.), which are recognized to have indentation hardness in the following 

ranges H=7.0÷11.5 [GPa], M=100.0÷155 [GPa],11,36 and other records that are considered as 

single measurements of composite response. Data categorized as inherent phases of cement 

based material represented by the three first components account for more than 90 % of the 

experimental records, leaving π < 10 % for the fraction of atypical and rare observations. 
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IV.4.3. Application to Fired Clay Brick 

 A second example of the ML application is the case of grid indentation carried out on 

masonry clay brick. This ceramic composite material exhibits a high degree of heterogeneity 

on multiple scales.37,38,39 Massive grid indentation (Figure IV.6(a)) has been carried over a 

selected region of polished ceramic in order to obtain the mechanical characteristics of the 

brick constituents. The special focus has been put on the ‘glassy’ matrix and its mechanical 

properties as a function of indentation depth. The indentation grid covers the rectangular 

region with the approximate dimensions 110×40 [µm] and internal grid spacing 

lx=ly=2.0 [µm]. Multiple force-controlled measurements were executed with equal loading and 

unloading rates of 5.0 [mN/min]. The dwell time of 5.0 [s] has been chosen for the maximum 

force Pmax=1.125 [mN]. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure IV.6 Grid indentation data on the facing brick: grid span 110×40 [µm], number of grid 

points i×j=21×56, spacing lx=ly=2.0 [µm]. Sample impregnated with epoxy resin: a) raw data 

set (abnormal observations included), b) deconvolution and clustering of experimental 

records, c) BSEM micrograph of investigated region, d) phase distribution reconstructed on 

the basis of the results of the cluster analysis. EIPD-epoxy impregnated porous domain. 
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 The adopted Gaussian Mixture Model assumes the number of statistical groups equal to 

seven g=7. This choice for g is not arbitrary, but obeys the Bayesian Information Matrix 

(BIC) criterion proposed by Schwarz,23,40 which provides g=7 as the number of phases with 

the highest probability to occur. A discussion on the influence of the number of phases on the 

results will be addressed below. 

 The deconvolution of the raw data, together with the allocation of the experimental 

records is presented in the form of the scatter diagram on H×M plane (see Figure IV.6(b)) and 

Table IV.2). 

 

Table IV.2 Mechanical phase properties of the brick matrix and quartz assessed with the ML 

based deconvolution 

PHASE H1 σH M1 σM rH,M
2 ϕ3 π 

MATRIX I 9.37 0.77 94.51 7.24 0.69 -4.23 0.30 

MATRIX II 10.00 2.06 96.57 22.81 0.68 -3.54 0.26 

QUARTZ 13.78 1.03 99.08 7.08 0.58 -4.87 0.24 

1-properties estimated in [GPa], 2-the linear (Pearson) correlation coefficient rH,M=cov(H,M)/(σHσM), 3-angle of 
inclination of the equal probability density ellipses tan(2ϕ)=2cov(H,M)/((σH)2-(σM)2), unit: degrees of arc °. 

 

 The presence of a very stiff and hard phase (with a left oriented grey triangular marker) is 

noticed, with the relevant properties H7=14.28 [GPa] and M7=225.86 [GPa], with moderate 

dispersion and rH,M approaching zero. This phase represents the single aggregate of titanium 

oxide based mineral (possibly rutile or anatase),41,42 which is clearly seen on the Back 

Scattered Electron Microscopy (BSEM) micrograph (Figure IV.6(c)). This observation is also 

supported by the elemental distribution of titanium (see EDX map on Figure IV.7(f)), which 

exposes definitely its chemical origin. The next cluster with a relatively high value of 

hardness represents quartz (circle red marker).43,44 A close inspection of EDX maps 

(Figures IV.7(a-f)) tends to strengthen this hypothesis. The estimated mechanical properties 

are H6=13.78 [GPa] and M6=99.08 [GPa] (Table IV.2). The obtained values represent the case 

of shallow indents Pmax=1.125 [mN] and hmax≈100 [nm]. However, the measured hardness 

approaches well the literature data reported for quartz of HQ≈14.00 [GPa] obtained at higher 

depths.4 The measured indentation modulus is approaching the elastic stiffness reported for 

quartz mineral (E11≈79 [GPa], E33≈103 [GPa]),44 however these two stiffness measures, M 

and E are not directly comparable for crystal materials due to present anisotropy. The variance 
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of indentation moduli is very small in comparison with the previous phase, indicating higher 

homogeneity of this set of observations. The calculated value of rH,M for this component is 

≈0.58 and ϕ=-4.87 suggesting quite strong correlation of H and M in this cluster (Table IV.2). 

 The binding ‘glassy’ matrix, typical for the microstructure of the facing clay brick, is 

represented in this analysis by two components, e.g. square yellow and orange markers on 

Figure IV.6(b). This duality may be attributed to the variation in the local chemical 

composition as well as to the changes in the morphology and interaction with other 

mechanical phases. The first set of measurements related to the binding matrix (square yellow 

marker) is concentrated around the mean hardness HI=9.37 [GPa] and lower modulus 

MI=94.51 [GPa]. The indentations with the measurements allocated to this group are mostly 

located on the large chunk of the ‘glassy’ matrix pocket, although a minor fraction may be 

found outside this region as well (see Figures IV.6(c-d)). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure IV.7 Distribution of elements within investigated region recorded in EDX 

microanalysis: a) Al, b) Si, c) Mg, d) K, e) Ca, f) Ti. Note the visible relatively large 

aggregates of quartz (SiO2), the matrix pocket with characteristic higher concentration of 

alkaline elements (K, Mg, Ca), the external matrix with relative higher concentration of 

alumina and low concentration of alkaline elements, and the single grains of titanium based 

mineral. 
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 The continuity of this phase, together with improved homogeneity (at the scale of present 

indentation), tends to result in a relatively small variance of H, M and a small scatter of 

observations within the corresponding cluster. The EDX results collected over this particular 

region show higher concentration of the alkali elements, e.g. magnesium and potassium, than 

in the rest of the investigated area (Figures IV.7(c-d)). The estimated mechanical properties of 

the second type (square orange marker) HII=10.00 [GPa] and MII=96.57 [GPa] are slightly 

higher than its previous phase. In this case, the variance in both measured quantities increases 

considerably. The slight increase in H and M could be attributed to the higher concentration of 

the aluminum in the region surrounding the pocket of glass (Figure IV.7(a)). Additionally, the 

interaction with other mechanical phases of higher strength and stiffness, as well as possible 

higher variation in surface topography, may result in the larger variance and shift in the mode 

position of this component of the mixture model. A moderate correlation between the 

hardness and indentation moduli has been found for both groups, with rH,MI=0.69 and 

rH,MII=0.68. The assessed mechanical properties of the binding phase of facing clay brick fall 

in the range of aluminosilicate glass and glass ceramics.1,45,46,47 

 The last three statistical phases, identified with the ML based deconvolution represent the 

indentations executed on the epoxy impregnated porous domain (EIPD) or in its close 

neighborhood (Figure IV.6). Therefore, the measurements, which were mostly probing the 

bulk hardened epoxy resin (star dark blue marker), are concentrated around the mode 

representing the smallest hardness and indentation modulus values H=0.40 [GPa] and 

M=14.80 [GPa]. The two remaining groups include the indents executed in boundary zone 

between the resin and stiffer phases (Figure IV.6(d)). Under these circumstances, the 

interaction volume probed by the indenter incorporates the fractions of the stiffer phases in a 

random fashion. As a consequence, the measured properties become enhanced compared with 

the properties of the epoxy resin, and they tend to exhibit significant scatter. The local 

influence of the rounded edges together with changes in the surface profile at the interfaces 

may contribute to this dispersion as well. Note that ill conditioned measurements were found, 

e.g. fracture under the indenter and soft-on-hard behavior, which do not follow a P∝hm 

relation and, in general, fall in the lower range of measured quantities. This type of abnormal 

observations could be easily identified, and these measurements establish an independent 

statistically relevant group (diamond blue marker) (Figure IV.6(b)). 

 The ML estimated surface fractions of each mechanical phase (Table IV.3) are compared 

with the results obtained by the Digital Image Analysis (DIA) of the micrograph pictured on 
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Figure IV.6(c). In this analysis the surface fraction of porosity represents the sum of the first 

three clusters with the lowest hardness values. A good agreement has been found between 

both methods, with the maximum divergence approaching 7 % for quartz phase. 

 

Table IV.3 Comparison of the surface fractions estimated with ML approach and the results of 

the Digital Image Analysis (DIA) of the BSEM micrograph of the indented region 

(Figure IV.6(c)). 

π-surface fraction 
 

matrix quartz rutile porosity 

ML1 0.558 0.240 0.028 0.174 

DIA2 0.572 0.225 0.028 0.175 

∆[%]3 2.450 6.670 0.000 0.570 

1−original estimation with included abnormal observations, 2−image resolution: 1pix≈0.09 [µm], 
3−∆=πDIA−πML/πDIA 

 

 

IV.4.4. Inference of the Number of Components 

 In the field of Gaussian Mixture Models, for the definition of the adequate number of 

components g is a difficult problem which has not been completely resolved. Several 

penalized log likelihood criteria have been developed and are commonly reported in the 

literature.23,28,29 One of them is Bayesian Information Criterion (BIC) proposed by Schwartz,40 

which has been applied in this work. Accordingly, the number of components g with the 

highest probability to occur minimizes the statistic given by: 

1
2

ˆlog ( ) logg gL k N−ψ
 IV.22 

where Lg(ψ̂ ) is the likelihood function for model g, kg is the number of model parameters and 

N is the size of the sample. The results of the assessed BIC statistic with respect to the number 

of model’s components g are presented below for all three introduced materials: naval brass, 

cement paste and clay brick (see Figure IV.8(a)). 

 While in Section IV.3.1 the deconvolution of naval brass has been carried out under the 

assumption of two components, the new results (Figure IV.8(a)) require the refinement of the 

model into three groups. The new component includes most of the observations located 

outside the 3σ equal probability density contours of the main phases (Figure IV.8(b)). The 
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new phase is also characterized by a much higher variance in the measured properties as well 

as significantly lower weight. It is hypothesized, that it does not represent a physical phase, 

but rather measurements with unrecognized ill conditioned nature or affected by local 

phenomena, e.g. chemical composition or surface profile. But it is stressed, that the 

incorporation of this so called ‘noise’ component improves the accuracy in the estimations of 

hardness and indentation modulus of two physically relevant mechanical α- and β-phases. 

 

(a) 

 

(b) 

Figure IV.8 Assessment of the number of model’s components for investigated materials 

based on the BIC statistics: a) evident global minimum g=3 for naval brass, g=4 for cement 

paste and g=7 for clay brick, b) deconvolution of naval brass experimental data under the 

assumption of GMM composed of three components. 

 

 The OPC mixture model with g = 4 components minimizes BIC criterion (Figure IV.8(a)). 

The successive deconvolution refinement of the cement paste model into three (CP3) and five 

(CP5) phases is presented below for the sake of discussion (Figures IV.9(a-b)). It is evident, 

that for g=3 the general pattern of the data is clearly outlined, which incorporates the 

hydration product family, the portlandite family and the set of rare indentation events on 

unreacted clinker. Addition of one more component, minimizes BIC and exposes the duality 

of C-S-H gel (Figure IV.5(b)). Further refinement with g > 4 does not alter the grouping 

within C-S-H, but splits the last component (Figure IV.9(b)) leading to a drastic increase of 

the BIC statistic. 
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(a) 

 

(b) 

Figure IV.9 Successive deconvolution refinement of the cement paste grid indentation data: 

a) g=3, b) g=5 components. 

 

 The GMM with seven normal components minimizes the Schwartz statistic for the clay 

brick indentation measurements. Although, the contrast in BIC value from six to eight 

components is quite small, visible and significant changes may be noticed in related 

distributions and a posteriori clustering (Figures IV.6(b) and IV.10(a-b)). 

 

(a) 

 

(b) 

Figure IV.10 Successive deconvolution refinement of the clay brick grid indentation data: 

a) g=6, b) g=8 components. 

