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Abstract: This work describes the processing results of TiAl alloys melted in controlled atmosphere 

induction furnace, using crucibles made of calcia and zirconia stabilised with yttria, calcia and 

magnesia, solidified and inside the crucible, in order to simulate the worst situation using this 

processing. In the results are presented segregation profiles of residual elements and its relation with 

micro hardness and “alpha-case” extension, in the microconstituents present at room temperature. 

 

1. Introduction 
 

Foundry is one of the technologies available to process titanium alloys. Its use presents some drawbacks from 

the alloy itself, among which might be emphasised the high reactivity against a large amount of elements (solid, 

liquid or gaseous) above 500ºC, with particular emphasis to oxigen.
1
  One of the foundry processes that shows 

higher potential is induction melting, processing the melt under controlled atmosphere, using suitable ceramic 

crucibles and investment casting techniques to for the mould production.  

 

The high reactivity of titanium alloys could impair the quality of the castings made using crucible induction 

melting, due to reactions between the melt and the ceramic materials present both in the crucible and in the 

mould. These reactions could contaminate the castings, due to the absorption of some residual elements, 

chemical heterogenities, inclusions and structural variations. 

 

This paper describes the work done with titanium aluminides, prepared from pure aluminium and titanium 

melting stock. The main objectives are two: 

 

• Evaluation of some refractory materials behaviour during the melting of TiAl; 

• To find a relationship between micro-hardness, the concentration of residual elements in those 

phases present at room temperature and the extension of "alpha-case" (a surface slice with an 

higher micro-hardness than the average value found in regions in the bulk of the casting).  

 

The introduction of residual elements comes from the reduction of oxides from the crucible, which have reacted 

with the melt. The introduction of residual elements occurs during the processing of the alloy. When the alloy is 

in the molten state there is a strong reaction, which results in an uniform increase of the content of residual 

elements, due to the stirring effect of the melt, together with high diffusion rates. During solidification there is a 

smaller contamination, from which results an higher content of contaminant elements near the interface between 

the crucible and the casting, continually decreasing up to achieving a sort of plateau in which the level of 

contaminants is kept constant, from a certain distance from the interface. Oxygen is a common contaminant of 

these alloys, when an investment casting process is used, because mould ceramic oxides are less stable than 

those resulting from the reaction of melt components with oxygen. This element has a tendency to form an 

interstitial solid solution with titanium. In practice, there is a superficial layer with an higher oxygen content, 

which some call "Alpha-case".
1,2

 

 

2. Experimental technique 
 
A TiAl [Ti-48Al (at%)] has been used, prepared from pure aluminium and titanium, melted into crucibles of 

different materials. To evaluate the effect of a slower cooling rate upon the residual elements content, the melt 

was allowed to solidify and cool inside the melting crucible.  The results have been evaluated comparing 

microstructures, micro-hardness shape profile, and chemical composition of phases present at room temperature, 

using scanning microscopy and microanalysis. 
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2.1 Process description 
 

Melts have been prepared from pure aluminium and titanium, using an induction furnace with different types of 

crucible materials. During processing, a controlled atmosphere of commercial pure argon was maintained, 

because crucibles have been kept inside a tight sealed chamber. It was open only when the sample was at room 

temperature (see figure 1). As it can be seen, the melting crucible is kept inside an alumina support one, which 

has a pouring lip. The purpose of this second crucible is two fold: as a coil protection, in case of the primary 

crucible failure, and to allow a simple and easy way of pouring the melt into moulds, when intended.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Crucibles 
 

There is no precise information of practical use of ceramic materials to melt reactive materials. Although there 

are some insights, protected by patenting, but no public information is released. The selection of refractory 

materials was made according with thermal chemical concepts, choosing potential materials which oxides have 

lower free energy of formation than titanium and aluminium oxides. On our work were used calcia and stabilised 

(with Y2O3, MgO and CaO) zirconia crucibles. 

 

3. Experimental results 
 

Experimental results have been analysed considering: 

 

• Identification of each phase and microconstituent to which a quantitative chemical analyses variation 

has been made using microanalysis; 

• Chemical profile has been elaborated, from the outside to the inside of the samples, in each of the 

microconstituents; 

• The microhardness profile has been made, from the outside to the inside in each of the 

microconstituents.  

 

As presented in figure 2, the as cast microstructure presents two microconstituents: one with a strong dendritic 

pattern, with two phases (α2 + γ), and a γ  interdendritic phase. The previous dendritic constituent is present in a 

higher quantity in all the samples. The amount of interdendritic γ is lower in the outside part of the samples and 

increases to the inside of them, following the decrease of cooling rate. In all the samples, the lamelar dendritic 

biphase constituent is richer in titanium and the monophase interdendritic constituent has an higher aluminium 

content, according to the available references.
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3.1 Zirconia crucibles 
 

The results are summarised in table 1 and all comments are based upon it. 

