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IN VITRO MODELS FOR CARTILAGE ENGINEERING USING 

PRIMARY CELLS AND BIODEGRADABLE SCAFFOLDS 

 

Abstract 

 

Cartilage tissue engineering investigation has been developing strongly in the last 

years. The main difficulty in cartilage regeneration is its restricted self-repair capacity. 

Thus, investigation has been focused in promoting the regeneration of functional 

tissues. There are already products in the market using tissue engineering concepts to 

promote cartilage regeneration. The results of these treatments, although positive, still 

need improvements. Current treatments with joint implants are not long lasting and 

frequently require revision. Tissue engineering thus may provide different solutions 

based on tissues repair, contrarily to substitution by joint implants. 

This thesis comprises the investigation of three in vitro models aiming to produce 

cartilage extracellular matrix (ECM), using primary cultures and scaffolds as supports 

for cell growth and ECM deposition. The scaffold is one of the key points in a tissue 

engineering strategy, thus several morphologies and formulations based on 

biodegradable scaffolds were explored herein. Moreover, different culture conditions 

were also investigated, either by using dynamic cultures (stirred and flow perfusion) or 

static cultures. Therefore, the thesis is divided in 3 sections concerning each of the in 

vitro models tested and cells used: bovine articular chondrocytes (BAC), human bone 

marrow derived mesenchymal stem cells (hBMSCs), and co-cultures of human primary 

culture of articular chondrocytes (hACs) and MSCs. 

The first studies of this thesis were developed with BACs using two types of 

electrospun scaffolds: polycaprolactone (PCL) and starch compounded with PCL 

(SPCL) nanofiber meshes and microporous scaffolds. Those were composed by a blend 

of chitosan-poly(butylene succinate) (CPBS) with two different pore sizes and 

morphologies. Overall, we concluded that BAC model allowed the production of 

cartilage ECM on all tested scaffolds. For electrospun nanofiber meshes, no significant 

differences were found between PCL and SPCL as supports for the cells in terms of 

ECM deposition. However, results were positive in terms of the matrix deposition in 

both substrates. Concerning CPBS scaffolds, 80 CPBS formulation presenting larger 

pores with random distribution proved to have a stronger performance when compared 
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to 60 CPBS formulation. Those results showed the importance of larger pores for cells 

to colonize the scaffolds structure and deposit ECM. 

In our second model we studied the chondrogenic differentiation of hBMSCs when 

cultured onto nanofibers (PCL) or chitosan-based microfiber meshes, using an in house 

developed flow perfusion bioreactor. Human MSCs were able to grow and differentiate 

when cultured either seeded in electrospun nanofiber meshes or in microfiber meshes. 

The use of dynamic culture with nanofiber meshes did not provide solid evidences of an 

enhancement of hBMSCs chondrogenic differentiation. Conversely, microfiber meshes 

indeed showed being adequate for this type of culture, as chondrogenic differentiation 

was enhanced when hBMSCs were seeded and cultured on those scaffolds in the 

bioreactor, compared to the static control. The results may even be further enhanced by 

the optimization of the flow rate used in those experiments. 

Finally, co-cultures using hACs and hMSCs seeded onto chitosan-based microfiber 

meshes were established. We selected two different sources of hMSCs (hBMSCs or 

human Wharton´s jelly mesenchymal stem cells - hWJSCs) and compared their 

chondrogenic potential when co-cultured in direct contact with hACs, or indirectly co-

cultured with conditioned medium derived from hACs cultures. Results showed that 

indirect co-cultures using conditioned medium promoted more cartilage ECM 

formation, both with hBMSCs or with hWJSCs. Additionally, hWJSCs demonstrated a 

higher chondrogenic potential than hBMSCs that produced an ECM containing higher 

expression levels of collagen type I. This result is very interesting because it is believed 

that has a higher potential to be used in clinic to treat patients, since unrelated 

chondrocytes may be used to induce the chondrogenic differentiation of autologous 

adult stem cells. 

Overall, the work on this thesis presents some valid concepts for cartilage tissue 

engineering. We were able to obtain cartilage like tissue using primary cultures, either 

differentiated or undifferentiated. Deposition of cartilage ECM was observed in all the 

tested 3D biodegradable scaffolds either in static or in dynamic culture conditions. The 

advantages of co-culturing differentiated and undifferentiated cells for cartilage 

engineering were also demonstrated. 
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MODELOS IN VITRO PARA ENGENHARIA DE CARTILAGEM 

UTILIZANDO CÉLULAS PRIMÁRIAS E “SCAFFOLDS” 

BIODEGRADÁVEIS 

 

Resumo 

 

A investigação em engenharia de cartilagem teve um desenvolvimento muito intenso nos 

últimos anos. Uma das maiores dificuldades em regenerar cartilagem prende-se com o facto de 

este tecido ter uma capacidade de auto-regeneração muito limitada. Actualmente, já existem no 

mercado alguns produtos para a regeneração de tecido cartilagíneo, baseados em conceitos de 

engenharia de tecidos. Apesar de trazerem resultados positivos, estes tratamentos ainda 

necessitam de ser muito optimizados. A aplicação actual de implantes para recuperar a 

funcionalidade das articulações não é duradoura, e frequentement os implantes necessitam de 

revisão após alguns anos. A engenharia de tecidos pode desenvolver soluções mais duradouras, 

baseadas na regeneração de tecidos e não na substituição da área afectada por implantes 

articulares. 

Esta tese engloba o estudo de três modelos in vitro desenvolvidos com o objectivo de produzir 

matriz extracelular de cartilagem (ECM), utilizando culturas celulares primárias e “scaffolds” 

como suportes para o crescimento das células e deposição da referida matriz. O “scaffold” é um 

dos aspectos críticos numa estratégia de engenharia de tecidos, por isso vários “scaffolds” 

biodegradáveis com morfologias e formulações diferentes foram avaliados. Várias condições de 

cultura foram também investigadas, usando culturas dinâmicas (agitação ou fluxo de perfusão) 

ou estáticas. Consequentemente, a tese está dividida em três secções correspondentes a cada um 

dos modelos in vitro testados, e agrupados segundo o tipo de células utilizadas: condrócitos 

articulares bovinos (BAC), células estaminais mesenquimais derivadas de medula óssea 

(hBMSCs) e co-culturas de células primárias humanas: condrócitos articulares (hACs) e células 

estaminais mesenquimais (hMSCs). 

Os primeiros estudos apresentados nesta tese foram desenvolvidos com BACs e dois tipos de 

malhas de nanofibras: nanofibras de policaprolactona (PCL) ou de amido composto com 

policaprolactona (SPCL), e também com um “scaffold” com microporosidade. Estes últimos 

“scaffolds” foram produzidos com uma mistura de quitosano e de polibutileno succinato 

(CPBS), apresentando dois tamanhos de poros características e morfologias diferentes. Em 

geral, concluimos que o modelo com BACs permitiu a produção de ECM em todos os 

“scaffolds” e malhas de nanofibras testados. Não foram observadas diferenças significativas em 

termos de deposição de ECM entre as malhas de PCL e de SPCL. No entanto, os resultados 

foram considerados positivos, pois houve deposição de ECM em ambos os substratos. No que 
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diz respeito aos “scaffolds” de CPBS, a formulação 80 CPBS (com poros maiores de 

distribuídos aleatoriamente) demonstrou um desempenho biológico mais expressivo quando 

comparada com a formulação 60 CPBS. Estes resultados mostraram a importância de poros de 

maior tamanho na estrutura dos “scaffolds” para facilitar a colonização celular e a deposição de 

ECM. 

O segundo modelo explorado é referente ao estudo da diferenciação condrogénica de 

hBMSCs cultivadas em malhas de nanofibras (PCL) ou de microfibras (formadas por misturas 

de quitosano), usando para tal um bioreactor de perfusão desenvolvido pelo nosso grupo. 

Observou-se crescimento e diferenciação das células cultivadas quer nas malhas de nanofibras, 

quer nas malhas de microfibras. A cultura dinâmica não evidenciou facilitar a diferenciação 

condrogénica das hBMSCs. Por outro lado, foi demonstrado que as malhas de microfibras são 

adequadas para este tipo de culturas dinâmicas, pois a diferenciação condrogénica foi 

potenciada nas culturas destes “scaffolds” no bioreactor, comparativamente com os controlos 

estáticos. Estes resultados poderão ainda vir a ser melhorados através da optimização das 

condições de fluxo de meio de cultura utilizadas nestas experiências. 

Finalmente, realizaram-se co-culturas de hACs e hMSCs em malhas de microfibras. Foram 

seleccionados dois tipos de hMSCs: hBMSCs ou células estaminais mesenquimais derivadas da 

geleia de Wharton (hWJSCs). Comparou-se o potencial condrogénico dos dois tipos de células 

estaminais quando co-cultivadas em contacto directo com hACs, ou em contacto indirecto, 

usando para tal meio condicionado proveniente das culturas de hACs. Os resultados 

demonstraram que as culturas indirectas com meio condicionado promoveram uma maior 

formação de ECM, usando quer hBMSCs, quer hWJSCs. Adicionalmente, as hWJSCs 

revelaram um potencial condrogénico mais elevado do que as hBMSCs, que produziram uma 

ECM rica em colagénio tipo I. O resultado com os meios condicionados é muito interessante 

porque consideramos que poderá ter um elevado potencial para futuras aplicações clínicas. A 

utilização de condrócitos heterólogos para obtenção de meios condicionados que promovam a 

diferenciação condrogénica de células estaminais autólogas parece-nos importante no contexto 

da engenharia de tecidos da cartilagem. 

O trabalho apresentado nesta tese revelou alguns conceitos válidos para a engenharia de 

cartilagem. Obteve-se tecido cartilagíneo usando quer culturas primárias de células 

diferenciadas, quer de células indiferenciadas. A deposição de ECM ocorreu em todos os 

“scaffolds” 3D biodegradáveis testados, quer em condições estáticas, quer em condições 

dinâmicas. Por fim, demonstraram-se também algumas vantagens relativas à utilização de co-

culturas de células diferenciadas com células indiferenciadas para a engenharia de tecidos de 

cartilagem. 
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Introduction to the thesis format 

 

 

The present thesis is divided in eight chapters intended to provide a comprehensive 

report of the progress achieved during this PhD work. The chapters are organized in 

such a way that show the sequential progress obtained in the various works reported. 

The obtained results originated five scientific papers presenting new data and one 

review paper, already published or under submission for publication. The papers were 

organized in thematic sections, based on their contents and their biological and 

experimental design. Therefore, the new data presented in the thesis was organized in 

three sections corresponding to the type of cells used. The first section reports were 

performed with primary bovine chondrocytes. The second section presents data 

obtained with primary human mesenchymal stem cells. The last section is based in co-

cultures of human chondrocytes and mesenchymal stem cells. The section based in the 

review paper was adapted to become the thesis introduction, and to provide an extensive 

overview of cartilage tissue engineering strategies and background information, 

enabling to analyse in context the progress obtained during this PhD programme. 

 

Section I (Chapter 1) 

The first section is adapted from a published review paper and presents an extensive 

literature survey on the field. This section is focused in discussing in detail the problems 

related to cartilage diseases or trauma injuries. It also analyses the potential role of 

tissue engineering in obtaining new solutions and alternative strategies for cartilage 

regeneration and repair. The literature review presented in this section is intended to 

provide an in depth perspective of the progress achieved in the community, as well as to 

stimulate the discussion in context of the works developed in this thesis.  

 

Section II (Chapter 2) 

This section provides a detailed description of the materials and methods used. 

Materials, methods and the basic principles behind the methodologies used in the 

context of the experimental work developed are all covered. The materials processing 

and scaffolds production methods are explained in this section. Moreover, the biological 

assays performed are described thoroughly. The methodologies herein described 
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provide more details in some specific tests, but more importantly, provide a general 

framework for the in vitro testing of new scaffolds, and in vitro culturing methods 

aimed for cartilage tissue engineering. By reading this chapter, it is not required to 

follow closely the materials and methods sections of chapters 3 to 7. 

 

Section III (Chapters 3 and 4) 

The third section includes two published papers using bovine articular chondrocytes 

as a model to test the biological performance of new scaffolds in vitro. This section 

describes the influence of scaffolds composed of electrospun nanofiber meshes (chapter 

3), or microporous scaffolds obtained by compression moulding and salt leaching 

(chapter 4), on bovine articular chondrocytes. The two works complement themselves 

and show that the bovine chondrocytes can be successfully cultured in both scaffolds. 

 

Section IV (Chapters 5 and 6) 

This section includes two papers, one published and the other accepted for 

publication, relating the influence of nanofiber meshes (chapter 5) and microfiber 

meshes (chapter 6) in the chondrogenic differentiation of human bone marrow derived 

mesenchymal stem cells (hBMSCs), using a flow perfusion bioreactor. Both works 

show the positive effect of the flow perfusion provided by the bioreactor in the 

chondrogenic differentiation of hBMSCs. Both scaffolds support successfully the 

chondrogenic differentiation of human bone marrow derived mesenchymal stem cells, 

showing that both the structure and the material composition are adequate for the 

successful culture of relevant cells. 

 

Section V (Chapter 7) 

Section V includes one chapter proposing an advanced co-culture strategy for 

cartilage repair. After using two types of primary cells in the previous sections, we 

studied the outcome of co-culturing human articular chondrocytes and mesenchymal 

stem cells. This chapter describes the use of direct and indirect co-cultures of human 

chondrocytes and adult mesenchymal stem cells, either isolated from bone marrow or 

from umbilical cord Wharton´s jelly. The objective was to study the influence of the 

chondrocyte secreted factors and cell-cell contact over the chondrogenic differentiation 

of adult mesenchymal stem cells, cultured in 3D microfiber meshes. The results show, 

somewhat surprisingly, that the indirect co-cultures are more effective, opening new 



xxxix 

perspectives for the development of clinically relevant strategies for cartilage tissue 

engineering. 

 

Section VI (Chapter 8) 

The final section of the thesis highlights the contributions and conclusions derived 

from the presented works, including a discussion on the future perspectives and work to 

be developed to achieve the aimed clinical progress in the long lasting regeneration of 

articular cartilage. 
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Tissue engineering as a remarkable tool for cartilage repair in the 

context of joint diseases 
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1. Introduction 

 

Cartilage development is characterized by a series of temporal events, in which the 

chondrocytes undergo sequential morphological and genetical changes. These 

modifications involve complex signalling and regulatory networks that link cell-matrix 

and intercellular interactions with a strongly regulated gene expression pattern [1]. 

Cellular condensation is a requirement for the beginning of chondrogenesis in the 

embryonic limb bud and in mesenchymal stem cells (MSCs) cultures [2]. The 

knowledge of the events that lead to articular cartilage formation is of utmost 

importance to understand the mechanisms involved in the chondrogenic pathway. 

Articular cartilage is a very specialized tissue with outstanding load-bearing capacity. It 

consists mainly of a dense extracellular matrix (ECM) with chondrocytes embedded on 

it. The ECM binds to a large amount of water that is a key element for the load-bearing 

capacity of cartilage. Cartilage has very low capacity of self-repair and regeneration 

after traumatic, degenerative or inflammatory injury. This factor often leads to end-

stage osteoarthritis (OA) after repeated damage causing a strong limitation in the 

mobility of patients. Additionally, these defects are difficult to treat and to fully repair 

by traditional surgery techniques like mosaicoplasty or microfracture. Tissue 

engineering (TE) is a very promising approach to achieve articular cartilage repair by 

obtaining a long lasting and fully functional recovery of the lost tissue. 

When a tissue is damaged, the body responds by triggering a cascade of events to 

repair it, being the vascular access critically important to provide the needed cues. In the 

case of cartilage lack of vascularisation may prevent this natural response. Cartilage 

defects can be categorized as chondral or osteochondral, depending on the depth of the 

defect. Chondral injuries are restricted to the articular cartilage. Osteochondral injuries 

penetrate deeper into the underlying subchondral bone, opening a path for the inflow of 

bone marrow mesenchymal cells (BMSCs) into the defect. When this type of injury 

occurs, the defect is usually filled with fibrocartilage that provides temporary relief [3]. 

With time, patients will experience pain and an orthopaedic condition will evolve, 

leading to a cartilage-related disease. The major part of rheumatic disorders is caused by 

rheumatoid arthritis (RA) or osteoarthritis (OA). Currently, OA affects more than 200 

million people worldwide and, just in Europe, 350.000 arthroscopic surgeries are 

performed annually [4]. The prevalence of arthritis and other rheumatic diseases among 
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adults over 18, in the United States (US), was of 46.4 million, between 2003 and 2005 

[5].  

More than half of the unintentional injuries that occur annually in the US are of the 

musculoskeletal system, corresponding to 60-67% of the total annual injuries [6]. These 

injuries are caused either by trauma or by diseases related with this system. Orthopaedic 

conditions affect not only elder people, but also a large number of young people. These 

conditions are result of sports injuries, car or motorcycle accidents or other traumas. For 

example, there are annually 1.3 million fractures that require hospital admission, only in 

US [6]. 

More than 100 types of rheumatic diseases, arthritis and related conditions were 

already identified. Examples of inflammatory rheumatic diseases include RA, 

ankylosing spondylitis (AS), psoriatic arthritis (PsA), systemic lupus erithematosus 

(SLE), juvenile idiopatic arthritis (JIA) and OA [7, 8]. These diseases affect people of 

all ages and genders, and until today, its causes remain elusive, as well as its cure. 

Conventional drug treatment for rheumatic inflammatory diseases combines basically a 

symptom-modifying anti-rheumatic drug (SMARDs) with disease-modifying anti-

rheumatic drugs (DMARDs). The combination of SMARDs with DMARDs can slow 

down the progression of inflammation and, in some cases, modify the disease 

progression [9]. Current available surgical treatments for cartilage repair present several 

drawbacks, such as possible implant rejection or infection, or the need for revision after 

some years of implantation. Autologous chondrocyte implantation (ACI) is an 

autologous therapy that was proposed as a basis for TE strategies to repair cartilage 

[10]. The clinical procedure uses chondrocytes obtained from a biopsy collected from 

the donor healthy cartilage and then expands autologous cells in vitro. Chondrocytes are 

further re-implanted at the injured site by injection and using a periosteal flap to close 

the defect [10]. One of the main criticisms to this technique is the need to perform two 

surgical interventions in a short period [11]. In ACI, a small biopsy must be collected 

from a non weight bearing area, and this procedure may lead to donor site morbidity or 

inflammation [11]. Besides, the technique outcome frequently involves formation of a 

fibrous tissue rather than the desired and functional articular neo-cartilage [11]. 

Modifications on various aspects of this surgical technique have been developed, for 

example the use of alternative patches to close the defect, or the use of biomaterials as 

supports for chondrocyte expansion. These modifications originated the matrix 

autologous chondrocytes implantation technique (MACI), recently approved by the 
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FDA (Food and Drug Administration) in the US. In MACI, a previously cultured 

chondrocyte/scaffold construct is implanted in the lesion site. This technique comprises 

a TE strategy, since a biodegradable scaffold is used for supporting cell growth in vitro 

and in vivo. Hyalograft®C, a hyaluronan-based scaffold has been also proposed and 

developed for clinical use, associated with MACI procedure [12, 13]. Collagen 

membranes have also been proposed as a scaffold for clinical application of the MACI 

technique [14]. An overview of current biological treatments and surgical procedures, as 

well as their outcomes, will be further discussed in this section. 

The challenge behind TE is to coordinate the materials properties and scaffolds 

production methods, resulting morphologies and structure, with the proper type of cells. 

Those components should be matured in vitro under adequate culture conditions to 

generate a construct that can be used to fully repair the injured cartilage tissue. One of 

the most important aspects for TE is the development of the proper scaffold. The 

material used for its production, as well as its cytocompatibility and biodegradability, 

must be considered since they are critical for the strategy success [15, 16]. The type of 

material is very important, since natural or synthetic polymers have very different 

properties [17]. Some natural and synthetic polymers will be herein explored, and their 

outcomes for cartilage regeneration will be studied. We will discuss all those 

parameters, detailing its role in the general strategy of obtaining cartilage tissue in vitro. 

Also, in vivo reports from the literature will be discussed. Selection of the proper 

scaffold structure, porosity and pore size is very important to enable cell attachment and 

to promote proliferation and differentiation of cells, leading to ECM production. The 

role of scaffold and cells in the construct, as well as cell types used for cartilage TE 

strategies will be extensively discussed. Moreover, dynamic culture conditions will be 

analysed, as well as the influence of different microenvironments for chondrocytes 

culture. The aim of this review is to provide a general perspective of cartilage TE and its 

application for the fully functional and long lasting regeneration of this tissue. 
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2. Basics of cartilage biology 

 

2.1. Chondrogenesis and growth plate 

 

The growth plate formation is one of the major events in skeletal development. The 

growth plate of long bones is a very organized structure composed by chondrocytes in 

dissimilar stages of proliferation and differentiation, placed in a complex network of 

collagens that compose a scaffold of oriented ECM [18]. 

Cartilage is formed when some mesenchyme cells aggregate to form the blastula, 

during embryo development. Mesenchymal cells in this structure produce an ECM rich 

in collagen type I [19]. Blastula cells begin to differentiate into chondrocytes and to 

secrete cartilage matrix, rich in collagen type II and aggrecan (two of the main 

components of cartilage ECM) [20]. In general, a specific genetic program driven by 

Sox9 and other transcriptional factors is expressed for ECM formation [21]. Sox9 is 

critical for all phases of chondrocyte development, from early condensations to 

conversion of proliferating chondrocytes into hypertrophic chondrocytes [22]. However, 

Sox9 is down regulated in hypertrophic chondrocytes [23]. In cultured chondrocytes, 

Sox9 stimulates the transcription of a number of cartilage matrix genes, such as 

Collagen type II [21] and Aggrecan [1]. Cells in the periphery of the mesenchymal 

condensations do not differentiate into chondrocytes, they form the perichondrium, 

continuing to produce collagen type I [24]. Gradually the produced ECM begins to push 

chondrocytes apart [25]. Eventually, these cells exit the cell cycle and become 

hypertrophic, producing collagen type X, instead of the usual collagen type II [23] and 

undergo the mineralization process.  

 

2.2. Joint development 

 

The ends of mammalians long bones are covered by articular cartilage that allows 

friction and load distribution between bones. During post-natal development, articular 

cartilage undergoes a reorganization process [26]. At this stage of development, 

articular cartilage layer undergoes a process of growth and elongation involving the 

underlying bone [26]. Synovial joints development comprises the formation of the 

cartilagineous rod followed by the formation of the joint cavity, articular cartilage, 

synovium and other joint structures such as the meniscus [26]. Some aspects of this 
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development still remain to be elucidated, such as the events occurring in cavitation to 

form joints [27]. It is normally assumed that continuous cartilage formation in the early 

stages of development is interrupted and cartilage specific zones are formed [27]. 

During maturation of articular cartilage, its components such as collagens and 

proteoglycans rearrange themselves within the various cartilage zones, and this 

orientation evolves from an immature arrangement to a fully “arcade” arrangement, 

present in the mature tissue [28]. Most of the cartilage formed in the early stages of 

development undergoes segmentation to produce individual bones separated by the 

synovial joints [28]. Joints formation is initiated with a joint specification phase, where 

the joint future place is defined. Then, the joint cavity forms in a process called joint 

cavitation [28]. In the places where joints will develop, chondrocytes flatten and 

originate transversal stripes called joint interzone [28]. The central layer of the interzone 

then becomes the joint cavity, while the proximal and distal areas become continuous 

with the perichondrium of cartilage [28]. The perichondrium will form the articular 

cartilage superficial layer that coats the ends of long bones. The Hox genes have been 

reported to have a major role in the limb patterning, as they can specify a cells fate 

within the limb [29]. Bone morphogenic proteins (BMP) are expressed in the early 

stages of joint specification and are reported to be involved in limb movement and joint 

development [30]. There are many signalling proteins involved in these events, and 

some of the interactions still need to be clarified. 

Both growth plate and joint formation events are very important to help to understand 

the processes involved in cartilage formation in nature, as well as formation of its 

stratified structure. Their understanding may be valuable for transposing those processes 

to the laboratory, in an attempt to mimic them in vitro and to produce cartilage tissue. 

 

2.3. Cartilage structure 

 

Articular cartilage is composed only by a single cell type, the chondrocyte. In humans, 

these cells correspond to 1% of the tissue volume. The remaining 99% is formed by a 

highly specialized ECM [31]. The chondrocytes are located in small lacunae within the 

cartilage tissue. These cells synthesize all ECM compounds necessary for tissue 

structure maintenance (collagen type II, proteoglycans and non-collagenous proteins), 

and are responsible for matrix stability. Chondrocytes obtain their nutrients through a 
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double diffusion barrier, survive on low oxygen conditions and thus depend on an 

anaerobic metabolism [25]. 

The matrix components are tightly organized in a zone specific way in cartilage. 

Articular cartilage comprises four zones: superficial, middle, deep and calcified zone.  

ECM unique viscoelastic properties are due to its nanoarchitecture and to the referred 

zone-specificity [32]. Cartilage zones of are illustrated in Figure 1.1.  

 

 

Figure 1.1 – Schematic representation of articular cartilage structure showing the 

different zones of cartilage. Chondrocytes present in the superficial zone are discoidal 

and in the deep zones their shape changes to spherical. Tidemark zone separates the 

deep zone and the calcified zone. 

 

ECM of articular cartilage (as wet mass) is composed by 60-85% of water and 

dissolved electrolytes [33]. The solid framework is composed by collagens (10-30%), 

proteoglycans (3-10%) and non-collagenous proteins and glycoproteins [34]. The 

principal component of the macrofibrilar framework of ECM is composed mainly by 

collagen type II, which provides tensile strength to the articular cartilage [34]. The 

different types of collagens present in the articular cartilage are summarized on Table 

1.1. 
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Table 1.1 – Collagens present in the ECM of articular cartilage and their functions. 

Collagen type Morphological location Function 

II Principal component of macrofibrils; 

characteristic of ECM basic architecture 

Tensile strength 

VI Pericellular matrix; around cells of the middle 

zone in small amounts 

Forms elastic fibers; attachment of 

chondrocytes to the matrix 

IX Surface of macrofibrils; characteristic of ECM 

basic architecture 

Inter fibrillar connections; tensile 

properties 

X Calcified cartilage layer ; associated with 

hypertrophic cartilage 

Aid in cartilage mineralization ; 

structural support 

XI Within or on macrofibrils; characteristic of 

ECM basic architecture 

Nucleates fibril formation 

Table adapted from Bhosale and Richardson, 2008 [25] and Schultz and Bader, 2007 

[4]. 

 

Proteoglycans provide compressive strength to the tissue and maintain the electrolyte 

balance [25]. Chondrocytes produce these protein polysaccharide molecules and secrete 

them into the matrix [25]. There are two major classes of proteoglycans in the tissue: 

aggrecans (large monomers) and small proteoglycans such as decorin or biglycan [35]. 

Proteoglycans subunits are named glycosaminoglycans (GAGs), which are bound to 

form the larger aggrecan molecule [35]. 

The cartilage unique structure provides this tissue with the necessary elements for 

load bearing and movement functions. It is important to understand the way the various 

elements relate to each other, but also their specific function in the organization of 

articular cartilage. These elements, such as GAGs or collagens, can be detected by 

several laboratory methodologies for identification of cartilage like tissue. 

 

 

3. Cartilage diseases and trauma injuries 

 

Currently, no reliable and durable strategy for complete and fully functional cartilage 

regeneration has been validated in the clinic, as discussed in the next sections. Thus, 

there is an urgent need for clinically appropriate strategies that provide a full 

regeneration of cartilage function. Due to the epidemiological importance and the high 
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social costs of joint diseases, cartilage engineering holds remarkable potential in 

orthopaedic surgery as an alternative to current surgical methods. 

 

3.1. Biological agents for the management of cartilage diseases and TE approaches 

 

Advances in biotechnology have led to the development of agents that therapeutically 

target specific components of the deregulated immune system, known as “biological 

agents” [36, 37]. Among them, tumour necrosis factor alpha (TNF), interleukin-1 

alpha and beta (IL-1, IL-1) have a significant role in the pathogenesis of rheumatic 

diseases [38, 39]. Biological agents are partially or fully humanized recombinant 

proteins that target different pathways of the immune response. Further information on 

the safety and efficacy of TNF blockers can be obtained e.g. in reference [40]. The most 

used biological agents for the treatment of rheumatic diseases, their characteristics and 

secondary effects are also presented on Table 1.2.  

 

Table 1.2 – Biological agents used in clinical practice for the management of rheumatic 

diseases. 

Trade name Type 
Mechanism 

of action 
Application Secondary effects 

Abatacept CTLA4 Ig Costimulation 

inhibitor 

RA; CV; 

SLE 

Serious infection 

Adalimumab Anti-TNF TNF inhibitor RA; AS; 

PsA 

Infections, fatal sepsis and 

demyelinating events 

Anakinra IL-1ra IL1 inhibitor RA; AS Severe infection 

Etanercept TNF R/Fc 

fusion protein 

TNF-inhibitor RA;AS ;SA ; 

PsA; JIA 

Infections, bronchitis 

Infliximab Anti-TNF TNF inhibitor RA;AS; SA; 

PsA; 

DM/PM 

Tuberculosis, Lupus-like syndrome, 

heart failure, pancreatitis, liver 

failure 

Rituximab Anti-CD20 

mAb 

B-cell 

deplection 

RA;CV;SLE Cardiac arrest, infections, immune 

toxicity 

 

Legend: RA, rheumatoid arthritis; CV, cryoglobulinemic vasculitis; SLE, systemic 

lupus erythematosus; AS, ankylosing spondylitis; PsA, psoriatic arthritis; SA, secondary 
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amyloidosis; JIA, juvenil idiopatic arthritis; DM, dermatomyositis; PM, polymyositis. 

Table adapted from Bertele et al. [41] and Diaz-Borjon et al. [40]. 

 

From the different biological agents used in clinical practice, TNF inhibitors have 

proven to be highly effective in the treatment of advanced rheumatic diseases, such as 

RA, AS, PsA or JIA [7, 36, 38, 42, 43], reducing their symptoms, improving the 

physical function of joints and inhibiting joint damage progression [39]. The cost of 

TNF inhibitors is one of the main limitations associated with this therapy: they are 

considerably more expensive than the traditional DMARDs. Considering the high cost 

of those drugs, several strategies of combination of these agents with DMARDs are 

being increasingly studied [37, 40, 44]. Also, TE strategies for local administration of 

these drugs or biological agents have been focus of recent advances. To reach effective 

drug concentrations in the affected joint tissues, high doses of the therapeutic agent 

must be administered systemically, which may lead to significant adverse systemic and 

extra-articular side effects. Currently, most of the available therapies for rheumatic 

diseases do not have tissue specificity and have a ubiquitous distribution of the 

molecular targets. Reduction in drug doses may attenuate toxicity, being a plausible 

solution, but may lead to reduced therapeutic efficacy. To overcome these limitations, 

targeted drug delivery systems may provide excellent solutions by incorporating the 

available anti-rheumatic drugs and releasing them at the target sites [45].  

Drug delivery systems have been developed in several emerging research fields such 

as TE and regenerative medicine, as a method to address the problems associated with 

conventional drugs and improve their pharmacological properties. The means by which 

a drug is released may have a considerable effect on its efficacy and therapeutics. Drug 

delivery systems have been designed using different polymers either of synthetic or 

natural-origin. In order to achieve a better control over the drug release, several 

technologies have been developed. Most of these procedures are based on a 

combination of bioactive agents and biomaterials by bonding. Many examples of those 

strategies were reported in recent literature  [46]. Materials used in these processes 

include poly(lactic-co-glycolic acid) (PLGA) [47], poly(ε-caprolactone) (PCL) [48], 

chitosan [49] or starch [50]. These materials have also been proposed for controlled 

release in the context of tissue regeneration [50-53], as described in the previous 

section. Starch-based materials and composites are among those biomaterials and have 

shown to induce lower inflammatory cytokines, compared to poly(L-lactide) (PLA) 
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[51]. Several studies show the efficiency and the utility of starch in different systems for 

drug delivery, such as fibers [54], microspheres [55] or nanoparticles [56]. Starch-based 

microparticles were developed in our group for drug delivery systems [57] and showed 

to be viable as carriers for the incorporation and release of corticosteroids [50], growth 

factors [48, 58, 59], and as supports for cells [53].  

The future generation of regenerative medicine for rheumatic diseases is focused on in 

situ therapies. This strategy consists in cell-free chondroinductive scaffolds 

implantation combined with chemotactic molecules that allow the recruitment of joint-

inherent and –surrounding cells to traumatic or arthritic diseased joints, and their 

subsequent contribution for growth and differentiation factor-guided joint repair [60]. It 

is believed that the biological agents and anti-inflammatory drugs will complement the 

in situ therapy of chronic joint diseases enhancing joint tissue regeneration and 

preventing the degradation of the native and of the neo-tissues formed [61]. 

 

3.2. Current surgical treatments for cartilage defects 

 

Numerous treatments have been explored to repair damaged articular cartilage, such 

as microfracture, mosaicoplasty, grafts and ACI. In the microfracture technique the 

subchondral bone is disrupted to allow bone marrow to flow into the defect [62]. A 

blood clot will eventually form and cells from bone marrow may migrate into it, 

differentiating into chondrocytes [62]. However, these derived chondrocytes are not 

phenotypically similar to the articular ones, and tend to originate a fibrous tissue rather 

than the desired articular cartilage tissue [25, 62]. 

The ACI technique is a technique developed for treatment of large full-thickness 

chondral defects, where a small biopsy of articular cartilage is collected from a low-

weight-bearing area in the joint [63]. Cells are isolated and expanded in vitro, and then a 

suspension of the cultured chondrocytes is injected underneath a periosteal patch or a 

by-layer collagen membrane [63]. ACI has been widely used in clinic, but still there are 

limitations associated to the technique, which do not allow patients to achieve full 

recovery. This technique has shown promising results for human cartilage defects in 

early clinical studies, but little difference in the efficacy was observed in a randomized 

clinical trial designed to obtain a comparison to surgical procedures such as 

mosaicoplasty [64] There are several complications associated to ACI, such as a non-

uniform repair in different areas of the joint, formation of fibrocartilage after cell 
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implantation, or even loss of chondrocyte phenotype [11]. Furthermore, ACI has been 

associated with significant donor-site morbidity and initiation of osteoarthritic changes 

in the joint, simply due to the harvest of donor cartilage, indicating the need for 

alternative cell sources for tissue-engineered repair of cartilage [65].  

Various modifications to ACI are currently being attempted, focusing in a minimal 

invasive surgery, and combination with three dimensional (3D) scaffolds and growth 

factors [25], for example the MACI technique. This technique employs 3D biomaterials, 

different cell sources and growth factors. Chondrocytes are cultured in these structures 

prior to implantation. Their function is to sustain cells for inducing and maintaining the 

chondrocyte phenotype and to form ECM before implantation. In the MACI technique, 

other sources of autologous cells besides chondrocytes may be used. Those sources 

include MSCs, periosteum-derived cells and synovial fibroblasts [33]. Differentiation of 

these cells in 3D scaffolds can be further enhanced by using growth factors or anti-

inflammatory cytokines, to help phenotype stabilization and protection of the newly 

formed cartilage [33]. Different resorbable transplants were also tested in clinic and 

showed promising results [66]. Hyalograft®C was used for MACI, and patients were 

followed after implantation during 2 years, by magnetic resonance imaging [67]. The 

post-operative observations showed dynamic processes in cartilage repair over time, 

with positive effects. Another report of a 5 years follow-up of MACI technology also 

showed good results: 8 out of 11 patients rated the function of their knees as much 

better or better than before the surgery [68]. Although the outcomes of MACI have been 

positive, this is a very cost-intensive alternative for the treatment of knee cartilage 

defects still showing limitations, thus novel strategies and alternatives should be 

explored. In the next pages, we will describe some TE based alternatives that in our 

opinion should be explored to provide other therapeutic solutions for cartilage 

regeneration. 