 

 The first mixture model recognizes only one cluster corresponding to matrix phase and 

enlarges the distribution component related to the epoxy impregnated domain of voids. This 

enlarged cluster spans over large domain of H and M and wrongly incorporates indentations 
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carried on matrix. Under these circumstances the estimated weights deviate drastically from 

the results obtained with DIA, e.g. πM ≈ 33 %, πporosity ≈ 40 % comparing to πM ≈ 57 %, 

πporosity≈17 %. The proper estimation of weights, as well as better separation of phases, 

corresponds to the model with seven components, which minimizes BIC criterion. Its physical 

notion has been grounded additionally by the EDX analysis as well as direct comparison of 

BSEM micrograph (Figure IV.6(c)) with its probabilistic reproduction based on the 

corresponding clustering results (Figure IV.6(d)). Finally, the construction of a more complex 

model leads to exposure of local distributions within already identified (Figure IV.10(b)). 

Such sparse solutions increase the BIC value and appear in the group of records related with 

the epoxy impregnated porosity domain. 

 

IV.5. COMPARISON OF THE METHODS 

 

 The introduced maximum likelihood deconvolution approach (MLA) is defined over ℜ 2 

space, where the model components are represented by a bivariate normal distribution 

function f(x|µµµµ,ΣΣΣΣ) that includes variance-covariance matrix ΣΣΣΣ in its complete form. Such an 

approach differs fundamentally from the strategies briefly reviewed at the beginning of this 

manuscript, which work with discrete values and univariate mixture models. Consequently, 

the estimated parameters obtained with these methods differ in the level of accuracy. 

 

Table IV.4 Deconvolution of the indentation data on naval brass with different methods of 

estimation applied. 

 α−phase β−phase 

 H1 σH M1 σM π H1 σH M1 σM π 

 2h0 2.32 0.23 131.85 14.45 0.64 2.95 0.11 125.91 7.33 0.36 

PDF2 h0 2.27 0.22 134.41 11.07 0.59 2.83 0.15 122.85 8.24 0.41 

 h0/2 2.25 0.20 135.66 11.51 0.55 2.81 0.15 123.38 8.17 0.45 

CDF 2.24 0.20 133.45 12.20 0.56 2.81 0.15 124.44 9.03 0.44 

MLA 3 2.29 0.29 133.28 12.96 0.64 2.84 0.13 122.11 7.82 0.36 

MLA 4 2.30 0.21 134.15 10.72 0.59 2.83 0.15 122.79 8.30 0.41 

CV(%) 1.34 15.07 0.95 11.38 6.44 1.86 11.95 1.12 6.91 9.47 

1 – properties estimated in [GPa], 2 – different size of the histogram intervals, 3 – two-component model which 
does not correspond to min(BIC) which is attained for g=3, 4 – estimated values for min(BIC) model with g=3. 
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 Next, the parameters of naval brass and OPC estimated with the p.d.f. and c.d.f. based 

methods are confronted with the solution obtained by making use of the proposed strategy 

(Tables IV.4 and IV.5). The clay brick grid indentation is excluded from this brief 

comparative analysis, even if the MLA seems to provide also good results for this material. 

The large number of components in clay brick effectively complicates the estimation with the 

two first methods, whose application tends to be restricted to less enlarged mixture models. 

Note also that p.d.f. is not applied to OPC because of the known influence of the size of the 

histogram interval on the value of estimated parameter. 

 

Table IV.5 Properties of hydration products estimated with different methods. 

 LD C−S−H HD C−S−H 

 H1 σH M1 σM π H1 σH M1 σM π 

A 0.51 0.15 16.44 3.20 0.23 0.95 0.29 27.76 6.08 0.55 
CDF2 

B 0.51 0.14 16.45 2.84 0.18 0.92 0.31 27.66 6.86 0.60 

MLA 3 0.48 0.13 16.67 3.56 0.22 0.97 0.29 28.24 7.03 0.61 

CV(%) 3.46 7.14 0.79 11.25 12.60 2.66 3.89 1.11 7.61 5.48 

1 – properties estimated in [GPa], 2 – with phase contrast condition incorporated (A), with phase contrast 
condition released (B), 3 – four-component mixture model. 

 

 It may be seen, that the estimated properties holds consistency regardless the applied 

method and with reference to the mean values of H and M (naval brass: CVH<2.0 %, 

CVM<1.5 %, OPC: CVH C-S-H < 3.5 %, CVM C-S-H < 1.5 %). However, the estimation of standard 

deviations and consequently the components weights deviate significantly comparing to the 

solution obtained with MLA. The variations in these two estimators across the methods are 

much greater (naval brass: CVπα≈7 %, CVπβ≈11 %, OPC: CVLD C-S-H≈13 %, CVHDC-S-H≈5.5%). 

It may be also noticed from the results reported in Table IV.4, that the p.d.f. based estimation 

for which the bin size equals 2h0 gives the same results as the MLA (g=2) in terms of standard 

deviation and surface fraction. However, in the further refinements of the histogram (h0, h0/2) 

this approach tends to overestimate the β-phase of brass, while underscoring the remaining 

α-phase. This observation shows that the change in the size of the bin or shift in the histogram 

initial point automatically changes the probability discrete values and empirical distribution, 

leading to no negligible impact on the estimated parameters.22,25 Likewise the bin size, the 

phase separation condition incorporated into the c.d.f based deconcolution method may lead 

to noticeable distortions of standard deviations estimators and components weights 
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(Table IV.5), in comparison with the MLA solution. This effect is expected to be more 

pronounced in the grid indentation results where the significant mixing of the components 

takes place, e.g. weak fulfillment of the phase separation condition or unsatisfactory sample 

preparation. In such a situation, the correct overlap of two successive Gaussians may not 

follow µj
x+sj

x ≤ µj+1
x-sj+1

x. From this perspective, it appears reasonable to neglect the ‘phase 

contrast condition’, such as in the example of indentation grid analysis on ceramic materials 

reported by Guicciardi et al.48, and allow the minimization procedure to be solved in its 

general form like in the usual case. Besides, a condition like this specifies particular order of 

phases within investigated material, namely each phase can only have an indentation modulus 

and hardness greater than the one before, which is a hypothesis without physical ground. This 

ordering is only one among many possible, which may be encountered in the indentation on 

the heterogeneous materials. 

 

IV.6. CONCLUSIONS 

 

 The statistical grid indentation technique on heterogeneous materials has been 

substantially extended with the implementation of the mulitvariate Gaussian Mixture Model 

and Maximum Likelihood concept as a primary tool in the deconvolution analysis. It has been 

shown that bivariate modeling and the ML estimation approach together with the Expectation 

Maximization algorithm offers a robust and efficient deconvolution strategy. This fact has 

been demonstrated on the examples of a simpler metallic material, namely naval brass, as well 

as more complex cohesive-frictional materials, namely ordinary Portland cement paste and 

masonry clay brick. Under the assumption of independent and identically distributed 

realizations of random variables, the maximum likelihood estimation of phase properties, 

theirs covariance matrices and surface fractions have been found. The obtained values show 

good agreement with the data reported in the literature. While the estimations of mean phase 

properties are quite coherent among the reviewed methods and ML approach, a significant 

improvement on the estimation of the components weight has been found. Additionally, the 

introduced deconvolution strategy permits to execute data clustering and to expose its internal 

structure. Therefore, the allocation of indentation records to specific components based on a 

posteriori probability may be carried. As a result, the statistical map of the material in the 

investigated region may be drawn on a pure probabilistic basis. This technique has been 

demonstrated for the clay brick indentation experiment, where the BSEM micrograph and 

EDX elemental maps have been compared with the results of cluster analysis. In this way, 
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each indentation may be directly linked to the local chemical composition. Besides this, the 

abnormal measurements may be pinpointed and possibly associated with particular features of 

the surface in its location or local composition. This group includes all observations, which 

are loaded with an experimental error of different nature, as well as rare indentation events 

which number is too small to establish a statistically significant and homogenous group. The 

typical characteristics of this group are the relatively large scatter and the tendency to exhibit 

a uniform distribution within a specific region of H×M plane. In addition, the influence of the 

abnormal observations on the estimated parameters may be quantified, and appropriate 

corrections can be introduced. 

 In the frame of the proposed strategy, the most probable number of components 

compatible with the analyzed grid indentation data may be inferred with the BIC estimator. 

This fact may be of major importance if no prior information regarding the phase composition 

is available, or subgrouping of the phases is encountered, like in the case of ordinary cement 

paste. In this material the BIC statistics has attained its minimum for the model which exposes 

duality of the Calcium Silica Gel, being in full agreement with the results of other 

independent measures and theoretical models. 
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V. Probing of the Building Brick 

Microstructure by Means of Instrumented 

Indentation Method: In-situ Assessment of 

Hardness and Elastic Properties of the 

’Glassy’ Matrix 
 

 

 

 

ABSTRACT 

The main focus of the work presented here is the experimental analysis of the elastic 

properties and the hardness of the polycrystalline-amorphous bond, the main component of 

the fired clay brick microstructure. The Young’s modulus of this composite, together with the 

indentation hardness, is assessed with the aid of instrumented indentation executed at 

sub-micron scale. Different force regimes are investigated, and the evolution of both 

properties with respect to the depth of indentation is investigated. The gathered results 

corroborate the composite nature of the ‘glassy’ bond, in which the stiffness and hardness 

become enhanced due to mutual interplay between aluminosilicate glass and reinforcing 

neo-crystal phases. Additionally, the mechanical properties of the accessory phases like 

quartz, incorporated within the brick microstructure, are inferred. 
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V.1. INTRODUCTION 

 

 Ceramic materials have been inherently present in the human culture, being a part of 

mankind development process and growth of civilizations. The easy access to abundant 

resources of raw materials concentrated in the earth crust, the processing simplicity and the 

attractive final properties made ceramics suitable for many applications in different fields. 

Non-surprisingly one of the first applications of the fired-clay solids, where their superior 

properties above other available materials have been recognized, was housing. The oldest 

fired bricks applied in the construction of habitats have been found in Knossos (Crete) and 

dated back to around 4300 BC.1 They effectively replaced the sun dried bricks which had 

tendency to disintegrate easily under humid atmosphere.2 Therefore, the life-expectancy of 

buildings, together with their comfort, was significantly improved while elevating the status 

of inhabitants. The potential of ceramics used as a construction material has been appreciated 

since then. 

 Naturally, the understanding the processes, which allow building bricks to develop given 

physical and mechanical properties, became a subject of intensive research. This is 

particularly true in the last decade, as the demand for sustainable and environmental friendly 

construction materials is substantially increasing. It is known that, next to concrete or steel, 

structural ceramics have a high environmental footprint due to the energy consumption in 

manufacturing. The production of one ton of bricks releases around 250 kilograms of CO2 to 

the atmosphere.3,4 This is only a quarter of Portland cement, but in a comparison with 

concrete, the emission of carbon dioxide for structural ceramics is almost the double, per 

kilogram of bulk material. Ceramics is one of the most energy-intensive building materials. 

Hence, a good understanding of the link between industrial processes, composition and 

microstructure is required in order to reduce energy consumption, and tailor the properties of 

the material to our needs. In order to reach this goal, the study of the mechanical performance 

of brick microstructure elements with respect to composition and mechanical loads applied is 

relevant to modern masonry as well as to ceramics sciences in general. 

 In the brick complex material system one of the primary components is the 

polycrystalline-amorphous ‘glassy’ matrix created on the basis of the solidified, viscous melt. 

Its volume fraction and phase composition are governed by the composition of the starting 

materials as well as the temperature processing history. Obviously, apart from other existing 

factors, its mechanical performance drives much of the elastic behavior and strength of brick, 

properties known by engineers and applied at the structural level. 
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 Until recently, the available methods in experimental mechanics could not provide access 

to the material bulk at sub-micron scale. However, the rapid progress in the experimental 

instrumentation brought depth-sensing indentation technique tailored for the nano- and 

micro-scale mechanical characterization of solids. This relatively new and promising method, 

combined with advanced statistics, has become a much versatile tool for the non-destructive 

characterization of heterogeneous materials at different scales. This experimental approach is 

especially useful when the bulk of material occupies very small volumes and its spatial 

distribution is random. These two attributes are typical of the brick ‘glassy’ matrix, which is a 

load bearing phase that forms complex 3-D scaffolds with a characteristic scale in the order of 

10-4 [m] and randomly arranged in space. 