 

Samples processed in these crucibles have a higher amount of zirconium in the outside part of them. It decreases 

to the inside, and after a while it reaches a constant level. This concentration is higher in the interdendritic 

Figure 1 – Ceramic crucible induction furnace 

1. Furnace chamber 

2. Permanent mould 

3. Crucible set 

 

3.1 Outside crucible 

3.2 Inside crucible 

3.3 Titanium rod 

3.4 Aluminium 
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γ constituent than in the α2, lamelar dendritic. So, it might be concluded that zirconium is segregated to the 

interdendrit melt, during solidification, and that it dissolves preferentially there. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Among all tested zirconia crucibles, those stabilised with CaO where the ones that presented lower levels of 

zirconium absorption, both for the outside and the inside mean level. Samples processed in the yttria and 

magnesia stabilised zirconia crucibles present about the same level of zirconium absorption and profile in the 

dendritic constituent. Although, there is a higher absorption of zirconium in the γ interdendritic constituent, when 

the melt was processed in yttria stabilised crucibles (see figure 3 and table 1).  

 

Table 1 -  Microhardness and extension of the “Alpha-case” in samples melted and solidified in 

stabilised zirconia and calcia crucibles, and in a sample poured in a graphite mould. 
 

Crucible 

Vickers hardness 

on "alpha-case" (max) 

Vickers hardness on 

bulk 

Zr content on bulk 

(at%) 

 “Alpha-case" thickness 

(µµµµm) 

  α α α α2 + γ + γ + γ + γ γγγγ     α α α α2 + γ + γ + γ + γ γγγγ     α α α α2 + γ + γ + γ + γ γγγγ     

ZrO2/MgO 644 594 549 473 0,93 3,36 400 

ZrO2/Y2O3 580 412 473 313 0,57 4,96 600 

ZrO2/CaO 473 321 351 257 0,27 0,88 300 

CaO 341 303 313 280 - - 200 

 

In what is concerned with microhardness, as mentioned by other references, there is a decrease from the outside 

to the inside of the samples. This hardness profile has about the same shape in both microconstituents but 

dendritic α2 is always harder than γ, for all the samples. The outside layer, which is harder than the average, and 

named “Alpha –case”, have an extension between 300 to 600 µm (Table 1). The microhardness profile has two 

different behaviours: near the surface there is a quick decrease with the increase of distance to the interface 

sample / refractory. The inner part of the sample has about a constant hardness value as shown in figure 3. This 

last behaviour suggests that there is a constant level of contaminant, resulting from the time where the metal was 

in the molten state. The outside profile suggests that it resulted from the reaction during the cooling of the 

sample in the solid state.   

 

In our samples there is not a direct relationship between the amount of zirconium in the microstructure and 

microhardness. Although they present the same type of profile, that is, both decrease from the outside to the 

inside of the sample, and both profiles became constant after a certain distance from the outside. If figure 3 is 

taken in consideration, it can be noticed that both profiles do not overlap. 

 

One possible justification, is that zirconium is not the only, or the most important element to affect hardness. 

Assuming the reduction of ZrO2, the only factor remaining is the possible presence of oxygen, as this element 

has a much higher diffusion coefficient in pure titanium. Some authors, in similar works also refer the presence 

of oxygen, when melting commercial pure titanium. 
4
 

 

3.1.2 CaO crucibles 

 

The CaO crucibles produced the best results. As it can be seen in table 1, samples presented the lowest 

microhardness, both in the base metal and in the “alpha-case”. It was also the shortest “alpha-case” of all the 

produced samples - 200 µm. 

Figure 2 - Microstructure of a casting 

melted and cooled in a calcia stabilised 

zirconia crucible 

γ

α2+γ

10 µm
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Those samples do not present a calcium concentration higher than the detection level of 0.1%, free or as an alloy 

solution. This may confirm a high stability of this refractory and a low solubility of calcium in this kind of alloy. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Conclusions 
 

1. In all samples melted into zirconium based crucibles, there is evidence of contamination with this residual 

element. In those processed into calcia crucibles, there is no evidence of contamination. (see table 1); 

2. Samples that cooled inside zirconia crucibles presented a decreasing contamination profile, from the outside 

to the inside of castings. It is thought that it might result from the solid state cooling. The level of 

contamination in the centre is a result of reaction between melt and crucible material. 

3. The dissolution of residual elements occurs preferentially into interdendritic γ, because the concentration 

into lamelar dendritic α2 is much smaller. 

4. Microhardness decreases from the outside to the inside of castings, with a profile that agrees with some 

references. The microhardness is higher in an external layer, called “alpha-case”, as a result of 

contamination with some residual elements. Zirconium is a potential candidate, but because hardness and 

contamination profiles do not match, and considering that it comes from a reaction of melt elements with the 

refractory oxide, then oxygen might also be present.
 4

 

5. Calcia crucibles produced the thinnest "Alpha-case" (see table 1) extension. The level of residual element 

contamination was also the smallest.  

6. Only those alloys processed into calcia or calcia stabilised crucibles presented microhardness values, which 

agrees with references, considering the chemical compositions of our alloys. This might suggest that these 

crucibles might be used to process TiAl alloys, although some external contamination could occur. 
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Fig. 3 – Microhardness and Zr(%at) profiles in samples melted and cooled in zirconia stabilised crucibles 