 

 

4. Cartilage tissue engineering 

 

The modern society and evolution on medicine have brought us many improvements 

in our daily lives and a longer life expectancy. However, problems associated with 

orthopaedic conditions also increased dramatically, associated with obesity, sports 

injuries, car accidents and many inflammatory conditions, as referred before on section 
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3. Therefore, long term orthopaedic repair solutions are needed, since traditional 

prosthesis require revision after several years post surgery, not providing a long term 

solution. The previous aim, to replace, has become in the actual need for repair. TE can 

answer this need. The goal of TE is to design new functional components that can be 

used to regenerate living tissues and fully restore their function. TE comprises three 

basic premises: the use of a scaffold to support cell growth and formation of the tissue, a 

source of cells, and growth factors to induce cells differentiation into the desired tissue 

(Figure 1.2).  

 

Figure 1.2 – Tissue engineering strategy comprises the use of scaffolds, optimal 

culture conditions, the maintenance of cell-cell interactions and their microenvironment, 

as well as the culture parameters. 

 

The understanding of all the mechanisms underlying the interactions between cells 

and cells-materials is of extreme importance in a TE context. In fact, cell-biomaterial 

contact is one of the key points for a successful TE approach, and therefore scaffolds 

surface properties are subject of intense study and modifications [69-71]. The aim of 

these modifications is to create the most suitable environment for cell attachment, 

proliferation, phenotype maintenance or cell differentiation. Moreover, the way of 

culturing constructs has a major influence in the outcome of the neo-formed tissue. In 

terms of cartilage, dynamic culture conditions have proved to be preferable, as opposed 

to static ones [72-76] Extensive research effort was recently focused in the development 

of bioreactors that can stimulate cartilage formation similar to native tissue [74, 77-82]. 

Another important aspect to consider in cartilage TE approaches is cell-cell interactions. 

The interest in cells cross-talk and communication has been growing in the past years, 
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revealing that signalling pathways are pivotal elements when understanding the tissue 

formation and its repair mechanisms [83]. Chondrocytes release morphogenetic signals 

that influence the surrounding cells, for example, stem cells, to differentiate into the 

chondrogenic lineage [83]. Therefore, the study of co-cultures using chondrocytes and 

undifferentiated cells is a very interesting strategy to develop engineered cartilage. 

Finally, oxygen levels and the environment in which the culture is performed are a main 

issue in terms of articular cartilage neo-formation. Chondrocytes are the only cell type 

present in cartilage, being supplied of oxygen and nutrients by the surrounding synovial 

fluid. Compared to other cell types, they experience a hypoxic environment in vivo, as 

local oxygen tension ranges from 1% to 10% [84]. The study of hypoxic conditions to 

sustain chondrocytes culture and cartilage formation in vitro is therefore another 

important aspect to be considered in TE. 

 

4.1. Scaffolds for cartilage repair 

 

Biodegradable materials have been widely used for regenerative medicine, because 

they are degraded and metabolized by the body after repairing the injured site or tissue 

[85]. These materials can be applied for the most various purposes, such as adhesion 

and fixation of tissues, shape maintenance, guidance of tissue regeneration or as a 

temporary scaffolding for tissue developed [85]. An implantable scaffold should ideally 

recapitulate many of the salient features of native ECM in the target tissue promoting 

the required conditions for tissues regeneration. Ideally, the scaffold should be 

biocompatible, have a highly interconnected porous network to allow for cell ingrowth 

and nutrient and medium exchange [86]. Also the mechanical properties should be 

compatible with those of the tissue, and allow a degradation rate according to cell and 

tissue growth in vitro or in vivo [86]. 

Scaffolds interconnectivity directly influences the diffusion of nutrients to cells and 

the waste removal of their by-products [87]. Therefore, scaffolds should possess a 

highly porous and interconnected structure with a large internal surface area to volume 

ratio to allow cell proliferation, differentiation and even distribution throughout the 

entire structure [88]. Surface properties are also important parameters to consider, as it 

is demonstrated that they influence cell adhesion, proliferation and differentiation [89]. 

Scaffolds mechanical properties may influence tissue formation, as these structures will 

support the cells while the tissue reorganization occurs, and ideally begin to degrade 
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when tissue is regenerated [90]. Scaffolds degradation rate affects cell behaviour [91] so 

it is an important aspect to be considered. 

Materials processing techniques have evolved tremendously in the past years, and a 

large spectrum of methodologies for scaffold development are currently available. Some 

examples of these methods are solvent casting and salt leaching [92-94], electrospinning 

[95-99], fiber bonding [100-102], melt-based technologies [103-106] or hydrogels [107-

112]. Scaffolds processing techniques are expected to provide a maximum control of the 

scaffolds structure, without affecting the materials properties.  

Natural materials, synthetic or a combination of both types of materials may be used 

for scaffolds production. Natural polymers used in cartilage TE include for example, 

chitosan [113-117], starch [118-120] and silk [121-123]. Synthetic polymers for 

cartilage TE applications include for example, short chain saturated aliphatic polyesters, 

such as PLA [124, 125] or aliphatic linear polyesters such as PCL [126, 127] and 

poly(butylene succinate) (PBS) [103, 117]. The work present in this thesis is focused 

mainly on blends of natural and synthetic materials. The rationale was to test a range of 

scaffolds produced with different materials, blended or not, and further develop those 

showing stronger biological performance for the strategy of cartilage tissue formation in 

vitro. 

 

4.1.1. Natural based materials 

The availability in Nature of natural based materials makes them easily accessible, 

and allows taking advantage of specific properties of interest for the application 

envisaged. Chitosan is a natural polymer that has interesting properties for TE 

applications. It is biodegradable, biocompatible and has many structural similarities to 

GAGs [128]. Chitosan is obtained from chitin, the second most abundant 

polysaccharide, which is the major element of the shells of many crustaceans, such as 

shrimps or crabs [128]. Chitosan is obtained by a de-N-deacetylation of chitin [128]. 

This process is usually made in alkaline conditions, resulting into chitosans with 

different degrees of deacetylation (DD) and molecular weight [129]. The source of 

chitosan and the chemical modification may influence both parameters. The DD has 

been shown to be important for cell biocompatibility, attachment and growth [130]. The 

importance of DD, ranging between 76 and 90%, in cellular response of two cell lines 

was studied [130]. This work concluded that, in chitosan scaffolds with high DD, cells 

were able to attach, grow and proliferate. On the contrary, when seeded onto chitosan 
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scaffolds with low DD, cells were not able to attach. The amount of N-acetyl groups in 

chitosan has also influence in its solubility, viscosity and cristallinity [131]. Degrees of 

deacetylation of chitosan scaffolds ranging from 88 to 95% were tested in a study with 

buffalo embryonic stem cells and they have promoted a higher cell proliferation and 

mechanical strength of the scaffold, as well as lower biodegradation compared to the 

scaffolds with low DD [132]. These results may indicate that higher DD of chitosan 

scaffolds may be positive for biological performance. 

One of the interesting properties of chitosan is its ability to be processed into porous 

structures, which support cell growth and ECM deposition [103]. Additionally, chitosan 

is reported to degrade in vivo mainly by enzymatic hydrolysis [129, 133]. Lyzozyme, 

one enzyme present in the human body, has been used to enhance the formation of pores 

in situ, in chitosan scaffolds coated with calcium phosphate [134].  

Bilayered chitosan-based scaffolds were produced by particle aggregation and 

cultured with a L929 cell line. The scaffolds were shown to be cytocompatible and 

biodegradable, supporting cell growth and proliferation, and were proposed as an 

alternative for osteochondral TE applications [115]. Chitosan-based scaffolds have been 

studied for cartilage TE, and showed to promote chondrocyte proliferation and 

metabolic activity [113], as well as MSCs chondrogenesis in vitro [135] and in vivo 

[136]. Chitosan blends have been explored, combining this material with other natural 

or with synthetic polymers for cartilage TE. Three dimensional porous scaffolds 

produced with chitosan hyaluronic acid hybrid fibers were shown to support the culture 

and ECM deposition by rabbit chondrocytes [137].  

Hydrogels have also been extensively studied for cartilage regeneration in the context 

of developing minimally invasive strategies. New gellan gum injectable hydrogels have 

been explored recently by our group for treatment of cartilage defects, with very 

promising results [111, 138, 139]. Our group demonstrated that gellan gum hydrogels 

were able to support growth of human articular chondrocytes, as well as to promote 

ECM deposition, when implanted subcutaneously in nude mice [138]. Our group has 

been developing several natural-based hydrogels, using starch [140], gellan gum [141] 

or chitosan [142], being the last two specifically intended for cartilage regeneration. 

Chitosan has also been explored for preparing hydrogels, namely a gene-activated 

chitosan-gelatin matrix was developed [143]. The referred matrices were capable of 

releasing in a controlled fashion transforming growth factor-beta 1 (TGF-β1), and 

promoted chondrocyte proliferation. Moreover, in a study using bovine articular 
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chondrocytes (BAC) encapsulated in a composite chitosan-hyaluronic hydrogel for 

injectable TE application, cells were able to retain their chondrocytic morphology [144]. 

Chondrogenic differentiation has also been observed in a hydrogel composite of 

oligo(poly(ethylene glycol) fumarate) with encapsulated rabbit bone marrow MSCs and 

gelatine microparticles loaded with TGF- β1 [145]. The same system was proposed for 

an intra-articular injection of chondroitin sulphate in the treatment of chondral defects in 

adult rabbit models [146]. Recently, a novel injectable carrageenan/fibrin/hyaluronic 

acid-based hydrogel with in situ gelling properties was used for cartilage tissue 

engineering [147]. When seeded with human articular chondrocytes (hACs), this 

injectable hydrogel was able to regenerate and repair a lesion made in bovine articular 

cartilage, showing the great potential of this novel delivery system for cartilage tissue 

engineering [147]. 

Another natural polymer extensively used in TE is starch. Starch is the major 

polysaccharide constituent of plants, being its function to store energy in form of 

carbohydrates. Starch is composed by 10-20% of amylase and 80-90% of amylopectin 

[148]. The degradation of starch based polymers is mediated by α-amylase, and their 

main degradation products are glucose and its derivatives, which are proved not to be 

harmful for cells [149]. Moreover, the degradation kinetics of starch based polymers can 

be controlled by the concentration of α-amylase present. In a recent work by Azevedo 

and Reis, 2009, α-amylase was encapsulated into starch –compounded polycaprolactone 

(SPCL) discs produced by compression moulding, demonstrating that the degradation 

kinetics of this polymer can be controlled by the amount of encapsulated enzyme into 

the matrix [150]. This polysaccharide can be processed by several techniques, and 

blended with other biomaterials and therefore, has been proposed for a wide range of 

biomedical applications [16, 97, 151-153]. 

Starch based scaffolds have been studied for bone TE [154, 155], vascularisation and 

endothelial cells culture [156, 157], or cartilage TE applications [119, 158]. Particularly, 

different types of starch scaffolds have been used in these applications, namely fiber 

meshes [155], combined nano- and micro-fibrous scaffolds [156] or injectable 

hydrogels [158]. The suitability of starch-based scaffolds for cartilage TE has been 

demonstrated using BAC, using dynamic culture conditions, either using SPCL fiber 

meshes [119] or SPCL nanofiber meshes [118]. 
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4.1.2. Synthetic polymers 

Synthetic polymers are very versatile being conveniently processed into the desired 

shapes. Also, they present predicable properties that can be modified according to the 

intended application. Poly(ε-caprolactone) is an aliphatic linear polyester, and is 

amongst the most utilized synthetic polymers for biomedical applications. It is 

biodegradable and allows several modifications aiming scaffolds production, such as for 

drug controlled release. The degradability of PCL is very slow [159]. However, PCL 

characteristics allow tailoring its degradation rate, for example by combined with 

natural polymers, such as starch [160]. One of the most common applications of PCL is 

for electrospun scaffolds, namely for cartilage applications. PCL nanofiber meshes were 

extensively studied for cartilage TE applications, and showed the suitability of these 

matrices to support the chondrogenic differentiation and ECM production either using 

chondrocytes [127, 161] or MSCs [126, 162]. 

Our group has been exploring PCL nanofiber meshes for cartilage and bone TE 

applications. The surface of PCL nanofiber meshes has been modified by plasma 

treatment, and it has been concluded that the modified nanofiber meshes effectively 

supported cells growth and proliferation, improving cells performance [163]. Moreover, 

PCL nanofiber meshes were integrated into 3D scaffolds obtained by rapid prototyping. 

The integration of the nanofiber meshes substantially improved the biological 

performance of the hierarchical scaffolds, for bone TE [164]. PCL and SPCL nanofiber 

meshes have also been used for the culture of BAC. It was demonstrated that both 

nanofiber meshes were able to sustain ECM production [118]. 

Poly(butylene succinate) is an aliphatic polyester presenting good mechanical 

properties and melt processability [104]. This polyester has been proposed by our group 

for the engineering of connective tissues, in form of blends with chitosan [165, 166]. 

The referred blends were tested for bone TE applications. It has been shown that 

chitosan-PBS (CPBS) scaffolds produced by compression moulding and salt leaching 

effectively promoted adhesion, proliferation and osteogenic differentiation of a murine 

mesenchymal stem cell line [167], as well as the osteogenic differentiation of human 

MSCs [105]. The same blend was tested for cartilage regeneration, successfully [103]. 

Bovine ACs have been seeded onto the same CPBS scaffolds, and a cartilagineous 

ECM deposition was observed [103]. Fiber meshes produced with the same blend 

proved to sustain BAC culture and enhance ECM deposition [168]. 
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The scaffold is one of the key elements in our strategy for cartilage regeneration, as 

explained in the next section. However, other elements are essential in the strategy 

proposed herein, that will be further explored. 

 

4.2. Cell types 

 

The choice of the ideal cell type for cartilage tissue engineering is still a matter of 

debate in the community. Different strategies based either on chondrocytes or MSCs 

have been designed for cartilage TE. In the following sections we will discuss these 

strategies and their reported outcomes. 

 

4.2.1. Chondrocytes 

Chondrocytes, as already referred, are the only cell type present in cartilage tissue. 

Different types of chondrocytes have been used depending on the type of cartilage 

regenerative application, for example nasal [169, 170] or articular [111, 171-174]. One 

of the drawbacks of using chondrocytes is that these cells dedifferentiate when 

expanded in vitro using two-dimensional (2D) cultures [175, 176]. After several days in 

culture, chondrocytes in monolayer acquire a fibroblastic-like morphology [177]. 

Biomaterials providing a 3D environment enable the chondrocytes redifferentiation 

[178], being a valuable support for chondrocytes expansion in vitro. 

The use of human chondrocytes isolated from biopsies collected from patients is a 

current clinical procedure. Some of these biopsies are from patients suffering from 

cartilage diseases, such as OA. The obtained chondrocytes are therefore osteoarthritic, 

and this phenotype may have some influence on the outcome of cartilage repair [179]. 

Human OA chondrocytes have been studied using 3D structures aiming to understand 

their biology and phenotype development [180-182]. OA chondrocytes retain some 

ability to undergo chondrogenic differentiation, but it is inferior when compared to age-

matched normal chondrocytes, when in pellet cultures [180]. However, when cultured 

using scaffolds, their response may be different. For example, when human OA 

chondrocytes were seeded onto collagen scaffolds and implanted in SCID mice, no 

significant differences were found between the neo-cartilage derived from OA 

chondrocytes and the one from healthy donors [181]. Relevant results were also 

obtained when using a Hyaff®-11 membrane with normal and OA chondrocytes that 

were grown in this membrane [183]. The growth of chondrocytes in Hyaff®-11 
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membranes in this study seemed to suppress the differences between normal and OA 

chondrocytes. 

Chondrocytes have been extensively studied in cartilage TE approaches, using the 

most diverse types of scaffolds [107, 110, 122, 127, 161, 184-191]. For example, a 

cancellous bone matrix gelatine scaffold has been proposed recently for cartilage TE 

[192]. The scaffold was able to support New Zealand white rabbit’s chondrocyte 

proliferation and sustained their phenotype for up to 6 weeks. As referred previously, 

blends of synthetic and natural polymers have been used for cartilage TE. PLGA/ 

collagen hybrid scaffolds with three different structural designs were studied, 

comparing their effect on in vivo chondrogenesis of BAC [193]. Constructs were 

implanted subcutaneously in athymic nude mice, and the results showed a spatially even 

cell distribution, abundant ECM deposition and degradability in vivo, for all the tested 

scaffolds [193]. A chitosan-alginate-hyaluronate complex whose surface was modified 

by an Arg-Gly-Asp (RGD)-containing protein and seeded with rabbit chondrocytes was 

tested [194]. In vitro and in vivo cartilage formation was observed. Moreover, it was 

observed a complete repair of the cartilage defects in vivo after 6 months of 

implantation when using those systems. 

For cartilage repair, chondrocyte-seeded 3D scaffolds already reached the clinic [195]. 

The biomaterial ensures initial mechanical stability and an appropriated 3D environment 

for cell proliferation and differentiation. Thus, scaffolds avoid the need to use chondral 

sutures, one of the major drawbacks of the ACI technique and provided the possibility 

of obtaining stable transplant fixation [61].  A second generation ACI TE cartilage graft 

based on autologous chondrocytes embedded in a 3D bioreasorbable two component 

gel-polymer scaffold, BioSeed®-C, has been proposed for clinical treatments of 

cartilage defects [196]. The implantation of this scaffold in focal osteoarthritic defects 

showed a significant improvement in the knee-related quality of life two years post 

implantation [196]. Results suggest that the implantation of BioSeed®-C may be an 

effective treatment option for this kind of pathologies [196]. 

 

4.2.2. Mesenchymal stem cells 

Stem cells have become one the main cell source for tissue repair, as they present 

major advantages for regenerative medicine when compared to differentiated cells. 

MSCs can be isolated from many types of adult tissues, and are characterized by their 

ability to undergo extensive self-renewal in vitro and to go through multilineage 
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differentiation [197]. Unlike chondrocytes, these cells are available in virtually 

unlimited numbers, and do not loose their phenotype during expansion [198]. Those 

cells were already tested successfully in animal models of arthritis [199]. Importantly, 

they secrete or can be genetically manipulated to secrete immunosuppressive factors 

and therapeutic agents that target inflammatory tissues [200]. This ability enables MSCs 

to migrate into a damaged site, supporting their interest to be included in tissue 

engineered constructs. More details in those issues can be obtained in references [201] 

and [202]. The challenge in using MSCs as a cell source for articular cartilage repair is 

to maintain the MSC-derived chondrocytes in the pre-hypertrophic state and prevent 

them from undergoing terminal differentiation onto the osteogenic phenotype [203]. 

Different scaffolds have been designed to support and stimulate MSCs chondrogenic 

differentiation. The scaffold configuration is believed to be very important for the tissue 

formation and maintenance of its integrity. Recently, three types of scaffolds of poly 

(ethyleneglycol-terephtalate) - poly (butylene terephtalate) (PEGT/PBT) with various 

configurations were analysed for the support of adipose derived MSCs [204]. This study 

showed that manipulation of the scaffolds configuration allows controlling a uniform 

tissue formation at a microscale. Modification of the scaffold surface can be used to 

enhance MSCs performance [204]. Recently, a collagen surface modification of PCL-

based porous scaffolds was studied for supporting MSCs chondrogenic differentiation 

[205]. It was shown that surface modification enhanced chondrogenic differentiation of 

MSCs, when compared to PCL scaffolds without modification. PCL nanofiber scaffolds 

were tested in vivo for cartilage TE using periosteal cells of rabbits [206]. These 

membranes were implanted under the periosteum of 6 months old rabbits. After 

different time periods, constructs were removed, separated from the periosteum and 

cultured for 6 weeks under chondrogenic conditions. This work showed that is possible 

to produce engineered cartilage in vitro from PCL nanofibrous scaffolds with periosteal 

cells, after a period of in vivo pre-culturing [206]. 

Hydrogels and injectable systems have been a subject of intense investigation for the 

repair of cartilage and/ or osteochondral defects [109, 111, 112, 114, 139, 207-210]. The 

rationale of these systems is to provide a minimally invasive technique to repair 

cartilage defects. Hydrogels or injectable particles combined with MSCs may be 

introduced into the injured site, avoiding invasive surgery techniques. Microcarriers 

have been proposed for this approach [211]. Pharmacological active microcarriers 

(PAM) were prepared from PLGA, coated with fibronectin and engineered to release 
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transforming growth factor – beta 3 (TGF-β3) [211] and provide an appropriate 

environment for cartilage formation in vivo. Human MSCs were incubated with these 

particles, and afterwards were implanted in intramuscular or subcutaneous sites in SCID 

mice. These particles were shown to provide a suitable environment for MSCs 

chondrogenic differentiation and to be a feasible carrier for biomedical cartilage repair 

applications [211]. 

The type of cell chosen for a TE strategy may influence the outcome of the 

regenerative strategy. In the case of cartilage both chondrocytes and MSCs are the most 

used types of cells. The reported results for chondrocytes and/ or MSCs indicate that 

these cells are able to produce cartilage ECM in vitro, but a long road lies ahead until 

the objective of regenerating in vitro a fully functional articular cartilage, similar to the 

native one, is achieved. 

 

 

5. In vitro enhanced culturing conditions 

 

5.1. Bioreactors 

 

The use of bioreactors may substantially enhance the maturation of constructs in vitro. 

There are multiple types of bioreactors, aiming different applications such as bone [212-

214] or cartilage [79, 215-217]. Bioreactors are very useful in providing biophysical 

stimulation and facilitating nutrient diffusion for the cells. Additionally, bioreactors 

provide a closed and controlled environment for cell culture, enhancing the supply of 

oxygen and nutrients. The mechanical stimulus of a bioreactor may also have beneficial 

effects over cell growth or ECM production. Different bioreactors have been developed 

for various TE applications, such as spinner flasks, rotating wall vessels or perfusion 

bioreactors. Further details on this topic can be found elsewhere in [218], [219] or 

[220].  

 

5.1.1. Basic bioreactor systems 

Spinner flasks are one of the simplest types of bioreactor. They are mainly used for 

cell seeding of scaffolds [103, 119, 221], although some published reports cover its use 

for subsequent culture of constructs [73, 204, 222]. In spinner flasks, a magnetic stirrer 

is used to swirl a cell suspension in a plastic or glass bottle, composed by metallic 
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harms that hold the scaffolds static in respect to the moving medium (Figure 1.3). 

Spinner flasks can provide a controlled and reproducible method for cell seeding. 

However, when using scaffolds with low porosity, cells may have difficulty in penetrate 

inside the scaffold structure, remaining at its surface and therefore resulting in non-

uniform cell distribution [223]. During the seeding stage, cells are driven into the 

scaffold, and the medium mixing enhances mass transfer of nutrients, but also generates 

turbulence that may be detrimental for the cultures [224]. The culture of bovine 

chondrocytes in spinner flasks using poly(glycolic acid) (PGA) scaffolds, compared to 

static culture conditions resulted in higher fractions of released GAGs, but the net level 

of accumulated GAGs in the construct was reduced [225]. Some studies show that 

constructs exposed to turbulent flow originated a fibrous capsule at the construct surface 

[215, 226]. However, culture of the same constructs in rotating bioreactors having 

laminar flow, increased the amount of GAGs and showed improved results in terms of 

cartilage production [226, 227].  

Other simple device commonly used to seed cells is the orbital shaker (Figure 1.3C), 

where petri dishes are placed and constructs are subjected to fluid flow. This device 

may be used either for cell seeding and/or for dynamic cultures [103, 118, 221, 228, 

229], but presents similar limitations to the ones referred for spinner flasks. 

 

 

Figure 1.3 – Basic systems for cell seeding and dynamic culture of constructs. A – 

Individual spinner flask containing a cell suspension in culture medium and holding 

CPBS scaffolds. B – Spinner flasks in culture inside an incubator. C – Orbital shaker in 

culture. 

 

Rotating wall vessel (RWV) bioreactors are based in the culture medium rotation 

coordinated with the scaffold floating in the culture medium. These bioreactors are 

composed by a rotating cylinder, which is completely filled with culture medium, and 
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the fluid rotates horizontally by the friction at the cylinder wall (Figure 1.4). The 

oxygen is provided by a silicone membrane that is wrapped around the central cylinder.  

 

 

Figure 1.4 – Rotating wall vessel bioreactor. 

 

The RWV presents advantages relatively to spinner flasks systems [215]. The 

dynamic flow in these bioreactors is laminar, and not turbulent as opposed to the stirring 

in spinner flasks, eventually supporting the formation of more homogenous 

cartilagineous tissues [215].  

 

5.1.2. Perfusion bioreactors 

Perfusion bioreactor systems apply a direct flow of culture medium across the scaffold 

porous structure facilitating mass transfer. These systems allow overcoming the 

limitations of the previously referred systems and provide a continuous exchange of 

culture medium. Different variants of perfusion bioreactors have been proposed, such as 

column, hollow-fiber or microfluidic bioreactors [220]. One of the main concerns when 

using perfusion systems is the washing out of the cells. To avoid this undesired effect, 

cells are usually previously seeded and cultured in the scaffolds or encapsulated, and 

when the fluid passes through the construct, cells keep attached to the scaffold. The 

flow in perfusion bioreactors may be bidirectional or unidirectional, depending on the 

bioreactor design. Our group has recently developed a bidirectional flow perfusion 

bioreactor, consisting of a common inlet and outlet, dividing the flowing medium by 20 

individual culture chambers. The bioreactor was designed in a way that allows culture 

medium circulation throughout the chambers and thus, across the scaffolds in culture, 

ensuring an even distribution by the individual flow chambers (Figure 1.5). The referred 

bioreactor is currently protected by a Portuguese patent, and an European patent is 

pending. Detailed information about the device can be found elsewhere [230]. The 

bidirectional flow perfusion bioreactor was used for cartilage TE applications, using 
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human MSCs. PCL nanofiber meshes were seeded with human BMSCs for 

chondrogenic differentiation, by the stimulation provided by the bioreactor, and it was 

demonstrated that this is a valid model for this type of culture [231]. Additionally, when 

using chitosan-based scaffolds seeded with human BMSCs for chondrogenic 

differentiation, the bioreactor samples displayed significantly lower collagen type I 

expression, compared to the static controls [232]. The expression of several cartilage 

related genes, as well as the level of ECM deposition were positively affected in the 

referred samples [232]. 

 

 

Figure 1.5 – Bidirectional flow perfusion bioreactor developed in the 3B´s Research 

Group [230]. 

 

Dynamic culture conditions were shown in the literature to improve the chondrogenic 

differentiation and ECM production when compared to static culture conditions [73, 

224, 227, 233]. In a work using perfusion-type of recirculation bioreactors operated 

with periodic medium flow reversal, chondrogenic differentiation of human adipose 

MSCs in PGA scaffolds was successfully achieved [217]. When compared to pellet 

cultures, dynamic culture conditions were shown to produce significantly higher 

amounts of GAGs and collagen [217]. Dynamic culture conditions may also help in 

maintaining the phenotype of differentiated chondrocytes, without undergoing 

hypertrophy. Those results were shown in a study using ATDC5 cell line seeded onto 

chitosan scaffolds and cultured in a rotating bioreactor with perfusion (RCMW) [75]. A 

rotating wall vessel bioreactor was used for chondrocyte cultures onto nanofibrous 

scaffolds, showing that constructs grown in the bioreactor produced more GAGs and 

expressed higher levels of cartilage related genes, compared to static cultures [76]. The 

applicability of electrospun nanofiber meshes for flow perfusion bioreactors was 
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recently reported, when using electrospun PCL microfiber scaffolds coated with 

cartilagineous ECM [234]. Flow perfusion bioreactors are being studied for the scale-up 

of human cartilage grafts for joint repair [82]. Recent results shown the large-scale 

production of cartilage grafts in bioreactors for clinical treatments, and that in 

combination with specific surgical therapies may support the long term development 

and engrafting of the implant [82]. 

A different concept for the culture of autologous cartilage was proposed recently, 

being named as “in vivo bioreactor” (IVB) [235]. The referred strategy for de novo 

engineering of articular cartilage in the subperiosteal space involves the injection of a 

biocompatible gel. The obtained results were considered very promising, and authors 

claim that this can be a valid clinical option for obtaining successful cartilage repair 

[235]. 

The importance of the correct stimulus in a cartilage regeneration strategy has been 

herein described. In our point of view, bioreactors are a source of mechanical stimulus 

that should be explored for cartilage cultures in vitro. 

 

5.2. Hypoxia 

 

The application of hypoxia has been explored attempting to mimic the in vivo 

cartilage niche microenvironment. Oxygen levels in this tissue are low and when a 

change in oxygen levels occurs chondrocytes experience several effects on their 

phenotype, genetic expression and morphology [236]. Hypoxia conditions have been 

reported to stimulate chondrogenesis and synthesis of ECM components. It was shown 

to be beneficial for chondrocytes and augmented ECM deposition, either seeded in 

scaffolds [237] or not [238]. The same positive effect were also observed for the 

chondrogenesis of human MSCs [239, 240], as well as for other species MSCs, like rat 

or bovine [241-244]. 

Low oxygen levels have been shown to strongly influence the chondrogenic 

differentiation of stem cells [245]. The manipulation of oxygen levels has proved to be 

useful in directing stem cell through specific cell lineages, namely chondrocytes and 

cardiomyocytes [246]. As the oxygen plays a central role in chondrocyte metabolism, 

exploration of oxygen levels in cultures opens a large window of study. There are still 

many questions involving the application of low oxygen levels when inducing 

chondrogenic differentiation of stem cells. Under 5% of oxygen, human adipose MSCs 
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proliferative potential decreases, while their chondrogenic ability increases [247]. Some 

studies sustain that a hypoxic pre-conditioning step may be useful to improve stem cell 

differentiation into the chondrogenic lineage [241, 248, 249]. This aspect is not 

consistent in the literature, since other authors showed that the chondrogenic ability of 

human adipose MSCs cultured in pellets did not improve on hypoxic pre-conditioning 

[250].  

 

 

6. Co-cultures 

 

Tissues are highly complex and organized structures that comprise cells and matrix, 

and that interact with each other to maintain the tissue function and integrity. Moreover, 

cells and matrix are constantly interacting with surrounding tissues and environment. 

Thus, it is believed that those conditions may help developing a successful TE 

approach. So, it is relevant to understand and recreate as close as possible this 

environment, to study those interactions and use them actively to obtain a full tissue 

repair. Co-cultures allow the study of cell-cell communication and interactions, helping 

to understand the way different types of cells interact with each other in their niche. 

Thus, it is important to understand the influence of differentiated cells over 

undifferentiated cells. Chondrocytes in the cartilage tissue are distributed in four distinct 

zones or layers, thus their cellular interactions in vivo depend on their spatial location. 

Cartilage comprises the superficial, transitional, radial and tight zones [251]. 

Chondrocytes in the superficial zone interact with the synovial fluid and cells, whereas 

chondrocytes in the transitional and radial zones interact mainly with each other and 

with the ECM. Chondrocytes in the tide mark zone are located in the cartilage-bone 

interface, thus contacting with osteoblasts and bone matrix [252]. The cell-cell contact 

between chondrocytes and other cell types occurs also in the transition with other 

neighbouring tissues. Understanding the communication mechanisms underlying these 

contacts may provide valid and new strategies for cartilage regeneration. Table 1.3 

describes different co-culture studies for cartilage TE, using several types of cells and 

diverse ways of co-culturing them. There are two main approaches for performing co-

cultures: direct contact of cells (when the culture involves mixing both types of cells), 

or indirect (using conditioned media). Conditioned medium from chondrocytes has been 

successfully used to induce undifferentiated cells to follow the chondrogenic lineage 
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[172, 253-256]. The principle behind using conditioned culture medium is the ability of 

chondrocytes to release morphogenetic signals to the culture medium, that may be able 

to induce the chondrogenic differentiation of MSCs [83, 253, 257]. 

Cartilage inflammatory diseases such as OA or RA have been studied by co-culturing 

chondrocytes with synovial fluid cells [258-261] or with osteoblasts [80, 262-265]. In 

RA, formation of the chondrosynovial pannus causes modifications on the 

chondrosynovial joint, as some layers of cells begin to deposit covering the cartilage 

surface [266]. Both chondrocytes and synovial cells get in close contact by the 

deposition of these layers. Evidence of positive direct intercellular communication 

between these cells was previously reported [267]. Later, it was demonstrated that 

synoviocytes release factors to the culture medium that can stimulate chondrogenic 

differentiation [268, 269]. A recent study using direct and indirect co-cultures of bovine 

synovial fibroblasts and chondrocytes suggests that synovial supernatants and synovial 

fibroblasts may modulate chondrocytes biosynthetic activity and matrix deposition 

[259]. Direct contact co-cultures of human BMSCs and articular chondrocytes (ACs) 

using alginate/chitosan scaffolds in static conditions or using bioreactors have been 

established for the study of chondrogenesis and osteogenesis [80, 263]. The influence of 

cells on different degrees of osteogenic differentiation over the chondrogenic 

differentiation of MSCs was recently demonstrated [262]. The results shown that MSCs 

in different states of osteogenic preculture and encapsulated in a biodegradable hydrogel 

could positively influence the chondrogenic differentiation of rat MSCs, both in the 

presence or in the absence of growth factors [262]. 

These studies showed the importance of a 3D microenvironment in the 

communication of different cell types, indicating the potential of controlling these 

interactions to create specific tissues. 
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Table 1.3 – Outcome of in vitro co-cultures with several types of cells and different 

culture systems intended to promote cartilage tissue engineering. 

Cells involved Type of culture Outcome Ref. 

Human dermal 

fibroblasts and 

porcine ACs 

Direct contact in PLA/ PGA 

biphasic scaffolds  

Some dermal fibroblasts induced 

cartilage lacuna structure 

formation 

[124] 

Murine myoblasts 

(C2C12) and rat 

chondrosarcoma 

(RCS) cell lines 

2D; 3D cultures in collagen gels 

using conditioned medium from 

muscle cells 

Muscle cells conditioned 

medium led to increased 

cartilaginous ECM production 
[256] 

Human embryonic 

stem cells and 

human 

chondrocytes 

Indirect co-culture using well 

inserts (conditioned medium from 

chondrocytes) 

Culture micro-environment 

influences embryonic stem cells 

differentiation to chondrocytes 
[270] 

Bovine MSCs and 

ACs 

a) Micromass cultures of MSCs 

incubated with chondrocytes 

conditioned medium 

b) MSCs expanded in 

chondrocytes conditioned medium 

encapsulated in agarose hydrogels 

and implanted subcutaneously in 

athimic mice 

a) Incubation with conditioned 

medium enhanced cartilage 

production by MSCs 

 

b) ECM deposition characteristic 

of neocartilage formation 

[83] 

Murine embryonic 

stem cells and 

human 

hepatocarcinoma 

cell line 

Micromass pellets of embryonic 

stem cells cultured with 

conditioned medium from cell line 

Enhanced chondrogenic 

differentiation of embryonic 

stem cells [271] 

Human ACs and 

human periosteal 

tissue 

Co-cultures of ACs and periosteal 

tissue, cultures of ACs with 

conditioned medium from 

chondrocytes in agarose gels 

ACs formed clones in agarose; 

the periosteum can stimulate 

ACs clonal growth and 

differentiation 

[172] 

Human ACs in 

different passages  

Indirect co-cultures in filter inserts  The addition of primary 

chondrocytes to passaged cells 

resulted in an increase in 

cartilage formation  

[272] 

Equine MSCs and 

equine ACs 

Direct co-cultures of equine MSCs 

and ACs 

MSCs chondrogenic 

differentiation was enhanced by 

coculture with ACs 

[273] 
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7. Concluding remarks 

 

Cartilage regeneration is a demanding task that until now has not been fully 

accomplished. Some treatments based on TE concepts are available in the market, but 

still need improvement.  