 The work reported here is focused on the experimental identification of the mechanical 

properties of the ‘glassy’ matrix existing within the brick by means of multiple depth-sensing 

experiments and advanced statistical analysis. Due to the random distribution of the ‘glassy’ 

matrix bulk, the depth-sensing measurements are executed in the nodal points of the grids, 

which cover specific regions of material or in randomly selected areas. The indentation 

moduli, as well as the indentation hardness, are estimated for each grid point from the 

depth-load curve according to the Oliver-Pharr method.5 The mean properties are estimated 

with the Maximum Likelihood function applied to a statistical Gaussian Mixture Model 

(GMM).6 The short description of the investigated brick microstructure is presented together 

with the chosen experimental approach. Finally, the obtained results are presented and 

supplemented with a detailed discussion. 

 

 

V.2. MATERIALS 

 

V.2.1. Microstructural Order, Phase Composition and Dimensional Characteristics 

 The investigated polycrystalline-amorphous ‘glassy’ matrix is one of the principal 

components of the facing brick fired in the ∼55 hour-cycle using a gas fueled industrial kiln 

with the peak temperature 1050 [°C] (Figure V.1(a)). This load bearing material phase, which 

at the macro-level appears to be homogenous in nature,7 hosts neo formed crystals of 

nanometer size d0<10-6 [m] (Figure V.1(b-d)) formed in the phase transformations at the 

expenses of the parent clay mineral or as a mixture of clay minerals and fluxes.  
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Figure V.1 Multi-component microstructure of facing brick (Back-scattered electron 

microscopy, BSEM): a) view on the macro scale, b) polycrystalline nature of the ‘glassy’ 

bond phase (sample etched with 6 % Hydrofluoric Acid, HF, for 1 [min] ), c,d) detailed view 

on two apparently different morphologies of neo-crystal phases for mullite. 

 

The dominant neo-crystals hosted in the aluminosilicate melt are the spinel-type phase and 

mullite crystals as well as the precipitated phases, like fine grained hematite, rutile, etc.. The 

first mentioned crystals are obtained from the kaolin mineral after breaking down the 

metakaolin at T≈925÷980 [°C],8,9 or from crystallization of mica minerals at 

T≈850÷950 [°C].10,11 This cubic spinel-type structure was considered an aluminum silicon 

Al-Si spinel,9 however later studies carried by Sonuparlak12 on well-crystallized kaolinite with 

TiO2 impurity showed γ-Al2O3 as a bearing component with some residual SiO2. Its crystal 

size strongly depends on the peak temperature and duration of the heat treatment cycle. 

Therefore, the crystalline regions of spinel formed at 980 [°C] may be as small as a few 

nanometers (5÷8 [nm]), as revealed in the beam-induced in-situ heating TEM studies.12 On 

the other hand, for the same peak temperature but substantially prolonged heat treatment 

(1 day), a one order increase (≈100 [nm]) in the spinel crystal size may be observed. Crystals 

of spinel larger than those originated from kaolinite clays are crystallized from the clays 

which incorporate mica (illite, muscovite). The spinel crystals developed upon heating for 

3 [h] at 900 [°C] are reported to be in the size of ≈20÷50 [nm] long and ≈5 [nm] wide,13 to be 

oriented, and to be embedded in the silica- and potassium-rich matrix. Further increase in the 

firing temperature leads to the more intense development of amorphous matrix as well as 

(a) (b) 

(c) 

(d) 
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coarsening of the existing spinel ≈100×10 [nm] and precipitation of the hematite and rutile 

crystals ≈200 [nm] (at 1100 [°C]).13 

 The development of the spinel phase is followed by the crystallization of the mullite in the 

exothermic reaction around ≈1050 [°C] for pure kaolinite.9 For complex mixtures with 

muscovite and quartz incorporated, mullite has been detected for temperature ≥900 [°C] and 

in significant volume fractions at ≈1000 [°C].14,15 The morphology, stoichiometry and 

composition of the developed mullite crystals are complex functions of the starting materials 

and the processing conditions. Therefore, mullite crystals display various Al to Si ratios 

according to Al4+2xSi2-2xO10-x, with x=[0.2;0.9]16 as well as various crystal dimensions.17,18,19 

Still, the division in primary and secondary mullite is usually accepted. 

 Primary 2:1 mullite is the first to derive from the clay laths, while secondary 3:2 mullite is 

formed from interaction of clay and fluxes. The primary mullite derived from the kaolinite 

clay relicts takes the form of fine cuboidal crystals (<100 [nm]). The secondary form, grown 

in the regions with impurities from feldspar, takes the form of needle shaped crystals, which 

may reach up to 1 [µm] in length,14,17,18,19,20 depending on the initial size of clay particles, 

temperature, firing time applied and the local chemical potential of the melt. The crystals of 

acicular morphology are revealed in the back-scattered electron micrographs (BSEM) of the 

investigated material matrix (Figure V.1(c-d)) with an approximate size ≈500 [nm]. Their 

exact shape and dimensions are blurred by the complexity of 3D microstructural order. 

 The existing neo-crystals of spinel type cubic phase, as well as the mullite acicular 

crystals and hematite, are bound together by mutual interlocking (mechanical bonding), but, 

more important, by the solidified aluminosilicate glass. This glass phase develops from the 

amorphous silica SiO2 and clay impurities released during the formation of the spinel type 

cubic phase as well as the crystallization of mullite. Enrichment of the system with silica melt 

decreases the eutectic point of the potassium feldspar flux,21 leading to more pronounced 

liquid development rich in alkali elements and free alumina. Upon cooling, the viscous melt 

transform to amorphous glass. However, significant undercooling of the melt may induce 

nucleation and growth of new fraction of mullite crystals with a random orientation. These 

later crystals have finer structure than those formed primary.13,14,17 

 

V.2.2. Surface Preparation Protocol and Areal Parameters 

 Small volume samples of the bulk were cut from the central part of the brick using a 

diamond drop saw to an approximate size of 1×1×0.5 [cm]. Subsequently, ultrasonically 



Probing of the Building Brick Microstructure by Means of Instrumented Indentation Method.. 
___________________________________________________________________________ 

 
98 

cleaned and oven dried specimens were impregnated under vacuum (3 cycles 

vacuum-to-atmospheric pressure) with a low viscosity epoxy resin, EpoThin (5:2) of Buehler. 

Prior to the impregnation, the epoxy resin had been carefully warmed up to decrease its 

viscosity further. Moreover, in order to amplify the penetration of the porous solid by the 

viscous filler, pressurization with air (≈0.6 [bar]) for about 30 [min] was applied at the final 

stage of the impregnation process. Upper and lower faces of the sample were ground using a 

diamond disc Apex DGD Buehler with grit size 45 [µm], with subsequent cleaning in the 

ultrasonic water bath and drying prior to mounting in the metal holder with a cyanoacrylate 

agent. 

 Fine polishing has been carried out down to 0.25 [µm] and using 9 [µm], 3 [µm] and 

1 [µm] diamond abrasive, with the aid of a metal jig and a lapping wheel. A detailed 

description of this procedure can be found in Miller et al..22 Water based diamond solutions 

were sprayed on the hard perforated pads TexMetP Buehler. After each pass, ultrasonic 

cleaning was carried out before advancing any further. Such a procedure led to a rather clear 

‘mirror’ like reflection, which could be observed by visual inspection. However, the surface 

quality was inspected using an atomic force microscope (AFM) operating in the contact tip 

mode (see Figure V.2), as well as a scanning electron microscope (SEM) (Figure V.3(a-b)). 

The surface topographic data were then collected over several spots of approximate size 

70×70 [µm] and smaller. 

 The surface roughness Sa and the mean-squared roughness Sq were estimated over selected 

regions of interest (ROI) on the bulk (see Figure V.2), according to the ISO 25178 standard,23 

giving the average values of around ≈33 [nm] and ≈44 [nm], respectively. However, as seen 

in the image above and the SEM micrographs (Figure V.3(a-b)), the effect of relief is present. 

The hardened epoxy resin of significantly lower hardness H≈0.3 [GPa], present within the 

porous domain (EIPD), is removed in a higher fraction than the proper bulk with H≈6 [GPa] 

and above. Therefore, the surface of the epoxy filler is not leveled with the surface of the 

substrate. The difference may reach up to a few microns giving the impression of ‘empty’ 

voids or significant surface irregularities. In addition, local collapse and fracture (F1, F2 on 

Figure V.3(a-b)) of the proper bulk or matrix phase may be observed as well as the so called 

‘comet tails’ (C1) or single empty pores. 
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Figure V.2 Isometric view (MountainsMap) of the surface topography obtained with the aid 

of the AFM microscope, after leveling and subtraction of waviness component (8 [µm]). 

Please note that the obtained topographic images include scanning artifacts, and therefore the 

most affected region has been excluded from the roughness analysis. The surface scan was 

made after the polishing process. 

 

 

(a) 

 

(b) 

Figure V.3 General view on the surface and its topography observed from different 

perspectives under the SEM microscope: a) surface tilt 35 [deg], b) surface tilt 50 [deg]. 

Apparent zones of local collapse of microstructure F1 and F2 of unidentified origin, ‘comet 

tails’ C1 or single empty pores, epoxy impregnated porous domain (EIPD) with relief, global 

indentation markings M1 and M2. The micrographs were taken 15 months after the 

experimental analysis and the sample was stored in a closed plastic container under normal 

room conditions. 
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V.3. EXPERIMENTAL PROCEDURE 

 

 The depth-sensing experiments were carried out with the CSM nanoindenter tester, 

provided with a vibration isolating system and constant temperature and humidity enclosure. 

Prior to running the indentation schedule, the depth-area function of Berkovich diamond 

indenter had been calibrated on the polished standard fused silica sample E=72 [GPa], ν=0.17, 

certified and provided by the instrument manufacturer. The automatic calibration schedule 

covering load range from 0.1 [mN] up to 100 [mN], with five measurements at each of 

22 load steps, has been applied. The compliance of the indenter load frame is fixed with 

Cf=0.1 [µm/N]. The polished brick sample had been fixed with cyanoacrylate glue to the 

metal base, cleaned using cotton-wool moistened with isopropanol, and, finally, firmly 

mounted into the sample holder of the instrument. 

 Single indentation grid covers a region on the surface of the sample as small as 

Lx× Ly=30×30 [µm], if one specific single target is in focus (e.g. pockets of ‘glassy’ matrix or 

quartz), but also much larger areas Lx,Ly>100 [µm], which include the mixture of the existing 

phases. Therefore, the optical microscope provided with the nanoindentation tester has been 

extensively used for an accurate target location and visual pre- and post-inspection of the 

probed area. Within each rectangular matrix, the inner spacing of the grid points along X and 

Y axes are equal lx=ly. The separation distance is chosen according to the size of the 

indentation imprint l (see Figure V.4(a)) for the load protocol specified in the scheduled 

matrix. This is obtained on a control run on the ‘glassy’ matrix phase, taken in the close 

proximity of the matrix origin. Hence, for a given maximum load Pmax the size of the 

indentation imprint with Berkovich tip equals l=6.52hc≈7hc, where hc=hmax-εPmax/S is a depth 

of contact evaluated from the control depth-force diagram (see Figure V.4(b)), hmax is the 

maximum depth, S is the tangent of the control depth-load diagram at maximum load and ε is 

a constant that depends on the geometry of the indenter.5 

 In order to avoid overlapping of the two adjacent indentation imprints produced on the 

‘glassy’ matrix and phases with comparable or higher hardness, e.g. quartz, hematite or 

feldspar, the minimum spacing lx≥2l=14hc has been adopted. Since the porosity domain is 

filled with the hardened epoxy resin, which is known to be a much softer material, a 

significant overlap of the indents on this sub-domain is expected to take place. So the 

formulated criterion, together with the investigated spot size, governs the number of the grid 

points Ntot=Nx×Ny, with minimum value set to ≈100. 
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(a) 

 

(b) 

Figure V.4 A schematic representation of the indentation grid segment and load-displacement 

relation with various quantities used in the analysis: a) a section through a sequence of 

indentation imprints with top view on the indented surface, b) a typical indentation curve with 

graphical definition of plastic hf, contact hc and maximum depth hmax after.5 

 

 At each point of the single grid, the depth-sensing measurement has been executed 

following the same protocol: loading with a constant rate 5 [mN/min] up to a maximum force, 

dwell time td=5 [s] at maximum load and unloading with a constant rate 5 [mN/min]. The 

speed of the tip approach to the surface has been fixed to a value 2 [µm/min]. Four different 

load regimes have been investigated Pmax={1.125; 2.25; 4.5; 9.0} [mN]. An holding period at 

0.1Pmax for the thermal drift correction was not applied. 