To regenerate fully functional articular cartilage using a TE strategy, several 

components need to be brought together, such as the scaffold, the culture conditions, 

cell-cell contacts and signalling pathways or oxygen tension. In this chapter, we 

highlighted the most important aspects that, in our point of view, need to be considered 

and optimized. From the literature review we could draw some conclusions and also to 

identify some key points that should be object of further study, in a cartilage 

regeneration approach. The scaffold morphology and composition, as well as the 

material in which it is based were explored herein, and will be studied in the works 

developed in the present thesis. Moreover, culture conditions have been proved to have 

positive or negative effects on cell cultures. We will explore dynamic cultures to 

determine their effect on the models proposed in this thesis. The referred models consist 

on different types of primary cultures of differentiated or undifferentiated cells, induced 

for chondrogenesis. The outcomes of using either chondrocytes or MSCs have been 

highlighted in this chapter.  

This literature review is intended to provide a background perspective of the progress 

of the scientific community, and introducing to the main topics that will be further 

explored in the experimental work reported in the next sections of this thesis. 
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Materials and Methods 

 

The objective of this chapter is to describe the materials and methods used in the 

experimental work presented in this thesis. Each chapter contains the materials and 

methods used, but herein we intend to explain in more detail the experiments that were 

performed, as well as the techniques used. 

 

 

1. Materials 

 

One transversal issue in the work presented in this thesis is the use of three 

dimensional (3D) structures as scaffolds for primary cell cultures. Those structures are 

intended to promote the attachment, proliferation and chondrogenic differentiation or 

chondrocyte phenotype maintenance. The objective was to understand the way different 

materials and structures, either natural or synthetic, processed with various techniques 

(either in blends or alone), would interact with the established primary cultures and 

influence formation of tissue engineered cartilage in vitro.  

 

1.1. Chitosan-based blends 

 

Chitosan is a natural polymer derived by the deacetylation of chitin. Chitin is usually 

extracted from crustaceous exoskeleton, like crabs or shrimps. Chitosan is obtained by a 

de-N-deacetylation of chitin, and is composed of β(14)-linked glucosamine and N-

acetyl-D-glucosamine (Figure 2.1) [1]. Chitosan used for blends production was 

supplied by France Chitin (Orange, France) and had a degree of deacetylation of 85 %. 

The deacetylation process is usually made in alkaline conditions, resulting in different 

chitosans depending on the degrees of deacetylation and on the molecular weight [2].  

 

 

 

Figure 2.1 – Representative chemical structure of chitosan.  
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Most of chitosan properties of are affected by its molecular weight and the degree of 

deacetylation, as was already discussed in section I. In the present thesis, chitosan was 

blended with synthetic biodegradable polymers to enhance the processability of 

chitosan and provide better mechanical properties to the final material. The synthetic 

biodegradable material enables melt processing and acts as the continuous phase of the 

blend, enhancing its mechanical properties. In previous works by our group, several 

innovative blends were produced, with different percentages of natural and synthetic 

polymer but always keeping the biodegradability [3, 4]. The synthetic polymers used in 

the referred works were not previously tested for biomedical applications, only for 

environmental ones. This innovative approach resulted in several blends of chitosan 

with synthetic aliphatic polyesters, produced by compression moulding followed by 

particulate leaching [3, 5]. A biological screening was performed to test the blends 

cytocompatibility and biological performance when in cell culture [3]. From this study, 

two chitosan – polyester blends were selected for the work herein presented: chitosan 

and poly(butylene succinate) (CPBS) (50/50 % by weight), and chitosan and 

poly(butylene terephthalate adipate) (CPBTA) (50/50 % by weight).  

Poly(butylene succinate) is a biodegradable aliphatic polyester commercialized under 

the trade name Bionolle™ 1000 (Showa Highpolymer, Japan), and its chemical 

structure is shown in Figure 2.2. It possesses a crystallinity of 35-45 % and a melting 

temperature of 114-115 ºC [6]. PBS is a semi-rigid polyester (elongation at break of 

170-250 %) that can be processed under conventional melt processing techniques, and 

its applications are mainly for industry purposes, such as food packaging, clothing or 

industrial trays [7]. The biodegradation of the material is achieved in composting and 

also by hydrolysis of the ester link, eventually mediated by lipase [8] (an enzyme found 

in the human body). 

 

 

 

Figure 2.2 – Chemical structure of poly(butylene succinate). 
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Poly(butylene terephthalate adipate) is another biodegradable aliphatic polyester used 

for the production of chitosan-based blends, but presenting elastomeric mechanical 

properties. PBTA is an Eastar Bio Copolyester 14766™ butanediol, adipate and 

terephthalate copolymer obtained from Eastman Chemical Company, Kingsport, 

Tennessee. It presents elastic properties similar to those of a rubber (elongation at break 

of 600 %), being more flexible than PBS [7]. PBTA is formed by the reaction of 

butanediol with adipic and terephthalic acids [6]. PBTA is degraded into various 

aliphatic and aromatic oligomers by the action of microorganisms in compost [9]. The 

material, being a polyester, is also degraded by the action of enzymes. 

 

 

 

Figure 2.3 – Chemical structure of poly(butylene terephthalate) that will be modified 

to produce PBTA. 

 

1.2. Poly(ε-caprolactone) 

 

Poly(ε-caprolactone) is also an aliphatic polyester, semicrystalline and with a melting 

temperature (Tm) of 59-64 ºC (Figure 2.4), which degrades at slow rates, being used to 

produce resorbable sutures (for example Monoderm®) or for implantable drug delivery 

systems [6]. PCL is water stable and can undergo hydrolysis [10]. It is a very versatile 

polymer, being proposed for several tissue engineering applications [11-15], either 

alone or in blends with other polymers.  

 

 

 

Figure 2.4 – Chemical structure of poly(ε-caprolactone). 
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The PCL used for scaffolds production was acquired from Union Carbide Chemicals 

and Plastic Division, Bound Brook, New Jersey, and it is commercially available as 

TONE™ polymer. 

 

1.3. Starch – polycaprolactone blend  

 

Starch is the major polysaccharide used to store energy by many types of plants. It 

occurs in nature in the form of non-soluble granules. It is composed of a variable 

mixture of amylase and amylopectin. Amylase is a linear polysaccharide whereas 

amylopectin is a branched polysaccharide (Figure 2.5). Depending on the type of plant, 

the biosynthesis mechanisms differ, as well as their shape, size or composition [10]. 

Starch is transformed into a thermoplastic starch by disruption of its natural structure by 

the hot processing in water in the presence of glycerol. It has been blended with other 

synthetic polymers, for example polyhydroxybutyrate, cellulose or PCL [16]. Starch 

blends with PCL, poly-L-lactic acid or ethylene vinyl alchool have been studied in our 

group for tissue engineering applications, either in vitro or in vivo, showing low 

cytotoxicity and good cytocompatibility [17-23]. 

 

Figure 2.5 – Chemical structure of amylase and amylopectin. Their ratio in starch 

granules varies according to their origin. 

 

The starch-polycaprolactone blend used in the framework of this thesis was supplied 

by Novamont (Novara, Italy), in the ratio of 30 % starch (Mater-BI ZI01U, Novamont, 

Novara, Italy) and 70 % PCL. 
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2. Scaffolds production 

 

2.1. Compression moulding and particulate leaching 

 

Depending on the scaffold material and its intended application, different production 

techniques and methodologies may be used. The procedure used should not modify the 

materials chemical properties or its cytocompatibility. However, it should allow for 

tailoring in a controlled and reproducible way its pores and structure to meet the 

intended requirements of the TE application. Several techniques have been used, such as 

solvent casting combined with salt leaching, freeze drying, fiber bonding, melt bonding 

or combination of these techniques [24, 25]. 

The scaffold porosity plays a very important role in tissue formation in vitro, as the 

pores will potentially enhance cell-cell interactions. In the particular case of cartilage, 

pores may provide an ECM like structure that mimics cartilage environment. Therefore, 

scaffold porosity and consequent pore shape and size were studied in the context of the 

present thesis to assess interactions between cells and porous scaffolds. Our group has 

been exploring melt based techniques for porous scaffolds production, namely for 

chitosan and starch blends. CPBS (50/50 % wt) blends were produced and processed 

into scaffolds, using a methodology based in hot compression moulding followed by 

NaCl particle leaching [5, 26]. The porous structure of these scaffolds was created by 

solid powder mixing with salt particles. The solid blend was loaded into a mould, 

heated and compression-moulded into large and thick discs. Those discs were sliced to 

obtain cubes of 5 mm. These cubes were further immersed in distilled water to leach out 

the NaCl particles, during 6 days (Figure 2.6). The time period was previously 

optimized and is the time required to ensure that salt particles are dissolved. 
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Figure 2.6 – Illustration of the procedure followed for the production of scaffolds by 

compression moulding followed by NaCl particle leaching.  

 

In the present work, a CPBS (50/50 % wt) blend was first compounded and processed 

into scaffolds using this methodology. For achieving a high degree of mixing, the 

blends were produced using a twin screw extruder (Leistriz LSM 36). More detailed 

information about the characteristics of the blends can be found elsewhere [3, 4, 27]. 

Common salt (NaCl) was used as the porogen agent. Two different groups of scaffolds 

were produced: one using 80 % by weight (wt) of salt with particle size ranging 

between 63-125 µm (80 CPBS). The second group of scaffolds was produced using 60 

% by weight of salt with a particle size range of 250-500 µm (60 CPBS). In both cases, 

large discs were processed from where cubes of 5 mm were sliced. These cubes were 

immersed in distilled water to leach out the salt, in a process optimized to take 6 days. 

Water was changed every day to facilitate the complete dissolution of the porogen 

agent. By the end of this procedure, cubes were dried until a constant weight was 

obtained.  

 

2.2. Fiber bonding 

 

CPBS scaffolds produced by compression moulding and salt leaching were shown to 

be suitable for cartilage TE, when seeded with bovine articular chondrocytes [28]. 

However, the cells show some difficulty in penetrating inside the scaffolds porous 
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structure, suggesting that an optimization of the porous structure was needed. The same 

blend was used for the production of fiber meshes, by fiber bonding technique. This 

technique allows the production of highly interconnected and larger scaffolds having a 

large surface area to allow cell attachment and proliferation [25].  

The previously compounded chitosan blends were processed by fiber extrusion, using 

a prototype single screw micro-extruder coupled to a capillary die. Two blends were 

herein used: CPBS and CPBTA, both in the ratio of 50/50 % (wt). Extruded fibers were 

chopped into 1 cm sections and then were loaded into a mould. The mould was heated 

above the thermoplastic blend Tm during 10 minutes. Immediately after removing the 

moulds from the oven, fibers were slightly compressed by a Teflon cylinder to pack and 

promote bonding between the fibers. Finally, standardized scaffolds of 2 mm thick 

discs, with diameter of 8 mm were obtained by cutting the fiber bonded meshes with a 

circular die (8 mm in inner diameter). Scaffolds were further sterilized by ethylene 

oxide. 

 

2.3. Electrospinning 

 

In recent years, the electrospinning technique has been extensively explored for 

producing fibrous mesh scaffolds that are composed of fibers with diameters ranging 

from micro to nanoscale. The characteristic morphology of those meshes resembles the 

native ECM of many tissues. It is a very versatile technique that allows a fine control 

over the scaffold geometry, allows obtaining different fiber diameters and meshing 

morphologies, and also enables processing different materials. The individual fiber 

diameter can be adjusted by optimizing the spinning parameters and the polymeric 

solution properties. The obtained nanofiber meshes have a high surface area volume that 

promote cell attachment, and also allows a higher density of cells [29]. 

Over the past decade, electrospinning has gained popularity as a means of fabricating 

scaffolds with micro to nanoscale features similar to the hierarchical structure of 

extracellular matrix (ECM). The ability to mimic the ECM structural organization is an 

important consideration in rational design of a cell-responsive scaffold platform upon 

which additional functionalities can be incorporated. Electrospinning offers great 

flexibility in terms of choice of scaffold material, as well as fine control over the 

scaffold morphology. Fibers with diameters ranging from tens to hundreds of 

nanometers can be easily produced. The diameter is adjusted empirically via modulation 
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of spinning parameters such as the voltage used, flow rate, collecting distance and 

polymer solution properties. A schematic of the electrospinning apparatus is shown in 

Figure 2.7. 

 

Figure 2.7 – Electrospinning setup composed by an electric power supply, a syringe 

pump and a collector. Different collectors can be used, depending on the intended fiber 

mesh morphology.  

 

2.3.1. SPCL and PCL nanofiber meshes production 

In the present work, PCL and SPCL nanofiber meshes were produced. Polymeric 

solutions of PCL and SPCL were prepared by dissolving the polymer or the blend into 

an organic solvent mixture of chloroform/dimethylformamide (70:30) (Sigma-Aldrich, 

USA), at concentrations of 17 % and 24 % (w/v), respectively. Polymeric solutions 

were placed into syringes with blunted metallic needles attached to it. The selected 

needles had an internal diameter of 0.8 mm. Furthermore, the syringe was coupled to a 

syringe pump (model KDS100, KD Scientific, USA) to control the flow rate. A flat 

aluminium foil connected to the ground was used as the fiber mesh collector. The high 

voltage power supply (0-25 kV) was applied in the needle, generating the electric field. 

The capillary tip-to-collector distance and the flow rate were fixed at 20 cm and 1.0 

mL/h, respectively. Nanofiber meshes production lasted 1 hour, and for that it was 

needed 1 mL of polymeric solution. The applied voltage was kept at 9 kV. Nanofiber 

meshes were collected and cut in squares with 1 cm2. Experiments were performed at 

room temperature and the conditions were optimized for the two materials. After 
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production and prior to the seeding procedures, nanofiber meshes were sterilized under 

ultra-violet (UV) light. 

 

2.3.2. PCL nanofiber meshes clamping system for culture in the bioreactor 

A clamping system to fixate the produced PCL nanofiber meshes in the multichamber 

flow perfusion bioreactor used in chapters 5 and 6 had to be assembled, as shown in 

Figure 2.8. The PCL nanofiber meshes meshes were clamped in between two silicon 

rings (with 8 mm outside diameter and 5 mm inside diameter), which were then 

clamped with nylon stitches [30]. The membranes were then sterilized under UV light 

for 1 hour in each side, with the meshes already mounted between the rings. 

 

 

 

Figure 2.8 – Clamping system used for culturing PCL nanofiber meshes in the 

bioreactor. 

 

 

3. Scaffolds characterization 

 

3.1. Scaffolds morphology 

 

As referred previously, we intended to work herein with different types of scaffolds 

morphology. Therefore, to clarify about the different porous morphologies of scaffolds, 

we include a figure with an example of each structure used: microporous scaffolds, 

nanofiber meshes and microfiber meshes (Figure 2.9). 
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Figure 2.9 – Morphology of the scaffolds used in this thesis. A – Microporous 

scaffolds. B – Nanofiber meshes. C – Microfiber meshes. 

 

3.2. Scanning electron microscopy for morphological analysis 

 

Scanning electron microscopy (SEM) is a technique that allows analysing the surface 

structure and topography of a specimen at very large magnifications. It is possible by 

this technique to analyse details at submicron level. SEM provides a direct assessment 

of pore size and structure. Interconnectivity of a scaffold can also be estimated, as well 

as examination of scaffold interior by sectioning the specimens. Usually it is necessary 

to coat the samples with conductive materials such as gold or carbon, to provide 

conductivity and avoid charge accumulation or damaging the specimen surface. Herein, 

we used SEM for morphological analysis of the scaffolds surface. The different 

scaffolds were sputter-coated with gold (Fisons Instruments, model SC502; England). 

Then, samples were analyzed using a Leica Cambridge electron microscope, model 

S360 (Cambridge, England).  

PCL and SPCL nanofibers diameter was assessed by quantification based in SEM 

micrographs with the software ImageJ (version 1.38X, Wayne Rasband Nacional 

Institutes of Health, USA). Pore sizes were also characterized using this software, and 

SEM micrographs. 

 

3.3. Microcomputed tomography 

 

Microcomputed tomography (µCT) is a non-destructive technique for the 

characterization of the structures with micrometer resolution, allowing the study of the 

interior of the structure in detail. Samples used in this technique can be used for futher 

tests because the technique is non destructive, providing a clear advantage relative to 

SEM analysis. Additionally, µCT provides a 3D imaging of the specimen and a close up 
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view of its interior and surface. Detailed information about scaffold characterization 

using µCT technique may be obtained e.g. in reference [31].  

In the present work, a µCT equipment (SkyScan, Belgium) was used for a very 

detailed analysis of the morphology of the developed CPBS porous scaffolds. Four 

scaffolds of each condition were scanned in high-resolution mode of 8.7 µm x/y/z and 

an exposure time of 1792 ms. The energy parameters defined in the scanner were 63 

keV with a current of 157 µA. Isotropic slice data were obtained by the system and 

captured into 2D images. These slice images were compiled and analyzed to render 3D 

images and obtain quantitative architecture parameters. A µCT analyser and a µCT 

Volume Realistic 3D Visualization, both from SkyScan, were used as image processing 

tools for both µCT reconstruction and to create/visualize the 3D images. Regions of 

interest (square of 4.5 x 4.5 mm2) were selected in each slice image and a threshold was 

set to eliminate background noise. This threshold (to distinguish polymer material from 

pore voids) was chosen and maintained constant for all the scanned specimens and 

samples. The threshold was also inverted to obtain the volume of the pore and to 

analyze both the pore morphology and interconnectivity. The analysis was performed to 

obtain quantitative data on the level of porosity and interconnectivity of the studied 

scaffolds.  

 

 

4. Cell isolation and expansion 

 

4.1. Culture medium 

 

In the context of the work developed during the PhD, several types of primary 

cultures were used, both from bovine and human origin samples. Chondrocytes and 

mesenchymal stem cells (MSCs) isolation procedures were studied and optimized, for 

both bovine and human samples. The culture medium used was similar for both types of 

cells, as we tested and validated the efficiency of the medium cocktail in both cultures.  

 

4.1.1. Culture medium for chondrocytes primary cultures 

For chondrocytes, two culture media were used, having a common basic cocktail 

named basic medium. For chondrocyte expansion in monolayer cultures basic medium 

supplemented with basic Fibroblast Growth Factor (bFGF) was used. For chondrocyte 
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culture in the 3D structures and to enhance cartilage ECM deposition, basic medium 

was supplemented with insulin and ascorbic acid. The culture media composition used 

for bovine and human chondrocytes in monolayer expansion and in 3D culture was 

prepared as follows: 

 

 Basic Medium: Dulbecco’s modified Eagle’s medium (DMEM) (Sigma, D5671), 

containing 10 mM Hepes buffer (Sigma, H0887), L-alanyl-L-glutamine (Sigma, 

G8541), Non Essential Aminoacids (Sigma, M7145) 10000 units/ml penicillin, 

10000 μg/ml streptomycin (Sigma, P0781), 10 % foetal calf serum (Biosera, 

S1810). 

 

 Expansion medium for articular chondrocytes: medium composed by basic 

medium supplemented with 10 ng/ml of bFGF (PeproTech, 100-18B).  

 

 Differentiation medium articular chondrocytes: this medium is composed by basic 

medium supplemented with 1 mg/ml of insulin (Sigma, I5500) and 1 mg/ml of 

ascorbic acid (Sigma, A4544).  

 

4.1.2. Culture medium for MSCs primary cultures 

Different culture media were used for the isolation and expansion of MSCs, and for 

chondrogenic differentiation of these cells. 

 

 Expansion medium for MSCs: this medium was composed by Alfa Minimum 

Essential Medium (α-MEM) (Invitrogen, 12000-063), supplemented with 

antibiotic/ antimycotic solution (Gibco, 15240062), 20 % fetal bovine serum 

(Baptista Marques, BSC0115/0943k). 

 

 Chondrogenic differentiation medium: this medium consisted of a mixture of α-

MEM supplemented with antibiotic/antimycotic solution, ITS liquid media 

supplement (Sigma, I2521), dexamethasone 1 mM (Sigma, D1756), sodium 

pyruvate 0.1M (Sigma, P4562), ascorbate-2-phosphate 17 mM (Sigma, A4544), 

L-proline 35 mM (Sigma, P5607) and 1 ng/ml of human recombinant TGF-β3 

(PeproTech, 100-36). 
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4.2. Articular chondrocytes isolation and expansion 

 

Isolation of articular chondrocytes was performed from bovine (chapters 3 and 4) or 

from human samples (chapter 7). The method applied for isolation and expansion of 

articular chondrocytes was performed according to the method previously reported [32]. 

This method is based on the enzymatic digestion of cartilage ECM for release of 

chondrocytes, using collagenase type II for the degradation of ECM. The procedure was 

similar for both types of samples. 

Bovine legs were acquired at the local abattoir, in Sheffield, UK. Full thickness 

hyaline cartilage was harvested from the metacarpophalangeal joint (Figure 2.10A). 

Human samples were collected at the local hospital, in Braga (Figure 2.10B). Articular 

cartilage was isolated from human patellae collected under informed consent from 

patients undergoing knee arthroplasties at the Hospital de São Marcos, Braga, Portugal. 

During surgeries, the knee was collected into a container with phosphate buffer saline 

(Sigma, D8537) and maintained in ice until the isolation procedure. 

 

 

 

Figure 2.10 – Example of bovine and human samples used for isolation of articular 

chondrocytes. A – Bovine leg exposing the metacarpophalangeal joint. B – Human knee 

sliced in pieces. 

 

Cartilage was dissected in small full-depth pieces and washed twice with phosphate 

saline buffer. Then, it was digested with 0.25 % (w/v) of trypsin solution (Sigma, 

E5134) for 30 minutes at 37 ºC on a rotator. The solution was removed, cartilage was 

washed again in phosphate saline buffer and then incubated in a collagenase type II 

solution (2 mg/mL) (Sigma, C6885) overnight at 37ºC on a rotator (Stuart mini orbital 

shaker SSM1). The following day, cells were washed twice with phosphate saline 
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buffer, counted and platted at a density of 2x106 cells per Petri dish in the case of 

bovine cells and in culture flasks, in the case of human cells. Cells were cultivated with 

expansion medium prepared as described previously. 

 

4.3. Human bone marrow mesenchymal stem cells isolation and expansion 

 

Isolation of human bone marrow derived mesenchymal stem cells (hBMSCs) was 

based on these cells ability to adhere to plastic. The referred cells present a spindle-

shape morphology and colony forming unit capacity (CFUs). The procedure employed 

in this thesis was based on a method previously described in the literature [33]. Human 

BMSCs were isolated from bone marrow aspirates collected under informed consent 

from patients undergoing knee arthroplasties in Hospital de São Marcos, Braga, 

Portugal (Figure 2.11). During surgeries, bone marrow was collected into a container 

with α-MEM medium, supplemented with antibiotic/ antimycotic solution and 5000 

units of heparin (Sigma, H3393) and maintained in ice until the isolation procedure. 

Aspirates were homogenised, diluted in phosphate buffer saline (1:1) and incubated for 

5 minutes at room temperature. Then, bone marrow was diluted in lyses buffer (1:10) 

and left under agitation for 10 minutes. Lyses buffer was prepared with 10 mM of Tris-

HCl (Sigma, T3253), 1.21 g of Tris Base (Sigma, T1503) and 8.3 g of NH4Cl (Merck, 

1011455000), in 1L of distilled water.  Afterwards, the suspension was centrifuged at 

1200 rpm, for 15 minutes at room temperature. Cells were ressuspended in α-MEM 

medium, supplemented with antibiotic/ antimycotic solution and 20 % fetal bovine 

serum. Cell suspension was filtered for disposal of debris, using 100 µm and 70 µm Cell 

Strainer (BD Falcon™, 352360 and BD Falcon™, 352350). Cells were counted and 

plated at the density of 4.7x103 cells/cm2. Cells were expanded in expansion culture 

medium for MSCs as described previously. 

 

 

Figure 2.11 – Human bone marrow sample for isolation of mesenchymal stem cells. 
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4.4. Human Wharton´s jelly mesenchymal stem cells isolation and expansion 

 

Human umbilical cords (UC) were obtained from informed consent full-term 

caesarian sections, under the cooperation agreement established between the 3B´s 

Research Group and the Obstetrics Department of the Hospital de São Marcos, Braga, 

Portugal and approved by the Ethics Committee of the same hospital (Figure 2.12). 

Human WJSCs (hWJSCs) were isolated according to the procedure originally described 

by Sarugaser et al. [34]. Briefly, UC were cut into 3–5 cm segments. These segments 

were then dissected by separation of the UC section epithelium along its length, 

exposing the underlying Wharton’s jelly. Each vessel, with its surrounding Wharton’s 

jelly matrix, was pulled away, and the ends of each dissected vessel were tied together 

with a suture creating “loops”. Following, the loops were digested using a 1 mg/ml 

collagenase type I solution (Sigma, C0130) prepared with phosphate buffer saline 

(Sigma, D8537). After 18–24 hours, the loops were removed. The remaining suspension 

was diluted with phosphate buffer saline to reduce its viscosity, followed by a 

centrifugation at 1200 rpm for 5 minutes. Cells were ressuspended in 10 mL of 

expansion culture medium for MSCs and counted in a hemocytometer. Finally, cells 

were plated and expanded until reaching 80–90 % confluence.  

 

 

Figure 2.12 – Example of an umbilical cord sample for isolation of human Wharton´s 

jelly mesenchymal stem cells. 

 

4.5. Analysis of the “stemness” of isolated mesenchymal stem cells 

 

Flow cytometry (FCM) is a technique that allows counting of cells or particles, 

suspending them in a fluid and passing them in a flow cytometer. Flow cytometry 

analysis was used herein to characterize surface markers of the isolated potential MSCs. 

It is well established that MSCs show non-haematopoietic surface markers such as 
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CD29, CD73 or CD166 and present colony forming unit –fibroblast (CFU-F) ability 

[35, 36].  

To evaluate cell-surface marker expression, and the stemness of the isolated cells, 

some studies were performed, namely FCM and cell differentiation into several 

lineages. Cultured hBMSCs and hWJSCs were incubated for 20 min at 4 ºC with 

fluorescein isothiocyanate (FITC)- or phycoerythrin (PE)-conjugated monoclonal 

antibodies specific for human markers associated with mesenchymal or haematopoietic 

lineages. All the antibodies were purchased from BD Pharmingen. The samples were 

analysed using a BD FACSCalibur flow cytometer (BD Biosciences, Portugal). The 

stemness character of both of these cells was studied in a previous work by our group 

[37]. Cells were studied by flow cytometry for MSCs markers (CD31, CD34, CD45-

negative and CD13, CD29, CD73, CD90, CD105, CD166-positive cells), and by 

differentiation studies into osteogenic, chondrogenic, and adipogenic lineage, being 

considered stem cells. 

 

 

5. Cell and materials culture 

 

5.1. Bovine articular chondrocytes (BAC) culture under static and dynamic conditions 

 

In this first approach to cartilage tissue formation in vitro (corresponding to chapters 3 

and 4), we employed a model using primary cultures of BAC, comparing static and 

dynamic (stirred) culture conditions. Those studies used nano or macro structures as 

scaffolds for support and enhancement of cartilagineous ECM deposition.  

  

5.1.1. BAC seeding and culture onto SPCL and PCL nanofiber meshes 

Dynamic cell seeding was performed using Petri dishes placed in a rotator inside the 

incubator. Three nanofiber meshes were placed in each Petri dish, and the cell 

suspension was added to obtain 6.5x106 cells per nanofiber mesh. We used the 

expansion culture medium for articular chondrocytes described previously for this step.  

We used 20 nanofiber meshes per experimental condition, for each material. Petri dishes 

were placed in the rotator, inside the incubator, at 60 rpm, for 72 hours. Afterwards, cell 

seeding was complete, and half of the constructs were kept in the rotator inside the 

incubator (dynamic conditions), whereas the others were placed in the incubator (static 
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conditions).  Culture medium was changed for differentiation medium prepared as 

described in 4.1.1. The medium was changed every three days. 

 

5.1.2. BAC seeding and culture onto CPBS scaffolds 

Bovine AC were harvested, counted and ressuspended in expansion medium. We used 

this method for dynamic seeding of CPBS scaffolds with different porosities, as 

described in chapter 4 of this thesis. Twenty scaffolds were used in each experiment, for 

each type of scaffold. Materials were seeded with a cell suspension containing 6.5x106 

cells per scaffold. Seeding was performed in spinner flasks in order to allow the cell 

penetration into the porous structure of the scaffolds. After 72 hours, the constructs 

were removed from the spinner flasks and divided by static and dynamic cultures, as 

described for PCL and SPCL nanofiber meshes.  

 

5.2. Human BMSCs culture in a flow perfusion bioreactor 

 

In the second part of the present PhD (corresponding to chapters 5 and 6), we used 

primary cultures of human mesenchymal stem cells, in static and dynamic culture 

(bioreactor) conditions to assess chondrogenic differentiation of hMSCs. The aim was 

to verify if the bioreactor would enhance ECM production and accumulation when 

using 3D structures produced with nano or microfibrous as scaffolds for cells. 

 

5.2.1. Human BMSCs seeding onto PCL nanofiber meshes 

Human BMSCs were harvested, counted and ressuspended in basic medium for MSCs 

in order to obtain a cell suspension of 200.000 cells/nanofiber mesh. The seeding 

method was previously described in detail and published by our group [30]. Each 

scaffold was seeded with a 10 µL drop of the prepared cell suspension in 24 well plates. 

Afterwards, constructs were maintained at 37 ºC and 5 % CO2, during 4 hours in an 

incubator to allow cell attachment to the nanofiber meshes. After this time period, 1 mL 

of expansion medium for MSCs was added to each culture well and left in the incubator 

for 24 hours. The constructs were then transferred to the bioreactor. In the next day, the 

flow perfusion bioreactor was fully sterilized in the autoclave. Then, it was assembled 

inside the hood and the constructs to be cultured were transferred into the bioreactor. 

The bidirectional flow perfusion bioreactor (PT patent nº 104155; European patent 

pending [38]) has a maximum of 20 individual culture chambers. According to the 
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study plan, 20 constructs were transferred to the bioreactor. The flow rate was set to 70 

µl/min/nanofiber mesh. The bioreactor was transferred into the incubator and kept in 

those conditions during the whole experiment.  

Another set of 20 identical constructs was transferred to new culture plates and 

maintained in static conditions to be used as control. Chondrogenic differentiation 

medium was added to the bioreactor and to the new culture plates for static culture, for 

promoting chondrogenic differentiation. Culture medium in the bioreactor was 

completely changed every week (100 mL each time). Control samples were cultured in 

24 well plates, and were fed every other day with 1 mL of culture medium, until the end 

of the experiment (28 days). 

 

5.2.2. Human BMSCs seeding onto CPBTA fiber meshes 

Human BMSCs were harvested from culture and counted. A cell suspension of 1x106 

cells/ fiber mesh was prepared to seed each scaffold. Cell seeding was performed in 

static conditions, inside the incubator, at 37ºC, during 24 hours. All the procedure 

follows the previous description presented in section 5.2.1, except for the bioreactor 

flow rate. For this work, the established flow rate was 100 µl/min/microfiber mesh.  

 

5.3. Co-cultures of human ACs and MSCs onto CPBS fiber meshes 

 

In the last part of this thesis (corresponding to the chapter 7), we studied the influence 

of chondrocytes onto the chondrogenic differentiation of human MSCs, using a 3D 

structure to facilitate the cell differentiation. We performed these experiments in static 

culture conditions, as we did not obtain conclusive results herein on the positive 

influence of dynamic culture conditions on chondrogenic differentiation and ECM 

production, compared to static conditions (chapters 5 and 6). We selected in this case 

the scaffold morphology that, based in previous results, showed the highest performance 

in having a positive influence over the chondrogenic differentiation of MSCs (CPBS 

microfibrous structure). 

Cells were expanded, split, counted and then seeded onto the CPBS fiber meshes. 

Two study groups were established: direct co-culture using with each source of hMSCs 

(hBMSCs or hWJSCs) and hACs; indirect co-culture using conditioned medium 

obtained from the culture of hACs. This indirect co-culture method herein described is a 

variation of the transwell inserts technique [39, 40]. In this case, instead of separating 
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the two cultures with a transwell, we cultured separately the chondrocytes and the stem 

cells. As discussed in the introduction of this thesis, it is known that the scaffolds 3D 

structure can positively influence the chondrogenic commitment of MSCs. We 

hypothesised that by providing the microenvironment and the soluble factors present in 

chondrocytes medium we would be able to influence the chondrogenic differentiation of 

both types of MSCs used in the present work. Thus, as the medium provided was 

previously consumed by chondrocytes, we used conditioned medium mixed (50/50 in 

volume) with fresh medium. By diluting the factors secreted by the chondrocytes in 

fresh medium, it was intended to provide the required nutrients to the MSCs indirect co-

cultures, avoiding the risk of nutrient deprivation. 

 

5.3.1 Direct co-cultures 

A suspension of 1x106 cells (5x105 hBMSCs and 5x105 hACs) per scaffold was used 

for seeding the fiber meshes using the dynamic culture method in a rotator, for 24 hours. 

Afterwards, constructs were changed into new culture plates and fed with chondrocytes 

differentiation medium. Constructs were placed inside the incubator in static culture 

conditions and cultured for 28 days. Medium was changed every other day. The same 

procedure was used for the direct co-cultures of hWJSCs. 

 

5.3.2 Indirect co-cultures 

Indirect co-cultures were performed using conditioned medium, obtained from hACs 

in culture. First, a cell suspension containing 1x106 cells per scaffold was prepared for 

each type of cells (hBMSCs or hACs). Each cell type was seeded onto different 

scaffolds, in different culture plates. The seeding procedure was similar to the one 

described above for the direct co-cultures. Afterwards, cells were placed in new culture 

plates containing differentiation medium. After two days, medium was changed. The 

human BMSCs medium was completely removed, and replaced by conditioned 

medium. This consisted of a mixture of the medium which was removed from the 

chondrocytes culture, mixed with fresh differentiation medium (50/50 in volume). 

Medium of these cultures (hBMSCs) was changed every other day, using this mixed 

conditioned medium. For the hACs cultures, fresh differentiation medium was used, and 

changed every other day. The two types of cultures were maintained for 28 days, in an 

incubator, at 37ºC and 5% CO2. The same procedure was used for the indirect co-

cultures of hWJSCs. 
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6. Biological assays 

 

6.1. Cell proliferation assay 

 

Viability and proliferation of cells is an important parameter to consider when using 

cell cultures. Cell proliferation can be assessed indirectly by quantifying its metabolic 

activity. The PicoGreen dsDNA assay allows the detection of double stranded DNA. 

The number of cells is directly correlated with the quantity of protein or DNA present in 

cells. The kit used herein is composed with fluorescent solutions that bind to DNA, 

allowing its indirect detection by fluorescence, using a microplate reader. The 

evaluation of the cell proliferation was performed using the PicoGreen dsDNA 

quantification Kit (Molecular Probes, P7589), according to the manufacturer 

instructions. Samples were collected at several time points. Triplicates of every time 

point were used. A standard curve ranging from 0.0 to 1.5 µg/ml was established. 

Fluorescence of both samples and standard curve was read with an excitation of 485/20 

nm and an emission of 528/20 nm. DNA concentration was extrapolated from the 

standard curve. This method was used to evaluate cell proliferation in chapters 5, 6 and 

7. 

 

6.2. Evaluation of cell morphology and distribution 

 

Evaluation of cell morphology and distribution was performed using SEM. In the 

present thesis we used two different microscopes for constructs analysis: a Philips XL-

20 and a Leica Cambridge S360, Leica Cambridge, Cambridge, UK. Preparation of 

samples was different, depending on which SEM used. All samples were collected at 7, 

14, 21 and 28 days of experiments. Samples from chapters 3 and 4 were prepared as 

follows. Samples were washed in sterile phosphate buffer saline and immersed in 3 % 

glutaraldehyde (Sigma, G5882) with 0.1 M cacodylate buffer at pH 7.4 (AGAR R1103) 

at room temperature for one hour. Afterwards, they were washed in phosphate buffer 

saline and osmium tetra oxide was added and left for 2 hours. Finally, samples were 

dehydrated in increasing alcohol concentrations and let to dry. Then, they were sputter 

coated with gold and analysed.  

Samples from chapters 5 and 6 were washed in sterile phosphate buffer saline and 

immersed in 3 % glutaraldehyde (Sigma, G5882) at room temperature for one hour. 
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Samples were washed in phosphate buffer saline, dehydrated in increasing alcohol 

concentrations and the procedure continued as described above. 

 

6.3. Glycosaminoglycans quantification 

 

Glycosaminoglycans (GAGs) quantification was based on the use of proteolytic 

enzymes able to degrade cartilage ECM and a colorimetric assay to measure the 

quantity of GAGs released [41]. Enzymes will degrade proteoglycans and the released 

GAGs will be quantified indirectly. The basic die 1,9 dimethylmethylene blue will link 

to the negatively charged GAGs and allow their detection by measuring the solution 

absorbance. Herein, GAGs quantification was performed using two different methods, 

differing mostly in the enzyme used for digestion of the produced ECM. 

 

6.3.1. GAGs quantification using papain digestion 

Samples were collected, freeze/dried overnight and then digested. Digestion solution 

was prepared by adding papain (Sigma, P4762) and N-acetyl cysteine (Sigma, A8199) 

at the concentrations of 0.05 % and 0.096 %, respectively, to 50 ml of digestion buffer 

(200 mM of phosphate buffer containing 1 mM EDTA (Sigma, E5134), pH 6.8). 

Samples were incubated with 600 μl of the referred solution, overnight at 60ºC. 

Afterwards, they were centrifuged at 13000 rpm for 10 minutes. Supernatant was 

collected and stored at -20 ºC until the assay was performed. Dimethymethylene Blue 

(DMB) stock solution was prepared dissolving 16 mg of DMB powder in 900 ml of 

distilled water containing 3.04 g of glycine and 2.73 g of NaCl. pH was adjusted to 3.0 

with HCl and volume adjusted to 1L. The solution was stored at room temperature 

covered by alumin foil. Chondroitin sulphate (Sigma, C8529) solution was prepared in 

water, in a 5 mg/ml stock solution and kept refrigerated. Dilutions of this solution were 

performed in order to make a standard curve. Samples were also diluted as appropriated, 

with distilled water. Optical density was measured in a microplate reader, at 530 nm. 

Unseeded nanofiber meshes and CPBS scaffolds (chapters 3 and 4) were used as 

controls. They were treated in the same way than the seeded ones for the GAG assay 

procedure. We used three samples per each GAG assay. 
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6.3.2. GAGs quantification using proteinase K digestion 

DMB assay was performed according to the method described elsewhere [42]. 

Briefly, samples (Chapter 7) were collected at 1 and 4 weeks of culture, frozen 

overnight and then digested. This digestion allowed separating the formed ECM from 

the scaffold. Digestion solution was prepared by adding 1 mg/mL of proteinase K 

(Sigma, P8044) diluted in 50 mM Tris-HCl, at pH of 7.6. Tris-HCl solution was 

prepared using the appropriate amount of Tris-HCl, adding sodium azide (Sigma, 

13412) to a final concentration of 0.05 % (w/v). The pH was corrected for the final 

value of 7.6. Samples were placed in 1.5 ml tubes and incubated with 1 mL of the 

referred solution, overnight at 60 ºC. The procedure followed the same steps before 

mentioned in 6.3.1. 

 

6.4. Histological analysis 

 

Prior to sectioning, samples need to be processed. In the case of cells or tissues, 

several embedding media are available for covering the structure and preserving its 

integrity. Depending on the sample its characteristics, various embedding media can be 

selected, such as paraffin, OCT compound or glycol methacrylate. The main difference 

between these media is on the processing technique. Paraffin samples are processed 

using high temperatures (between 60-80 ºC) whereas OCT samples are processed in 

cold conditions using liquid nitrogen. Glycol methacrylate embedded samples are 

processed using intermediate temperatures (4 ºC).  

Herein, due to the different materials used, two inclusion procedures were applied for 

processing samples for histology. Nanofiber meshes and CPBS constructs (from 

chapters 3, 4 and 5, respectively) were included in OCT compound. This compound is 

used for embedding sections prior to be frozen and sectioned in cryogenic conditions. 

Samples from chapters 6 and 7 were collected at the end of the experiment and 

processed for histology using Technovit, which is an embedding kit based in glycol 

methacrylate. 

 

6.4.1. Samples inclusion and processing using OCT compound 

Samples were collected at the end of the experiment, included in OCT (OCT 

compound BDH, Gurr®) and stored at -20 ºC. Eight µm thick sections were cut and 

placed in microscopy slides. They were further fixed during 30 minutes at 4 ºC, in a 
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fresh 4 % paraformaldehyde (Sigma, P6148) solution in phosphate buffer saline. The 

samples were futher washed twice in distilled water and let overnight to air-dry. Slides 

were stored at 4 ºC until they were used for the staining procedures. 

 

6.4.2. Samples inclusion and processing using Technovit 

Samples were fixed in 10 % neutral buffered formalin and then dehydrated through 

increasing ethanol concentrations. The samples were immersed in infiltration solutions 

and embedded in Technovit® glycol methacrylate (kit 8100, Heraeus Kulzer, 

EBSciences, CO, USA) and polymerized. Specimens were cut to obtain longitudinal 

cross-sections of 7 µm of thickness, using a modified microtome equipped with a 

tungsten blade (Leica RM 2155). 

 

6.4.3. Staining 

Hematoxylin-eosin (H&E) staining is a method widely used for the analysis of cells 

distribution and morphology. The combination of two stains (hematoxilyn and eosin) 

allows detecting cells nuclei and cytoplasm. This stain was performed to evaluate the 

cells distribution within the scaffolds. H&E staining was conducted in an automatic 

machine (Fume Cupboard; X219/E11/LEV1) Sections were washed in running water 

for 5 minutes, and then dipped in 1 % acid alcohol for 5-10 seconds. They were washed 

again in water and stained in eosin for 10 minutes. Another washing with water was 

performed, for 5 minutes, and sections were afterwards dehydrated through crescent 

concentrations of alcohol. After staining, slides were cleared in xylene and mounted in 

DPX (BDH 36029 2F).  

Toluidine blue staining was also performed. This method allows a metachromatic 

staining of cartilage matrix and specifically of its proteoglycan content. It stains 

proteoglycans and GAGs. This procedure was used for all samples in the results 

chapters. Staining solution was prepared by adding 1 % of toluidine blue (Sigma, 

T0394) dissolved in distilled water containing 0.5 g of sodium borate, followed by 

filtering. One drop of this solution was added to each section for 2-3 seconds. Then, 

sections were rinsed with distilled water and let to air dry. They were cleared in xylene 

and mounted in DPX.  

Alcian blue stain was performed for samples studied in chapters 3 and 4 to detect 

cartilage formation. This dye stains acid mucopolysacharides and GAGs. Alcian Blue 

stain was performed by rinsing the sections in 3 % acetic acid and keeping them in 1 % 



Materials and Methods 

81 

alcian blue solution prepared as described in the referred chapters. Sections were 

counterstained with aqueous neutral red (Sigma, N6634) and then washed with water, 

let to dry and then rinsed in absolute alcohol. Mounting of slides was processed as 

previously described for the other staining procedures. 

Safranin O staining is another technique to detect cartilage components. This is a 

cationic dye that in dehydrated cartilage sections gets its orthochromatic form, and is in 

this form that safranin O links to tissues GAGs. This stain was performed was used for 

samples in chapters 5 to 7. A detail description of the procedure can be found in the 

referred chapters. By the end of the stain, sections were cleared in xylene and mounted 

as previously described.  

 

6.5. Immunolocalisation of collagens type I and type II 

 

Immunolocalisation is a technique performed to detect and identify specific protein 

markers on in vitro cultures cells and in tissues. The methods used in the present thesis 

were performed according to the instructions of the manufacturer of the Vectastain and 

DAB kits, but some of the solutions employed in the procedure were different. 

Therefore, two methods are described in this section. The principle of this method relies 

on the incubation of the sample section with a specific primary antibody for the antigen 

of interest. Then, the secondary antibody is added. This antibody is biotin-labeled, 

introducing many biotin molecules in the section and in the location of the primary 

antibody. An avidin-biotinylated enzyme complex in then added that binds to the 

secondary antibody. Localisation of the antigen is obtained by adding an enzyme 

substrate. 

 

6.5.1. Immunolocalisation method I 

Immunolocalisation of type I and type II collagens was performed in frozen sections 

of samples in chapters 3 and 4. Sections were pre-treated in 10 mg/ml hyaluronidase 

(Sigma, H4272) for 30 minutes at 37 ºC and in 2 mg/ml pronase (Sigma, P6911), for 30 

minutes, at 37 ºC. Sections were washed in phosphate buffer saline and endogenous 

peroxidase activity was quenched with 3 % hydrogen peroxide in 50 % methanol (BDH, 

101586 6B) for 5 minutes. This step is justified by the need to block tissues intrinsic 

endogenous peroxidases that produce a reaction product from the substrate alone. 

Sections were washed in Tri-buffered saline (TBS) and blocked with 3 % bovine serum 
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albumin (BSA) (Sigma, A2153) in TBS/ Tween 20 (Sigma, P7949) for 1 hour to avoid 

non-specific staining. Sections were further incubated with primary antibodies (collagen 

type I and collagen type II) (UNLB 1310-01 and UNLB 1320-01) overnight at 4 ºC, in a 

humidified atmosphere. Then, sections were washed once with high salt wash solution 

and twice in TBS/Tween 20, 10 minutes each and then incubated with the secondary 

antibody from the kit during 1 hour at room temperature, again in a humidified 

atmosphere. The remaining protocol is similar to the one described in the Vectastain 

Elite ABC Kit PK-6105 (Vector Laboratories Ltd, UK) and in the Vector DAB Kit 

(Vector Laboratories Ltd, UK). Slides were washed in water for 5 minutes and then 

counterstained with hematoxylin for nuclei visualization. Finally, slides were mounted 

in DPX. Controls were performed using normal goat serum instead of primary 

antibodies, which was also included in the kit.  

 

6.5.2. Immunolocalisation method II 

For chapters 5 to 7, a variant of this method was used. Immunolocalisation of type I 

and type II collagens was performed in technovit sections. Endogenous peroxidase 

activity was quenched with 0.3 % hydrogen peroxide solution for 30 minutes. Sections 

were rinsed in phosphate buffer saline for 5 minutes. R.T.U. Vectastain® Universal 

Elite ABC Kit (Vector, VCPK-7200) was used for antibody incubation, according to the 

instructions of the manufacturer. Shortly, sections were incubated with primary 

antibodies (collagen type I and collagen type II) (UNLB 1310-01 and UNLB 1320-01) 

overnight at 4 ºC, in a humidified atmosphere. Incubation was revealed by using the 

Peroxidase Substrate Kit DAB (Vector, VCSK-4100). Slides were washed in water for 

5 minutes and then counterstained with hematoxylin for nuclei visualization. Finally, 

slides were mounted in Histo-clear®. Controls were performed using normal goat serum 

instead of primary antibodies, which was also included in the kit. 

 

6.6. RNA isolation  

 

The first and often most critical step in performing fundamental molecular biology 

experiments such as RT-PCR, is the RNA isolation. The method herein used for RNA 

extraction and isolation was based on the Trizol reagent. This reagent is ready-to-use for 

isolation of total RNA from cells and tissues. Trizol disrupts cells and dissolves their 

components while maintaining RNA integrity. Then, chloroform is added, which allows 
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the separation of the solution into two distinct phases: aqueous and organic. RNA will 

remain in the aqueous phase and it is recovered by precipitation with isopropyl alcohol. 

Three samples were collected for each time point and each condition used herein, in 

chapters 5, 6 and 7. Samples were washed in phosphate buffer saline, immersed in 

TRIzol reagent (Invitrogen, 15596-018) and kept at -80 ºC for posterior RNA 

extraction. To perform the RNA extraction, samples were taken from the freezer, and 

kept in ice until complete thawing. Chloroform (Sigma, C2432) was added; samples 

were vigorously agitated for 15 seconds and then incubated in ice for 15 minutes. After 

that incubation, samples were centrifuged at 13000 rpm, for 15 minutes, at 4 ºC. 

Afterwards, the supernatant was collected for a sterile 1.5 mL tube, and an equivalent 

volume of isopropanol (Sigma, I9516) was added. Samples were incubated at -20 ºC 

overnight, to precipitate the RNA. In the next day, samples were centrifuged at 13000 

rpm, for 15 minutes, at 4 ºC. Then, the supernatant was removed and 800 μl of ethanol 

70 % was added, in order to wash away the isopropanol. The ethanol 70 % solution was 

prepared from absolute ethanol (Merck, 1.00983.2511) and ultra pure water. The 1.5 

mL tubes were agitated vigorously and centrifuged again, at 9000 rpm for 5 minutes, at 

4 ºC. The supernatant was again removed, and the pellet was left to air dry. Finally, the 

pellet was ressuspended in 50 μl of DNase, RNase free water (Gibco, 10977-015). The 

concentration and purity of the extracted RNA was evaluated using the NanoDrop ND-

1000 Spectrophotometer (NanoDrop Technologies Inc, USA). 

 

6.7. Real-Time Polymerase Chain Reaction (RT-PCR) 

 

Real-time PCR (RT-PCR) is a quantitative technique based in the Polymerase Chain 

Reaction (PCR) procedure. PCR is a widely used technique that allows the 

amplification of a copy of a DNA fragment million of times amplifying its number to 

detectable quantities (amplicon). This technique relies on thermal cycling and enzyme 

(DNA polymerase) replication of DNA. One major drawback of PCR is that the 

amplicon can only be visualized when the reaction finishes. In RT-PCR this does not 

happen, since this technique allows the amplification and simultaneous quantification of 

the amplicon. RT-PCR is usually combined with reverse transcription to quantify 

messenger RNA in cells or tissues. In the present thesis, we used this combination for 

detecting gene expression of cartilage related genes. We used a reverse transcriptase 

RT-PCR, consisting of a two step fluorogenic assay. In the first step, isolated RNA was 
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reversed transcribed into complementary DNA (cDNA), followed by RT-PCR for 

detection of cartilage related genes. 

Samples from chapters 5 and 6 were studied using the SyberGreen system (Bio-Rad). 

All the reagents used in this procedure were from Bio-Rad, following the instructions of 

the manufacturer. Thermocycler reaction conditions used were also the ones proposed in 

the kits. In the first step, RNA was reversed transcribed into cDNA, using the iScript 

cDNA synthesis kit (1708891). A MiniOpticon real-time PCR detection system 

(BioRad Laboratories, USA) was used to perform the reaction. Afterwards, the cDNA 

obtained was used as template for the amplification of the target genes (aggrecan, 

collagen type I, II and X, Sox9 and Runx2), with the Syber Green Kit (1708884). The 

number of amplification cycles used for every reaction was of 45.  

Samples in chapter 7 were analysed using a different thermocycler and different kits. 

In the Real Time-PCR procedure the PerfeCta™ SYBR® Green system (Quanta 

Biosciences) was used. All reagents used in this procedure were purchased from Quanta 

Biosciences, following the instructions of the manufacturer. Thermocycler reaction 

conditions used were also the ones mentioned in the kits. In the first step, RNA was 

reversed transcribed into cDNA, using the qScript cDNA Synthesis Kit (95047-500). A 

MasterCycler EP Gradient detection system (Eppendorf, USA) was used to perform the 

reaction. Afterwards, the obtained cDNA was used as template for the amplification of 

the targets genes (Table 2.1), with the PerfeCta™ SYBR® Green FastMix™ kit 

(95072-05K).  
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Table 2.1 – Primer sequences used for RT-PCR procedures. 

Genea Forward (5´-3´) Reverse (5´-3´) 

AGC TGAGTCCTCAAGCCTCCTGT TGGTCTGCAGCAGTTGATTC 

COL II CGGTGAGAAGGGAGAAGTTG GACCGGTCACTCCAGTAGGA

COL I AGCCAGCAGATCGAGAACAT ACACAGGTCTCACCGGTTTC 

COL X CCAGGTCTCGATGGTCCTAA GTCCTCCAACTCCAGGATCA 

Runx2 TTCCAGACCAGCAGCACTC CAGCGTCAACACCATCATTC 

Sox9 TTCATGAAGATGACCGACGC GTCCAGTCGTAGCCCTTGAG 

GAPDH ACAGTCAGCCGCATCTTCTT ACGACCAAATCCGTTGACTC 
aAGC = Agreccan; COL II = Collagen type II; COL I = Collagen type I; COL X = Collagen type X; 

Runx2 = Runt-related transcription factor 2; Sox9 = Sry-type high mobility group box 9; GAPDH = 

Glyceraldehyde 3-phosphate dehydrogenase 

 

GAPDH was used as reference gene, and the expression of all the target genes was 

normalized to the GAPDH expression of that sample. All the primer sequences were 

generated using Primer3 software [43] and acquired from MWG Biotech AG, Germany. 

Primers sequences used are shown in Table 2.1. Obtained results were analyzed with 

CFX Manager Software – version 1.5 (BioRad Laboratories, USA).  

 

6.8. Statistical analysis 

 

Statistical analysis was performed for data of GAGs quantification in chapters 3 and 4 

using One-way analysis of variance in conjunction with Tukey’s test. Data from 

triplicates of GAG quantification are present as averages ± standard errors.  

Statistical analysis for chapters 5 and 6 was performed using the SPSS statistic 

software (Release 15.0.0 for Windows). Firstly, a Shapiro-Wilk test was used to 

ascertain about the data normality and variance equality. The normality was rejected 

and, consequently, nonparametric tests were used in further comparisons between static 

and dynamic culture conditions. A Mann-Whitney U-test was applied to compare 

independent groups of samples for each variable. P values lower than 0.01 were 

considered statistically significant in the analysis of the results. A Kruskal-Wallis test 

was applied to compare data between the different time points in each group. P values 

lower than 0.01 were considered statistically significant in the analysis of the results. 
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For chapter 7, statistical analysis was performed as described above using the SPSS 

statistic software. Nonparametric tests were used in comparisons between direct and 

indirect co-cultures. A Kruskal-Wallis test followed by Tukey’s HSD test was applied 

to compare data between the different time points. P values lower than 0.001 were 

considered statistically significant in the analysis of the results. 
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Evaluation of extracellular matrix formation in PCL and SPCL 

nanofiber meshes when seeded with bovine articular chondrocytes 
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Abstract 

 

Repair of cartilage defects is still a major health problem. Tissue engineering has 

developed different strategies and several biomaterials morphologies, including natural-

based ones, for repairing these defects. We used electrospun polycaprolactone (PCL) 

and starch-compounded polycaprolactone (SPCL) nanofiber meshes to evaluate 

extracellular matrix (ECM) formation by bovine articular chondrocytes (BAC). The 

main aim of this work is to evaluate the suitability of PCL and SPCL nanofiber meshes 

in chondrocyte cultures, and their capability to produce ECM when seeded onto these 

nanostructured materials. Furthermore, the effect of culture conditions (static vs. 

dynamic) over ECM formation was also assessed. BAC were seeded onto PCL and 

SPCL nanofiber meshes using a dynamic cell seeding procedure and cultured under 

static or dynamic conditions for 4 weeks. Constructs were characterized by scanning 

electron microscopy (SEM), histology, immunolocalisation of collagen types I and II, 

and glycosaminoglycans (GAG) quantification. Results show an extensive cell 

colonization of the entire nanofiber meshes, for both materials, and that chondrocytes 

presented typical spherical morphology. It is noticeable some degree of cell infiltration 

inside nanofiber meshes, again for both materials. ECM formation throughout the 

materials and GAG were detected, evidencing typical construct maturation. It is shown 

that PCL and SPCL nanofiber meshes are suitable as supports for ECM formation, and 

therefore, adequate for cartilage tissue engineering approaches. 

 

 

1. Introduction 

 

Joint diseases due to cartilage degeneration are a major health problem concerning 

people of all ages, but particularly elder people. Osteoarthritis, for example, affects 80% 

of people over 60 years. One therapeutic option is non steroid ant-inflammatory drugs 

(NSAID) treatment, aiming the delay and control of cartilage loss [1]. Other options 

involve surgical procedures, like arthroplasty with implantation of joint prosthesis [2]. 

These procedures are able to improve joint function considerably. However, patients´ 

mobility may be limited, and some problems concerning the interface of bone and 

implant may arise, causing the need for revision [2]. Although surgical outcome is very 

good at the beginning, durability of solutions and improvement of patients’ quality of 
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life is still far from ideal. Tissue engineering represents an alternative route to current 

treatments.  Its strategy may be based in cells injection into the defect and fixation with 

a membrane [3] or implantation of combinations of cells, scaffolds and growth factors 

[4] that may result in ECM production.  

Articular hyaline cartilage is an avascular tissue that covers the joint and acts as a 

load-bearing and wear-control structure. As cartilage is subjected to mechanical 

stimulus in its natural environment, it is typically followed a strategy to regenerate 

cartilage under the action of similar stimulus. It has been shown in vitro that the culture 

environment deeply affects chondrocytes proliferation in a 3D scaffold [5]. Bioreactors 

including spinner-flasks, rotating-wall vessels or direct perfusion are designed to 

provide a controlled environment for tissue engineered cartilage production [6]. 

Biomaterial morphology [7], as well as culture conditions and cell source [8], can also 

influence the quality of tissue engineered cartilage constructs. 

Biodegradable biomaterials, either natural or synthetic, have been processed into 

scaffolds for tissue engineering [9, 10]. PCL is a biodegradable polymer, belonging to 

the aliphatic polyester family. Currently, this class of materials is among the most 

attractive polymers which meet various medical and physical demands for safe clinical 

applications. PCL is used in clinical practice as a biomaterial due to its good mechanical 

properties, ability to form compatible blends and copolymers with a wide range of other 

polymers, including natural-based polymers, low toxicity, biocompatibility and 

biodegradability [11-13]. Nevertheless, its composition with starch offers new 

opportunities for controlling its degradation kinetics [14], release of growth factors and 

new surface chemistry [15, 16]. SPCL combines the affinity of starch and the 

processability and mechanical properties of the synthetic polymer (PCL) [17]. Several 

works with SPCL have been conducted with cells, for instance, in osteoblast-like cells 

[18], MSCs [19, 20], or leucocytes [21]. Dynamic culture conditions [22] and in vivo 

implantation in murine animal models [23] were also explored. 

Electrospinning allows producing polymeric ultrafine fibres with diameters ranging 

from few microns down to tens of nanometers [24]. Due to their very small diameter, 

polymeric nanofibers exhibit unusual properties like high specific surface area, 

flexibility in surface functionality and superior mechanical properties [25]. 

Additionally, nonwoven mesh structures produced by electrospinning physically mimic 

the structure and morphology of ECM components of a great variety of native tissues, 

including bone and cartilage [26-28].  The aim of the present study is to assess ECM 
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formation in PCL and SPCL electrospun nanofiber meshes, evaluating the effect of 

starch in the material formulation and also the effect of static or dynamic culture 

conditions. 

 

 

2. Materials and Methods 

 

2.1. Nanofiber meshes processing 

 

Polymeric solutions of PCL (PCL 787, TONETM polymer, Union Carbide Chemicals 

and Plastics Division, Bound Brook, New Jersey, with 80kD) and SPCL ((30% starch, 

70% PCL); Novamont: SPCL (Mater-BI ZI01U, Novamont, Novara, IT)) were prepared 

by dissolving the polymer or the blend into an organic solvent mixture of 

chloroform/dimethylformamide (70:30) (Sigma-Aldrich, USA), at concentrations of 

17% and 24% (w/v), respectively. Polymeric solutions were placed into syringes with 

blunted metallic needles attached to it. Used needles had an internal diameter of 0.8 

mm. Furthermore, the syringe was coupled to a syringe pump (model KDS100, KD 

Scientific, USA) to control the solution flow rate. A high voltage power supply (0-25 

kV) was applied to the needle to generate the electric field. An aluminium foil 

connected to the ground was used as the fiber mesh collector. The capillary tip-to-

collector distance and the flow rate were fixed at 20 cm and 1.0 ml/h, respectively. 

Nanofiber meshes production lasted 1 hour, and for that it was needed 1 mL of 

polymeric solution. The applied voltage was maintained at 9 kV. Nanofiber meshes 

were collected and cut in squares with 1 cm2. Experiments were all performed at room 

temperature and the conditions were optimized for the two materials. 

 

2.2. Isolation of BAC and culture on nanofiber meshes 

 

Isolation and expansion of BAC was performed according to the method previously 

reported [29]. Cells were cultured with expansion medium: Dulbecco’s modified 

Eagle’s medium (Sigma, D5671), containing 10 mM Hepes buffer (Sigma, H0887), L-

alanyl-L-glutamine (Sigma, G8541), Non Essential AminoAcids (Sigma, M7145) 

10000 units/ml penicillin, 10000 μg/ml streptomycin (Sigma, P0781), 10% foetal calf 

serum (Biosera, S1810) and 10 ng/ml of basic Fibroblast Growth Factor (bFGF) 
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(PeproTech, 100-18B). Dynamic cell seeding was performed using Petri dishes. Three 

nanofiber meshes were placed in each Petri dish, and cells suspension added in order to 

have 6,5x106 cells per nanofiber mesh. We used 20 nanofiber meshes per experimental 

condition, for each material. Petri dishes were placed in a rotator, inside the incubator, 

at 60 rpm, for 72 hours. 

After 72 hours, cell seeding was complete, and half of the constructs were kept in the 

rotator (dynamic conditions), whereas the others were placed in the incubator (static 

conditions). Differentiation medium was changed every 3 days, and was composed of 

expansion medium without bFGF and with 1 mg/ml of insulin (Sigma, I5500) and 1 

mg/ml of ascorbic acid) (Sigma, A4544). Samples were taken in different time points: 

1, 2, 3 and 4 weeks of culture. 

 

2.3. Scanning Electron Microscopy (SEM) 

 

For SEM analysis, nanofiber meshes were collected at each time point: 1, 2, 3 and 4 

weeks. They were washed in sterile PBS and immersed in 3% glutaraldehyde (Sigma, 

G5882) with 0.1 M cacodylate buffer at pH 7.4 (AGAR, R1103) at room temperature 

for one hour. Afterwards, they were washed in PBS, osmium tetra oxide was added and 

left for 2 hours. Finally, samples were dehydrated in crescent alcohol concentrations and 

let to dry. SEM micrographs were taken at different time periods and with several 

magnifications. 

 

2.4. Histological analysis 

 

Samples were collected at the end of the experiment, included in O.C.T. (OCT 

compound BDH, Gurr®) and stored at -20ºC. Sections were cut 8 µm thick and placed 

in microscopy slides. Then, they were fixed during 30 minutes at 4ºC, in a fresh 4% 

paraformaldehyde (Sigma, P6148) solution in PBS buffer, washed twice in distilled 

water and let overnight to air-dry. Slides were stored at 4ºC until they were used for 

staining procedures. Hematoxylin-eosin staining was conducted in an automatic 

machine, Fume Cupboard; X219/E11/LEV1. Sections were washed in running water for 

5 minutes, and then dipped in 1% acid alcohol for 5-10 seconds. They were washed 

again in water and stained in eosin for 10 minutes. Another washing with water was 

performed, for 5 minutes, and sections were afterwards dehydrated through crescent 
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concentrations of alcohol. They were cleared in xylene and mounted in DPX (BDH, 

36029 2F). Toluidine blue staining was also performed. Staining solution was prepared 

by adding 1% of toluidine blue (Sigma, T0394) dissolved in distilled water containing 

0.5g of sodium borate, followed by filtering. One drop of this solution was added to 

each section for 2-3 seconds. Then, sections were rinsed with distilled water and let to 

air dry. They were cleared in xylene and mounted in DPX. Alcian Blue staining was 

performed by rinsing the sections in 3% acetic acid and keeping them in 1% alcian blue 

solution (Sigma, A3157) for 18 hours. After that, stain was poured off and sections were 

counterstained with aqueous neutral red (Sigma, N6634) for 1 min. Sections were 

washed with water, let to dry and then rinsed in absolute alcohol, cleared in xylene and 

mounted in DPX.  

 

2.5. Immunolocalisation of type I and type II collagens 

 

Immunolocalisation of type I and type II collagens was performed in fixed sections. 

Sections were pre-treated in 10 mg/ml hyaluronidase (Sigma, H4272) for 30 minutes at 

37ºC and in 2 mg/ml pronase (Sigma, P6911), for 30 minutes, at 37ºC. Sections were 

washed in PBS and endogenous peroxidase activity was quenched with 3% hydrogen 

peroxide in 50% methanol (BDH, 101586 6B) for 5 minutes. Sections were washed in 

Tri-buffered saline (TBS) and blocked with 3% BSA (Sigma, A2153) in TBS/ Tween 

20 (Sigma, P7949) for 1 hour to avoid non-specific staining. Sections were further 

incubated with primary antibodies (collagen type I and collagen type II) (Goat anti-type 

I collagen UNLB 1310-01 and Goat anti-type II collagen UNLB 1320-01) overnight at 

4ºC, in a humidified atmosphere. Then, sections were washed once with high salt wash 

solution and twice in TBS/Tween 20, 10 minutes each and then incubated with 

secondary antibody from the kit during 1 hour at room temperature, again in a 

humidified atmosphere. The remaining protocol is as described in the Vectastain Elite 

ABC Kit PK-6105 (Vector Laboratories Ltd, UK) and in the Vector DAB Kit (Vector 

Laboratories Ltd, UK). Slides were washed in water for 5 minutes and then 

counterstained with hematoxylin for nuclei visualization. Finally, slides were mounted 

in DPX. Controls were performed using normal goat serum instead of primary 

antibodies, which was also included in the kit. 
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2.6. Dimethylmethylene blue (DMB) assay for glycosaminoglycans quantification 

 

Samples were collected at 4 weeks of culture, freeze/dried overnight and then 

digested. Digestion solution was prepared by adding papain (Sigma, P4762) and N-

acetyl cysteine (Sigma, A8199) at the concentrations of 0.05% and 0.096%, 

respectively, to 50 ml of digestion buffer (200 mM of phosphate buffer containing 1 

mM EDTA (Sigma, E5134), pH 6.8). Samples were incubated with 600 μl of the 

referred solution, overnight at 60ºC. Afterwards, they were centrifuged at 13000 rpm for 

10 minutes. Supernatant was collected and stored at -20ºC until the assay was 

performed. Dimethymethylene Blue (DMB) stock solution was prepared dissolving 16 

mg of DMB powder in 900 ml of distilled water containing 3.04 g of glycine and 2.73 g 

of NaCl. pH was adjusted to 3.0 with HCl and volume adjusted to 1L. The solution was 

stored at room temperature covered by alumin foil. Chondroitin sulphate (Sigma, 

C8529) solution was prepared in water, in a 5 mg/ml stock solution and kept 

refrigerated. Dilutions of this solution were performed in order to make a standard 

curve. Samples were also diluted as appropriated, with distilled water. Optical density 

was measured in a microplate reader, at 530 nm. Unseeded nanofiber meshes were used 

as controls. They were treated in the same way than the seeded ones for the GAG assay 

procedure. We used three per each GAG assay. 

 

2.7. Statistical analysis 

 

Data from triplicates of GAG quantification are present as averages ± standard errors. 

One-way analysis of variance in conjunction with Turkey’s test was also performed. 

 

 

3. Results 

 

3.1. Electrospun nanofiber meshes 

 

SEM observations of produced nanofiber meshes evidence a random distribution of 

nanofibers, as expected. This is the typical result of electrospining process, caused by 

the electric filed generated in the equipment (Figure 3.1). PCL nanofiber meshes were 

composed by nanofibers with diameters in the submicron range, from 0.4-1.4 µm 
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(Figure 3.1A). The average pore sizes of PCL nanofiber meshes were 72.67±31.48 µm. 

Conversely, the SPCL nanofiber meshes presented a larger dispersion of nanofiber 

diameters (the thinner had diameters around 0.3-20 µm), probably due to the 

insolubility of the starch phase in the organic solvent mixture used. Indeed, a PCL 

solution containing a suspension of colloidal starch particles is obtained, and this has 

important implications in fibers diameter and in meshes morphology. The average pore 

sizes of SPCL, evaluated from SEM micrographs of the nanofiber meshes, were 

65.21±22.07 µm. 

 

 

 

Figure 3.1 – Electron micrographs of (A) poly(ε-caprolactone) (PCL) and (B) starch-

poly(ε -caprolactone) (SPCL) nanofiber meshes processed by electrospinning. 

 

3.2. SEM analysis 

 

SEM micrographs (Figure 3.2) show that cells colonize both types of nanofiber 

meshes, in both culture conditions, covering their surface extensively and 

homogeneously. PCL nanofiber meshes keep their membrane like shape (Figures 3.2A-

C; 3.2G-I), while SPCL nanofiber meshes tend to curl in a tubular structure (Figures 

3.2D-F; 3.2J-L). This structure trapped a considerable number of cells inside. 

Chondrocytes kept their round morphology throughout the experiment, either in PCL 

(Figures 3.2A, B, G-I) or SPCL (Figures 3.2E, F, K) nanofiber meshes, for both culture 

conditions. 
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Figure 3.2 – BAC growth morphology in PCL and SPCL nanofiber meshes, in 

different time points of the experiment, either in static (A-F) or dynamic (G-L) culture 

conditions. Different magnifications were used to highlight cell morphology. Cell 

growth was identical in static culture conditions either for PCL (A-C) or SPCL (D-F) 

nanofiber meshes. The same was observed in dynamic culture conditions, both for PCL 

(G-I) and SPCL (J-L). 

 

3.3. Histological staining 

 

BAC attached and spread not only to the nanofiber meshes surface, but also in the 

inner regions of the mesh structure, as it can be observed with the H&E staining 

(Figures 3.3A, D, G, J). Both PCL and SPCL nanofiber meshes showed similar cell 
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distribution, as well as proteoglycans presence, as shown by toluidine blue (Figure 

3.3B, E, H, K) and alcian blue stainings (Figures 3.3C, F, I, L). Darker staining of alcian 

blue is observed in static culture conditions histological sections (Figure 3.3C, F) than 

in dynamic conditions (Figures 3.3I, L). This result indicates the presence of more 

sulphated proteoglycans in static conditions. SPCL nanofiber meshes curled and formed 

tubes, entrapping considerable amounts of cells inside. 

 

Figure 3.3 – Production of extracellular matrix in PCL and SPCL nanofiber meshes, 

at 4 weeks of culture, either in static (A-F) or dynamic (G-L) culture conditions. Cells 

were able to attach to the nanofibers structure, as showed in hematoxylin-eosin staining, 

for PCL (A, G) and SPCL (D, J). Cells penetrated in this structure and produced 

proteoglycans, detected by toluidine blue staining, either in PCL (B, H) or SPCL (E, K) 

nanofiber meshes. Sulphated proteoglycans were detected by alcian blue staining, again 

for both PCL (C, I) and SPCL (F, L) nanofiber meshes. Two magnifications (10x and 
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20x) were used at each staining for microscopic observation. Scale bar = 100 μm. 

Arrows highlight nanofiber mesh structure. 

 

3.4. Immunolocalisation of type I and type II collagens 

 

There was a larger amount of proteoglycans in these protected inner regions, as well 

as collagen type I and type II (data not shown). Both collagens types were also detected 

either in static (Figure 3.4A-F) or dynamic culture conditions (Figure 3.4G-L). 

Interestingly, collagen type I was more evident on sections prepared from SPCL 

nanofiber meshes (both culture conditions) (Figures 3.4E, K) than on sections from PCL 

nanofiber meshes (Figure 3.4B, H), indicating a predominance of fibrocartilage being 

generated by this combination of structure and material. 

 

Figure 3.4 – Immunolocalisation of collagens in PCL and SPCL nanofiber meshes, at 

4 weeks of culture, either in static (A-F) or dynamic (G-L) culture conditions. Controls 
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(A, D, G, J) were performed with normal goat serum. In static conditions, collagen type 

I was only detected for SPCL (E) nanofiber meshes. Collagen type II, on the other hand, 

was detected for both PCL (C) and SPCL (F) nanofiber meshes. In dynamic conditions, 

collagen type I and type II were detected in PCL (H, I) and SPCL (K, L) nanofiber 

meshes. Two magnifications (10x and 20x) were used at each staining for microscopic 

observation. Scale bar = 100 μm. Arrows highlight nanofiber mesh structure. 