 The resultant indentation load-displacement data are analyzed according to the method 

proposed by Oliver and Pharr,5 which provides the indentation modulus M for general 

anisotropic materials, see Eq. V.124 as well as the indentation hardness H=Pmax/A, where Mr is 

the reduced (effective) elastic modulus calculated from the unloading stiffness S and the 

projected area of contact A at peak load (Figure V.4(b)). 

21 1 1

r indenter
M M E

ν −= −  
 

 V.1 

The indentation modulus and hardening are determined at each i-th grid point of the 

indentation matrix. Therefore, in statistical sense they may be considered as an experimental 

set xi=[Hi, Mi] for i=1…Ntot of the random variable X, which obeys the statistical law of 

mixtures (Eq. V.2):  
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In this work, the corresponding distribution functions fj=fj(x;ϕϕϕϕj) are assumed to take the form 

of bivariate normal distributions with weights πi. Vector ϕϕϕϕ consists of the elements of the 

mean phase properties µµµµj and the distinct elements of the corresponding covariance matrices 

ΣΣΣΣj. Hence, Eq. V.2 represents the Gaussian Mixture Model (GMM)6 with unknown 

parameters ψψψψ====[πj,…,πg,ϕϕϕϕj,…,ϕϕϕϕg], which are assessed with the Maximum Likelihood (ML) 

based estimation via the Expectation and Maximization (EM) algorithm. The assessment of 

phase properties, the dispersion of experimental data and their correlation, as well as the data 

clustering have been achieved with the help of the code EMMIX.25 

 Finally, the post-indentation screening of the investigated regions has been done in the 

general purpose Scanning Electron Microscope (SEM) JEOL 5910, equipped with Bruker 

Energy-Dispersive X-ray (EDX) spectroscopy of elemental analysis and mapping. 

 

V.4. EXPERIMENTAL RESULTS 

 

 This paragraph presents the experimental results in the following order: first, the phase 

properties obtained at the local level of particular single grids are introduced; next, the results 

of global (averaging) analysis are considered; finally, the estimation of the descriptors of the 

surface topography like mean Sa and squared-mean roughness Sq, obtained in the 

depth-sensing experiment, are reported. 

 

V.4.1. Local Analysis-Single Matrix Results 

 For this particular experimental run the macro-pocket of the ‘glassy’ matrix phase was 

localized on the surface of the sample and chosen for the assessment of the mechanical phase 

properties by means of nanoindentation (see Figure V.5(a-b)). As may be seen from the 

BSEM micrograph (Figure V.5(c)), the ‘macro-pocket’ of matrix occupies a significant region 

on the surface, with characteristic dimensions assessed by the means of Feret’s maximum 

Fmax and minimum Fmin statistical diameters equal to ≈800 [µm] and ≈150 [µm], respectively. 

Due to the large size, the depth-sensing indentations could be carried out on several grids 

under different maximum force regimes. Moreover, the effect of mixing with other 

microstructural features, like aggregates of different origins or porosity, is significantly 

reduced in comparison with the grid measurements carried out in the ‘non-localized’ fashion. 
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(a) 

 

(b) 

 

(c) 

Figure V.5 Results of the grid indentation analysis carried out on the large pocket of ‘glassy’ 

matrix. Scatter diagrams of the experimental records in bivariate space H-M: a) Grid G16, 

Pmax=2.5 [mN], lx=ly=2.5 [µm], Nx×Ny=21×31, b) Grid G17, Pmax=4.5 [mN], lx=l y=3.5 [µm], 

Nx×Ny=41×11, c) global view on the investigated region of material obtained in BSEM mode, 

visible macro pocket of ‘glassy’ matrix, grains of k-feldspar (F), quartz (Q) and hematite (H), 

with probabilistic reproductions of indented domain based on the clustering of experimental 

records for grids G16 and G17. Estimation procedure and clustering carried with the aid of 

code EMMIX.25 
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 The results from two experimental grids are selected for further details. The first grid 

(G16 on Figure V.5(c)) covers the region on a surface 50×75 [µm] with internal grid spacing 

equal to 2.5 [µm], giving around 650 measurement points in total. The indentations are driven 

up to a maximum force Pmax=2.5 [mN]. The corresponding outcome is presented in the form 

of the scatter diagrams in the bivariate space H-M (Figure V.5(a)). Looking at this diagram, 

the experimental records concentrate mostly into two main sets of points, overlaid with the 

group of measurements scattered over a significantly larger domain of H and M. The Bayesian 

Information Criterion (BIC) is minimized for g=5 normal components. Therefore, this penalty 

criterion recognizes the two main sets (phase 4 and 5), but the third group described with 

significant dispersion has been discretized into three separate families (phases 1, 2 and 3). The 

‘glassy’ matrix phase, which is the focus of present research, appears to be described by the 

cluster of the points with the mean properties: hardness H4=9.7 [GPa] and indentation 

modulus M4=96.1 [GPa] (yellow cluster, Figure V.5(a)). Its hardness seems considerably 

lower than the hardness of the quartz aggregate (red cluster), with H5=13.5 [GPa], but the 

indentation modulus seems to be comparable, with M5=94.0 [GPa]. The remaining phases 

correspond to the indentations carried on hardened epoxy within the porous domain or in 

close proximity to incorporated voids. This group of records includes also abnormal 

measurements, which are ill conditioned in nature due to fracture or different type of 

anomalies, e.g. soft-on-hard behavior. 

 The second grid spans over a surface 140×35 [µm] (G17 on Figure V.5(c)). This grid 

includes around 450 grid points separated by the distance of 3.5 [µm] with a maximum force 

applied almost doubled Pmax=4.5 [mN]. Also in this case, two main groups of points may be 

easily depicted on the diagram. But on the contrary to the previous results, the number of the 

mixture components assessed with BIC penalty decreases by one. Moreover, an additional 

component has been introduced within the H-M domain of the ‘glassy’ matrix phase. The two 

clusters which correspond to the indentation on the ‘glassy’ matrix phase have mean values 

which are almost indistinguishable, hardness H2=9.6 [GPa] and H3=9.8 [GPa], and indentation 

moduli M2=95.4 [GPa] and M3=94.7 [GPa], respectively. However, as may be observed from 

the scatter diagram, the two sets of points have significantly different internal dispersion, with 

variances of properties being much larger in the set 3 than in set 2. The quartz properties 

obtained at higher load are H4=13.5 [GPa] and indentation modulus M4=96.3 [GPa]. The 

homogeneity of the quartz cluster appears to be considerably improved comparing with the 

results for lower peak load. 
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 Finally, to enhance the spatial correlation of the grid measurements with the surface 

topography captured with BSEM micrograph, the probabilistic map of the indented surface 

based on the clustering results is presented for both grids (Figure V.5(c)). The center of each 

marker corresponds to the location of the depth-sensing measurement, while its color reflects 

the color scale assumed in the scatter diagrams located above. The outlines of the model 

indentation imprints produced on the surface are also shown. 

 

V.4.2. Global Analysis – Results of Matrix Averaging 

 The grid indentation measurements were carried out in four different regimes of the 

indentation load Pmax. For each regime of the load applied, the GMM deconvolution was 

executed in order to indentify the mechanically and statistically active material phases. 

Therefore, the results of the GMM deconvolution, as shown for G16 and G17 above, at local 

level of the grid analysis demonstrate the existence of the two principal clusters. These 

clusters have been associated to the ‘glassy’ matrix phase H ∈[8;12] [GPa], 

M ∈[80;120] [GPa] and mineral quartz with approximate bounds HQ ∈[12;16] [GPa], 

MQ ∈[80;120] [GPa]. They have been identified in each of the carried grid measurements, 

independently of the indentation load as well as the grid target, e.g. localized or non-localized 

analysis. 

 The Global Analysis and its results introduced at this point correspond to the mechanical 

phase properties, which represent the average of the results obtained in the Local Analysis at 

each indentation load. It has been assumed that the mechanical properties of the ‘glassy’ 

matrix, as well as quartz, are distributed normally at the global level, with population mean 

µH,M and variance σH,M
2. Therefore, each cluster identified in the grid measurements and 

corresponding to the mentioned mechanical phases, has been considered as a subsample 

derived from the related population and distributed around the related sample mean with the 

appropriate sample variance. As a result, the average of the obtained sample means 

approaches the population mean and may be used as an estimator of the mean phase 

properties at the global scale. The outcomes of the averaging process, as well as the 

corresponding confidence intervals and additional statistical measures, e.g. Pearson’s 

coefficient, are included in Table V.1 for the ‘glassy’ matrix and Table V.2(a-b) for the quartz 

phase. 
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Table V.1 Mechanical properties of the ‘glassy’ matrix’ obtained in the depth-sensing 

indentation in multiple grid indentation measurements.1 

Pmax [mN] 1.17±0.01 2.28±0.01 4.54±0.01 9.03±0.04 

hmax [nm] 97.47±3.36 140.45±4.17 206.98±9.96 293.13±0.78 

H [GPa]* 9.54±0.40 9.60±0.33 9.17±0.81 9.92±0.46 

M [GPa]* 100.09±7.36 95.34±5.41 89.92±8.20 90.55±5.45† 

ϕ** -3.73±0.73 -3.46±0.87 -3.48±1.82 -3.20±0.83 

r*** 0.63±0.18 0.72±0.09 0.67±0.16 0.67±0.06 

1- properties extracted from the GMM deconvolution of multiple matrix measurements, * - mean values with 
limits representing the 95% confidence intervals of the mean, ** - angle of inclination of the equal probability 
density ellipses tan(2ϕ)=2cov(HIT,M)/((σHIT)2-(σM)2), counterclockwise, degrees of arc °, *** -the linear 
(Pearson) correlation coefficient rHit,M=cov(HIT,M)/(σHitσM), † - one standard deviation 

 

 As can be seen from Table V.1 and its pictorial representation (Figure V.6(a)), the average 

indentation hardness H of the ‘glassy’ matrix may be considered stable over the range of the 

load applied, taking into account the span of the confidence intervals. This trend may not hold 

for the indentation modulus M because of the apparent steady rise of this property with 

decreasing indentation force. On the other hand, as the maximum indentation force increases, 

the convergence of this property towards an asymptote ≈90 [GPa] takes place 

(see Figure V.6(a)). Both measured properties are strongly correlated, reflected by a quite 

significant value of linear (Pearson) correlation coefficient r, which appears to be relatively 

stable for the considered loads. Finally, the equal probability inclination angle ϕ and r > 0 

show that this correlation is positive independently on the force applied, meaning that any 

increase in the indentation hardness of matrix phase H leads to an increase in the modulus M. 

 The average indentation hardness of the second identified mechanical phase (statistical 

cluster II), corresponding to the quartz mineral, is much higher in comparison to the hardness 

of the matrix phase min(HII)≈1.4min(HI). Also in this case, H does not suffer from drastic 

changes in value, with respect to the level of the load applied in the experimental analysis 

(Table V.2(a)). However, Figure V.6(b), and previously referred table, shows a slight increase 

over the remaining means of hardness for the indentation load ≈11 [mN]. A similar tendency 

has been noticed in indentation experiments on single, isolated aggregate of quartz, whose 

results representing the average from a minimum of 10 measurements at each load level are 

included in Table V.2(b). Regarding the average indentation modulus M, this property seems 

to be hardly influenced by the load level (penetration depth) based on the grid measurements 
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results. A less prominent convergence toward an asymptote located at M≈95 [GPa] when 

compared to the ‘glassy’ matrix phase is observed.  

 

(a) 

 

(b) 

Figure V.6 Results of the global analysis, variation of the indentation hardness H and modulus 

M with respect to the maximum indentation load Pmax applied: a) Phase 1 is associated to 

‘glassy’ matrix (Table V.1), b) Phase 2 is assumed to represent the quartz (Table V.2(a-b)). 

Note that the grey lines are visual aids and do not imply any trends. 

 

 The average values of the indentation modulus obtained in grid analysis (Table V.2(a)) 

compare well with the outcomes from the single aggregate measurements (Table V.2(b)), but 

an increase in the modulus for the lower loads appears to occur in the latter case. According to 

the discussed results, both measured properties are positively correlated for most of the ranges 

of indentation load or penetration depth equivalently.  