 

3.5. GAGs quantification 

 

Quantification of GAGs present in PCL nanofiber meshes revealed the presence of 

approximately 2.0% of total GAGs in the ECM in static culture conditions, versus 0.8% 

of total GAGs found in dynamic conditions (Figure 3.5). No statistically significant 

difference was found between these results (P>0.05). As for the SPCL nanofiber 

meshes, results revealed 2.4% of total GAGs for the static cultures versus 1.1% for the 

dynamic ones. Again, there was not a statistically significant difference between static 

and dynamic cultures (P>0.05). The same lack of statistical significance was found on 

differences between results obtained with two types of materials (P>0.05).   

 

 

 

 

Figure 3.5 –GAGs quantification for PCL and SPCL nanofiber meshes, at 4 weeks of 

culture. Static culture conditions are represented in white, dynamic culture conditions in 

grey. 
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4. Discussion 

 

The main goal of designing and producing a new scaffold is to provide enhanced 

microenvironment for cells, in an attempt to substitute the natural ECM milieu while 

they expand and repair the tissue. Many materials were already proposed for scaffolds 

production. Among those, natural polymers such as starch [14, 16-23, 30-38] or 

biodegradable polyesters, for example, PCL [11, 13, 17, 39-41] have been developed. In 

this case, electrospinning technique was used to explored those materials and 

consequently obtain a new SPCL fibrous structure. Electrospinning was used to produce 

meshes that were intended to provide good conditions for BAC to produce ECM. 

Recent applications of polymer nanofibers include fields of biotechnology and 

biomedicine [42]. Several tissue engineering approaches, aiming bone [11, 37, 38] and 

cartilage [40, 41] regeneration have also been explored. SEM micrographs confirmed 

that cells were able to colonize both nanofiber meshes, reinforcing the idea that PCL 

and SPCL are suitable polymers for the aimed purpose [17]. BAC attached and spread 

not only at the surface of the nanofiber meshes, but also in the inner regions of the mesh 

structure, as it can be observed with the H&E staining. Our present results indicate that 

BAC penetrates the structure, colonizing it and using it as a support for cell activity. 

This is, to our best knowledge a very encouraging result since most of the studies with 

nanofiber meshes obtained by electrospinning do not show a so clear penetration of 

cells into the mesh structure [25]. Cells were able to produced ECM, as showed by 

toluidine and alcian blue stainings, detecting GAGs accumulation. Both collagen type I 

and II were detected, expression of collagen type I being larger in SPCL meshes. 

Collagen type I is associated with fibrocartilage tissue [43], being undesirable when 

articular cartilage is the goal of a regeneration strategy. PCL electrospun nanofiber 

meshes have been proposed as novel scaffolds for tissue engineering [44], and specially 

for cartilage repair. Li et al., (2003) showed the production of cartilaginous matrix with 

fetal bovine chondrocytes seeded onto PCL nanofibrous scaffolds, highlighting the 

importance of these materials for proliferation and maintenance of the chondrocyte 

phenotype [41]. Recent work from the same authors also show the versatility of these 

nanofibrous scaffolds, in sustaining chondrogenic differentiation of human MSCs [40, 

45]. 

GAG production was not statistically different, comparing both types of materials. 

There was a slightly difference between them, being higher in SPCL than in PCL (2.4% 
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versus 2.0%). SPCL is a blend composed by corn starch and polycaprolactone, that has 

been extensively studied as biomaterial for different biomedical applications [17, 27, 

37, 46]. It was recently reported to support BAC adhesion, proliferation and 

differentiation, in SPCL fiber based scaffolds [46].  It was unexpected to find more 

GAGs in static cultures than in dynamic ones, because chondrocytes are naturally 

subjected to a fluid flow microenvironment, and therefore, could be stimulated by these 

culture conditions [47]. The use of a mechanical force can be employed in their 

culturing process to produce a phenotypically correct tissue [48]. However, it needs to 

replicate relevant physiologic conditions. The intention of using agitation during culture 

was to produce a phenotipically adequate tissue. However, it may be concluded that 

these conditions were not sufficient. We can hypothesize that the higher GAG content 

in static cultures observed in this study was due to some GAGs release to the culture 

medium during the experiment, originated by mixing of culture medium. Furthermore, 

seeding in spinner flasks may have somehow caused some cell damage, due to the 

turbulent flow, generated by the magnetic stirring [49]. Similar results were obtained 

with bovine calf chondrocytes seeded onto fibrous polyglycolic acid meshes, where 

constructs exposed to similar mixing synthesised and released more GAGs into the 

culture medium, and resulted in lower fractions of GAGs [50]. Another study points out 

that mixing may increase the loss of GAGs from the construct, decreasing pericellular 

GAG concentration [51]. 

Data did not allow us to substantiate clearly which one of the materials is best for the 

approach used in this work. It is known that a suitable scaffold for tissue engineering is 

due to have good surface properties, which will allow cell attachment and efficient 

transport of nutrients to growing cells. In that sense, a highly hydrophilic material 

would allow a higher water uptake and consequently, more nutrient supply to cells [52, 

53]. PCL has a more hydrophobic character, whereas SPCL is more hydrophilic, being 

more advantageous, in this perspective, for cell growth comparing to PCL. PCL is a 

homopolymer with very slow degradation kinetics. It is in clinical use for many 

applications, and could be the biodegradable material of choice. However, a wide range 

of options for development of PCL have been already explored in the past. One 

additional alternative to develop its performance being proposed herein is to compound 

it with other biodegradable materials, those compounds offering a new range of tunable 

properties. If we accept that there are advantages of working with a natural-based 

polymer, the combination of starch with PCL may lead to an attractive combination of 
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properties that may be tailored for specific applications, including cartilage tissue 

engineering. This material has been extensively studied for biomedical applications 

because of its biocompatibility and biodegradability [14, 16, 18, 27, 31, 54] and 

potential of inducing low levels of inflammatory response [21]. Its degradation kinetics 

can be controlled by material composition, having a more hydrophilic character and 

enabling designing controlled release systems for growth factors [55]. Results indicate 

that SPCL may be slightly more effective in sustaining ECM production, but it was also 

shown that higher levels of expression of collagen type I may be detrimental in 

obtaining hyaline cartilage by BAC cultured in these meshes. Further optimization of 

this material will be addressed in order to overcome this limitation. 

 

 

5. Conclusions 

 

The aim of this work was to assess if a blend of starch with polycaprolactone (SPCL) 

would have similar performance in sustaining BAC growth and ECM production when 

comparing with PCL. Both PCL and SPCL electrospun nanofiber meshes revealed to be 

interesting structures for cartilage tissue engineering strategies. PCL and SPCL 

nanofiber meshes seeded dynamically in spinner flasks evidenced a good response for 

this purpose. A very interesting result was the evidence that chondrocytes proliferated in 

external regions, and showed some capacity of migrating into inner regions of both 

types of fiber meshes. BAC were able to produce ECM, either in static or dynamic 

culture conditions. Static culture conditions lead to enhanced ECM production. These 

observations were confirmed by staining of proteoglycans, immunolocalisation of 

collagens type I and type II, and GAGs detection.  

In this work we confirmed evidences from the literature that sustain the claim that 

PCL nanofiber meshes are suitable for tissue engineering approaches, and also propose 

a new scaffold for cartilage tissue engineering (SPCL nanofiber meshes). Data did not 

show obvious qualitative nor quantitative differences between the two materials, 

nevertheless, we consider advantageous to use SPCL, not only because of their natural-

based composition, but also because it allows a greater control of the degradation 

kinetics and further functionalization of its structure. It is our understanding that both 

materials have a role to play in cartilage regeneration strategies, and that in particular 

SPCL nanofiber meshes can be further enhanced, not only in terms of degradability but 
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also providing opportunities for local release of growth factors for articular cartilage 

tissue engineering strategies. 
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Abstract 

 

Natural-based polymers have been extensively used in scaffolds production for 

cartilage tissue engineering. The present work aims at evaluating and characterizing 

extracellular matrix (ECM) formation in two types of chitosan-based scaffolds, using 

bovine articular chondrocytes (BAC). The influence of these scaffolds porosity, as well 

as pore size and geometry in cartilagineous tissue formation was studied. The effect of 

stirred conditions on ECM formation was also assessed. Chitosan-Poly (Butylene 

Succinate) (PBS) scaffolds where produced by compression moulding and salt leaching, 

using a blend of 50% of each material. Different porosities and pore sizes structures 

were obtained. BAC were seeded onto CPBS scaffolds using spinner flasks. After that 

period, constructs were transferred to the incubator, where half were cultured under 

stirred conditions, and the other half under static conditions, during 4 weeks. Constructs 

were characterized by scanning electron microscopy, histology procedures, 

immunolocalisation of collagen type I and collagen type II and dimethylmethylene blue 

(DMB) assay for glycosaminoglycans (GAG) quantification. Both materials showed 

good affinity for cell attachment. Cells colonized the entire scaffolds and were able to 

produce ECM. Large pores with random geometry improved proteoglycans and 

collagen type II production. However, that structure has the opposite effect on GAG 

production. Stirred culture conditions indicate to enhance GAG production, in both 

types of scaffolds. 

 

 

1. Introduction 

 

There are four major types of cartilage, which can be distinguished by their specific 

constitutive components: hyaline cartilage, fibrocartilage, elastic cartilage and 

costochondral cartilage [1]. Hyaline articular cartilage is the most abundant type in the 

body, composed of one cell type (the chondrocyte) dispersed in an abundant 

extracellular matrix (ECM). ECM is composed mainly of collagen type II and a large 

proteoglycan, aggrecan [1, 2]. The ECM provides most of the functional properties 

associated with hyaline cartilage, including resistance to compression and provision of 

low friction articulating surfaces in the joints. Injuries to cartilage are often painful and 

may severely affect movement. Unfortunately, articular cartilage has a relatively poor 
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capacity for self-repair (related with the lack of a direct blood supply), and cartilage 

injury is frequently associated with the onset of chronic problems including 

osteoarthritis [1, 3].  

Currently, there is no agreed method to restore fully damaged cartilage [4]. Current 

therapies include abrasion arthroplasty, subchondral drilling, prosthetic joint 

replacement, and ultimately transplantation of autologous chondrocytes or tissues [4, 5]. 

However, these treatments do not constitute a complete recovery for the patient, and in 

most of the cases persistent problems of donor site morbidity, limitations of patient 

mobility and consequent disability, loss of implants and limited durability of the 

prosthetics [2, 4-6] are observed. 

Tissue Engineering represents a promising approach for the repair of articular 

cartilage, but there is still no ideal scaffold for this approach. Chitosan/polyesters appear 

to offer several advantages in this field. 

In recent years, natural based polymers have been extensively studied, as for example, 

chitosan [7-11]. Chitosan is a derivative of chitin, obtained by deacetylation of this 

biopolymer [12]. Chitin is the second most abundant polysaccharide in nature, being 

found usually in crustaceans’ shells. Chitosan is a linear polysaccharide with a structure 

similar to glycosaminoglycans present in  native cartilage ECM [13]. This property is 

extremely important for cartilage tissue engineering, since it allows the development of 

several types of scaffolds. Another interesting property of chitosan is that it can be 

moulded into various shapes [14] and allows for the formation of different pore sizes 

structures [12]. It has an intrinsic antibacterial activity and high biocompatibility [13]. 

Chitosan has been used in several blends to produce many types of scaffolds, for 

example hydrogels [15, 16], porous scaffolds [11], amino acid immobilization [9] or 

drug delivery [17]. Our group has developed innovative blends of synthetic polymers 

with chitosan [7, 8, 18, 19], which have been developed for biomedical applications, 

such as bone [20-22] or cartilage [23, 24]. Studies have been conducted preparing 

chitosan based scaffolds aimed at cartilage regeneration, which  showed evidence of 

favourable responses in vitro [20, 21, 24-26]. As for in vivo studies, a high degree of 

biocompatibility of chitosan scaffolds has been shown in mice [13]. Another study, 

conducted in rabbits, observed  hyaline-like tissue after 24 weeks of implantation [15]. 

Recently, the basis for a cartilage engineering model in a large animal has been 

established, using Merino Sheep and chitosan-based scaffolds [27]. Using ovine MSCs 

combined with chitosan and TGF-β3, histological analysis revealed chondrocyte-like 
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cells surrounded by a hyaline-like cartilaginous matrix that was well integrated with the 

host cartilage [27]. The bio functionality of chitosan scaffolds produced by particle 

aggregation was tested in rats in vivo, which showed promising results in terms of 

connective tissues ingrowth and neo-vascularization [28]. 

In the current study, a bovine chondrocyte model was used to establish primary 

cultures and the formation of ECM in chitosan/ polyester based scaffolds was evaluated. 

Two types of scaffolds with different pore sizes and pore geometries were studied, and 

ECM deposition on both types of scaffolds was evaluated. In addition, different culture 

conditions were used, namely static versus dynamic, in order to establish the most 

suitable method to obtain hyaline cartilage tissue in vitro. 

 

 

2. Materials and Methods 

 

2.1. Scaffolds production 

 

A chitosan-poly(butylene succinate) (50/50% wt) blend was produced and processed 

into scaffolds using a methodology based on compression moulding followed by salt 

leaching, as previously described [8, 18]. Common salt (NaCl) was used as the porogen 

agent. Two different groups of scaffolds were produced: one using 80% weight (wt) of 

salt with particles size between 63-125 µm (80 CPBS). The second group of scaffolds 

was produced using 60% wt of salt with particle size between 250-500 µm (60 CPBS). 

In both cases salt and blend were loaded into a mould, heated and compression-moulded 

into large discs. Discs were sliced to obtain cubes of 5 mm. These cubes were immersed 

in distilled water to leach out the salt, over 6 days. Water was changed every day to 

facilitate the complete dissolution of the porogen agent. By the end of the procedure, 

cubes were dried until a constant weight was obtained. The resulting scaffolds were 

characterized, and will be further referred as 80% porosity or 60% porosity. 

 

2.2. Isolation of bovine articular chondrocytes 

 

Isolation of bovine articular chondrocytes was performed according to a method 

previously reported [29]. Full thickness hyaline cartilage was harvested from bovine 
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metacarpophalangeal joint. The skin was removed and the joint was transferred to a 

laminar air hood.  Cartilage was dissected in small full-depth pieces and washed twice 

with PBS buffer (Sigma, D8537). Then, it was digested with 0.25% (w/v) of tripsin 

solution (Sigma, E5134) for 30 minutes at 37ºC on a rotator. The solution was removed, 

cartilage was washed again in PBS buffer and then incubated in a collagenase type I 

solution (2 mg/ml) (Sigma, E0130) overnight at 37ºC on a rotator (Stuart mini orbital 

shaker SSM1). The following day, cells were washed twice with PBS, counted and 

platted at a density of 2 x 106 cells per Petri dish. Cells were cultivated with expansion 

medium: Dulbecco’s modified Eagle’s medium (Sigma, D5671), containing 10 mM 

Hepes buffer (Sigma, H0887), L-alanyl-L-glutamine (Sigma, G8541), Non Essential 

Aminoacids (Sigma, M7145) 10000 units/ml penicillin, 10000 μg/ml streptomycin 

(Sigma, P0781), 10% foetal calf serum (Biosera, S1810) and 10 ng/ml of basic 

Fibroblast Growth Factor (bFGF) (PeproTech, 100-18B). Culture medium was changed 

twice a week, and cells were expanded until passage 2.  

 

2.3. BAC culture on chitosan-based scaffolds 

 

BAC seeding was performed dynamically, in spinner flasks. Cells were harvested, 

counted and resuspended in expansion medium. Twenty scaffolds were used in each 

experiment, for each type of scaffold. Materials were seeded with a cell suspension 

containing 6,5x106 cells per scaffold. Seeding was performed in spinner flasks, using a 

magnetic stirrer placed inside an incubator, at 37ºC, in order to allow cells penetration 

into the material’s porous structure. After cell seeding was complete, constructs were 

removed from spinner flasks. Two experimental conditions were set: dynamic and 

static. For dynamic culture conditions, half of the constructs were incubated at 37ºC on 

a rotator at 60 rpm. For static conditions, constructs were left to culture statically inside 

the incubator. Culture medium was changed every 3 days. At this stage, the culture 

medium used was differentiation medium (expansion medium without bFGF and with 1 

mg/ml of insulin (Sigma, I5500) and 1 mg/ml of ascorbic acid) (Sigma, A4544). 

Samples were taken at different time points: 1, 2, 3 and 4 weeks of culture.  
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2.4. Microcomputed tomography (µCT) 

  

Microcomputed tomography (µCT) equipment (SkyScan, Belgium) was used as a 

nondestructive technique for a very detailed analysis of the morphology of the 

developed scaffolds. Four scaffolds of each condition were scanned in high-resolution 

mode of 8,7 µm x/y/z and an exposure time of 1792 ms. The energy parameters defined 

in the scanner were 63 keV with a current of 157 µA. Isotropic slice data were obtained 

by the system and reconstructed into 2D images. These slice images were compiled and 

analyzed to render 3D images and obtain quantitative architecture parameters. A µCT 

analyser and a µCT Volume Realistic 3D Visualization, both from SkyScan, were used 

as image processing tools for both µCT reconstruction and to create/visualize the 3D 

representation. Regions of interest (square of 4,5 x 4,5 mm2) were selected in each slice 

image and a threshold was set to eliminate background noise. This threshold (to 

distinguish polymer material from pore voids) was chosen and maintained constant for 

all the scanned specimens and samples. The threshold was also inverted to obtain pore 

volume and to analyze both the pore morphology. 

 

2.5. Scanning Electron Microscopy (SEM) 

 

For scanning electron microscopy analysis, constructs were collected at every time 

point. They were washed in sterile PBS and immersed in 3% glutaraldehyde (Sigma, 

G5882) with 0.1 M cacodylate buffer pH 7.4 (AGAR, R1103) at room temperature for 

30 minutes. Afterwards, they were washed in PBS buffer three times to remove all 

gluteraldehyde from the surface. Then constructs were submerged in osmium tetra oxide 

and left for 2 hours. Finally, they were dehydrated in alcohols and left to air dry. The 

samples were splutter coated with gold and analysed by scanning electron microscopy. 

For this work we used two different scanning electron microscopes: a Philips XL-20 

and a Leica Cambridge S360, Leica Cambridge, Cambridge, UK. 

 

2.6. Histological analysis (H&E, Toluidine Blue, Alcian Blue) 

 

Samples were collected at the end of the experiment (4 weeks of culture) and 

embedded in O.C.T. (OCT compound BDH, Gurr®), in order to make them suitable for  

cryosectioning, and stored at -20ºC. Sections were cut at 8 µm and placed on 
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microscopy slides. A fresh 4% paraformaldehyde (Sigma, P6148) solution in PBS 

buffer was prepared, filtered and cooled down for fixation of the slides. Slides were 

fixed for 30 minutes at 4ºC, washed twice in distilled water and left to air-dry overnight. 

Slides were subsequently stored at 4ºC until used for staining procedures. Hematoxylin-

eosin staining was conducted in an automatic machine, Fume Cupboard; 

X219/E11/LEV1. In this procedure, sections were washed in running tap water for 5 

minutes, and then dipped in 1% acid alcohol for 5-10 seconds. Sections were washed 

again in tap water and stained in eosin for 10 minutes. Another wash with tap water was 

performed for 5 minutes and sections were afterwards dehydrated through alcohols. 

They were cleared in xylene and mounted in DPX (BDH, 36029 2F). Toluidine blue 

stain was performed on a selection of the sections. The staining solution was prepared 

by dissolving 1% of toluidine blue (Sigma, T0394) in distilled water containing 0.5g of 

sodium borate, followed by filtering. One drop of this solution was added to each 

section for 2-3 seconds. Then, sections were rinsed with distilled water and let to air dry 

overnight. Sections were cleared and mounted as described previously. Alcian Blue 

stain was performed by rinsing the sections in 3% acetic acid and incubating them in 

1% alcian blue solution (Sigma, A3157) for 18 hours. After that stage, stain was poured 

off and sections were counterstained with aqueous neutral red (Sigma, N6634) for 1 

min. Sections were washed with water, left to air dry and then rinsed in absolute 

alcohol, cleared and mounted as described previously.  

 

2.7 Immunolocalisation of type I and type II collagens 

 

Immunolocalisation of type I and type II collagens was performed in fixed sections. 

Sections were washed in PBS and pre-treated with 10 mg/ml hyaluronidase (Sigma, 

H4272) in PBS for 30 minutes at 37ºC and with 2 mg/ml pronase (Sigma, P6911) again 

for 30 minutes at 37ºC. Then, sections were washed in PBS and endogenous peroxidase 

activity was quenched with 3% hydrogen peroxide in 50% methanol (BDH, 101586 6B) 

for 5 minutes. Sections were washed in Tri-buffered saline (TBS) solution and blocked 

with 3% BSA (Sigma, A2153) in TBS/ Tween 20 (Sigma, P7949) for 1 hour to avoid 

non-specific staining. Sections were then incubated with primary antibodies (collagen 

type I and collagen type II) (Goat anti-type I collagen UNLB 1310-01 and Goat anti-

type II collagen UNLB 1320-01) overnight at 4ºC, in a humidified atmosphere. The 

next day, sections were washed once with high salt wash solution and twice in 
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TBS/Tween 20 for 10 minutes each and then incubated with secondary antibody from 

the kit during 1 hour at room temperature, again in a humidified atmosphere. The 

remaining protocol is as described in the Vectastain Elite ABC Kit PK-6105 (Vector 

Laboratories Ltd, UK) and in the Vector DAB Kit (Vector Laboratories Ltd, UK). 

Slides were washed in water for 5 minutes and then counterstained with hematoxilyn for 

nuclei visualization. Then slides were mounted in DPX. Controls were performed using 

normal goat serum instead of primary antibodies, which was also included in the kit. 

 

2.8. Dimethylmethylene blue (DMB) assay for glycosaminoglycans quantification 

 

For this assay samples were collected at 4 weeks of culture, freeze/dried overnight and 

then digested. This digestion allowed the separation of the formed extracelular matrix 

from the scaffold. Digestion solution was prepared by adding papain (Sigma, P4762) 

and N-acetyl cysteíne (Sigma, A8199), to obtain the final concentrations of 0.05% and 

0.096%, respectively, to 50 ml of digestion buffer (200 mM of phosphate buffer 

containing 1 mM EDTA (Sigma, E5134), pH 6.8). Samples were placed in 1.5 ml tubes 

and incubated with 600 μl of the referred solution, overnight at 60ºC. Afterwards, 

samples were centrifuged in a bench centrifuge at 13000 rpm for 10 minutes. 

Supernatant was collected and stored at -20ºC until the GAG assay was performed. 

Solutions for this assay were prepared as follows. Dimethymethylene Blue (DMB) 

stock solution was prepared dissolving 16 mg of DMB powder in 900 ml of distilled 

water containing 3.04 g of glycine and 2.73 g of NaCl. This was mixed for 2 hours, 

covered with aluminium foil. pH was adjusted to 3.0 with HCl and volume to 1L. The 

solution was stored at room temperature covered with aluminium foil. Chondroitin 

sulphate (Sigma, C8529) solution was prepared in water, in a 5 mg/ml stock solution 

and kept refrigerated. This solution was diluted with water resulting in 5 unit increments 

from 0 μg/ml to 50 μg/ml, in order to make a standard curve. Samples were also diluted 

as appropriate with distilled water. To a 96 well plate, 20 μl of water was added as a 

blank. The same quantity of chondroitin sulphate diluted solutions was added, in 

duplicate, and the same was performed with all the samples. DMB solution was added, 

250 μl of the solution to each well, in a multichannel pipette, and the optical density was 

measured in a microplate reader, at 530 nm. We used scaffolds without seeded cells as 

controls. 
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2.9. Reproducibility of the experiments 

 

Each scaffold seeding was performed 3 times with cells isolated from a different 

animal. 

 

2.10. Statistical analysis 

 

Data from triplicates of glycosaminoglycans quantification are present as averages ± 

standard errors. One-way analysis of variance in conjunction with Turkey’s test was 

performed on the glycosaminoglycans assays results. 

 

 

3. Results 

 

3.1. Microcomputed tomography 

 

Bi-dimensional and tri-dimensional µCT images from both groups of scaffolds show 

differences between their morphology (Figure 4.1 and 4.2). 60 CPBS scaffolds (4.1A) 

show less pores than 80 CPBS scaffolds (4.1B), as expected. 60 CPBS scaffolds present 

smaller pores. Correlo et al., (2008) recently produced and characterized these two 

types of scaffolds in terms of porosity, pore size and mechanical properties [18]. 80 

CPBS scaffolds were shown to have 78.6±2.5% porosity, and a pore size of 

276.8±52.5µm. 60 CPBS scaffolds, on the other hand, were shown to have a lower 

porosity (57.7±6.6%), as well as a smaller pore size (199.3±5.3 µm) [18]. 

 

Figure 4.1 – Bi-dimensional microCT images of CPBS scaffolds, 60 CPBS scaffolds 

(A) 80 CPBS scaffolds (B), obtained by compression moulding and salt leaching. The 

images highlight the geometry of the obtained pores. 
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Pore geometry was also different in both compositions. As can be observed in the bi-

dimensional images of µCT, pores of the 60 CPBS scaffolds have a geometrically 

defined shape (similar to the salt structure), and seem to be homogeneously distributed 

throughout the scaffolds. On the other hand, the pores of the 80 CPBS scaffolds are 

randomly distributed and do not present a specific shape. 

 

 

Figure 4.2 – Tri-dimensional microCT images of CPBS scaffolds, 80 CPBS scaffolds 

(A) 60 CPBS scaffolds (B), obtained by compression moulding and salt leaching. The 

images highlight the porosity of both scaffolds. 

 

3.2. SEM analysis 

 

The scanning electron microscopy micrographs presented in Figure 4.3 show the 

distribution of cells in the seeded scaffolds throughout the period of the experiment. It 

can be observed that the chondrocytes colonized the entire scaffold, in both types of 

materials. Cells kept their round shaped morphology, typical of chondrocytes, either in 

static culture (Figure 4.3A-4.3D; 4.3I-4.3L), or in stirred culture conditions (Figure 

4.3E-4.3H; 4.3M-4.3P). Nevertheless, it was observed that the colonization of 60 CPBS 

scaffolds appeared slower than in 80 CPBS scaffolds, in both culture conditions. 
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Figure 4.3 – BAC growth morphology in CPBS scaffolds, throughout the time course 

of the experiment. A-H shows results for static (A-D) and dynamic (E-H) cultures in 

60% porosity scaffolds. I-P shows results for static (I-L) and dynamic (M-P) cultures in 

80% porosity scaffolds.  Different magnifications were used to highlight cell 

morphology. 

 

3.3. Histological staining 

 

The colonization of the scaffolds by cells was shown by H&E staining (Figure 4.4A, 

D, G, J). Concerning the 80 CPBS scaffolds, H&E staining shows more cells covering 

the surface of the scaffold than in the 60 CPBS ones. Consequently, more proteoglycans 

are observed, as stated by results of toluidine blue (Figures 4.4H and 4K) and alcian 

blue (Figures 4.4I and 4.4L) stainings. This observation applies for both culture 

conditions (static and dynamic). It is important to highlight the alcian blue staining 

results. The staining in the 80 CPBS scaffolds seems to be stronger and again covering 

more surface area than the obtained for 60 CPBS scaffolds, in both culture conditions. 
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Those results indicate a higher concentration of sulphated proteoglycans in these 

samples. 

 

Figure 4.4 – Production of extracellular matrix in CPBS scaffolds at 4 weeks of 

culture. A-F shows results for static (A-C) and dynamic (D-F) cultures in 60% porosity 

scaffolds. G-L shows results for static (G-I) and dynamic (J-L) cultures in 80% porosity 

scaffolds. Cells were able to attach to scaffolds as showed in hematoxylin-eosin staining 

for 60% porosity (A, D) and 80% porosity scaffolds (G, J). Cells produced 

proteoglycans, detected by toluidine blue staining, either in 60% porosity (B, E) or 80% 

porosity (H, K) scaffolds. Sulphated proteoglycans were detected by alcian blue 

staining, again for both 60% porosity (C, F) and 80% porosity scaffolds (I, L). Two 

magnifications (10x and 20x) were used at each staining for microscopic observation. 

Scale bar = 100 μm. 
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3.4. Immunolocalisation of type I and type II collagens 

 

Results of immunolocalisation of collagens type I and type II in both groups of 

scaffolds are presented in Figure 4.5. Cells seeded into 60 CPBS scaffolds produced 

both collagen type I and type II (Figure 4.5A-F), either in static (Figure 4.5B and 4.5C) 

or in stirred culture conditions (Figure 4.5D and 4.5F). Contrarily, collagen type I was 

discrete in the section of 80 CPBS scaffolds (Figures 4.5H and 4.5K), whereas collagen 

type II synthesis was revealed in all samples (Figures 4.5I and 4.5L). 

 

 

Figure 4.5 – Immunolocalisation of collagens in CPBS scaffolds, at 4 weeks of 

culture. A-F shows results for static (A-C) and dynamic (D-F) cultures in 60% porosity 

scaffolds. G-L shows results for static (G-I) and dynamic (J-L) cultures in 80% porosity 

scaffolds. Controls (A, D, G, J) were performed with normal goat serum. Collagen type 
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I (B-K) and collagen type II (C-L) were detected. Two magnifications (10x and 20x) 

were used at each staining for microscopic observation. Scale bar = 100 μm.  

 

3.5. GAGs quantification 

 

Glycosaminoglycans presented in both types of scaffolds were quantified by the DMB 

assay, and results are presented in Figure 4.6. A significant higher glycosaminoglycans 

production in 60 CPBS scaffolds was detected in comparison with 80 CPBS scaffolds. 

Stirred culture conditions significantly (P<0.05) enhance glycosaminoglycans 

production in both types of scaffolds when compared to static culture conditions. There 

was a statistical difference in glycosaminoglycans production in 60 CPBS scaffolds 

when cultured in stirred conditions compared to the data obtained for static culture 

conditions. For 80 CPBS scaffolds, glycosaminoglycans production in stirred culture 

conditions is higher, but not statistically different. 

 

 

Figure 4.6 –GAGs quantification for CPBS scaffolds, at 4 weeks of culture. Static 

culture conditions are represented in white, dynamic culture conditions in grey. 

 

 

4. Discussion 

 

Structure of pores is one important factor in tissue regeneration. The growth of some 

specific cell types in injured sites is dependent on optimal pore size and geometry [30]. 

Pore size affects cells response in terms of attachment, growth and proliferation [31]. 

Variation in pore size also affects the mechanical stability of constructs, and this is an 

important factor when implanting them in load bearing areas, as well as to evaluate the 
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construct response to mechanical stimuli in bioreactors [32]. In particular, permeability 

affects the shear stresses inside the construct [33], which is a stimulus for cellular 

differentiation or functional adaptation of the construct during the implant. Furthermore, 

mechanical environment in the tissue has a controlling influence on tissue 

differentiation [33]. For in vivo implantation, cells need to be expanded in vitro to a 

sufficient number in order to generate a construct with certain mechanical stability [34]. 

Furthermore, upon implantation the scaffolds and cells will be subjected to the action of 

synovial fluid flow in the joint. The fluid flow is believed to facilitate cell migration and 

promote positive signals by mechanotransduction to the cells.  Therefore, the dynamic 

culture conditions may support high seeding densities and help cells to grow, proliferate 

and produce ECM. Those conditions are also believed to lead to more stable constructs, 

and therefore, may enhance the construct integration within the tissue at the implant 

site. In a work by Gotterbarm et al., (2006), two layered biomaterials were implanted in 

osteochondral defects created in the trochlear groove of Göttinger Minipigs. They 

observed cellular migration and cell attachment, as well as matrix production. These 

authors claim that this cellular filling and attachment was fostered by the porous 

character of the biomaterials, and led to an increased amount of repaired tissue [35].  

In a previous work, Correlo et al., (2008) produced and characterized several 

scaffolds produced from different blends of chitosan and synthetic polyesters, including 

the CPBS scaffolds studied in the present work [18]. A higher range of different types 

of scaffolds were produced by compression moulding and salt leaching, using different 

salt sizes to induce small and large pores. Curiously, small salt sizes originated larger 

pores, due to the aggregation of the salt particles [18]. We choose the scaffolds from the 

blend CPBS (50/50) based on cytotoxicity and direct contact tests previously performed 

(data not shown). We intended to determine the effect of the pore size and shape on the 

production of ECM by bovine articular chondrocytes.  

In a work by Spiteri et al. (2006) it has been shown that substrate porosity enhanced 

bovine articular chondrocytes attachment, growth and formation of cartilage in vitro 

[31]. In our present work, scaffold pore morphology seems to equally affect BAC 

attachment and colonization. Globally, we can observe that cells attached and colonized 

both scaffolds. This observation is similar to the one obtained when rabbit chondrocytes 

were seeded onto chitosan-based hyaluronic acid hybrid polymer fibers. In the referred 

study, cell proliferation had no significant difference between 3 groups of scaffolds with 

different pore sizes [26].  
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Some studies have focused on the effect of pore size on chondrocytes performance. 

Cartilaginous tissue obtained on porous titanium alloy discs with the smaller pore size 

was thicker and had greater amount of proteoglycans, in comparison to tissue obtained 

form discs with larger pore sizes [36]. Another study by Nehrer et al., (1997) showed 

that biosynthetic activity and chondrocyte phenotype were improved in collagen 

matrices with smaller pores [37]. It has been suggested that cell-cell interactions are 

enhanced in scaffolds with small pore sizes, thus resulting in improved chondrocyte 

proliferation [37]. These studies lead to the conclusion that small pores improve 

chondogenesis. However, several other studies point to the opposite direction. Griffon 

et al., (2006) determined that large interconnective pores improve the cellularity and 

matrix content within chitosan scaffolds [38]. In a recent work, Lien et al. (2009) also 

showed that articular chondrocytes of Wistar rats performed better in the group of 

scaffolds with pore size between 250-500 µm in terms of proliferation and ECM 

production [39]. In fact, our findings support these observations. Cells seeded into 60 

CPBS produced both collagen type I and type II (Figure 5A-F), indicative of a fibrous 

cartilage tissue, either in static (Figures 5B and 5C), or stirred culture conditions 

(Figures 5C and 5F). Fibrocartilage is aa mixed matrix consisting of fibrous tissue and 

hyaline cartilage. It contains type I and type II collagen and aggrecan [40]. On the other 

hand, hyaline cartilage contains type II collagens and proteoglycans, being the major 

one aggrecan molecule [40]. Cartilage-like tissue formed in 80 CPBS scaffolds did not 

presented significant staining of collagen type I (5H and 5K) yet showed a marked 

staining for collagen type II, indicating that these tissue properties are more similar to 

hyaline-like cartilage tissue, than those obtained with 60 CPBS scaffolds. However, 

glycosaminoglycans content present in 80 CPBS scaffolds were lower compared with 

obtained for 60 CBPS scaffolds (Figure 6). This result seems to contradict the previous 

ones, going in the direction of the first series of results that were referred, where smaller 

pores enhance the proteoglycans deposition [36, 37]. In fact, the opposite effects of pore 

size in this work, was observed. On one hand, large pores induced cell proliferation, 

production of proteoglycans and collagens. On the other hand, glycosaminoglycans 

production was significantly lower in scaffolds with large pore sizes. Additionally, 

stirred culture conditions seem to also affect glycosaminoglycans production, for both 

types of scaffolds. In general, we observed that stirred conditions enhance 

glycosaminoglycans production. A similar observation was reported by Freyria et al. 

(2004), when using 3D collagen scaffolds seeded with BAC and cultured under static or 
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stirred conditions. Thus, authors state that these conditions allow obtaining a 

homogeneous distribution of cells and ECM within scaffolds structure [41]. It is 

described in the literature that substrate geometry and porosity may both influence 

chondrocyte behaviour [36, 37, 42].  Understanding the impact of the biomaterial 

geometry is very important to enhance the in vivo ECM formation. Many factors may 

act in concert, such as fluid flow to enhance the nutrition and waste product removal, as 

well as number of attached cells and their ability to produce ECM [31]. Therefore, the 

optimal conditions for each scaffold must be determined, because each scaffold 

characteristics determine the cell attachment, growth, maintenance of phenotype and 

ECM production [34]. The referred characteristics include the scaffolds texture, porosity 

(size, structure, distribution) and surface free energy [34]. In summary, every parameter 

by itself is important and should be regarded, but the overall of the referred parameters 

makes the scaffold be functional and suitable for cartilage tissue engineering. 