Table V.2(a). Mechanical properties of quartz obtained in the depth-sensing indentation in 

multiple grid indentation measurements.1 

Pmax [mN] 1.17±0.01 2.28±0.01 4.54±0.01 9.03±0.04 

hmax [nm] 90.24±3.39 127.75±1.43 185.66±3.31 264.18±0.89 

H [GPa]* 13.63±0.98 13.35±0.36 13.03±0.76 13.99±0.43 

M [GPa]* 98.89±5.76 96.61±2.35 94.89±1.82 95.39±5.42† 

ϕ** -6.97±6.01 -5.27±1.32 -2.73±1.90 -3.22±2.14 

r*** 0.66±0.37 0.67±0.20 0.54±0.34 0.70±0.08 

1- properties extracted from the GMM deconvolution of multiple matrix measurements, * - mean values with 
limits representing the 95% confidence intervals of the mean, ** - angle of inclination of the equal probability 
density ellipses tan(2ϕ)=2cov(HIT,M)/((σHIT)2-(σM)2), counterclockwise, degrees of arc °, *** - the linear 
(Pearson) correlation coefficient rHit,M=cov(HIT,M)/(σHitσM), † - one standard deviation 
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Table V.2(b). Mechanical properties of quartz2 obtained in the depth-sensing indentation on 

single aggregate. 

Pmax [mN] 1.16±0.01 2.29±0.01 5.53±0.01 11.05±0.02 

hmax [nm] 88.95±1.02 126.71±2.17 208.29±6.27 296.85±2.97 

Hit [GPa]* 13.70±0.28 13.23±0.54 13.28±0.57 13.86±0.32 

M [GPa]* 102.31±2.15 99.88±2.72 91.82±6.71 93.43±1.95 

r*** 0.23 0.89 0.59 0.40 

2- properties measured on the isolated, single aggregate of quartz, τl=τul=2.5 [mN/min], * - mean value, from 
minimum 10 measurements, with limits representing the 95% confidence intervals of the mean. 

 

 In the closure of this section additional findings revealed in the statistical gird indentation 

experimental analysis are briefly reported. In the experimental campaign the main target has 

been set on the assessment of the mechanical properties of the ‘glassy’ bond incorporated 

within the brick microstructure. However, next to the mechanical identification of the 

mentioned phase, the experimental analysis revealed the presence of other components with 

distinct mechanical properties and incorporated in significantly lower volume fractions. One 

of such species is titanium-oxide bearing solid, whose chemical composition has been 

confirmed in the EDX analysis. This phase is provided with a radically higher stiffness than 

the host matrix or even quartz, with a mean value about M≈240 [GPa]. On the other hand, its 

hardness H≈14.50 [GPa] is still significantly higher than the indentation hardness of ‘glassy’ 

matrix, but appears to be comparable to the hardness of quartz. The reported values were 

obtained at the penetration depth hmax≈73 [nm]. Such solid may be associated with rutile 

mineral, which is common in the ceramic batches as well as structural building products. 

 

V.4.3. Surface Topography – a First Order Approximation Toward Areal Parameter 

Characterization of Investigated Regions via the Point of Contact Detection Procedure 

 A single depth-sensing experiment protocol, carried out in the standard way, incorporates 

three basic stages (see Figure V.7(a)): approaching the surface with the indenter head, the 

proper indentation according to a chosen loading-unloading schedule and finally retracting the 

probe to its neutral position z0. The second step, leading to the principal load-penetration 

depth (P-h) curve, is initialized once the contact between the probe and the sample surface, 

marked as ‘point of initial contact’ zc, has been achieved. This point represents the position of 

the indenter that is the ‘zero’ reference for the depth-measurement.26,27 Such a sequence is 
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repeated at each i-th nodal point of the indentation grid programmed over a chosen region of 

interest (ROI) on the specimen surface. From the figure it may be observed that, if the neutral 

position of the tip marked as z0 is assumed to represent the auxiliary reference plane z(x,y)=z0, 

hence the distance measure ∆i=zc,i-z0 gives access to the ROI topography at each discrete 

location. Therefore, an approximate map of the surface texture, with accuracy (resolution) 

limited mostly by the grid spacing lx and ly may be reconstructed, as well as a first order 

estimation of the areal parameters could be obtained. 

 

(a) 

 

(b) 

Figure V.7 Aspects regarding the single indentation experiment: a) a schematic representation 

of the flow sequence, b) reconstruction of the specimen surface based on the ‘point of contact’ 

procedure, roughness component of the surface obtained with MountainsMap28 after 

leveling and filtering the waviness (8 [µm]) component from the raw data. NM – 

non-measurable points. 

 

 An attempt to estimate the areal parameter of grid G16 (see Figure V.5(c)) based on the 

points of contact approximation is presented next (Figure V.7(b)). The corresponding 

measures of the surface roughness Sa and Sq are calculated according to the ISO standard,23 

giving in this particular case the approximate values of ≈36 [nm] and ≈46 [nm], respectively. 

This means that the obtained values compare well with the average values measured with the 

Atomic Force Microscope (AFM). 
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V.5. DISCUSSION 

 

V.5.1. Glassy Bond – the Origin of Its Elastic Properties and Hardness, and a Comparison 

with Existing Data for Glass and Glass-Ceramics 

 In the opening of this discussion the morphology together with composition of the ‘glassy’ 

bond must be recalled. This load bearing component of the brick microstructure is a 

composite material, where the neo-formed crystals, e.g. spinel, mullite of sub-micrometer size 

coexist with aluminosilicate glass (see Figures V.1(a-d) and V.8(c)). This structure reminds 

that of glass-ceramics, in which randomly oriented crystals are bound by residual glass to 

form a solid free of voids. However, while in the glass-ceramic the typical mass fraction of 

glass does not exceed 5 [wt%],29 this is not the case for the building ceramics. In this group of 

materials, the mass fraction of the incorporated amorphous phase tends to span from around 

10 % at 900 [°C] to as much as 60 % of the total mass of solid for processing temperature 

around 1300 [°C].30,31,32,33 On the other hand, in this temperature range the mass contribution 

of neo-crystal phases, like mullite, is substantially lower. The studies of quantitative 

determination of crystalline and amorphous phases reveal this contribution to be in the range 

[3;15] [wt%] for traditional ceramic products,30,33 rarely exceeding 20 % of the total mass of 

the stoneware, like in the case of electric porcelain bodies produced at 1400 [°C].34 Therefore, 

the fraction of the polycrystalline phase incorporated within the ‘glassy’ matrix is well below 

the one for glass-ceramics, what makes the aluminosilicate glass the principal component. 

Nevertheless, it may be instructive to trace the characteristic domains of the elastic properties 

and hardness of oxide glass-ceramics and glasses created on the base of a ceramic system, in 

which SiO2-Al2O3 pair of oxides represents the principal chemical species. Such materials 

could be considered as representing a part of the ‘fictitious’ frontier for the domain of the 

measured properties of the ‘glassy’ matrix. 

 Two of the examples belonging to the first group of materials are the glass-ceramics 

investigated by Hunger et al.35 or Wange et al.36 (see Figure V.8(a)). Both studies are focused 

on the microstructure-property relation in the glass-ceramics in the system 

SiO2-Al2O3-MgO-TiO2, with possible use of nucleating agents like ZrO2. According to these 

studies, the glass-ceramics microstructures, whose principal components are crystals of low-, 

high-quartz, next to minor contribution of Mg-Al spinel, sapphirine or cordierite in the size 

tens of nanometers (see Figure V.8(a)), are characterized by relatively high Young’s modulus 

E (>100 [GPa]) and Vickers hardness HV (>8 [GPa]), the later obtained at load level 

P=2÷20 [N] (Figure V.9(a)). It may be also noted, that both measured properties of such 
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ceramic systems may reach up to ≈150 [GPa] for modulus of elasticity and as much as 

≈12.5 [GPa] for hardness. 

 

(a) 

 

(b) 

 

 
(c) 

Figure V.8 Examples of glass-ceramic microstructures: a) TEM micrograph of glass-ceramics 

investigated by Hunger et al.,35 b) SEM micrograph of the feldspar glass-ceramics studied by 

Bernardo et al.,37 c) Bright-field TEM of ‘glassy’ matrix with primary (P) on left side and 

secondary (S) mullites on the right side in model porcelain sample quenched after 3 [h] at 

1100 [°C], adopted from Iqbal and Lee.17 

 

 Similar Vickers hardness ≈8 [GPa], measured at P=5 [N], may be also encountered in the 

porous (φ<5 %) feldspar glass-ceramics investigated by Bernardo et al..37 In this material the 

main phase constituents are feldspars (microcline and orthoclase), which account for almost 

80 % of the total volume and are of fibrous morphology with average crystal size of 

[4;5] [µm] (see Figure V.8(b)). However, despite the incorporation of the alumina platelets in 

the volume fraction up to 15 %, its Young’s modulus in the range [60;80] [GPa] is 

significantly lower than the one from quartz-based glass-ceramics previously discussed 

(Figure V.9(a)). 

 The domain of Young’s modulus and hardness of inorganic glasses shifts drastically 

towards smaller values on the HV-E ‘fictitious roadmap’ (Figure V.9(a)). The results of Hand 

and Tadjiev,38 Yoshida et al.39 or Pukh et al.,40 obtained on silicate glasses, indicate a 

common range for the Young’s modulus [60;80] [GPa]. Similar range of values was given by 

Rouxel for soda-lime-silicates.41 As for the Vickers hardness, it tends to be inscribed within 

[4;6] [GPa]. All referred studies confirm an appreciable variation of mechanical properties 

with respect to the glass chemistry (Figure V.9(a-b)), as observed in the earlier investigations 

of Ainsworth42,43 or Yamane and Mackenzie on silicate glasses.44,45 It is generally accepted, 

that the main reason for this is the variation of the bonding energy of atoms and their packing 

density with glass composition. Therefore, the elastic behavior of glass and its strength 
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depend on the nature of the oxygen polyhedra (network former), the way on which the 

polyhedra are linked together and the nature of any network-modifiers present.42,43 

 

(a) 

 

(b) 

Figure V.9 Mechanical properties of selected ceramic materials: a) scatter diagram of HV-E 

for inorganic glasses and selected glass-ceramics, b) modulus of elasticity (E) and Vickers 

hardness (HV) of silicate and aluminosilicate glasses, data extracted from the SciGlass data 

base for glass properties.46 

 

 With the model results of glass-ceramics and silicate glasses discussed above, an attempt 

to classify and understand the origin of the experimentally measured indentation properties of 

‘glassy’ matrix phase is made next. In order to reach this goal, the experimental indentation 

modulus M and indentation hardness H are used to calculate the corresponding modulus of 

elasticity E=M(1-ν2) and Vickers hardness HV≈0.93H of matrix obtained in each single grid 

measurement. An assumption of the isotropic solid with Poisson ratio ν=0.24 is made, what 

seems to represent a reasonable compromise between the glass and glass-ceramic materials. 

The results of such conversion are overlaid together with reference data on the HV-E plane 

(Figure V.9(a)). It must be noted that no distinction for the force applied is made in this case, 

therefore the set of the experimental values is bound approximately within 

[8;10]×[80;100] [GPa] region on HV-E plane, with a tendency of the records to skew towards 

its upper limits.  

 One of the first observations drawn relates to the hardness of matrix, which appears to be 

quite similar to the reference hardness of quartz- and feldspar glass-ceramics, although 

significant differences exist in the mineralogical composition. Such a conclusion must be 

considered with care and may be premature, since the HV of ‘glassy’ matrix is not measured 

directly but inferred theoretically. Moreover, the load level applied in the experimental 
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analysis of the brick matrix is much smaller than the referred cases. While the magnitude of 

hardness tends to be comparable, a similar observation does not hold for the Young’s modulus 

(Figure V.9(a)). The elastic modulus of ‘glassy’ matrix is substantially higher than the elastic 

modulus of silicate or aluminosilicate glasses with alkali oxides incorporated as well as 

feldspar ceramics. On the other hand, the elastic modulus is appreciably lower than in case of 

high strength glass-ceramics reported by Hunger et al.35 or Wange et al..36 Such result 

corroborates the composite nature of the ‘glassy’ phase (see Figure V.8(c)), meaning that the 

neo-formed crystal species, e.g. mullite, contribute to the overall stiffness of matrix and 

enhance this property, when compared with the ‘pure’ silicate or aluminosilicate glasses with 

alkaline elements (Figure V.9(b)). 

Table V.3 Composition [wt%] and theoretical Young’s modulus [GPa] of the glass 

incorporated within the microstructure of structural clay products. 

Oxide I* II* III* IV** 

SiO2 60.16 67.88 59.50 76.00 

Al2O3 24.11 22.86 26.86 16.00 

Na2O 3.21 1.81 3.84 --- 

K2O 7.26 5.15 6.44 7.00 

CaO --- --- --- 1.00 

MgO 1.94 0.73 --- --- 

Fe2O3 3.32 1.58 2.45 --- 

TiO2 --- --- 1.07 --- 

E† 71.09 70.48 69.38 69.96(73.35) 

*- quantitative electron microscopy (AEM) results reported by Navarro et al.,14 **- reported by Iqbal and Lee,17 
† - values calculated according to method Priven-200046,47 as well as Makishima and Mackenzie46,48 in brackets. 

 

 A quantitative image of the phenomenon just reported may be given by considering the 

volume cm fraction of mullite estimated form the Voigt (upper bound, Eq. V.3(a)) and Reuss 

(lower bound Eq. V.3(b)) solutions for the effective stiffness Eeff of a composite material: 
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where Eg and Em are the theoretical moduli of the amorphous bearing phase and mullite 

crystal, respectively. The theoretical Young’s modulus of the glass, calculated on basis of the 

experimentally determined composition (Table V.3), approaches Eg≈71 [GPa]. The modulus 

of mullite, corresponding to the average of the Voigt and Reuss model,16,49 is around 

Em≈224 [GPa]. Given these values, together with the mean of experimental records ≈91 [GPa] 

treated as a effective response, the expected volume fraction of the mullite phase is inscribed 

within the range [0.13;0.32] (see Figure V.10). As may be observed from the same diagram, 

the experimental band may shift and scale this interval significantly towards lower values 

(lower edge), or allow for appreciably higher volume of neo-crystals in order to reach 

experimental stiffness (upper edge). Nevertheless, such limits for cm appear to be very 

consistent with the values determined experimentally. The Rietveld analysis on the structural 

clay products reveals the range of mullite volume fraction to be [0.05;0.16],30,33 while the 

semi-quantitative analysis of heat-treated mixtures of mica, kaolinite and quartz in the 

temperature range 1100÷1300 [°C] gives the approximate bounds [0.18;0.33].11 

 

Figure V.10 Variation of the Voigt (upper) and Reuss (lower) bounds of effective modulus 

with respect to the mullite volume fraction within the ‘glassy’ matrix. 

 

 Finally, it is worth mentioning that the theoretical bounds for cm, computed from the Voigt 

and Reuss solutions, are much lower than the maximum volume fraction of the mullite phase 

within the matrix cmax
m, which could be reached if the total amount ≈19 [wt%] of Al2O3 

available in the batch was attributed to this phase only. This value has been estimated from 

the assumption of quartz content of 40 [wt%], which represents a very extreme case. In the 

typical commercial stoneware, the quartz content varies between 20 to 25 [wt%] only.17,33 
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Additionally, assuming that all the kaolinite contained in the raw batch ≈36 [wt%], obtained 

in the semi-quantitative FRX-XRD analysis, transforms to mullite on heating, the volume 

fraction of mullite approaches 0.28, which is within the Reuss-Voigt theoretical range. These 

observations additionally support the experimental finding reported in this work. 

 

V.5.2. Phase Properties – Correlation With the Local Chemical Composition Obtained in 

the X-Ray Energy Dispersive Spectroscopy (EDX) Analysis 

 One of the most characteristic features of structural ceramics is the level of heterogeneity 

of its microstructure. Such heterogeneity, present across the material scales of a brick,7,14,17,19 

manifests not only by the complex 3D form of the brick skeleton, but also by the spatial 

variation of the mineralogical and chemical composition. The energy dispersive x-ray 

spectrometry (XRD) analysis exposes this phenomenon by mapping the distribution of the 

elements over the investigated surface of the tested brick (see Figure V.11(a-d)). This 

variation is apparent in the distribution of the coarse and fine grained quartz mineral or 

feldspar (see Figure V.1 and Figure V.5(c)), whose location within the skeleton tends to be 

random in nature. Therefore, with increasing size of the randomly selected region of interest 

(ROI) to carry out the depth-sensing grid measurements, the chances of probing phases of 

different mineral origins within a single matrix are increasing. As a result, the experimental 

outcome, seen for example as a scatter diagram of the records in H-M plane, may represent 

the complex pattern, whose statistical interpretation (deconvolution) could be complex 

leading to misclassification of estimated phase properties. Such effect may be easily amplified 

if a very low quality polished surface is examined or the contrast between the mechanical 

properties of the existing phases is weak. However, the careful surface preparation procedure 

and fine surface finish, together with appreciable mechanical contrast between the phases, 

provided a clear phase separation obtained in the statistical deconvolution (Figure V.5(a-b)), 

supported by the elemental maps taken on a larger scale over the same ROIs 

(Figure V.11(a-d)). Both grid measurements, G16 and G17, expose the cluster of the points 

associated with the quartz mineral, which may be easily located on the elemental maps as a 

region where the only element present is silicon (Si). 

 The appreciable variation of the chemical composition is encountered in the ‘glassy’ 

matrix phase as well and may be captured from the referred x-ray elemental maps. While the 

gross distribution of silicon appears to be uniform within the matrix phase (see Figure 

V.11(a)), a significant variation in the aluminum concentration is observed (Figure V.11(b)). 

More explicitly, the large pocket of the melt where the grid measurements G16 and G17 were 
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located tends to have quite constant concentration of this element. The rest of the matrix 

domain outside of the central ‘pocket’, with the characteristic form of ‘strings’, experiences a 

high gradient in alumina concentration, depending on the spatial location. Such regions are 

identified by much higher intensity of the x-ray signal recorded in the EDX detector on the 

elemental Al map (Figure V.11(b)). 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure V.11 Relative gross variations in the chemical composition over the region of interest 

(ROI) including the domain of the G16 and G17 matrices (see Figure V.5(a-c)). Mapping of 

spatial distribution of: a) silicon, b) aluminum, c) magnesium and d) potassium. 

 On the other side, the central melt pocket incorporates magnesium in higher amounts than 

the rest of the surrounding matrix phase. Finally, an apparent uneven distribution of alkalis, 

like potassium (see Figure V.11(d)), is present within the central melt ‘pocket’ itself. It may 

be observed, that the concentration of this element is lower in the region corresponding to the 

G17 grid experiment, when compared to the region of matrix G16 as well as the rest of the 

melt pocket. This difference in the contribution of the potassium to the overall composition of 

the melt could contribute to the slight difference in the average indentation modulus obtained 

on the two grids. Thus, the ‘glassy’ matrix region, where the higher concentration of 

potassium occurs (G17, M=94.7 [GPa]), gives average stiffness lower than the matrix phase 
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with less amount of alkali elements (G16 M=96.1 [GPa]). This observation is coherent with 

the behavior of inorganic glasses. The reduction of K2O content by half in the melt 

composition I included in Table V.3, with simultaneous proportional increase of the other 

components to account for reduced mass, leads to theoretical Young’s modulus 

E=73.11 [GPa]. Comparing this value with the original value of 71.09 [GPa] a minor 2 % 

increase has been found. Finally, such spatial variability in the chemical composition over the 

domain of matrix may significantly contribute to the overall scatter of the experimental 

results. 

 

V.5.3. Phase Properties – Micromechanical Representativeness 

 In the testing of the mechanical properties of heterogeneous materials, the concept of 

mechanical representativeness of the measured properties is of primary importance. 

Therefore, it is required that the volume of the material considered to measure inherent 

material response should be representative – Representative Elementary Volume (REV). 

More specifically, to demonstrate the REV concept consider statistically homogenous 

composite material (satisfied condition of ergodicity)50 of two solid phases firmly bonded 

together. According to Hill,51 in such a case the REV term is used in reference to the 

sub-volume of the bulk composite material that “… (a) is structurally entirely typical of the 

whole mixture on average, and (b) contains a sufficient number of inclusions for the apparent 

overall moduli to be effectively independent of the surface values of traction and 

displacement, so long as these values are ‘macroscopically uniform’.”. Such a requirement 

must be obeyed not only at macro-level, e.g. direct uniaxial tension-compression tests, but 

also at the smaller scales (indentation tests), where the bulk material is confined in much 

limited volumes and one looks for the intrinsic properties of the phase. The postulate of Hill, 

in the framework of the classical homogenization (mean field) theory, aims at predicting the 

overall behavior of the heterogeneous medium at upper scale Lmacro from its micro scale 

(denoted by d) constituents and is referred to as the scale separability condition (Eq. V.4): 

} 0 macro

d
L L

d

<
≪

≪

 V.4 

where L0 represents the characteristic scale associated with REV volume. As given, two 

options are allowed on the left side. The first inequality d<L may be a sufficient condition for 

the phases with weak geometric disorder and weak properties mismatch, while in the other 

cases a much stronger restriction d<<L  must be fulfilled.52 
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 The existence of the representative elementary volume and related scale parameter L0 for 

the ‘glassy’ matrix composite is discussed next. Previous experimental investigations show 

the duality in the size of the neo-crystals incorporated within the ‘glassy’ matrix phase.7,17,19 

Such a duality is related to the two basic forms of the mullite phase, primary and secondary 

types, respectively. The primary mullite, together with accessory minerals like hematite, may 

reach up to ≈0.2 [µm] in size, while the secondary type is of acicular morphology with the 

approximate length ≈0.5 [µm] and aspect ratio a≈0.1÷0.25.17 One may find mullite needles 

grown excessively above this size, however this occur only localized. The assembly of newly 

formed crystals and glass may be considered free of voids (ϕ ≈ 0). Is such cases, the REV 

scale parameter δ0=L0/d depends on the relative mechanical contrast E(i)/E(m) between the 

incorporated inclusions E(i) and the aluminosilicate glass E(m)≈[60;80] [GPa]. The elastic 

constants of mullite measured with the aid of Resonant Ultrasound Spectroscopy (RUS) or 

Brillouin Spectroscopy are well documented Cmullite={ C11≈280; C22≈233; C33=360} [GPa],16,49 

leading to the isotropic polycrystalline modulus E(i)≈225 [GPa]. The elastic properties of 

hematite, as well as quartz, do not diverge significantly from the ones reported for mullite. 

Hence, Chematite={ C11=C22≈242; C33=228}53 [GPa] and for quartz Cquartz={ C11=C22≈87; 

C33=106}54 [GPa] giving E(i)
quartz≈99 [GPa] (Voigt/Reuss/Hill averaging). It is evident, that all 

the incorporated phases are relatively close to glass matrix in the sense of elasticity. 

Therefore, the ‘glassy’ matrix composite is characterized by the apparently small mismatch in 

the elastic properties α=E(i)/E(m)≈3. As a result, the weak form of the scale separation 

condition (Eq. V.4) seems to apply. 

 According to the criterion proposed by Drugan & Willis (called here DW model)55 for a 

two phase composite of randomly dispersed isotropic particles within an isotropic matrix, the 

minimum REV size for which the nonlocal term in the explicit equilibrium equations 

produces a no negligible correction to the local term, with 1 % error of the effective modulus, 

is δDW=lN/2a=3.5. This would be valid for the entire range of the volume fraction and is 

confirmed numerically by Gusev,56 suggesting that the REV size is unexpectedly small, i.e. at 

least 3.5 times larger than the size of incorporated heterogeneity. This would entail 

LDW
0≈0.7 [µm] for a primary mullite (PM) type morphology and LDW

0≈1.7 [µm] for a 

secondary (SM) form. On the other hand, the numerical investigation57 of two phase linear 

elastic composite, reinforced with the same inclusion type, indicates a REV parameter 

δ=L0/d>8. For a characteristic size of the material volume eight times larger than the 

incorporated heterogeneity, the discrepancy of the effective material properties obtained under 
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kinematic uniform boundary conditions (KUBC) and under static uniform boundary 

conditions (SUBC) is below 10 % for the phase contrast in the range [0.1;10]. Additionally, 

under both boundary conditions problems the coefficient of variation in the strain energy is 

below 5 %. Further increase in the REV size leads to the asymptotic convergence of the 

effective properties discrepancy towards zero. Hence, the results of numerical analysis 

suggest the REV size LNUM
0≈1.6 [µm] for primary mullite morphology and up to 

LNUM
0≈4.0 [µm] in case of secondary mullite morphology. 