 

 

5. Conclusions 

 

Chitosan-PBS scaffolds were produced by compression moulding followed by salt 

leaching. Two different types of NaCl salt particles were used as porogens, and two 

types of scaffolds with different porosities, pore geometry and size were produced. 80 

CPBS scaffolds presented larger, randomly structured pores opposite to 60 CPBS 

scaffolds that showed smaller pores with a cubic structure. By our observations, we can 

state that 80 CPBS scaffolds seem more effective in inducing ECM production by BAC. 

Pore size and geometry of the pore had an effect on cell proliferation and ECM 

production. Proteoglycans and collagen type II were detected in larger quantities in 80 

CPBS scaffolds (large pores, random structure), when compared with 60 CPBS 

scaffolds (small pores, cubic structure). Nevertheless, glycosaminoglycan amount was 

lower in the 80 CPBS scaffolds. Large pores affected GAG production, either in static 

or dynamic culture conditions. Concerning culture conditions, stirred conditions 

improved ECM production in both types of scaffolds, thus being preferable than static 

culture conditions. 
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Abstract 

 

Mesenchymal Stem Cells (MSCs) have been recognized for their ability to 

differentiate into cells of different tissues such as bone, cartilage or adipose tissue, and 

therefore are of great interest for potential therapeutic strategies. Adherent, colony-

forming, fibroblastic-cells were isolated from human bone marrow aspirates, from 

patients undergoing knee arthroplasties, and the MSCs phenotype characterized by flow 

cytometry. Afterwards, cells were seeded onto electrospun polycaprolactone nanofiber 

meshes and cultured in a multichamber flow perfusion bioreactor, in order to determine 

their ability to produce cartilagineous extracellular matrix. Results indicate that the flow 

perfusion bioreactor increased the chondrogenic differentiation of hBM-MSCs, as 

confirmed either by morphological and RT-PCR analysis. Cartilage-related genes such 

as aggrecan, collagen type II and Sox9 were expressed. ECM deposition was also 

detected by histological procedures. Collagen type II was present in the samples, as well 

as collagen type I. Despite no statistically significant values were obtained for gene 

expression, the other results support the choice of the bioreactor for this type of culture. 

 

 

1. Introduction 

 

Due to the epidemiological importance and the high social costs of joint diseases, 

cartilage engineering holds remarkable potential in orthopedic surgery as an alternative 

to current surgical methods. Traditional implantable materials frequently fail its 

biofunction, due to implant loosening, inflammation, infection, rejection, wear debris 

and tissue inflammation or infection [1]. Tissue Engineering can provide the answers to 

many of these problems. One of the challenges of TE is to mimic the natural 

extracellular matrix (ECM) of connective tissues, including cartilage. Nanoscale is very 

important in this approach, as the ECM substratum that interacts with cells includes 

fibrils at submicron level [2]. Electrospinning process has been used to produce 

nanofibrous scaffolds that can mimic tissues’ ECM by imitating its fibrils morphology 

and distribution [3]. These nanofibrous structures present many advantages, such as 

high specific surface area for cell attachment, higher micro-porous structure and a 3D 

microenvironment for cell-cell and cell-biomaterial contact [1, 4]. In the last few years, 

nanomaterials and nanofibers have been explored as new functional structures for tissue 
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regeneration, in bone [5], cartilage [6],  veins or nerves [7]. Some materials intended for 

cartilage tissue engineering have been produced using electrospinning of several 

synthetic and natural materials, such as PCL [8], PLGA [9], chitosan-based materials 

[10] or starch based materials [11]. 

Cartilage is an avascular tissue composed by chondrocytes entrapped in an ECM rich 

in proteoglycans and collagens [12]. The low self-regeneration potential of cartilage is 

due to the absence of vascular networks and progenitor cells in the tissue, as well as the 

non-mobility of chondrocytes in the dense ECM [13]. Chondrocytes have been used to 

generate engineered cartilage tissue [11, 14], and are usually isolated from articular 

cartilage tissues. Stem cells are also commonly proposed for cartilage tissue 

engineering. Chondrocytes are developmentally derived from stem cells [15]. Compared 

with adult chondrocytes, stem cells are easier to obtain and manipulate, as they can 

undergo several passages before loosening their differentiation potential [16]. 

Mesenchymal stem cells (MSCs) can be isolated from several tissues, including bone 

marrow [17], fat tissue [18] or synovium [19]. Selecting the ideal source of cells for a 

cartilage tissue engineering approach is a demanding and challenging task, as there are 

numerous options. Additionally, the choice of the scaffold is very important. In a recent 

study it was shown dissimilar chondrogenic differentiation behaviour of MSCs derived 

from different tissues, namely human embryonic stem cells, bone marrow and adipose 

tissue. Additionally, their behaviour also differ among the tested silk and chitosan 

scaffolds [16]. 

Dynamic culture systems or bioreactors have been widely studied for cartilage tissue 

engineering approaches [20-22]. Results often show that they enhance ECM formation 

when compared with static cultures. In some bioreactor studies for cartilage tissue 

engineering approaches low levels of shear stress were used successfully, as they 

promoted good mass transfer properties [23]. As chondrocytes are surrounded by an 

environment influenced by mechanical forces, it is logical that the formation of 

cartilagineous tissue is also heavily influenced by the environment. Therefore, if cells 

are surrounded by an appropriated environment, and they have access to the correct 

levels of nutrients, it is believed that they will act like native chondrocytes and secrete 

ECM [23]. 

In a recent work using a bovine articular chondrocytes model, we showed that 

polycaprolactone (PCL) and SPCL (starch-compounded PCL) nanofiber meshes are 

suitable for cartilage tissue engineering [11]. In that study, we used a high initial 
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concentration of bovine articular chondrocytes, and cultured the nanofiber meshes in a 

lab rotator bioreactor. The results were encouraging, but from that work several other 

questions were raised, namely the aspects involved in the future application of this 

model in human therapies. In that study it was used a high number of cells, which most 

of the times are not readily available for clinical application. The dynamic culture 

system used in that previous study did not allow create a controlled environment for the 

culture of the constructs, and it is important to obtain a pre-implant with similar 

characteristics to the native cartilage. Finally, when going to clinic, the access to 

articular chondrocytes is more limited than it is for MSCs. Having all these issues in 

mind, we designed this study to validate if, starting from low seeding densities of 

human bone marrow-derived MSCs in PCL nanofiber meshes cultured in an in-house 

developed multichamber flow perfusion bioreactor (PT patent nº 104155; European 

patent pending [24]), we could induce chondrogenic differentiation of the MSCs and 

consequent ECM deposition. Also, we aimed to determine whether the ECM deposition 

would result in cartilage-like tissue, whose characteristics would resemble native 

articular cartilage. 

 

 

2. Materials and Methods 

 

2.1. Nanofiber meshes processing 

 

A polymeric solution of PCL (PCL 787, TONE polymer, Union Carbide Chemical 

and Plastics Division, Bound Brook, NJ, with 80 kDa), at the concentration of 17% 

(w/v), was prepared by dissolving the polymer into an organic solvent mixture of 

chloroform/ dimethylformamide (70:30) (Sigma-Aldrich, USA). The polymeric solution 

was placed into a syringe, which is coupled to a syringe pump (model KDS100, KD 

Scientific, USA) for flow rate control. A blunted metallic needle with an internal 

diameter of 0.8 mm was attached to the syringe. A grounded aluminium foil was used as 

the fiber mesh collector. A high voltage of 9kV was applied to the needle tip to generate 

the electric field; a needle tip-to-collector distance of 20 cm and the flow rate of 1.0 

ml/h were established. The applied voltage was maintained at 9 kV. All the experiments 

were performed at room temperature and the conditions were optimized for the 

production of PCL nanofiber meshes. The produced PCL nanofiber meshes presented a 
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thickness between 40-60 µm, 70-80% of porosity, determined by nCT (data not shown) 

and an average pore size of 2.7 µm. For more details on the PCL nanofiber meshes, 

please refer to Guimarães et al., 2010 [25]. After collection, nanofiber meshes were cut 

into 1 cm2 squares. 

A clamping system to fixate the produced nanofiber meshes in the multichamber flow 

perfusion bioreactor (PT patent nº 104155; European patent pending [24]) had to be 

assembled. The meshes were fixated in between two silicon rings, which were then 

clamped with nylon stitches [25]. Using this clamping system, the available surface of 

the nanofiber meshes to be cultured in the bioreactor was a circle of 5 mm in diameter. 

For the static cultures, the referred 1 cm2 squares were used. The membranes were then 

sterilized under UV light for 1hour in each side. 

 

2.2. Isolation of hBM-MSCs 

 

HBM-MSCs were isolated from bone-marrow aspirates collected under informed 

consent from patients undergoing knee arthroplasties in Hospital de S. Marcos, Braga, 

Portugal. Samples were collected from a 55 years old female donor, isolated, expanded 

and frozen in several passages. Briefly, during the surgery, bone marrow was collected 

to a container with α-MEM medium (Invitrogen, 12000-063), supplemented with 

antibiotic/ antimycotic solution (Gibco, 15240062) and 5000 units of heparin (Sigma, 

H3393) and maintained in ice until the isolation procedure. Aspirates were 

homogenised, diluted in PBS (Sigma, P4417) (1:1) and incubated for 5 minutes at room 

temperature. Then, bone marrow was diluted in lyses buffer (1:10) and left under 

agitation for 10 minutes. Lyses buffer was prepared with 10 mM of Tris-HCl (Sigma, 

T3253), 1.21g of Tris Base (Sigma, T1503) and 8.3g of NH4Cl (Merck, 1011455000), 

in 1L of distilled water.  Afterwards, the suspension was centrifuged at 1200 rpm, for 15 

minutes at room temperature. Cells were ressuspended in α-MEM medium, 

supplemented with antibiotic/ antimycotic solution and 20% FBS (Biochrom, 

BSC0115/0943k). Cell suspension was filtered for disposal of debris, using 100µm and 

70µm Cell Strainer (BD Falcon™, 352360 and BD Falcon™, 352350). Cells were 

counted and plated at the density of 4.7x103 cells/cm2. Cells were expanded in the 

referred culture medium until passage 5, and then used for seed the nanofiber meshes. 
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2.3. Flow-cytometry analysis 

 

To evaluate cell-surface marker expression, cultured cells were incubated for 20 min 

at 4ºC with fluorescein isothiocyanate (FITC)- or phycoerythrin (PE)-conjugated 

monoclonal antibodies specific for human markers associated with mesenchymal and 

haematopoietic lineages. The antibodies used were: CD29, CD34, CD45, CD73, CD90, 

CD105, CD116. All the antibodies were purchased from BD Pharmingen. The samples 

were analysed on a FACS Calibur (BD Biosciences). 

 

2.4. hBM-MSCs culture on the multichamber flow perfusion bioreactor 

 

hBM-MSCs were detached from the culture flasks by treatment with Trypsin/EDTA 

solution (Invitrogen, 25300-062). Cells were counted and a cell suspension of 200.000 

cells/nanofiber mesh was prepared to seed each of the nanofiber meshes. Cell seeding 

was performed using the “drop” method. The seeding method has been described 

previously in more detail by our group, in Guimarães et al., 2010 [25]. Briefly, each 

scaffold was seeded with a 10 µL drop of α-MEM culture medium containing 200.000 

cells, in 24 well plates. Afterwards, the constructs were maintained at 37ºC and 5% 

CO2, during 4 hours in an incubator to allow cell attachment to the scaffolds. After this 

time period, culture medium was added to each culture well and left in the incubator for 

24 hours. The constructs were then transferred to the bioreactor.  

This is the first work reporting the use of the multichamber bioreactor designed by our 

group. The bioreactor has currently a PT patent and the European patent is under 

submission. For detailed information please refer to Costa et al., 2010 [24]. Briefly, the 

bioreactor apparatus is composed of a central part with 20 individual culture chambers, 

with the diameter of 8 mm each, and two lids attached to the central part. These lids 

form a common inlet and outlet of medium.  These chambers were designed in a way 

which allows the circulation of the culture medium through them, and assures the 

evenly distribution of it between the several flow chambers. For bioreactor cultures, 20 

constructs were transferred for the apparatus and placed one in each chamber. A flow 

velocity of 70 µl/min/nanofiber mesh was established. The bioreactor apparatus herein 

used can be observed in Figure 1. The clamping system has been previously reported 

also by a work in our group by Guimarães et al., 2010 [25].  
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Another set of 20 constructs was transferred to new culture plates and maintained in 

static conditions to be used as control. Chondrogenic differentiation medium consisting 

of α-MEM supplemented with antibiotic/antimycotic solution, ITS liquid media 

supplement (Sigma, I2521), dexamethasone 1mM (Sigma, D1756), Sodium Pyruvate 

0,1M (Sigma, P4562), Ascorbate-2-phosphate 17 mM (Sigma, A4544),  L-Proline 35 

mM (Sigma, P5607) and 1 ng/ml of human recombinant TGF-β3 (PeproTech, 100-36) 

was used for the 28 days of the experiment. Culture medium in the bioreactor was 

completely changed every week (100 mL each time). Control samples were cultured in 

24 well plates, and were fed every other day with 1 mL of culture medium. 

 

 

Figure 5.1 – Multichamber flow perfusion bioreactor (PT Patent nº 104155; European 

patent pending [24]) assembled and the culture system inside the incubator. 

 

Samples were collected at every time point, both from the bioreactor and from static 

controls. For DNA analysis, 2 samples were collected at 14, 21 and 28 days of the 

experiment. For SEM analysis, 1 sample was collected on every time point. Three 

samples at 14, 21 and 28 days were collected for PCR analysis. For histological 

procedures, 1 sample was collected at the end of the experiment. Experiments were 

repeated 3 times. 

 

2.5. Proliferation assay (DNA quantification) 

 

Evaluation of cell proliferation was performed using the PicoGreen dsDNA 

quantification Kit (Molecular Probes, P7589), according to the manufacturer 

instructions. Samples from the flow perfusion bioreactor and from the static control 

were collected at 14, 21 and 28 days. Triplicates of every time point were used. A 
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standard curve ranging from 0.0 to 1.5 µg/ml was established. Fluorescence of both 

samples and standard curve was read with an excitation of 485/20 nm and an emission 

of 528/20 nm. DNA concentration was extrapolated from the standard curve. 

 

2.6. Scanning Electron Microscopy (SEM) 

 

For SEM analysis, one hMSCS-nanofiber meshes construct was collected at each time 

point: 1, 2, 3 and 4 weeks, for each culture condition. They were washed in sterile PBS 

and immersed in 3% glutaraldehyde (Sigma, G-5882) at room temperature for one hour. 

Samples were washed in PBS, dehydrated in increasing ethanol concentrations and let 

to dry at room temperature. Samples were sputter coated with gold and analysed in a 

scanning electron microscope (model S360, Leica Cambridge,UK). 

 

2.7. RNA isolation 

 

Three samples were collected from the flow perfusion bioreactor and from the static 

control. Samples were washed in PBS, immersed in TRIzol reagent (Invitrogen, 15596-

018) and kept at -80ºC for posterior RNA extraction. To perform the RNA extraction, 

samples were taken from the freezer, and kept in ice until complete thawing. 

Chloroform (Sigma, C-2432) was added; samples were vigorously agitated for 15 

seconds and then incubated in ice for 15 minutes. After that incubation, samples were 

centrifuged at 13000 rpm, for 15 minutes, at 4ºC. Afterwards, the supernatant was 

collected for a sterile 1.5 mL tube, and an equivalent volume of isopropanol (Sigma, I-

9516) was added. Samples were incubated at -20ºC overnight, to precipitate the RNA. 

In the next day, samples were centrifuged at 13000 rpm, for 15 minutes, at 4ºC. Then, 

the supernatant was removed and 800 μl of ethanol 70% was added, in order to wash 

away the isopropanol. The ethanol 70% solution was prepared from absolute ethanol 

(Merck, 1.00983.2511) and ultra pure water. The 1.5 mL tubes were agitated vigorously 

and centrifuged again, at 9000 rpm for 5 minutes, at 4ºC. The supernatant was again 

removed, and the pellet was left to air dry. Finally, the pellet was ressuspended in 50 μl 

of DNase, RNase free water (Gibco, 10977-015). The concentration and purity of the 

extracted RNA was evaluated using the NanoDrop ND-1000 Spectrophotometer 

(NanoDrop Technologies Inc, USA). 
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2.8. Real-Time PCR 

 

The Real-Time PCR procedure used in the present work consisted of a two step 

fluorogenic assay using the SyberGreen system (Bio-Rad). All the reagents used in this 

procedure were from Bio-Rad, following the instructions of the manufacturer. 

Thermocycler reaction conditions used were also the mentioned in the kits. In the first 

step, RNA was reversed transcribed into cDNA, using the iScript cDNA synthesis kit 

(1708891). A MiniOpticon real-time PCR detection system (BioRad Laboratories, 

USA) was used to perform the reaction. Afterwards, the cDNA obtained was used as 

template for the amplification of the target genes (aggrecan, collagen type I, II and X, 

Sox9 and Runx2), with the Syber Green Kit (1708884). The number of amplification 

cycles used for every reaction was of 45. GAPDH was used as reference gene, and the 

expression of all the target genes was normalized to the GAPDH expression of that 

sample. All the primer sequences were generated using Primer3 software [26] and 

acquired from MWG Biotech AG, Germany. Primers sequences used are shown in 

Table 5.1. Obtained results were analyzed with CFX Manager Software – version 1.5 

(BioRad Laboratories, USA). 

 

Table 5.1 – Primer sequences used for RT-PCR procedures a. 

Gene Forward (5´-3´) Reverse (5´-3´) 

AGC TGAGTCCTCAAGCCTCCTGT TGGTCTGCAGCAGTTGATTC 

COL II CGGTGAGAAGGGAGAAGTTG GACCGGTCACTCCAGTAGGA

COL I AGCCAGCAGATCGAGAACAT ACACAGGTCTCACCGGTTTC 

COL X CCAGGTCTCGATGGTCCTAA GTCCTCCAACTCCAGGATCA 

Runx2 TTCCAGACCAGCAGCACTC CAGCGTCAACACCATCATTC 

Sox9 TTCATGAAGATGACCGACGC GTCCAGTCGTAGCCCTTGAG 

GAPDH ACAGTCAGCCGCATCTTCTT ACGACCAAATCCGTTGACTC 
 

aAGC = Agreccan; COL II = Collagen type II; COL I = Collagen type I; COL X = Collagen type X; 

Runx2 = Runt-related transcription factor 2; Sox9 = Sry-type high mobility group box 9; GAPDH = 

Glyceraldehyde 3-phosphate dehydrogenase 
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2.9. Histological analysis 

 

Samples were collected at the end of the experiment, included in O.C.T. (Gurr® OCT 

compound, BDH) and stored at -20ºC. Sections with 8 µm thickness were placed in 

microscopy slides, fixed in a fresh 4% paraformaldehyde (PF) (Sigma, P-6148) solution 

in PBS buffer, during 30 minutes at 4ºC, washed twice in distilled water and let 

overnight to air-dry. Slides were stored at 4ºC until they were further used for staining 

procedures. Toluidine blue staining was performed. Staining solution was prepared by 

adding 1% of toluidine blue (Sigma, T0394) dissolved in distilled water containing 0.5 

g of sodium borate, followed by filtering. One drop of this solution was added to each 

section for 2-3 seconds. Then, the sections were rinsed with distilled water and let to air 

dry overnight. Sections were cleared in xylene substitute (Sigma, A5597) and mounted 

in Histo clear (Frilabo, HS200). Safranin O staining was performed by washing slides in 

tap water, then immersed in 0.02% fast green (Fluka, 44715) for 3 minutes. Then, 

samples were immersed in 1% acetic acid (Panreac, 131008) solution for 30 seconds. 

After, slides were immersed in 0.1% safranin O (Fluka, 84120) solution for 5 minutes. 

By the end, slides were washed in tap water and let to air dry. Sections were cleared in 

xylene and mounted as previously described. 

 

2.10. Immunolocalisation of type I and type II collagens 

 

Immunolocalisation of type I and type II collagens was performed in fixed sections. 

Endogenous peroxidase activity was quenched with 0.3% hydrogen peroxide solution 

for 30 minutes. Sections were rinsed in PBS for 5 minutes. R.T.U. Vectastain® 

Universal Elite ABC Kit (Vector, VCPK-7200) was used for antibody incubation, 

according to the instructions of the manufacturer. Shortly, sections were incubated with 

primary antibodies (collagen type I and collagen type II) (UNLB, Goat anti-type I 

collagen 1310-01 and UNLB, Goat anti-type II collagen 1320-01) overnight at 4ºC, in a 

humidified atmosphere. Incubation was revealed by using the Peroxidase Substrate Kit 

DAB (Vector, VCSK-4100). Slides were washed in water for 5 minutes and then 

counterstained with haematoxylin for nuclei visualization. Finally, slides were mounted 

in Histo clear. Controls were performed using normal goat serum instead of primary 

antibodies, which was also included in the kit. 
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2.11. Statistical analysis 

 

Statistical analysis was performed using the SPSS statistic software (Release 15.0.0 

for Windows). Firstly, a Shapiro-Wilk test was used to ascertain about the data 

normality and variance equality. The normality is strongly rejected and, consequently, 

nonparametric tests were used in further comparisons between static and dynamic 

culture conditions. A Mann-Whitney U-test was applied to compare the two 

independent groups of samples for each variable (i.e. DNA quantification and real-time 

PCR). P values lower than 0.01 were considered statistically significant in the analysis 

of the results. A Kruskal-Wallis test was applied to compare differences in between the 

days in each group. P values lower than 0.01 were considered statistically significant in 

the analysis of the results. 

 

 

3. Results 

 

3.1. Electrospun PCL nanofiber meshes  

 

SEM observations of the produced nanofiber meshes show a random distribution as 

expected. This is the most typical morphology obtained in the electrospinning process, 

caused by the electric field generated in the equipment (Figure 5.2). PCL nanofiber 

meshes were composed by nanofibers with diameters in the submicron range, from 0.4 - 

1.4 µm. 

 

Figure 5.2 – SEM micrografs of poly(ε-caprolactone) (PCL) nanofiber meshes 

processed by electrospinning. Scale bars: 50.0 µm= 5 cm; 5.0 µm= 2 cm. 
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3.2. FCM analysis of the isolated cells 

 

Isolated bone marrow cells were expanded and characterized for specific surface 

antigen expression by flow cytometry analysis. hBM-MSCs were analysed for 

hematopoietic marker expression (CD34 and CD45): isolated cells were negative for 

these two markers (not detected, less than 5%). Cells were positive for CD29 (95%), 

CD73 (98.3%), CD90 (97.9%), CD105 (85%) and CD166 (85%) surface markers, 

which are characteristic of mesenchymal stem cells. Based in this data we are very 

confident that the cell fraction isolated from bone marrow contains mostly MSCs. 

 

3.3. DNA quantification 

 

Results show a higher DNA content in samples collected from the flow perfusion 

bioreactor, compared to the static control conditions, in terms of DNA concentration 

(Figure 5.3). In this condition, DNA contents decreased a little at 21 days, but then 

increased by 28 days. In static conditions samples, there is a continuous decrease of the 

DNA contents along the time. In order to find significant differences in DNA contents 

between static and bioreactor culture conditions, the Mann–Whitney U-test was 

performed. No significant differences between both culture conditions were found at 14 

(p=0.18) or 21 days of experiment (p=1.00). However, bioreactor samples displayed a 

significantly higher DNA quantification than the static ones at 28 days of experiment 

(p=0.002). 

Concerning statistic differences between the days of culture, we found none either in 

static (Kruskal-Wallis test, p=0.149), either in the bioreactor (Kruskal-Wallis test, 

p=0.261). 
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Figure 5.3 - Box plot of the DNA quantification in static and bioreactor cultures after 

14, 21 and 28 days of culture. Data were analyzed by nonparametric way of a Mann–

Whitney U-test (* p<0.01, vs Static). 

 

3.4. SEM analysis 

 

SEM observations of the cultured hBM-MSC in electrospun PCL nanofiber meshes 

shows some differences in their morphology along the experiment (Figure 5.4). At 7 

days of culture, samples from the bioreactor showed a round-shaped morphology, 

whereas the cells from the static culture samples presented a fibroblast-like morphology, 

very stretched. The round-shaped morphology of cells in the bioreactor samples is 

maintained throughout the time course of the experiment (Figure 5.4A, C, E, G). In the 

two last time points, the cells morphology is not that evident. In figures 5.4E and 5.4G, 

referring to the bioreactor cultures at 21st and 28th days, respectively, we can observe 

that cells form a sheet that covers the entire meshes surface. Our interpretation of these 

two figures is that the production of ECM component and consequent deposition led to 

a thin film of cells entrapped in this matrix. Therefore, there are less “visible” cells, as 

they are now part of the matrix. On the other hand, in static cultures we can observe 

individual cells, as the matrix production here seems to be delayed, in comparison to the 

bioreactor cultures. Cells in static samples seem to be acquiring the round shaped 

morphology along the time, but by the 28th day of culture they are still not as round-

shaped as the bioreactor (Figure 5.4G and 5.4H). 
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Figure 5.4 – Morphology of hBM-MSCs cultured in electrospun PCL nanofiber 

meshes, in the flow perfusion bioreactor (A, C, E, G) and in static control conditions (B, 

D, F, H) along the time course of the experiment: A, B-7 days; C, D-14 days; E, F- 21 

days; G, H- 28 days. Different magnifications were used to highlight cell morphology. 

Scale bars: 100 µm= 2 cm; 20 µm= 0.5 cm. 
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3.5. Real-time PCR 

 

Samples were collected for real-time PCR at 14, 21 and 28 days of experiment, both 

from the bioreactor and static control culture conditions. The aim was to determine the 

expression of several cartilage-related genes. All the tested genes were being expressed. 

The expression of the Aggrecan transcript was detected for both culture conditions, in 

all time points. The statistical analysis performed, using a Mann–Whitney U-test, 

confirmed the absence of significant difference between culture conditions at 14 

(p=1.000), 21 (p=0.762) and at 28 days of experiment (p=0.800). The Collagen type II 

expression was detected, but no significant difference was found between static and 

bioreactor culture conditions in the 14th day (p=0.233), in the 21st day (p=0.413) or in 

the 28th day of experiment (p=0.400). The Sox9 transcript is observed in both culture 

conditions, following a similar expression pattern. Statistical analysis of the results for 

14 days of culture (p=1.000), 21 (p=0.800) and 28 days (p=0.333) showed no 

significant difference between both culture conditions. The expression of Collagen type 

I showed no significant difference between bioreactor and static culture conditions was 

found in the 14th day (p=0.563), in the 21st day (p=0.075) or in the 28th day (p=0.071). 

Collagen type X is expressed in slightly equal values for both types of cultures, as well 

as Runx2. Statistical analysis for Collagen type X confirmed that no significant 

difference was found between culture conditions in the 14th day (p=1), 21st day (p=0.4) 

or 28th day (p=1). For Runx2, the same was observed: no significant difference between 

the two tested conditions was found in the 21st day (p=0.400) or in the 28th day of 

experiment (p=1.00). 
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Figure 5.5 – Bar plots of chondrogenic markers of flow perfusion bioreactor samples 

and static control conditions normalized for the reference gene GAPDH, after 14, 21 

and 28 days of culture. Data were analyzed with a Mann–Whitney U-test. 

 

3.6. Histological staining 

 

Histological sections of electrospun PCL nanofiber meshes seeded and cultured with 

hBMSCs, at 28 days of culture in the multichamber bioreactor or in static conditions 

were stained for cartilagineous ECM using toluidine blue and safranin O assays (Figure 

5.6). Toluidine blue staining detected the presence of glycosaminoglycans in those 

sections, and safranin O staining confirmed this observation. It is also possible to 

observe a dense concentration of staining on sections from the bioreactor samples 

(Figure 5.6A and B) compared to the static culture sections, on both toluidine blue and 

safranin O staining. 
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Figure 5.6 – Histological section of hBMSCs seeded onto PCL nanofiber meshes for 

chondrogenic differentiation, at 28 days, from bioreactor constructs (A, B) and static 

control cultures (C, D). A, C – Toluidine blue staining; B, D –Safranin O staining. 

Black arrows show the nuclei of the cells. White arrows show ECM. Scale bars: 100 

µm= 1 cm; 50 µm= 2.5 cm. 

 

3.7. Immunolocalisation of type I and type II collagens 

 

Histological sections of electrospun PCL nanofiber meshes cultured with hBMSCs, at 

28 days of culture in the multichamber bioreactor or in static conditions were stained for 

imunolocalisation of collagens type I and II (Figure 5.7). For the bioreactor cultures, 

both types of collagens were detected. Collagen type I stain (Figure 5.7A) appears to be 

slightly clear than the collagen type II staining (Figure 5.7B). On the other hand, there is 

a heavy unspecific staining on the control sections of both types of cultures (Figures 

5.7A and 5.7D), which may have in part been due to dye trapped in folded regions of 

the sections. In static cultures, a marked staining for collagen type I (Figure 5.7E) can 

be observed, when compared to the collagen type II section (Figure 5.7F). 

 



Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs 

154 

 

Figure 5.7 – Immunolocalisation of collagen type I (B, E) and type II (C, F) in 

electrospun PCL nanofiber meshes, after 28 days of culture in the bioreactor (A-C) and 

in static cultures (D-F). Controls of the immunohistochemistry assay (A) were 

performed with normal horse serum. Scale bar: 100 µm= 1 cm. 

 

 

4. Discussion 

 

Bioreactors are a powerful tool in several areas of tissue engineering. In cartilage 

tissue engineering, they can provide mechanical stimulus to cells, as well as better 

access of nutrients, enhancing the production of ECM. In the present work, we aimed to 

study the effect of a new multichamber flow perfusion bioreactor in the chondrogenic 

differentiation of hBM-MSCs when seeded onto electrospun PCL nanofiber meshes. 

The present work is one of the first reports that we release concerning the utilization of 

the multichamber bioreactor and the present data is starting point for optimization of the 

culture conditions used, as several new questions were raised from the obtained results. 

It has been demonstrated that the quality of tissue-engineered cartilage can be 

manipulated depending on the type and seeding density of cells and bioreactor culture 

conditions [27]. Several perfusion bioreactors have been developed in recent years, 

aiming to enhance tissue growth in in vitro constructs [27-29], for example for bone 

[30], dermal tissues [31] and cartilage [32]. Dynamic flow conditions are known to 

enhance cartilage development compared to static cultures [32-36]. For detailed review 

please refer to Godara et al., 2008 and Butler et al., 2009 [37, 38]. Fluid flow enhances 
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nutrient and waste exchange in vitro, improving mass transport and delivering shear 

stress within the construct [39]. In perfusion bioreactors, the level of shear stress and of 

nutrient transfer can be easily changed by modifying the medium flow rate, and thus, 

the quality of the tissue engineered construct can be improved, depending on the media 

flow velocity [33]. In the present work, we used a media flow of 70 µl/min/ nanofiber 

mesh. We based our choice of the flow velocity in the literature. However, references 

using nanofiber meshes are scarce, if not inexistent. Reported flow velocity for 3D 

constructs for cartilage tissue engineering range from 0.01 ml/min to 5ml/min [27, 28, 

39, 40]. We decided to choose a low flow velocity as a starting point to allow the 

deposition of the ECM components. As we performed a low density seeding, the chosen 

perfusion velocity would allow, in our perspective, to provide cells the nutrients and 

oxygen needed. We would expect cell proliferation, differentiation and consequent 

enhanced deposition of ECM components along the time. As for cell numbers, the 

amount of cellular DNA varied along the experiment, being observed a high decrease in 

static culture conditions at the 28th day. In this time point, bioreactor samples displayed 

a significantly higher DNA quantification than static (p=0.002). It is the fair to state 

that, in terms of cell proliferation, the chosen fluid flow was beneficial for the constructs 

cultured in the bioreactor, enhancing cell proliferation. The beneficial effect of 

directional fluid flow has been demonstrated by Tarng and co-workers, using periosteal 

explants secured onto PCL scaffolds and cultured in spinner flasks. The authors showed 

that fluid flow enhanced cell proliferation, chondrogenic differentiation and cell 

organization [41]. 

 Morphological observation of cells showed some differences between the two 

conditions. Cells in the bioreactor samples have acquired a round-shaped morphology at 

early stages of culture (i.e. 7th and 14th day), whereas the cells cultured in static 

conditions are stretched and flat until at least the 21st day of culture. These observations 

may be related to the fluid flow in the bioreactor samples. The beneficial effect of the 

perfusion can be observed, as the chondrogenic morphology seems to be highlighted in 

these samples, whereas in the static ones, the morphology change can be observed only 

after 21 days in culture. TGF-β3 is the essential growth factor for promoting 

chondrogenesis both in vivo and in vitro conditions [42]. It has been shown that TGF-β3 

induced hBMSCs having increased Sox9 expression with the presence of collagen type 

II and aggrecan [43]. Although the cartilage obtained in this study showed some signs 

of hypertrophy, induced either by the flow perfusion or by the utilization of TGF-β3, the 
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conjugation of both factors may have contributed for the increased chondrogenesis at 

the early stages of culture, for the bioreactor samples. Chondrogenesis at early stages of 

cultures have been also observed when culturing chitosan-BMP6 loaded scaffolds with 

ATDC5 chondrocytes cell line in RCMW™ reactors [44]. Additionally, cells cultured 

in static cultures showed hypertrophy, contrarily to the observed in the cultures from the 

bioreactor. This is not the case of our results, as the presence of hypertrophy related 

genes was detected in both static and dynamic cultures. Hypertrophy was also observed 

by Jung and co-authors, when they applied continuous compressive deformation for 10 

or 24 days to PLCL scaffolds seeded with chondrocytes. These constructs were then 

implanted subcutaneously in nude mice. The observations showed hypertrophic forms 

in the implants stimulated for 24 days, demonstrating that the proper periodical 

application of dynamic compression can enhance GAGs production [45].  

No statistical differences were found between the expression levels in the bioreactor 

samples and the static control cultures. Cartilage-related genes expression such as 

Aggrecan, Collagen type II and Sox9, was detected for both conditions. Sox9 is highly 

expressed, stimulating the production of these genes. The high values obtained for 

standard deviations may be related to the flow velocity inside the fiber meshes. The 

dissimilar geometry of the scaffolds or of the flow perfusion may lead to different local 

shear stressed in each sample, even for the same input flow velocity [39]. Thus, the 

random morphology of the nanofiber meshes may be influencing the results within the 

same replicates. This fact, along with the common inlet and outlet of the bioreactor, 

could have resulted in non uniform flow velocity, and therefore could have influenced 

the ECM deposition and generate the large standard deviations observed in the 

experiments. 

hBM-MSCs cultured in the bioreactor were able to produce proteoglycans, as showed 

by the toluidine blue and safranin O staining. The presence of proteoglycans was also 

detected in the static samples. However, these sections revealed less amount of staining 

when compared to the bioreactor sections. These staining, together with the results of 

RT-PCR for the expression of Aggrecan, indicate the deposition of ECM. Furthermore, 

collagen type I and type II presence in both types of samples at 28 days was also 

detected by immunolocalisation, which is consistent with the RT-PCR results. A 

different result was obtained by Li et al., 2008, using PLLA nanofibrous scaffolds 

cultured in a rotating wall vessel bioreactor for cartilage tissue engineering. Compared 

to the constructs obtained in static cultures, the bioreactor grown constructs produced 
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more total collagen and GAGs, and expressed higher levels of cartilage related genes 

[46]. 

The flow perfusion bioreactor used in this work provides a continuous flow of media 

through the construct, enhancing the mass transfer and the nutrients availability. 