 Summarizing the numerical estimation, and the theoretical bound given by the 

DW-model, the characteristic scale L0 of REV element valid for ‘glassy’ matrix tends to be 

inscribed within the intervals LPM
0∈[0.7;1.6] [µm] and LSM

0∈[1.7;4.0] [µm], respectively. It 

should be emphasized at this point that the derived bounds assume the composite material 

reinforced by isotropic spherical inclusions. However, as mentioned in the text, as well as in 

the materials section of this chapter, the mullite phase (anisotropic behavior), and particularly 

its secondary morphology, is of acicular shape with quite significant aspect ratio. Therefore, 

the divergence of L0 from the postulated limits above cannot be excluded. 

 The philosophy behind the standard indentation test is simple: by pushing the diamond 

probe of the indenter the volume of the bulk beneath becomes deformed in a way which 

reflects the mechanical properties of the tested solid. Therefore, the results of the inverse 

analysis of the experimental P-h diagram are considered to represent the average quantities 

from the volume (called here the interaction volume element IVE), which incorporates the 

fraction of the bulk excited from its natural state due to the mechanical interaction with the 

probe. It is generally assumed that a rough estimate of the interaction volume size is 

3hmax-5hmax for Berkovich type indenter.58,59 Appling this approximation to the indentation 

depths reached along the experimental campaign described in this work (Table V.1), one finds 

the interaction volume to be: [0.3;0.5] [µm] at P=1.17 [mN], [0.42;0.7] [µm] at P=2.25 [mN], 

[0.63;1.05] [µm] at P=4.5 [mN] and finally [0.9;1.5] [µm] at P=9.00 [mN], for ‘glassy’ matrix 

phase. Naturally, for a higher force applied, a proportional increase in the penetration depth 

(or equivalently interaction volume) is achieved. This means that the IVE is converging 

towards the theoretical estimate of the REV derived in the previous paragraph. In case of the 

very shallow indents at load level 1.17 [mN], the interaction volume size is two times smaller 

than the REV for primary mullite morphology and drastically smaller than the REV estimated 

for secondary mullite form. However, starting from the 2.25 [mN] indentation force, both 

elementary volumes start sharing common region and finally overlap for PM type 

morphology, whereas for the 9.0 [mN] load the interaction volume starts approaching the 
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lower bound of REV of secondary type morphology. Given this correspondence between both 

elementary volumes REV and IVE, it is very unlikely that the indentation experiment 

operated to a depth below 100 [nm] will infer the intrinsic properties of ‘glassy’ matrix phase. 

At this depth limit a measured composite response is highly influenced by the volume 

fractions ratio of glass and inclusions at the location of the grid point, leading to the high 

spatial variability in the measured properties. Such effect may demonstrates itself as a high 

scatter of the points in the experimental cloud plotted in H-M plane or as a cluster with much 

higher variance vector [σ2
H;σ2

M] values. 

 

 

V.6. CONCLUSIONS 

 

 The polycrystalline-amorphous matrix, called here the ‘glassy’ phase, represents a 

continuous composite solid, where the aluminosilicate glass hosts the neo-crystals of spinel, 

mullite and other accessory minerals in the size of tens of nanometers. Its complex 

geometrical form, a kind of three-dimensional ‘scaffolds’ with the sub-micron characteristic 

scale of its bulk, requires a novel experimental approach able to operate at nano-, micro-level 

and infer relevant mechanical characteristics. The multiple depth-sensing experiments 

combined with the advanced statistical methods, framed as statistical grid indentation 

technique (SGI method), was applied in this work providing unprecedented access to the 

hardness and stiffness of this principal brick microstructure component. 

 The indentation tests, operated to a maximum depth below 300 [nm], reveal the 

indentation hardness of the ‘glassy’ matrix around ≈9.5 [GPa] with relatively small 

fluctuations around this value with respect to the depth of indentation. In terms of the 

hardness level, this experimental value classifies the ‘glassy’ matrix above the family of silica 

and aluminosilicate glasses with alkaline additions, in the group of glass-ceramic materials 

next to the feldspar glass-ceramics, or even the high strength glass-ceramics based on low and 

high poliform of quartz. 

 The average indentation modulus of the ‘glassy’ matrix shows a small tendency to vary 

with the load, or equivalently the depth of indentation, converging toward an asymptotic value 

≈91 [GPa] for testing depths above ≈150 [nm]. Below this threshold, the characteristic length 

scales of the indentation interaction volume and the representative elementary volume diverge 

significantly, entailing higher scatter of the experimental records. 
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 The Young’s modulus averaged over the experimental means, derived under the 

assumption of Poisson ratio 0.24, appears to be superior to the Young’s moduli of inorganic 

glasses doped with alkaline elements. This enhanced stiffness finds its origin in the 

contribution of the neo-crystal phases to the overall elastic behavior of the ‘glassy’ bond. The 

particles and whiskers of mullite, of higher stiffness and strength than the host glass, reinforce 

the ‘glassy’ matrix and aid in the more homogeneous strain and stress redistribution over its 

volume. Therefore, the higher load can be sustained with the presence of smaller 

deformations, comparing to the pure glass. 

 Brick microstructure investigated in this work is of complex nature, with high level of the 

compositional heterogeneity and structural disorder. Such a phenomenon refers to the bulk of 

the brick, but also to the ‘glassy’ matrix itself, where the local variability in composition and 

morphology may be encountered. All these factors may contribute to overall dispersion of the 

experimental results measured by indentation technique. Moreover, this complex material 

system requires careful and pragmatic approach in the surface preparation for the indentation 

experiment, which is a challenge in the porous and multi-components solids like brick. The 

work reported here represents an attempt to describe the mechanical properties of the brick 

principal component, despite of difficulties mentioned above. It is believed, that the new 

insight into the mechanical performance of the ‘glassy’ matrix, as well as other findings 

reported in this work will help to change the brick into a more sustainable and 

energy-efficient construction material, tailored to our needs. 
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VI. Conclusions and Future Perspectives 
 

 

 

 

 The development of sustainable and innovative masonry should motivate continuing 

research. This includes novel developments in the field of material science of basic 

constituents of masonry, which are fired clay brick as well as cement or lime mortars. In 

particular, the study of the microstructure-property relation is much relevant for the reliable 

prediction of the engineering properties. This thesis contributes to our understanding of the 

complex interplay between composition, material processing and fired clay brick 

microstructure by providing a systematic description of brick morphology as well as the 

mechanical performance at different material levels. 

 

VI.1. SUMMARY OF MAIN FINDINGS AND OPEN QUESTIONS 

 

 The experimental approach followed in this work gives a detailed picture of the fired clay 

brick microstructure. The hierarchical ordering has been proved, which allows one to break 

down the masonry brick into three structural blocks with different morphological and 

mechanical fingerprints. Such blocks are linked to the composition of the raw materials and 

influenced to a great extent by the processing technology. 

 

Conclusion 1: The microstructure of the clay brick can be dissected into three material 

scales: Level “0” (<10-6 [m]), “Primary Brick” ( <10-4 [m]) and “Secondary Brick” 

(<10-2 [m]). The level “0” represents the nanocomposite ‘glassy’ matrix developed for a 

temperature above the melting temperature of the raw materials, or the assembly of 

dehydroxylated, partially molten clay aggregates and initial melt if the processing 

temperature approaches the melting threshold. The ‘glassy’ matrix phase is of composite 

nature. It incorporates the neo-crystals of primary and secondary mullites, hematite and other 

minor phases in different forms, such as whiskers, of sub-micron scale hosted in the 

amorphous phase. The “Primary Brick” structure combines the lower scale block and 

inherent microporosity. It exhibits either a granular morphology or continuous matrix 
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morphology with pore inclusions. The top level in the brick microstructure hierarchy is 

represented by the “Secondary Brick” block. It is composed of fractured coarse aggregates of 

sand, peripheral cracks at the interface of the coarse particles and the composite represented 

by “Primary Brick”. Such a structure is described with anisotropic mechanical and physical 

behavior, whose origin is found in the manufacturing technology. 

 

 Several open questions persist. One of them is related to the prediction of the volumetric 

proportions of the mineral components incorporated within the proposed scheme. It appears 

that at the current state of knowledge the qualitative description of the phase transformation 

products is available only for pure kaolinite mineral. Such quantitative model is lacking for 

the mica group of minerals as well as for the mixture of kaolinite and mica minerals. 

Therefore, most of the available studies, which deal with the phase transformations of raw 

materials used in the production of structural clay products, represent only a qualitative 

approach to this problem. Alternatively, such studies refer to the phase diagrams, which may 

give the approximate weight fractions of the phase product, but only for limited cases of 

binary or ternary system of oxides. Another open problem refers to the homogenization 

scheme. An upscaling procedure, which is able to couple all the microstructural blocks 

indentified in this study, is required in order to transfer this knowledge to quantitative, reliable 

macroscopic behavior. Recent developments in the computational homogenization of 

stochastic media may provide an answer to this problem. 

 

Conclusion 2: The mechanical response of heterogeneous materials and its correlation with 

the local composition and morphology can be accurately assessed with Statistical Grid 

Indentation (SGI) methods. The depth-sensing tests offer a robust means to measure in-situ 

mechanical characteristics of the phase, which was created within unique chemical 

environment and cannot be recapitulated ex-situ in the bulk form. For heterogeneous 

materials with hierarchical ordering of microstructure a Buckle’s rule applies as a first order 

approximation of the indentation depth, at which the measured phase properties may be 

considered intrinsic. Above this limit, the results of SGI method converge with increasing 

indentation depth towards the homogenized material response, via transient states which are 

scale and microstructure dependent. The bivariate deconvolution based on Maximum 

Likelihood concept and Expectation Maximization algorithm provides an accurate mean to 

infer the internal structure of the experimental data and the number of model components, 

and associate the records with the unique feature of the investigated microstructure. Such 
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result is achieved due to implementation of data clustering according to the Bayes rule of 

allocation, which allows reproducing the local phase composition of the investigated region 

on pure probabilistic basis and measured mechanical response. 

  

 The results of SGI technique gathered in the experimental campaign reported in this thesis 

demonstrated the versatility and flexibility of the method, which can be easily extended to 

other types of composite materials. The method originally developed for cement based 

materials has been extended in this thesis and substantiated with theoretical support by 

considering the simplistic microstructures commonly adopted in the material science field. 

Future progress is foreseen with respect to the choice of the size of Region of Interest (ROI) 

over which the grid indentations are executed, and the total number of the nodal points in 

single grid measurements with respect to the level of material heterogeneity. Such a study 

seems to be valuable if the surface fractions of each phase incorporated within the 

investigated ROI are intended to be representative estimators of the volumetric fractions in the 

bulk. The problem of ‘statistical noise’, usually present in the outcome of SGI method, and its 

influence on the estimated properties and surface fractions of the phases should be also 

addressed in future refinements of the method.  

 

Conclusion 3: The ‘glassy’ matrix incorporated at Level “0” within the brick microstructure 

represents a continuous composite solid. Its main component is aluminosilicate glass, which 

hosts neo-crystal phases of higher stiffness and strength. In such a material system both 

mechanical properties, Young’s modulus ≈91 [GPa] and Vickers hardness ≈9.5 [GPa], are 

enhanced to a level significantly above the properties of silica and aluminosilicate glasses 

with alkaline additions. The ‘glassy’ bond is described by a high level of compositional 

heterogeneity and structural disorder, which contributes to the large scatter of the 

experimentally measured properties. 

 

 An attempt has been made to give a quantitative mechanical description of the primary 

constituent of fired clay brick microstructure, which originates at Level “0” and develops for a 

temperature above the melting temperature of the raw materials mixture. One of the important 

remaining problems is related to the quantification of the mechanical behavior of the matrix 

phase if the temperature of brick processing approaches the melting temperature, and the 

processing conditions are not sufficient for the clay minerals to transform into a continuous 

matrix of ‘glassy’ type. Such a question stays open and deserves a subsequent attempt to be 
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addressed. This aspect appears to be of primary importance for the preservation of cultural 

heritage constructed with fired clay brick masonry. Indeed, it is common to find a matrix 

composed of relicts of the clay aggregates and melt in fired brick applied in historical 

constructions. 

 

VI.2. FUTURE PERSPECTIVES AND CONCLUDING REMARKS 

 

 The study presented here aims at the implementation of the material science paradigm and 

at the application of the recent developments in the experimental material science into the 

field of fired clay masonry. The chosen approach provided the necessary results to achieve the 

objectives postulated on the beginning of this thesis. The relation between the brick 

microstructure, its composition and processing conditions has been inferred. The refined 

statistical nanoindentation has been applied and validated on the heterogeneous materials, 

providing reliable quantitative measures of the mechanical performance of the ‘glassy’ bond, 

which is considered the main component of the building ceramics. 