However, the mechanical forces can have a detrimental effect in terms of damaging the 

neo-tissue formation [40]. In the present work, the bioreactor allowed the proliferation 

and chondrogenic differentiation of hBM-MSCs, but no significant differences were 

observed compared to the static cultures. Similar results were obtained for the 

chondrogenic differentiation of human adipose stem cells when cultured in PGA 

scaffolds using a recirculating bioreactor [40]. The authors showed that the 

chondrogenic differentiation, as well as the ECM formation, was not detrimentally 

affected by the bioreactor culture. The obtained results do not allow us to draw any 

conclusion concerning the enhanced effect of the bioreactor over chondrogenic 

differentiation of hBM-MSCs when seeded onto PCL nanofiber meshes. Some of the 

parameters of the experiment here reported have to be modified, as for example the 

number of initial cell seeding, nanofiber meshes structure or even the fluid flow. We do 

sustain that this bioreactor is suitable for this type of culture, and further optimizations 

will be performed. The concept of nanofiber meshes cultured in bioreactors for cartilage 

tissue engineering has been proved to be applicable to this field, combined with 

efficient cell loading and bioreactor technology [46]. 

 

 

5. Conclusions 

 

In the overall, we would like to highlight that the new flow perfusion bioreactor is 

suitable for culturing hBM-MSCs and electropun PCL nanofiber meshes. The culture in 

a flow perfusion bioreactor supported the attachment, proliferation and chondrogenic 

differentiation of hBM-MSCs. The MSCs were able to produce ECM on the electrospun 

PCL nanofiber meshes, as stated by the staining and imunolocalisation results. The 

media fluid flow may be influencing these results, as well as the nanofiber meshes 

random morphology. Therefore, some modifications in the experimental design should 

be considered in future works. The fluid flow should be extensively studied, as there are 

scarce literature references using nanofiber meshes in perfusion bioreactors. In doing 

this, we will try to improve the ECM deposition. Additionally, as one of the factors that 
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may also be influencing the results is the random morphology of the nanofiber meshes, 

different production techniques may be studied in order to obtain fully controlled 

morphologies. 
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Abstract 

 

Native articular cartilage is subjected to synovial fluid flow during normal joint 

function. Thus, it is believed that the morphogenesis of articular cartilage may be 

positively regulated by the application of similar stimulation in vitro. 

In the present work, the effect of fluid flow over the chondrogenic differentiation of 

human bone marrow derived mesenchymal stem cells (hBM-MSCs) was studied. We 

intended to find out if the shear stress caused by the medium perfusion trough the 

constructs was capable of augmenting the differentiation process. Human BMSCs were 

isolated from bone marrow aspirates and were characterized by flow cytometry. After 

expansion, hBM-MSCs were seeded statically onto fiber meshes scaffolds, consisting of 

a blend of 50/50 chitosan and Poly(Butylene Terephtalate Adipate) – CPBTA. 

Constructs were cultured in a flow perfusion bioreactor for 28 days, using complete 

medium for chondrogenesis supplemented with TGF-β3. An enhanced ECM deposition 

and collagen type II production was observed in the bioreactor samples, when compared 

to the static controls. Moreover, it was observed that hBM-MSCs, in static cultures, take 

longer to differentiate. ECM accumulation in these samples is lower than in the 

bioreactor sections, and there is a significant difference in the expression of collagen 

type I. We found that the flow induced shear stress has a beneficial effect on the 

chondrogenic differentiation of hMSCs. 

 

 

1. Introduction 

 

Mesenchymal Stem Cells (MSCs) have been recognized for their ability to 

differentiate into cells of different tissues such as bone, cartilage or adipose tissue, and 

therefore might be of interest for therapeutic strategies. These cells may be induced to 

differentiate in vitro by growth factors supplementation in the culture medium to trigger 

the differentiation into the desired cell type. Particularly, several studies showed that 

MSCs derived from different tissues behave in different ways when induced to 

differentiate in the chondrogenic lineage [1-3]. The chondrogenic potential of adipose 

tissue-derived MSCs over bone marrow-derived MSCs has been compared in various 

works, using different animals. These studies seem to indicate a higher chondrogenic 
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potential of bone marrow-derived MSCs over adipose tissue-derived MSCS [1-3], 

isolated from different animals. 

Materials and fabrication technologies are critically important in designing temporary, 

artificial extracellular matrices (scaffolds) for tissue engineering. There is still a quest 

for the ideal scaffold for cartilage regeneration, either using synthetic or natural origin 

materials. In recent years, natural based polymers have been extensively studied, 

including hyaluronic acid, collagen or chitosan [4-8]. Chitosan is a derivative of chitin, 

obtained by the deacetylation of this biopolymer [9]. It is a linear polysaccharide with a 

structure similar to the glycosaminoglycans (GAGs) present in the extracellular matrix 

(ECM) of native cartilage [10]. This property is extremely important for cartilage tissue 

engineering, since it allows the development of several types of scaffolds. Another 

interesting property of chitosan is that it can be moulded into various shapes [11] and 

allows different pore sizes structures formation [9]. Chitosan has been used in several 

blends for matrices or scaffolds production, such as hydrogels [12, 13], porous scaffolds 

[8], amino acid immobilization in scaffolds [6] or drug delivery system [14]. In recent 

years, chitosan-based scaffolds were found to be a remarkable tool for tissue 

engineering of various tissues [4, 15-18]. Chitosan has also proved to be suitable for 

improving the in vivo performances of natural-based scaffolds, in particular of soy-

based biomaterials [19]. Chitosan scaffolds have been developed in blends with 

synthetic materials for cartilage tissue engineering, for example chitosan/polybutylene 

succinate (PBS) [20] or chitosan/polycaprolactone [21]. Particularly, the chitosan/ PBS 

blend has proved to be suitable for cartilage tissue engineering, either using cell lines or 

primary cells [20, 22, 23]. Chitosan is frequently referred as a positive influence in 

promoting ECM formation by cells. In a study comparing chitosan and PGA scaffolds, 

it was found that matrix production by chondrocytes was improved in chitosan 

constructs, mainly on the ones with smaller fibers [24]. The beneficial effect of 

microfibers structure in chitosan scaffolds was demonstrated more recently by the same 

authors. They compared the effect of chitosan scaffolds structure (macroporous sponges 

and microfibers) in the chondrogenesis of MSCs, and concluded that it is superior in the 

microfibers [24], indicating the effect of the morphology in cell activity. 

Chondrocytes are responsible for the maintenance and turnover of cartilage ECM, by 

producing collagen type II and aggrecan. The combination of these two proteins 

provides the tensile, shear and compressive stiffness of cartilage. It is very difficult to 

determine a detailed causal relationship between the type of mechanical stimulation 
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used in the cell culture and the resulting ECM structure and mechanical properties of the 

tissue. It was reported, however, that detailed stress limits exist in the application of 

mechanical stimuli, leading to pathological changes in cartilage explants or tissue 

engineering constructs [25]. Flow-induced shear stress has been found to produce a 

significant stimulatory effect [26]. Dynamic shear increases the transcription of matrix 

proteins and, at the same time, augments matrix biosynthesis, preferentially collagen 

synthesis [27, 28].  

At early stages of skeletogenesis, mesenchymal condensation occurs, which is a key 

event to determine cell shape and cell fate. This will be determined by the balance of 

forces in the cell during condensation. The role of shape-changing deviatory shear 

stresses and developmental context in the modulation of gene transcription prior to cell 

commitment was recently studied [29]. It was found that the magnitude and duration of 

multipotent embryonic stem cells to shear stress affects significantly the genes activity 

of key genes to musculoskeletal development, at mesenchymal condensation [29]. 

Therefore, mechanical stimuli must be studied as one of the key elements for a tissue 

engineering strategy, in the sense that it can affect the structure and quality of the neo-

formed tissue.  

In the present work, our aim was to determine the outcome of an in-house developed 

flow perfusion bioreactor (PT patent nº 104155; European patent pending [30]) in the 

chondrogenic differentiation of hBM-MSCs. We intended to find out if the shear stress 

caused by the medium perfusion through the constructs was capable of augmenting the 

differentiation process. 

 

 

2. Materials and Methods 

 

2.1. CPBTA fiber meshes  

 

The chitosan-poly(butylene terephthalate adipate) (CPBTA) (50/50 wt%) fiber mesh 

scaffolds were compounded as described elsewhere [31]. Briefly, the CPBTA fibers 

were obtained using a prototype single screw micro-extruder coupled to a capillary die. 

The extruded fibers were chopped and then were loaded into a mould. The mould was 

heated above the melting temperature (Tm) of the thermoplastic blend during 10 min. 

Finally, immediately after removing the moulds from the oven, the fibers are slightly 
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compressed by a Teflon cylinder to pack and bond the fibers. Finally, standardized 

scaffolds of 2 mm thick discs, with diameter of 8 mm were obtained by cutting the fiber 

bonded meshes with a circular die (8 mm in diameter). 

 

2.2. Isolation of hBM-MSCs 

 

HBM-MSCs were isolated from bone marrow aspirates collected under informed 

consent from patients undergoing knee arthroplasties in the Hospital de São Marcos, in 

Braga, Portugal. During the surgeries, bone marrow is collected to a container with α-

MEM medium (Invitrogen, 12000-063), supplemented with an antibiotic/antimycotic 

solution (Gibco, 15240062) and 5000 units of heparin (Sigma, H3393) and maintained 

in ice until the isolation procedure. Aspirates were homogenised, diluted in PBS 

(Sigma, P4417) (1:1) and incubated for 5 minutes at room temperature. Then, bone 

marrow was diluted in lyses buffer (1:10) and left under agitation for 10 minutes. Lyses 

buffer was prepared with 10 mM of Tris-HCl (Sigma, T3253), 1.21 g of Tris Base 

(Sigma, T1503), 8.3 g of NH4Cl (Merck, 1011455000), in 1L of distilled water.  

Afterwards, cells suspension was centrifuged at 1200 rpm, for 15 minutes at room 

temperature. Cells were ressuspended in α-MEM medium, supplemented with 

antibiotic/antimycotic solution and 20% of foetal bovine serum - FBS (Biochrom, 

Berlin, Germany; Heat Inactivated). Cell suspension was filtered for disposal of debris, 

using 100 µm and 70 µm Cell Strainer (BD Falcon™, 352360 and BD Falcon™, 

352350). Cells were counted and plated at the density of 4.7x103 cells/cm2. Cells were 

expanded in the referred culture medium until the numbers needed for this study. 

 

2.3. Flow-cytometry (FCM) analysis 

 

To evaluate cell-surface marker expression, cultured cells were incubated for 20 min 

at 4ºC with fluorescein isothiocyanate (FITC)- or phycoerythrin (PE)-conjugated 

monoclonal antibodies specific for human markers associated with mesenchymal or 

haematopoietic lineages. The antibodies used were: CD29, CD34, CD44, CD45, CD73, 

CD90, CD105, CD106. All the antibodies were purchased from BD Pharmingen. The 

samples were analysed using a BD FACSCalibur flow cytometer (Enzifarma, Portugal). 
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2.4. hBM-MSCs culture on the bidirectional flow perfusion bioreactor 

 

hBM-MSCs were detached from the culture flasks by treatment with Trypsin/EDTA 

solution (Invitrogen, 25300-062). Cells were counted and a cell suspension of 1x106 

cells/ fiber mesh was prepared to seed each scaffold. Cell seeding was performed in 

static conditions, inside the incubator, at 37ºC, during 24 hours. On the next day, the 

bidirectional flow perfusion bioreactor was fully sterilized in the autoclave. Then, it was 

assembled inside the hood and the constructs to be cultured within were transferred. The 

bidirectional flow perfusion bioreactor (PT patent nº 104155; European patent pending 

[30]) has a maximum of 20 individual culture chambers; according to the study plan, 20 

constructs were transferred for each chamber. The bioreactor was closed and the flow 

rate was set to 100 µl/min/fiber mesh. The bioreactor was transferred into an incubator 

and kept in those conditions during the whole experiment.  

Similar numbers of species was transferred for new 24 wells culture plates and were 

maintained in static conditions as a control, inside the same incubator. Chondrogenic 

differentiation medium consisting of α-MEM supplemented with antibiotic/antimycotic 

solution, ITS liquid media supplement (Sigma, I2521), dexamethasone 1Mm (Sigma, 

D1756), Sodium Pyruvate 0.1 M (Sigma, P4562), Ascorbic acid-2-phosphate 17 mM 

(Sigma, A4544),  L-Proline 35 mM (Sigma, P5607) and 1 ng/ml of human recombinant 

TGF-β3 (PeproTech, 100-36) was used for the 28 days duration of the experiment. 

Culture medium in the bioreactor was completely changed every week (100 mL each 

time). Control samples were cultured in 24 well plates, and were fed every other day 

with 1 mL of culture medium. 

 

2.5. Proliferation assay (DNA quantification) 

 

Evaluation of cell proliferation was performed using the PicoGreen dsDNA 

quantification Kit (Molecular Probes, P-7589), according to the instructions. Samples 

from the flow perfusion bioreactor and from the static control were collected in every 

time point. Triplicates of every time point were produced. A standard curve was 

established. Fluorescence of both samples and standard curve was read with an 

excitation of 485/20 nm and an emission of 528/20 nm. DNA concentration was 

extrapolated from the standard curve. 
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2.6. Scanning Electron Microscopy (SEM) 

 

For SEM analysis, fiber meshes were collected at each time point: 1, 2, 3 and 4 weeks. 

They were washed in sterile PBS and immersed in 3% glutaraldehyde (Sigma, G-5882) 

at room temperature for one hour. Samples were washed in PBS, dehydrated in 

increasing alcohol concentrations and let to dry. Samples were sputter coated with gold 

and analysed. A scanning electron microscope (Cambridge S360, Leica Cambridge, 

Cambridge, UK) was used to observe cells distribution and morphologies. 

 

2.7. RNA isolation 

 

Samples were collected from the flow perfusion bioreactor and from the static control, 

by the end of the experiment. Samples were washed in PBS, immersed in TRIzol 

reagent (Invitrogen, 15596-018) and kept at -80ºC for posterior RNA extraction. When 

the extraction was performed, samples were taken from the freezer and thawed. 

Chloroform (Sigma, C2432) was added and samples were vigorously agitated for 15 

seconds and further incubated in ice for 15 minutes. After that incubation, samples were 

centrifuged at 13000 rpm, during 15 minutes, at 4ºC. Afterwards, the supernatant was 

collected into a sterile 1.5 mL tube, and an equivalent volume of isopropanol (Sigma, 

I9516) was added. Samples were incubated at -20ºC overnight, to precipitate the RNA. 

The next day, samples were centrifuged at 13000 rpm, during 15 minutes, at 4ºC. The 

supernatant was taken and 800 μl of ethanol 70% was added, to wash away the 

isopropanol. The ethanol 70% solution was prepared from absolute ethanol (Merck, 

1.00983.2511) and ultra pure water. Tubes were agitated vigorously and centrifuged 

again, at 9000 rpm during 5 minutes, at 4ºC. The supernatant was again removed, and 

the pellet was left to air dry. Finally, the pellet was ressuspended in 50 μl of distilled 

water DNase, RNase free (Gibco, 10977-015). The concentration and purity of the 

extracted RNA was evaluated using the NanoDrop ND-1000 Spectrophotometer 

(NanoDrop Technologies Inc, USA). 

 

2.8. Real-Time PCR 

 

The Real-Time PCR procedure used in the present work consisted of a two step 

fluorogenic assay using the SyberGreen system (Bio-Rad). All the reagents used in this 
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procedure were from Bio-Rad, following the instructions of the manufacturer. 

Thermocycler reaction conditions were also performed according with those referred in 

the kits. In the first step, RNA was reversed transcribed into cDNA, using the iScript 

cDNA synthesis kit (1708891). A BioRad CFX96 real-time PCR detection system 

(BioRad Laboratories, USA) was used to perform the reaction. Afterwards, the cDNA 

obtained was used as template for the amplification of the target genes (Table 6.1), with 

the Syber Green Kit (1708884). GAPDH was used as the house-keeping gene, and the 

expression of all the target genes was normalized to the GAPDH of that sample. All the 

primer sequences were generated using Primer3 software (http://frodo.wi.mit.edu/) and 

acquired from MWG Biotech AG, Germany. Table I shows the primers sequences used 

in the analysis. The obtained results were analyzed with CFX Manager Software – 

version 1.5 (BioRad Laboratories, USA). 

 

Table 6.1 – Primer sequences used for RT-PCR procedures *. 

Gene Forward (5´-3´) Reverse (5´-3´) 

AGC TGAGTCCTCAAGCCTCCTGT TGGTCTGCAGCAGTTGATTC 

COL II CGGTGAGAAGGGAGAAGTTG GACCGGTCACTCCAGTAGGA

COL I AGCCAGCAGATCGAGAACAT ACACAGGTCTCACCGGTTTC 

COL X CCAGGTCTCGATGGTCCTAA GTCCTCCAACTCCAGGATCA 

Runx2 TTCCAGACCAGCAGCACTC CAGCGTCAACACCATCATTC 

Sox9 TTCATGAAGATGACCGACGC GTCCAGTCGTAGCCCTTGAG 

GAPDH ACAGTCAGCCGCATCTTCTT ACGACCAAATCCGTTGACTC 

*AGC = Agreccan; COL II = Collagen type II; COL I = Collagen type I; COL X = Collagen type X; 

Runx2 = Runt-related transcription factor 2; Sox9 = Sry-type high mobility group box 9; GAPDH = 

Glyceraldehyde 3-phosphate dehydrogenase 

 

2.9. Histological analysis 

 

Samples were collected at the end of the experiment and processed for histology. 

Samples were fixed in 10% neutral buffered formalin and then dehydrated through 

increasing concentrations of ethanol, immersed in infiltration solutions, embedded in 

Technovit glycol methacrylate (kit 8100, Heraeus Kulzer, EBSciences, CO, USA) and 

then polymerized. Specimens were cut to obtain longitudinal 7 µm thick sections, using 

a modified microtome equipped with a tungsten blade (Leica RM 2155). Hematoxylin-
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eosin staining was performed to evaluate the cells distribution within the scaffolds. 

Toluidine blue stain was also performed to detect the presence of proteoglycans. 

Staining solution was prepared by adding 1% of toluidine blue (Sigma, T-0394) 

dissolved in distilled water containing 0.5g of sodium borate, followed by filtering. One 

drop of this solution was added to each section during 1 minute. The sections were 

further rinsed with distilled water and let to air dry overnight. Sections were cleared in 

xylene substitute (Sigma, A5597) and mounted in Histo clear (Frilabo, HS200). 

Safranin O staining was performed by washing slides in tap water, then immersed in 

0.02% fast green (Fluka, 44715) during 6 minutes. Then, they were immersed in 1% 

acetic acid (Panreac, 131008) solution during 1 minute. After, slides were immersed in 

0.1% safranin O (Fluka, 84120) solution for 10 minutes. By the end, slides were washed 

in tap water and let to air dry. Sections were cleared in xylene and mounted as 

previously described for further analysis. 

 

2.10. Immunolocalisation of type I and type II collagens 

 

Immunolocalisation of type I and type II collagens was performed. Endogenous 

peroxidase activity was quenched with 0.3% hydrogen peroxide solution during 30 

minutes. Sections were rinsed in PBS during 5 minutes. R.T.U. Vectastain® Universal 

Elite ABC Kit (Vector, VCPK-7200) was used for antibody incubation, according to the 

instructions of the manufacturer. Shortly, sections were incubated with primary 

antibodies (collagen type I and collagen type II) (UNLB, Goat anti-type I collagen 

1310-01 and UNLB, Goat anti-type II collagen 1320-01) overnight at 4ºC, in a 

humidified atmosphere. Incubation was revealed by using the Peroxidase Substrate Kit 

DAB (Vector, VCSK-4100), according to the instructions of the manufacturer. Slides 

were washed in water during 5 minutes and counterstained with hematoxilin for nuclei 

visualization. Finally, slides were mounted in Histo clear. Controls were performed 

using normal goat serum instead of primary antibodies, which was also included in the 

kit. 

 

2.11. Statistical analysis 

 

Statistical analysis was performed using the SPSS statistic software (Release 15.0.0 

for Windows). Firstly, a Shapiro-Wilk test was used to ascertain about the data 
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normality and variance equality. The result of the normality was negative and, 

consequently, nonparametric tests were used in further comparisons between static and 

dynamic culture conditions. A Mann-Whitney U-test was applied to compare the two 

independent groups of samples for each variable (i.e. DNA quantification and real-time 

PCR). P values lower than 0.01 were considered statistically significant in the analysis 

of the results. 

 

 

3. Results 

 

3.1. FCM analysis of the isolated cells 

 

Isolated bone marrow cells were expanded and characterized for specific surface 

antigen expression by flow cytometry analysis. hBM-MSCs were analysed for 

hemopoietic marker expression (CD34 and CD45): isolated cells were negative for 

these two markers. Cells were positive for CD29, CD44, CD73, CD90, CD105 and 

CD106 surface markers typically detected in mesenchymal stem cells. Based on this 

data we are confident that the bone marrow isolated cells are effectively MSCs. 

 

3.2. DNA quantification 

 

Samples were collected in different time points of the experiment from both culture 

conditions, and processed for DNA quantification. Results are shown in Figure 6.1. 

Concerning the bioreactor samples, DNA contents increased at 21 days of culture, 

decreasing in the last time point. In static culture conditions, DNA content increased 

continuously during the whole period of the experiment. In order to find significant 

differences in DNA quantification among static and bioreactor conditions, the Mann–

Whitney U-test was performed. In terms of DNA quantification, no significant 

difference between static and bioreactor cultures was found at 14 days (p=0.18), but 

static cultures displayed a significantly higher DNA quantification than the bioreactor 

ones at 21 and 28 days of culture (p=0.002). 
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Figure 6.1 - Box plot of the DNA quantification in static and bioreactor cultures after 

14, 21 and 28 days of culture. Data were analyzed by nonparametric way of a Mann–

Whitney U-test (* p<0.01, vs Static). 

 

3.3. SEM analysis 

 

SEM analysis of the cultured hBM-MSC in CPBTA fiber meshes show differences in 

their morphology during the time course of the experiment (Figure 6.2). Micrographs of 

the bioreactor samples show that cells were located at the center of the scaffold, and that 

they proliferated. Cells show a round-shaped morphology at early stages of culture (e.g. 

Figures 6.2A and 6.2C), which remains unchanged until the end of the experiment. On 

the other hand, cells in static culture samples maintained their stretched morphology 

until the 21st day of experiment (Figures 6.2B, 6.2D and 6.2F). At 21 days, cells begin 

to acquire a round-shaped morphology (Figures 6.2F and 6.2H), but not as evident as in 

the bioreactor samples (Figures 6.2A, 6.2C, 6.2E, 6.2G).  By the observation of the 

micrographs, it seems that cells cultured under static conditions proliferated more than 

the ones cultured in the bioreactor. 
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Figure 6.2 – Morphology of hBM-MSCs cultured in CPBTA fiber meshes, in the 

flow perfusion bioreactor (A, C, E, G) and in static control conditions (B, D, F, H) 

during the time course of the experiment: A, B-7 days; C, D-14 days; E, F- 21 days; G, 

H- 28 days. Different magnifications were used to highlight for cell distribution within 

the scaffolds and the cells morphology. 
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3.4. Real-Time PCR 

 

Gene expression during the experiment was assessed by Real - Time PCR. Results 

were normalized against the reference gene expression, GAPDH (Figure 6.3). 

Expression of cartilage related genes was detected in the bioreactor and also in static 

culture conditions samples. The gene expression patterns were considerably different in 

both conditions. In the bioreactor samples, cartilage related genes were expressed, 

indicating the hBM-MSCs were differentiating into chondrocytes. Aggrecan expression 

is maintained along the experiment, as well as Sox9 expression. Collagen type II 

expression increases at 28 days. Collagen type I is expressed in low levels, and shows a 

decreasing trend of expression until the last time point. Hypertrophy related genes – 

Collagen type X and Runx2 – have low expression and also decrease with time. These 

results point towards chondrogenic differentiation of the cells and the production of 

proteins present in the ECM of cartilage, as expected. 

A different pattern of expression was observed in static control conditions. Although 

Aggrecan expression is slightly higher than in bioreactor samples, cartilage related 

genes showed a lower expression for all time points. On the other hand, Collagen type I 

had a large increase from the 21st to the 28th day of experiment. Moreover, hypertrophy 

related genes showed an increase along the time, as well as a higher expression than the 

one found for bioreactor samples. In Aggrecan expression no significant differences 

between both conditions was found at 14 (p=0.548), 21 (p=0.905) or 28 days (p=0.038) 

of experiment. The same was observed for Collagen type II expression at 14 (p=0.038), 

21 (p=0.114) or 28th days (p=1). Collagen type I expression showed no significant 

difference at 14 (p=0.114) and 21 days (p=0.139). However, at 28 days, static control 

conditions displayed a significantly higher expression of Collagen type I than the 

bioreactor samples (p<0.01). Sox9 did not show significant differences, either at 14 

(p=0.277), 21 (p=0.190) or 28 days (p=0.222). The same was found for Collagen type X 

at 14 (p=0.100), 21 (p=0.200) or 28 days (p=0.100), and Runx2 at 14 (p=0.100), 21 

(p=0.100) or 28 days (p=0.100).  
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Figure 6.3 – Bar plots of chondrogenic markers of flow perfusion bioreactor samples 

and static control conditions normalized for the reference gene, GAPDH, after 14, 21 

and 28 days of culture. Data were analyzed with a Mann–Whitney U test. In the bar plot 

for Collagen type I, data were analyzed with a Mann–Whitney U test (* p<0.01, vs 

static culture conditions). 

 

3.5. Histological staining 

 

Samples of CPBTA fiber meshes seeded with hBMSCs from both studied culture 

conditions were collected at the end of the experiment. Histological longitudinal 

sections were stained for cell localisation with hematoxylin-eosin. Toluidine blue and 

safranin O stain were used for detection of ECM proteoglycans (Figure 6.4). Cells from 

the bioreactor sections are more round-shaped (Figure 6.4A) when compared to the 

static cultures sections, that are stretched (Figure 6.4B). ECM production was detected 

in the bioreactor samples, either in the toluidine blue sections (Figure 6.4C) or in the 

safranin O sections (Figure 6.4E). The observation of the static culture sections revealed 
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that cells were able to produce ECM (Figures 6.4D and 6.4F), but in a smaller amount 

than in the bioreactor. 

 

 

 

Figure 6.4 - Histological section of hBMSCs seeded onto CPBTA fiber meshes for 

chondrogenic differentiation, at 28 days of culture, in the flow perfusion bioreactor (A, 

C, E) and in the static control cultures (B, D, F). A, B – Hematoxylin-eosin stain for cell 

localisation; C, D – Safranin O stain for ECM localisation; E, F – Toluidine blue stain 

for proteoglycans. 
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3.6. Immunolocalisation of type I and type II collagens 

 

Histological sections of CPBTA fiber meshes seeded with hBMSCs and of the static 

cultures were stained for imunolocalisation of collagens type I and II (Figure 6.5). In 

both culture conditions there was some level of unspecific staining, as showed in the 

control slides (Figures 6.5A and 6.5B). Collagen type I staining was not so clear in the 

bioreactor sections than in the static culture ones, as shown in Figures 6.5C and 6.5D, 

respectively. The contrary was observed for collagen type II: there is a darker staining 

in the bioreactor sections than in the static culture ones (Figures 6.5E and 6.5F). 

 

 

 

Figure 6.5 – Immunolocalisation of collagen type I (C, D) and type II (E, F) in 

CPBTA fiber meshes, after 28 days of culture in the bioreactor (A, C, E) and in static 
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cultures (B, D, F). Controls of the immunolocalisation assay (A, B) were performed 

with normal horse serum. Red arrows show areas with positive stain and cells nuclei. 

Blue arrows show CPBTA fiber meshes. 

 

 

4. Discussion 

 

Perfusion and shear stress can affect in a positive way the chondrogenic 

differentiation and ECM deposition [25, 27, 28, 32]. In the present work, our aim was to 

determine the outcome of a flow perfusion bioreactor strategy in the chondrogenic 

differentiation of hBM-MSCs. We intended to find out if the shear stress caused by the 

medium perfusion trough the constructs was capable of improving the differentiation 

process. 

DNA quantification revealed a decrease of this nucleic acid in the bioreactor samples 

from the 21st day of culture. On the other hand, static cultures DNA increased along the 

time, indicating that cells are driven for proliferation rather than towards differentiation. 

No significant differences were found between both culture conditions at 14 days of 

experiment. However, static cultures displayed a significantly higher DNA 

quantification than the bioreactor, at 21 and 28 days. SEM observations are consistent 

with the DNA results. In the bioreactor samples, hBM-MSCs show evidence of early 

differentiation, as they present a round-shaped morphology in all time points. On the 

contrary, for static samples, SEM observations show that the morphology of the cells is 

fibroblastic, until the 21st day of experiment, evidencing low differentiation rate and 

high proliferation. These observations can also be sustained by the DNA concentration, 

which is higher in static cultures than in the bioreactor, for all time points. 

Expression analysis of several cartilage related genes indicates a significant difference 

between the Collagen type I expression in the static cultures when compared to the 

bioreactor. This significant difference suggests the formation of fibrotic cartilage. 

Imunolocalisation results are consistent with this observation, as there is positive 

staining for collagen type I in the static culture samples, whereas there is a very weak 

staining in the bioreactor sections. Moreover, collagen type II was stained positive for 

both cultures and the expression of Collagen type II was detected. Histological stain 

results indicated the production of ECM in both bioreactor and static cultures. However, 

the stain is stronger in the bioreactor sections. Proteoglycans accumulation and the 
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expression of cartilage-related genes (AGC, Col II, Sox9) show that cells cultured in the 

bioreactor were able to differentiate into cartilagineous tissue. The cartilage-like tissue 

formed in the static cultures is more fibrotic, as there is an increased collagen type I 

production. ECM detection by histological methods revealed regions of deposit matrix, 

leading to the conclusion that, when hBM-MSCs are cultured statically, their 

chondrogenic differentiation ability decreases. There is a weaker tissue staining than the 

one formed when cells are cultured under flow perfusion. A similar result was found 

when bovine articular chondrocytes were seeded onto chitosan/PBS scaffolds and 

cultured under stirred conditions; ECM deposition was enhanced in scaffolds subjected 

to stirring, compared to static cultures [20].  This result suggests that not only the ECM 

components are produced in larger amounts in shear conditions, but also the GAGs are 

produced in a greater extent. Another work using ovine chondrocytes cultures on PGA 

scaffolds demonstrated the beneficial effect of perfusion on GAGs synthesis [33].  

ECM stain is in agreement with the expression of Aggrecan and Sox9. At 28 days of 

culture, an expression decrease of both Aggrecan and Sox9 in the bioreactor samples 

may suggest that cells are undergoing hypertrophy, since at the same time there is 

expression of Collagen type X and Runx2. The same behaviour was not observed for the 

static cultures. Mechanical stress is known to be necessary to produce and maintain 

healthy and fully functional articular cartilage. Some regulatory systems are believed to 

exist in the tissue, which influence GAGs and collagens metabolism [25, 27, 28, 32]. 

The size, concentration or linkage form of the tissues can be influenced by the 

mechanical culture conditions, being all these factors pivotal for the tissues functional 

behaviour. Therefore, it is difficult to state rules for the biochemistry of proteoglycans. 

In any case, it has been shown that GAGs content can be influenced by shear stress, 

whereas in its absence the GAGs concentration decreases [25, 32, 34]. Fitzgerald and 

colleagues (2006) showed that compressive and shear stress differently regulates 

chondrocyte transcription. Furthermore, they found that dynamic shear, in the absence 

of hydrostatic pressure gradients, induced matrix proteins transcription [27]. These 

findings are consistent with other works that also found that dynamic shear increased 

the transcription of matrix proteins to a greater extent than dynamic compression, and at 

the same time augmented matrix biosynthesis, preferentially collagen synthesis [28]. 

Our results are consistent with these observations. We found enhanced ECM deposition 

and collagen type II production in the bioreactor samples. Furthermore, it is possible to 
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observe that hBM-MSCs, in static cultures, take longer to differentiate, and that ECM 

accumulation in the sections is lower than in the bioreactor sections. 

 

 

5. Conclusions 

 

Herein our aim was to determine if the perfusion shear stress produced by a home-

made flow perfusion bioreactor was able to enhance the chondrogenic differentiation of 

hBM-MSCs. Our observations showed improved ECM deposition and collagen type II 

production in the bioreactor samples, when compared to the static controls. Moreover, it 

was observed that hBM-MSCs chondrogenic differentiation in static cultures begins at 

later time points than in the bioreactor samples. ECM accumulation is likewise lower 

than in the bioreactor sections, and there is a significant difference in the expression of 

collagen type I. In the present work, we found evidences that confirm our hypothesis 

that shear stress has a beneficial effect on the chondrogenic differentiation of hBM-

MSCs. 
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Co-culture of human articular chondrocytes with two different 

sources of human mesenchymal stem cells as a new strategy for 

cartilage tissue engineering 
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Abstract 

 

Chondrocytes are mainly responsible for maintaining the integrity of the extracellular 

matrix of articular cartilage and for the protection of the underlying subchondral bone. 

Mesenchymal Stem Cells (MSCs) are also believed to contribute to the maintenance of 

cartilage. Moreover, these cells have been recognized for their ability to differentiate 

into cells of different tissues such as bone, cartilage or adipose tissue, and therefore 

might be of great interest for developing cartilage therapeutic strategies. These cells are 

typically induced to differentiate by growth factors supplementation in the culture 

medium that will trigger differentiation into the desired cell phenotype.  

One frequent problem that occurs in cartilage tissue engineering is that expanded 

chondrocytes undergo dedifferentiation when in 2D culture. This process leads 

frequently to the undesired production of fibrocartilage, and is associated with the loss 

of their phenotype in vitro. The use of an additional cell source to enhance cell numbers, 

not loosing the differentiation potential upon expansion in vitro may be an original 

choice. Moreover, soluble factors released by chondrocytes have been shown to 

influence stem cells differentiation onto the chondrogenic lineage. The use of 

conditioned medium obtained from chondrocytes for stimulating stem cells 

chondrogenic differentiation may be a very interesting alternative for moving into the 

clinical application of these cells.  

In the present work, direct contact co-cultures and indirect co-cultures (using 

conditioned medium obtained from a culture of human articular chondrocytes) of 

human bone marrow-derived MSCs (hBMSCs) and human Wharton´s jelly MSCs 

(hWJSCs) were established. Cells were isolated from human samples collected at a 

local hospital, under donors’ informed consent. The co-cultures were performed in 

previously produced 3D scaffolds, composed by a blend of 50/50 chitosan and poly 

(butylene succinate) – CPBS. Co-cultures were maintained during 28 days. Both types 

of stem cells were able to undergo chondrogenic differentiation, either in direct or 

indirect co-cultures. By the end of the experiment, the indirect co-cultures (using 

conditioned medium) showed significantly higher values in terms of DNA content, 

glycosaminoglycans (GAGs) accumulation and specific cartilage-related genes 

expression, when compared to direct co-cultures, for both types of adult MSCs tested. 

Human BMSCs resulted in fibrous cartilage, as it can be concluded by the significantly 

higher expression of Collagen type I. The hWJSCs showed higher chondrogenic 
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differentiation ability when compared to hBMSCs, as denoted by the higher values for 

GAGs accumulation and cartilage related genes expression.  

Therefore, we were able to demonstrate the high chondrogenic potential of hWJSCs, 

and proved that co-cultures of articular chondrocytes with these cells are able to 

produce more cartilaginous ECM, when compared to co-cultures with hBMSCs. The 

use of conditioned medium obtained from articular chondrocytes induced MSCs 

chondrogenic differentiation and ECM formation. The obtained results showed that this 

new strategy is very interesting and should be further explored for clinical applications. 