 On 17th March 1989 the Civic Tower of Pavia collapsed, with no previous apparent 

damage or significant strength deterioration. The 60 [m] height bell tower collapsed, killing 

four people and provoking severe damage in local surrounding. This catastrophe has driven an 

attention of researchers to the time-dependent behavior of masonry, e.g. creep, as well as 

environmentally driven stiffness and strength deterioration. After this disaster, it became 

common practice to construct large scale masonry prisms in order to follow the strain 

evolution in time under applied constant load. A similar strategy applies for durability studies, 

in which the environmental load is applied on the sample, e.g. cyclic moisture and 

temperature variation, and the evolution of strain, strength or stiffness is assessed. Such 

measured ‘properties’ refer to the macro scale, leaving the fundamental explanation of creep 

origin or degradation mechanism unresolved. The methods and approach presented here 

provide great expectations for an insight into these problems. In fact the depth-indentation 

techniques give access to the creep properties. The intrinsic creep properties of each phase of 

clay brick or mortar may be assessed at small length and time scale, reducing significantly the 

testing effort required in the large scale specimens. In addition, the material deterioration or 

coupled phenomena may be traced at all scales. 

 The methods applied in this study are of general character and find their application in the 

studies on a broad spectrum of materials. However, the SGI method represents a unique and 

promising experimental approach to investigate the multi-physics phenomena at the smallest 
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accessible scales, nano-, and submicron scale. The fact that the nanoindentation method has 

been extended to heterogeneous materials driven by the need of exploration of cement based 

materials cannot be ignored. Since the first pioneering applications in the laboratories of the 

Massachusetts Institute of Technology, the versatility and reliability of these methods have 

been proved, providing relevant insight into the more refined structures of such materials. The 

author believes that such progress and advance may be also achieved in the field of structural 

clay products and will help to tailor this material to societal needs and environmental 

demands. 
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Appendix I: MatLab code – Checker Board 

Model (Chapter III) 
 

 

 

 

 

function  [ P, d, SPR ] = CheckerBoard3D( j,d,D,M ) 

 

%-------------------------------------------------- ------------------------  

% Konrad J.Krakowiak 21.07.2010  

%-------------------------------------------------- ------------------------  

% CheckerBoard3D - function to calculate the discre te probability masses Pi  

% distribution of the checkerboard idealized materi al model, for given  

% partition scheme H with odd numbers of intervals (Chapter III)  

%-------------------------------------------------- ------------------------  

% Input parameters:  

% j - even number of the checkers per edge  

% d - size of the interaction volume  

% M - odd division number of the discrete areas wit hin the composite zone  

%     M=m-2, where m stands for the total number of  the intervals within  

%     the discrete partition H  

% D - the size of the single checker  

%-------------------------------------------------- ------------------------  

 

VTOT=(j*D-d).^3;        % Volume available for probing with interaction  

                        % volume of characteristic size d  

 

V1=0.5*(j^3)*(D-d).^3;  % Volume which represents Phase 1, V2=V1, c1=c2=0.5  

 

%************************************************** ************************  

%Calculation of the discrete volumes VI(III.6b), VI I(III.7b), VIII(III.8)  

%************************************************** ************************  

 

% Definition of the vectors VI, VII, VIII and the s ub-volumes Qi(III.6a) as  

% well as sub-areas Si (III.7a)  
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VI=zeros(1,(M+3)/2); 

VII=zeros(1,(M+3)/2); 

VIII=zeros(1,(M+3)/2); 

 

 

Q=zeros(1,(M+3)/2); 

Q(1)=0; 

Q((M+3)/2)=(d/2)^3; 

 

 

S=zeros(1,(M+3)/2); 

S(1)=0; 

S((M+3)/2)=(d/2)^2; 

 

 

% Calculation of the sub-volumes Qi and sub-areas S i (integration):  

 

for  i=2:((M+1)/2) 

 

    Q(i)=quadgk(@(x)CheckerIntegralVolume(x,(i-1)/M ,d),0,(i-1)*d/M); 

    F=@(x)d*(((i-1)/M)*d-x)./(d-2*x); 

    S(i)=quad(F,0,(i-1)*d/M); 

 

end  

 

% Definition of the multiplication factors NI, NII and NIII. NI-the number  

% of corner points common for 8 checkers, NII-the n umber of edges common  

% for 4 checkers, and NIII-the number of faces comm on for 2 checkers  

 

NI=(j-1)^3; 

NII=3*j*((j-1)^2); 

NIII=3*(j^2)*(j-1); 

 

% Calculation of the VI, VII and VIII:  

 

for  i=1:((M+1)/2) 

 

    VI(i+1)=8*NI*(Q(i+1)-Q(i)); 

    VII(i+1)=4*NII*(D-d)*(S(i+1)-S(i)); 
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    if  i<((M+1)/2)                      % see Figure III.6(a)  

    VIII(i+1)=2*NIII*(d/M)*((D-d)^2); 

 

    else  

    VIII(i+1)=NIII*(d/M)*((D-d)^2);     % see Figure III.6(a)  

 

    end  

 

%************************************************** ************************  

%Calculation of the global vector of discrete volum es Vi, which corresponds  

%to the assumed partition scheme H  

%************************************************** ************************  

 

VOL=[V1 0.5.*(VI(2:(M+1)/2)+VII(2:(M+1)/2)+VIII(2:( M+1)/2)) ...  

     (VI((M+3)/2)+VII((M+3)/2)+VIII((M+3)/2))]; 

 

% Symmetry Condition (Vi=Vm+1-i)  

 

counter=1; 

for  j=(M+2):-1:(M+3)/2 

    VOL(j)=VOL(counter); 

    counter=counter+1; 

end  

 

%************************************************** ************************  

%Calculation of the vector of probability masses Pi  for given partition H  

%************************************************** ************************  

 

P=VOL/VTOT; 

P=P'; 

 

%************************************************** ************************  

% Verification  

%************************************************** ************************  

 

SPR=VTOT-sum(VOL); 

 

%************************************************** ************************  

 

end  
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function  z=CheckerIntegralVolume(x,a,d) 

%-------------------------------------------------- ------------------------  

% Konrad J.Krakowiak 21.07.2010  

%-------------------------------------------------- ------------------------  

% CheckerChackerInegralVolume - function to evaluat e numerically integral  

% Eq. III.6(a)  

%-------------------------------------------------- ------------------------  

 

n=length(x); 

z=zeros(size(x)); 

 

for  j=1:n 

 

% Limits of integration for the second variable (Xi 2)  

 

y1=0; 

y2=d*(a*d-x(j))/(d-2*x(j)); 

 

%************************************************** ************************  

% Function z=f(x,y) expressed in the modified coord inate system Eq. III.2b  

%************************************************** ************************  

 

A1=(d^2)*x(j); 

A2=2*d*x(j); 

A3=4*x(j); 

 

h=@(y)((-a*d^3)+A1+(d^2)*y-A2*y)./(A2+2*d*y-A3*y-d^ 2); 

 

% Integration with adaptive Simpson quadrature  

 

z(j)=quad(h,y1,y2); 

 

end  
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Appendix II: MatLab code – Homogenization 

(Separation of Scales) (Chapter 

III, Figure III.17(a)) 
 

 

 

function  [ Eeff ] = ScaleEffect(X2,X3,X4,X5 ) 

%-------------------------------------------------- ------------------------  

% Konrad J.Krakowiak 21.07.2010  

%-------------------------------------------------- ------------------------  

% ScaleEffect - function used to follow the homogen ization or separation of  

% of scales for biphasic materials, fiber board mod el, effective modulus  

% follows the law of mixtures (Figure III.17(a))  

%-------------------------------------------------- ------------------------  

%Input Parameters:  

% X2 - number of the fiber cells                (j)  

% X3 - size of the unit cell                    (Dc )  

% X4 - diameter of the fiber                    (Df )  

% X5 - size of the observation window           (d)  

 

% Create the fiber board jxj  

 

CENTERSF=gridtop(X2,X2); 

XCG=CENTERSF(1,:)*X3+X3/2;    % Equally Spaced Centers  

YCG=CENTERSF(2,:)*X3+X3/2;    % Equally Spaced Centers  

 

% Construct the observation window  

 

WXB=[0  0 X2*X3 X2*X3 0];       % Board of size X2*X3  

WYB=[0 X2*X3 X2*X3 0 0];         % Board of size X2*X3  

 

% Choose randomly the center of the observation win dow 

 

a=0.5*X5; 

b=X2*X3-0.5*X5; 



MatLab code – Homogenization (Separation of Scales) 
___________________________________________________________________________ 

 
138 

OXW = a+(b-a).*rand(1,1); 

OYW = a+(b-a).*rand(1,1); 

 

% Construct the observation window  

 

WX=[OXW-0.5*X5  OXW-0.5*X5 OXW+0.5*X5 OXW+0.5*X5]; % Rectangle of size X5  

WY=[OYW-0.5*X5  OYW+0.5*X5 OYW+0.5*X5 OYW-0.5*X5]; % Rectangle of size X5  

 

% Draw the board and the fibers  

 

for  i=1:size(XCG,2) 

    t=0:0.01:2*pi; 

    XF{i}=0.5*X4*cos(t)+XCG(i);  % X coord. of the fiber locus  

    YF{i}=-0.5*X4*sin(t)+YCG(i); % X coord. of the fiber locus  

end  

 

%-------------------------------------------------- ------------------------  

% Graphics module  

%-------------------------------------------------- ------------------------  

 

    figure(1) 

    set(gcf, 'Color' , 'w' ) 

    axis off  

    hold on 

        for  k=1:size(XF,2) 

            plot(XF{k},YF{k})              % plot the fibers on the board  

        end  

    axis equal  

    patch(WX,WY,[1 1 1 1], 'FaceAlpha' ,0.6) % plot the observation window  

    plot(WXB,WYB)                          % plot the outline of the board  

 

%-------------------------------------------------- ------------------------  

 

% Module to enhance the calculation of the intersec tion areas of the fibers  

% with the interaction window of size d  

 

% Consider only these fibers which are in close pro ximity to the center of  

% the interaction window [OXW,OYW], limit is set fo r three times the actual  

% size of the interaction window 3X3  

 

counter=1; 



Appendix II 
___________________________________________________________________________ 

 
139 

for  i=1:size(XCG,2) 

    if  XCG(i)>=(OXW-0.5*X5-3*X3) & XCG(i)<=(OXW+0.5*X5+3* X3) 

        XC1(counter)=XCG(i); 

        YC1(counter)=YCG(i); 

        counter=counter+1; 

    end  

end  

 

counter=1; 

for  i=1:size(XC1,2) 

    if  YC1(i)>=(OYW-0.5*X5-3*X3) & YC1(i)<=(OYW+0.5*X5+3* X3) 

        XC(counter)=XC1(i); 

        YC(counter)=YC1(i); 

        counter=counter+1; 

    end  

end  

 

% Define the boundaries of the fibers which are lef t after the filtering  

% procedure above  

 

for  i=1:size(XC,2) 

    t=0:0.01:2*pi; 

    XF1{i}=0.5*X4*cos(t)+XC(i);  % X coord. of the fiber locus  

    YF1{i}=-0.5*X4*sin(t)+YC(i); % X coord. of the fiber locus  

end  

 

% Calculate the area of the intersections  

 

for  j=1:size(XC,2) 

 

    [XI,YI]=polybool( 'intersection' ,WX,WY,XF1{j},YF1{j});    % calc.overlap  

    INTAREA(j)=polyarea(XI,YI); 

 

%-------------------------------------------------- ------------------------  

% Graphics Module  

%-------------------------------------------------- ------------------------  

 

% Add Intersection Regions to the graphics  

 

    [fI, vI] = poly2fv(XI,YI); 

    patch( 'Faces' , fI, 'Vertices' , vI, 'FaceColor' ,[0.9,0.2,0.4], ...  
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       'EdgeColor' , 'none' ); 

 

%-------------------------------------------------- ------------------------  

 

end  

 

% Define the mechanical properties of the fiber Ef and matrix phase Em  

 

Ef=260; 

Em=120; 

 

% Calculate the actual surface fraction of fiber ma terial within the  

% interaction window  

 

cf=sum(INTAREA)/(X5^2); 

 

% Calculate the effective modulus (Voigt) 

 

Eeff=Ef*cf+Em*(1-cf); 

 

 

end 
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