 

 

1. Introduction 

 

Research concerning cartilage regeneration is of special importance, since this tissue 

lacks self-repairing capacity and causes a huge social and economic impact. Several cell 

types have been proposed for cartilage tissue engineering, as for example the direct use 

of autologous chondrocytes. However, this method is not very convenient, since it 

involves a biopsy used as cell source for primary chondrocytes that is always limited in 

size and consequently in cell numbers obtained [1]. Also, chondrocytes tend to 

dedifferentiate when expanded in 2D culture, in vitro [1]. The use of stem cells can be 

very useful to overcome these issues, as they can be expanded into clinically relevant 

numbers and further differentiate into the chondrogenic lineage. Applying a 3D milieu 

is pivotal when designing a cartilage TE strategy, because chondrocytes 

dedifferentiation is reversible, and when these cells are further cultured in a 3D 

environment, they may regain their phenotype [2-5]. 

The most widespread tissue source of adult mesenchymal stem cells (MSCs) is the 

bone marrow [6, 7]. Bone marrow MSCs (BMSCs) have been proposed and applied for 

various tissue engineering applications, including for cartilage repair [6, 8-11]. Yet, the 

number of available MSCs in bone marrow [12], and the possibility of donor site 

morbidity in the procedure to obtain bone marrow aspirates, leads to the need to identify 

other MSCs sources. Human umbilical cord Wharton´s jelly has been reported as a 

potential alternative tissue source [13, 14], since human umbilical cord MSCs share 

many properties with bone marrow mesenchymal stem cells, thus supporting their 

applicability for cell-based therapies [15]. Human WJSCs (hWJSCs) have a higher 

frequency of colony forming units (CFUs-F) than hBMSCs, thus a larger number of 
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MSCs may be obtained in the initial isolation from Wharton´s jelly [13]. Further details 

on Wharton´s jelly cells as a primitive stromal cell population can be found elsewhere 

[16, 17]. Human WJSCs have also shown a higher proliferative potential than hBMSCs 

[15], being able to undergo osteogenic, chondrogenic and adipogenic differentiation 

[14]. Thus, those cells are prospective candidates for cartilage tissue engineering, as 

they display a distinct chondrogenic potential. Moreover, the improved chondrogenic 

potential of cells derived from the umbilical cord was confirmed in a study comparing 

the differentiation potential of human BMSCs and human umbilical cord stem cells 

(UCSCs) in 2D cultures [18]. 

Several strategies have been proposed to direct chondrogenesis of stem cells, which 

can be applied either alone or in conjunction. The referred two strategies comprise the 

use of specific growth factors, employing 3D structures to act as supports for cell 

growth and differentiation, or to co-culture progenitor cells with conditioned medium 

obtained from cartilage explants [19]. Cartilage is a paracrine organ, which secretes 

humoral factors that influence the proliferation and differentiation of cells present in the 

surrounding tissues [20]. Chondrogenesis and osteogenesis of MSCs during in vitro 

micromass culture was affected by the use of conditioned medium obtained from 

cultures of chondrocytes [21]. It was observed that  chondrocytes secrete factors that 

may affect the differentiation status of stem cells, and can promote chondrogenesis and 

osteogenesis  [21]. In indirect co-cultures with chondrocytes and embryonic stem cells 

the interaction of paracrine factors secreted by chondrocytes with the referred cells was 

observed [22]. This interaction led to the enhancement of the embryonic stem cells 

chondrogenic commitment [22]. 

The use of a porous biodegradable scaffold to support cell growth is frequently 

proposed for tissue engineering approaches [23-26]. Chondrocytes tend to switch into a 

fibroblast-like phenotype when cultured in monolayer, in tissue culture flasks. The 

presence of a porous structure providing a 3D environment for their culture is pivotal 

for the phenotype development and stability in vitro [27]. In the case of adult stem cells, 

the influence of 3D porous structures is relevant when considering its chondrogenic 

differentiation. Both the proliferation and differentiation of MSCs can be positively 

influenced by the culture in 3D scaffolds. It was demonstrated in the literature that 

mesenchymal stem cells can be attracted into a cartilage defect by the guidance of a 

collagenous matrix after drilling a channel in the cartilage structure until reaching the 

subchondral bone [28]. 
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Our group has been investigating scaffolds produced with several of chitosan/ 

poly(butylene succinate) (CPBS) for cartilage tissue engineering. Those scaffolds 

showed good performance in supporting cell proliferation and ECM deposition [29-31]. 

CPBS scaffolds were reported to sustain the chondrogenic differentiation of a mouse 

mesenchymal progenitor cell line [30] and to promote cartilaginous ECM deposition 

when cultured with bovine articular chondrocytes [29, 31]. Moreover, CPBS fiber 

meshes were also proposed for bone-related strategies using MSCs, with positive results 

[23, 32]. These fiber meshes present a highly connected 3D porous structure, as well as 

a large surface area for cell attachment and proliferation [33]. The versatility of these 

scaffolds makes them very promising candidates for future osteochondral applications. 

Nevertheless, their suitability for cartilage TE using MSCs has not been assessed 

previously. We herein hypothesize that CPBS scaffolds can also support and promote 

human MSCs chondrogenic differentiation. This is the main reason for the selection of 

these scaffolds for the present work.  

Co-cultures aiming the regeneration of cartilage are the subject of recent scientific 

interest. Several studies in the literature propose their applicability for cartilage tissue 

engineering, either using articular chondrocytes from different sources [34] or passages 

[35], stem cells and articular chondrocytes [36], or embryonic stem cells and articular 

chondrocytes [37]. The co-culture of sheep BMSCs with synovial cells showed the 

expression of chondrocytic markers [38], while the use of rat BMSCs with allogenic 

cartilage explants revealed a sustained expression of Sox9 in an early stage of 

chondrogenesis and collagen type X at a later stage, which is an undesired outcome 

since it indicates hypertrophy [39]. Co-culture of synovial-derived stem cells with TGF-

β3 transfected articular chondrocytes resulted in significantly improved chondrogenesis 

of the progenitor cells [40]. The chondrogenic effect of co-culturing chondrocytes with 

MSCs may be influenced by the tissue of origin of stem cells [41, 42]. For instance, in a 

study with human adipose-derived MSCs (ASCs) co-cultures with human articular 

chondrocytes [41], it was demonstrated that co-cultured ASCs and chondrocytes clearly 

differ in their chondrogenic potential, when compared to articular chondrocytes cultured 

alone. The co-culture of ASCs with chondrocytes resulted in decreased chondrogenesis 

[41]. Conversely, in a work comparing chondrogenesis of ASCs and BMSCs seeded 

onto hyaluronic acid scaffolds, it was shown that chondrogenesis was more efficient 

using BMSCs than ASCs or chondrocytes alone [42]. In the case of WJSCs, to our best 

knowledge, only one report can be found in the literature referring to co-cultures of 
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hWJSCs with articular chondrocytes for chondrogenic differentiation [43]. Thus, we 

herein aimed at determining whether their previously reported enhanced chondrogenic 

potential when compared to BMSCs would be maintained, of even improved, in co-

cultures with articular chondrocytes using a 3D scaffold. Additionally, we aimed to 

verify if using conditioned medium from a separate articular chondrocyte culture would 

improve the induction of chondrogenic differentiation of stem cells when compared 

with direct contact between these cells in co-culture. The possibility of using 

conditioned medium opens interesting possibilities for obtaining larger numbers of 

differentiated cells prior to implantation, in the context of its clinical application. 

 

 

2. Materials and Methods 

 

2.1. CPBS fiber meshes  

 

The porous fiber meshes used as 3D scaffolds in the present work have been produced 

and successfully tested earlier by our group for bone related applications using human 

BMSCs [44]. A detailed description of the production methods can be found elsewhere 

[45]. The chitosan used for scaffolds production was supplied by France Chitin 

(Orange, France), with a degree of deacetylation of 85%. Bionolle™ 1050, a 

polybutylene succinate copolymer (MFI~50) was obtained from Showa Highpolymer 

Co. Ltd., Tokyo, Japan. Briefly, the CPBS fibers were obtained using a prototype single 

screw micro-extruder coupled to a capillary die. The extruded fibers were chopped and 

further loaded into a mould, which was heated above the melting temperature of the 

thermoplastic blend during 10 minutes. Immediately after removing the moulds from 

the oven, the fibers were slightly compressed by a Teflon cylinder to pack and bond the 

fibers. Finally, standardized scaffolds in the form of 2 mm thick discs, and with a 

diameter of 8 mm were obtained by cutting the fiber bonded meshes with a circular 

punch tool. 

 

2.2. Isolation and expansion of hBMSCs  

 

Human BMSCs were isolated from bone-marrow aspirates collected after obtaining 

informed consent from patients undergoing knee arthroplasties. Those samples were 
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obtained under the scope of the cooperation agreement established between the 3B´s 

Research Group of the University of Minho and the Orthopaedics Department of the 

Hospital de São Marcos, Braga, Portugal. During the surgeries, bone marrow was 

collected into a container with α-MEM medium, supplemented with antibiotic/ 

antimycotic solution and 5000 units of heparin (Sigma, H3393) and maintained in ice 

until the isolation procedure. Aspirates were homogenised, diluted in phosphate saline 

buffer – PBS (Sigma, D8537) (1:1) and incubated for 5 minutes at room temperature. 

Then, bone marrow was diluted in lyses buffer (1:10) and left under agitation for 10 

minutes. Lyses buffer was prepared with 10 mM of Tris-HCl (Sigma, T3253), 1.21 g of 

Tris Base (Sigma, T1503) and 8.3 g of NH4Cl (Merck, 1011455000), in 1L of distilled 

water.  Afterwards, the suspension was centrifuged at 1200 rpm, for 15 minutes at room 

temperature. Cells were ressuspended in α-MEM medium, supplemented with 

antibiotic/ antimycotic solution and 20 % FBS. Cell suspension was filtered for disposal 

of debris, using 100 µm and 70 µm Cell Strainer (BD Falcon™, 352360 and BD 

Falcon™, 352350). Cells were counted and plated at the density of 4.7x103 cells/cm2. 

Cells were expanded in the referred culture medium until obtaining the cell numbers 

needed for this study. The stemness character of the isolated hBMSCs was analysed 

previously by flow cytometry, (CD34 and CD45 –negative; CD29, CD44, CD73, CD90, 

CD105 and CD106 - positive), using a flow cytometer, and differentiation studies into 

osteogenic, chondrogenic, and adipogenic lineage [32]. 

 

2.3. Isolation and expansion of hWJSCs  

 

Human umbilical cords were obtained after obtaining informed consent from full-term 

caesarian sections donors, under the scope of the cooperation agreement of the 3B´s 

Research Group of the University of Minho and the Obstetrics Department of the 

Hospital de São Marcos, Braga, Portugal. Human WJSCs were isolated according to the 

procedure originally described by Sarugaser et al. [13]. Briefly, umbilical cords (UC) 

were cut into 3–5 cm segments. These segments were then dissected by separation of 

the UC section epithelium along its length, exposing the underlying Wharton’s jelly. 

Each vessel, with its surrounding Wharton’s jelly matrix, was pulled away, and the ends 

of each dissected vessel were tied together with a suture creating “loops”. Following, 

the loops were digested using a 1 mg/ml collagenase type I solution (Sigma, C0130) 

prepared with PBS. After 18–24 hours, the loops were removed. The remaining 
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suspension was diluted with PBS to reduce its viscosity, followed by a centrifugation at 

1200 rpm for 5 minutes. Cells were ressuspended in 10 ml culture medium consisting of 

α-MEM medium (Invitrogen, 12000-063), supplemented with antibiotic/ antimycotic 

solution (Gibco, 15240062), 10% fetal bovine serum (Baptista Marques, 

BSC0115/0943k) and counted in a hemocytometer. Finally, cells were plated and 

expanded until reaching 80–90% confluence. The stemness character of these cells was 

previously studied by flow cytometry for MSCs markers (CD34, CD45-negative and 

CD29, CD73, CD90, CD105, CD166-positive cells), using a flow cytometer (FACS 

Calibur (BD Biosciences)), and differentiation studies into osteogenic, chondrogenic, 

and adipogenic lineage [46]. 

 

2.4. Isolation and expansion of human articular chondrocytes 

 

The isolation of human articular chondrocytes (hACs) was performed according to a 

method previously reported in the literature [47]. HACs were isolated from human 

cartilage samples collected under informed consent from patients undergoing knee 

arthroplasties in the Orthopaedics Department of the Hospital de São Marcos, Braga, 

Portugal, under the scope of the previously referred agreement. During surgeries, the 

knee was collected into a container with PBS and maintained in ice until the isolation 

procedure.  Cartilage was dissected in small full-depth pieces and washed twice with 

PBS buffer. Then, it was digested with 0.25% (w/v) of trypsin solution (Sigma, E5134) 

for 30 minutes at 37ºC on a rotator. The solution was removed, cartilage was washed 

again in PBS buffer and then incubated in a 2 mg/ml collagenase type II solution 

(Sigma, E0130) overnight at 37ºC on a rotator. The following day, cells were washed 

twice with PBS, counted and platted at a density of 2x106 cells per Petri dish. Cells 

were cultivated with expansion medium: Dulbecco’s modified Eagle’s medium (Sigma, 

D5671), containing 10 mM Hepes buffer (Sigma, H0887), L-alanyl-L-glutamine 

(Sigma, G8541), Non Essential Aminoacids (Sigma, M7145), antibiotic/ antimycotic 

solution, 10% fetal bovine serum and 10 ng/ml of basic Fibroblast Growth Factor 

(bFGF) (PeproTech, 100-18B).  
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2.5. Co-cultures 

 

Cells were expanded until they reached the needed number. They were then split, 

counted and then seeded onto the CPBS fiber meshes. Two study groups were 

established: direct co-culture using one source of hMSCs (either hBMSCs or hWJSCs) 

and hACs; indirect co-culture using conditioned medium obtained from hACs cultures. 

The indirect co-culture method herein described is a variation of the transwell inserts 

technique [22, 48]. Instead of separating the two cultures with a transwell, we cultured 

separately the chondrocytes and the stem cells. As explained in the introduction, it is 

known that the 3D structure of the scaffolds can positively influence the chondrogenic 

commitment of MSCs. We hypothesised that by providing the microenvironment and 

the soluble factors present in the chondrocytes medium we would be able to influence 

the chondrogenic differentiation of both types of MSCs used in the present work. Thus, 

as the medium provided was previously consumed by the chondrocytes, we used 

conditioned medium mixed (50/50 in volume) with fresh medium. By means of diluting 

the factors secreted by the chondrocytes in fresh medium, it was our intention to provide 

the required nutrients to the MSCs indirect co-cultures, avoiding the risk of nutrient 

deprivation. 

 

2.5.1. Direct co-cultures 

A suspension of 1x106 cells (5x105 hBMSCs and 5x105 hACs) per scaffold was used 

for seeding the fiber meshes, in a rotator inside the incubator at 37ºC and 5% CO2, 

during 24 hours. Basic medium was used: Dulbecco’s modified Eagle’s Medium 

containing 10 mM Hepes solution, L–alanyl–L–glutamine, Non Essential Aminoacids, 

antibiotic/ antimicotic and 10% fetal bovine serum. Afterwards, constructs were 

transferred to new culture plates containing differentiation medium. This medium is a 

modification of the expansion medium: instead of adding bFGF, 1mg/ml of L-ascorbic 

acid (Sigma, A8960) and 50 mg/ml of insulin (Sigma, I5500) were added. Constructs 

were placed inside the incubator under the same conditions and cultured for 28 days. 

Medium was changed every other day. The same procedure was used for the direct co-

cultures of hWJSCs. 
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2.5.2. Indirect co-cultures 

Indirect co-cultures were performed using conditioned medium obtained from the 

chondrocytes in culture. First, a cell suspension containing 1x106 cells per scaffold was 

prepared for each type of cell (hBMSCs or hACs). Each cell type was seeded onto 

different CPBS scaffolds, in different culture plates. The seeding procedure was similar 

to the one described above for the direct co-cultures. Afterwards, cells were placed in 

new culture plates containing differentiation medium. After two days, the medium was 

changed. Human BMSCs medium was completely removed, and replaced by the 

mixture of conditioned and fresh medium. It consisted of a mixture of the medium 

which was removed from the chondrocytes culture, plus fresh differentiation medium 

(50/50). Medium of these cultures (hBMSCs) was changed every other day, using the 

referred mixture of conditioned medium. For the hACs cultures, fresh differentiation 

medium was used, and changed every other day. The two types of cultures were 

maintained for 28 days, in an incubator, at 37ºC and 5% CO2. The same procedure was 

used for the indirect co-cultures of hWJSCs. 

 

2.6. Proliferation assay (DNA quantification) 

 

Evaluation of cells proliferation was performed using the PicoGreen dsDNA 

quantification Kit (Molecular Probes, P7589, Invitrogen), according to the manufacturer 

protocol. Samples from every culture were collected at each time point. Triplicates of 

each time point were produced. A standard curve was established. Fluorescence of both 

samples and standard curve was read with an excitation of 485 nm and an emission of 

528 nm, in a microplate reader (Synergie HT). The DNA concentration was 

extrapolated directly from the standard curve. 

 

2.7. Dimethylmethylene blue (DMB) assay for glycosaminoglycans quantification 

 

Dimethylmethylene blue assay was performed according to the method described by 

Kafienah and Sims, 2004 [49]. Briefly, samples were collected at 1 and 4 weeks of 

culture, frozen overnight and then digested. This digestion allowed separating the 

formed ECM from the scaffold. The digestion solution was prepared by adding 1 

mg/mL of proteinase K (Sigma, P8044) diluted in 50 mM Tris-HCl, at pH of 7.6. Tris-

HCl solution was prepared using the appropriate amount of Tris-HCl, adding sodium 
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azide (Sigma, 13412) to a final concentration of 0.05% (w/v). The pH was corrected to 

obtain the final value of 7.6. Samples were placed in 1.5 mL tubes and incubated with 1 

mL of the referred solution, overnight at 60ºC. Afterwards, samples were centrifuged in 

a bench centrifuge at 13000 rpm for 10 minutes and the supernatant was collected. 

Solutions for this assay were prepared as follows. Dimethymethylene Blue (DMB) 

stock solution was prepared dissolving 16 mg of DMB powder (Aldrich, 34088) in 900 

ml of distilled water containing 3.04 g of glycine (Sigma, G8898) and 2.73 g of NaCl 

(Sigma, S3014). This was mixed for 2 hours, covered with aluminium foil. pH was 

adjusted to 3.0 with HCl (Panreac, 1310202424) and a final volume of 1L. The solution 

was stored at room temperature covered with aluminium foil. Chondroitin sulphate 

(Sigma, C8529) solution was prepared in water, in a 5 mg/ml stock solution and kept 

refrigerated. This solution was diluted with water resulting in 5 unit increments from 0 

μg/ml to 50 μg/ml, in order to make a standard curve. 20 μl of water were added to a 96 

well plate, as a blank. The same quantity of chondroitin sulphate diluted solutions was 

added, in triplicate, and the same was performed with all the samples. DMB solution 

was added, 250 μl to each well, the plates were incubated for 10 minutes and then the 

optical density was measured in a microplate reader, at 525 nm. 

 

2.8. RNA isolation 

 

Samples were collected from all controls at 7 and 28 days of experiment. Samples 

were washed in PBS, immersed in TRIzol reagent (Invitrogen, 15596-018) and kept at -

80ºC for posterior RNA extraction. When the extraction was performed, samples were 

taken from the freezer, in order to thaw. Chloroform (Sigma, C2432) was added; 

samples were vigorously agitated for 15 seconds and then incubated in ice for 15 

minutes. After that incubation, samples were centrifuged at 13000 rpm, for 15 minutes, 

at 4ºC. Afterwards, the supernatant was collected for a sterile 1.5 mL tube, and an 

equivalent volume of isopropanol (Sigma, I9516) was added. Samples were incubated at 

-20ºC overnight, to precipitate the RNA. The next day, samples were centrifuged at 

13000 rpm, for 15 minutes, at 4ºC. Then, the supernatant was taken and 800 μl of 

ethanol 70% was added, in order to wash away the isopropanol. This ethanol 70% 

solution was prepared from absolute ethanol (Merck, 1.00983.2511) and ultra pure 

water. Tubes were agitated vigorously and centrifuged again, at 9000 rpm for 5 minutes, 

at 4ºC. The supernatant was again removed, and the pellet was left to air dry. Finally, 
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the pellet was ressuspended in 50 μl of distilled water DNase, RNase free (Gibco, 

10977-015). The concentration and purity of the extracted RNA was evaluated using the 

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies Inc, USA). 

 

2.9. Real-Time PCR 

 

The Real-Time PCR procedure used in the present work consisted of a two step 

fluorogenic assay using the PerfeCta™ SYBR® Green system (Quanta Biosciences, 

95055-100). All reagents used in this procedure were purchased from Quanta 

Biosciences, following the instructions of the manufacturer. Thermocycler reaction 

conditions used were also the ones mentioned in the kits. In the first step, RNA was 

reversed transcribed into cDNA, using the qScript cDNA Synthesis Kit (95047-500). A 

MasterCycler EP Gradient detection system (Eppendorf, USA) was used to perform the 

reaction. Afterwards, the obtained cDNA was used as template for the amplification of 

the targets genes sohwn in Table I, with the PerfeCta™ SYBR® Green FastMix™ kit 

(95072-05K). Tested genes were aggrecan, collagens type I and II and Sox9. GAPDH 

was used as house-keeping gene, and the expression of all target genes was normalized 

against the GAPDH of that sample for each time point of the study. All primer 

sequences were generated using Primer3 software [50] and acquired from MWG 

Biotech AG, Germany. Table I shows the primers sequences used. 

 

Table 7.1 – Primer sequences used for RT-PCR procedures *. 

Gene Forward (5´-3´) Reverse (5´-3´) 

AGC TGAGTCCTCAAGCCTCCTGT TGGTCTGCAGCAGTTGATTC 

COL II CGGTGAGAAGGGAGAAGTTG GACCGGTCACTCCAGTAGGA

COL I AGCCAGCAGATCGAGAACAT ACACAGGTCTCACCGGTTTC 

Sox9 TTCATGAAGATGACCGACGC GTCCAGTCGTAGCCCTTGAG 

GAPDH ACAGTCAGCCGCATCTTCTT ACGACCAAATCCGTTGACTC 

*AGC = Agreccan; COL II = Collagen type II; COL I = Collagen type I; Sox9 = Sry-type high mobility 

group box 9; GAPDH = Glyceraldehyde 3-phosphate dehydrogenase 
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2.10. Histological analysis 

 

Samples were collected at the end of the experiment and processed for histology. 

Samples were then fixed in 10% neutral buffered formalin and then dehydrated through 

crescent concentrations of ethanol, immersed in infiltration solutions, embedded in 

Technovit glycol methacrylate (kit 8100, Heraeus Kulzer, EBSciences, CO, USA) and 

then polymerized. Specimens were cut to obtain longitudinal sections of 7 µm of 

thickness, using a modified microtome equipped with a tungsten blade (Leica RM 

2155). Staining solution for toluidine blue assay was prepared by adding 1% of 

toluidine blue (Sigma, T0394) dissolved in distilled water containing 0.5 g of sodium 

borate, followed by filtering. One drop of this solution was added to each section for 1 

minute. Then, the sections were rinsed with distilled water and let to air dry overnight. 

Sections were cleared in xylene substitute (Sigma, A5597) and mounted in Histo clear 

(Frilabo, HS200). Safranin O staining was performed by washing slides in tap water, 

then immersed in 0.02% fast green solution (Fluka, 44715) for 6 minutes. Then, they 

were immersed in 1% acetic acid (Panreac, 131008) solution for 1 minute. After, slides 

were immersed in 0.1% safranin O (Fluka, 84120) solution for 10 minutes. By the end, 

slides were washed in tap water and let to air dry. Sections were cleared in xylene 

substitute and mounted as previously described. 

 

2.11. Statistical analysis 

 

Statistical analysis was performed using the SPSS statistic software (Release 15.0.0 

for Windows). Firstly, a Shapiro-Wilk test was used to ascertain about the data 

normality and variance equality. The normality condition was rejected and, 

consequently, nonparametric tests were used in further comparisons between direct and 

indirect co-cultures. A Kruskal-Wallis test followed by Tukey’s HSD test was applied 

to compare differences in between the days in culture type. P values lower than 0.001 

were considered statistically significant in the analysis of the results. 
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3. Results 

 

3.1. DNA quantification 

 

The DNA concentration for each type of co-culture was assessed. Samples were 

collected at each time point of the experiment. We determined if there were any 

differences in between the days of culture, for each type of co-culture (direct or 

indirect), and also in the control conditions. 

 

3.1.1. Co-cultures using hBMSCs 

In terms of DNA concentration, both types of co-cultures using hBMSCs seem to 

follow the same trend of proliferation. DNA contents increased with time in both types 

of co-cultures, whereas the positive control shows a decrease at 21 days, increasing 

again towards the end of the experiment (Figure 7.1A). These results indicate that both 

types of co-cultures using hBMSCs were proliferating at a comparable rate, whereas in 

the control conditions (hACs) cell numbers did not increased between 14 and 21 days, 

recovering only in the last time point. Figure 7.1B shows the table of results for the 

statistical analysis concerning the differences between the various time points of the 

experiment, for each type of co-culture using hBMSCs. We found no significant 

differences between the various time points either in direct co-cultures (p=0.172) or 

indirect co-cultures (p=0.062), showing that the proliferation was not very strong during 

the experiment. The control conditions show a significant increase from the 7th to the 

28th day of experiment, as observed in the statistical analysis results in Figure 7.1C. It is 

noteworthy that both the direct and indirect co-cultures show the highest levels of DNA 

concentration when compared to the controls in the last time point. 
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Figure 7.1 - Box plot of the DNA concentration in co-cultures using human bone 

marrow MSCs. A - Box plot of DNA concentration for direct and indirect co-cultures 

with hBMSCs and control conditions (hACs alone). B – Table with the statistical 

analysis results for the between days of culture differences (Kruskal-Wallis test, 

presented as median ± interquartile range (IQR)). C – Table with the statistical analysis 

results for between days differences in the control conditions (Kruskal-Wallis test 

followed by Tukey’s HSD test.). 

 

3.1.2. Co-cultures using hWJSCs 

The trend of DNA concentration of hWJSCs co-cultures is rather different than the 

DNA concentration found for the co-cultures using hBMSCs. Both direct and indirect 

co-cultures show a decreasing tendency in the first days of culture. Then, the DNA 

concentration in direct co-cultures continues decreasing until the 21st day, increasing 

afterwards until the end of the experiment (Figure 7.2A). This result might indicate that 

the proliferation of the direct co-cultures with hWJSCs slowed down up to the 21st day. 

Conversely, indirect co-cultures with hWJSCs show an increase in DNA concentration 

after 14 days of culture, showing a marked decrease towards the last time point. 
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Comparing the various time points, we found no significant differences between the 

days in direct co-cultures (p=0.04) using hWJSCs (Figure 7.2B). At 21 days, indirect 

co-cultures using hWJSCs displayed a significantly higher DNA concentration than in 

the other time points (p<0.001). On the contrary, at 28 days these cultures displayed a 

significantly lower DNA concentration than all the other time points (p<0.001). This 

result seems to indicate that the proliferation is slowing down towards the end of the 

experiment. On the contrary, the control conditions showed a significant increase 

comparing the 7th and 28th day of the experiment (Figure 7.2C). The highest DNA 

concentration after 28 days of culture was obtained by direct co-cultures. 

 

Figure 7.2 - Box plot of the DNA concentration in co-cultures using human WJSCs. 

A - Box plot of DNA concentration for direct and indirect co-cultures with hWJSCs and 

control conditions (hACs alone). B – Table with the statistical analysis results for the 

between days of culture differences (Kruskal-Wallis test, presented as median ± 

interquartile range (IQR)). C – Table with the statistical analysis results for between 

days differences in the indirect co-cultures and in control conditions (Kruskal-Wallis 

test followed by Tukey’s HSD test.). 
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3.2. Glycosaminoglycans quantification 

 

The GAGs content for each type of co-culture was assessed. Samples were collected 

at 7 and 28 days of the experiment. We compared GAGs content between the types of 

co-cultures (direct vs indirect). We also compared the differences between both types of 

co-cultures and our control condition, hACs to determine if the co-cultures were 

accumulating more GAGs than chondrocytes alone. Afterwards, we determined if any 

differences were observed between the different time points, for each type of co-culture 

(direct or indirect). 

 

3.2.1. Co-cultures with hBMSCs 

Both direct and indirect co-cultures with hBMSCs show a small decrease in the GAG 

content from 7 to 28 days of the experiment, whereas control conditions showed the 

expected significant increase in GAGs deposition over time (Figure 7.3A). 

 

 

 

Figure 7.3 - Box plot of the GAGs concentration in both types of co-cultures, along 

the experiment. A - Box plot of GAGs concentration for direct and indirect co-cultures 

with hBMSCs and control conditions (hACs alone). B - Box plot of the GAGs 

concentration for direct and indirect co-cultures using hWJSCs and control conditions 

(hACs alone). Data were analyzed by nonparametric way of a Kruskal-Wallis test 

followed by Tukey’s HSD test. * denotes significant differences compared to direct co-

cultures. 
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No significant difference between direct and indirect co-cultures using hMSCs was 

found for 7 days of culture (p=0.061). At the end of the experiment, direct co-cultures 

displayed a significantly lower amount of GAGs than indirect co-cultures (p=0.006), as 

well as lower than the values for the control conditions (p=0.002). These results show 

that those co-cultures did not deposit more GAGs than the control condition. No 

significant differences between 7 and 28 days were observed in direct co-cultures 

(p=0.534) and in indirect co-cultures with hBMSCs (p=0.963).  

 

3.2.2. Co-cultures using hWJSCs 

In co-cultures using hWJSCs, a consistent trend was observed for all the conditions. 

Direct and indirect co-cultures, as well as the control conditions, show an increase in 

GAGs content along the time in culture (Figure 7.3B). For co-cultures using hWJSCs no 

significant difference between direct and indirect co-cultures was found after 7 days 

(p=0.138) nor after 28 days (p=0.733). Significant differences were found between 7 

and 28 days of culture for both direct and indirect co-cultures. After 28 days, all the 

conditions displayed a significantly higher GAG concentration compared to 7 days 

(p<0.01), meaning that the GAGs accumulation is very alike to the control conditions, 

with native chondrocytes.  

The GAGs concentration values obtained for all the time points for direct or indirect 

co-cultures with hBMSCs show consistently lower values when comparing to the ones 

obtained for the co-cultures with hWJSCs. 

 

3.3. Real-Time PCR 

 

Samples were collected for Real-Time PCR at 7 and 28 days of experiment. The aim 

was to determine the expression of several cartilage-related genes and to compare the 

differences between the expressions in both types of co-cultures, on both time points. 

 

3.3.1. Co-cultures using hBMSCs 

 In both types of co-cultures using hBMSCs, no significant differences were found 

between the cultures for Aggrecan or Sox9, at 7 days (p=0.072 and p=0.868, 

respectively) or 28 days (p=0.183 and p=0.115, respectively), as shown in Figure 7.4. 

Direct co-cultures using hBMSCs expressed significantly higher values of Collagen 

type I, compared either to indirect co-cultures or to the control conditions (p<0.001), 
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indicating the formation of fibrocartilage in direct co-cultures.  Collagen type II 

expression in indirect co-cultures of hBMSCs, displayed a significantly higher 

expression than direct co-cultures and control conditions (p<0.001) at 7 day of culture. 

After 28 days, direct co-cultures displayed a significantly higher Collagen type II 

expression than indirect co-cultures (p=0.009) and control conditions (p=0.002). 

 

 

Figure 7.4 – Bar plots of chondrogenic markers present in direct and indirect co-

cultures using hBMSCs, normalized for the reference gene GAPDH, after 7 and 28 days 

of culture. Data were analyzed by nonparametric way of a Kruskal-Wallis test for 

Aggrecan and Sox9. Data related with Collagen type I and Collagen type II were 

analyzed by nonparametric way of a Kruskal-Wallis test followed by Tukey’s HSD test. 

* denotes significant differences compared to direct co-cultures, # denotes significant 

differences compared to indirect co-cultures. 

 

3.3.2. Co-cultures using hWJSCs 

Statistic analysis of gene expression in direct and indirect co-cultures using hWJSCs 

showed significant differences for almost all the genes (Figure 7.5). For Aggrecan, there 

was a significantly lower expression on the control conditions, when compared to direct 

and indirect co-cultures (p<0.001), at 7 days of culture. However, at 28 days of culture, 
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both types of co-cultures using hBMSCs showed a significantly higher expression of 

Aggrecan than control conditions (p<0.001). Additionally, indirect co-cultures also 

displayed a significantly higher value for Aggrecan expression when compared to direct 

co-cultures (p=0.007). 

Indirect co-cultures also expressed significantly higher values of Sox9 expression, at 

28 days of culture, when compared to direct co-cultures and control conditions 

(p<0.001). For Collagen type I, no significant difference between cell type was found 

either at 7 (p=0.044) or 28 days of culture (p=0.498). However, the trend was to 

decrease its expression for the longer time periods. 

Direct co-cultures using hWJSCs displayed a significantly higher expression of 

Collagen type II than indirect co-cultures, after 7 days in culture. In contrast, indirect 

co-cultures displayed a significantly higher Collagen type II expression than the control 

conditions (p=0.006), and a significant trend to increase the expression of this important 

gene, in contrast to other culture conditions. 

 

 

 

Figure 7.5 – Bar plots of chondrogenic markers present in direct and indirect co-

cultures using hWJSCs, normalized for the reference gene GAPDH, after 7 and 28 days 

of culture. Data were analyzed by nonparametric way of a Kruskal-Wallis test for 
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Collagen type I. Data related to Aggrecan, Sox9 and Collagen type II expressions were 

analyzed by nonparametric way of a Kruskal-Wallis test followed by Tukey’s HSD test. 

* denotes significant differences compared to direct co-cultures, # denotes significant 

differences compared to indirect co-cultures. 

 

3.4. Histological staining 

 

By the end of the experiment, samples of every co-culture were collected for 

histological sectioning. Sections were stained for cartilagineous ECM using toluidine 

blue and safranin O assays (Figure 7.6). Both types of cells, either in direct or indirect 

co-culture, were able to produce ECM, as shown by the positive stain of toluidine blue 

and safranin O for ECM components. The cells were able to proliferate around the fiber 

meshes, and were able to grow in between the fibers inside the structure of the 

scaffolds. For co-cultures using hBMSCs no evident differences in terms of the quantity 

of cartilage ECM formation are observed in the histological staining results, either for 

direct or indirect co-cultures. Nevertheless, positive staining for proteoglycans can be 

observed either with toluidine blue or with safranin O stain. These observations are 

consistent with the previously obtained results for GAGs accumulation, as well as the 

RT-PCR results that showed the expression of cartilage related genes at the end of the 

experiment. 

In the case of co-cultures using hWJSCs, the same observations were made. It is 

possible to state ECM formation both in direct and indirect co-cultures, stained with 

toluidine blue and safranin O. These observations are also consistent with the previously 

obtained results for GAGs accumulation and cartilage related genes expression at 28 

days of culture. 
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Figure 7.6 – Histological sections of direct and indirect co-cultures using human 

BMSCs and WJSCs, stained for ECM localisation. 

 

 

4. Discussion 

 

The use of biomaterial scaffolds to enhance ECM-cell interactions has been reported 

as a very important factor when using stem cells for TE [7, 42, 51]. For detailed 

overview on this matter, please refer to [52, 53]. The positive effect of 3D scaffolds in 

the chondrogenic differentiation of BMSCs [54-56] and UCSCs [32, 57] has been 

reported elsewhere. In the present work we showed that both hBMSCs and hWJSCs 

were able to undergo chondrogenic differentiation when seeded onto CPBS fiber 
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meshes. Polyglycolic acid (PGA) scaffolds were recently used for comparing the 

potential of hBMSCs and hUCSCs for cartilage tissue engineering. The authors 

observed enhanced chondrogenic differentiation of hUCSCs when compared to 

hBMSCs [7]. The chondrogenic differentiation of MSCs on chitosan fibrous scaffolds 

and chitosan sponges was compared, demonstrating that chondrogenesis on chitosan 

scaffolds is superior on microfibers, when compared to sponges [58]. 

Herein, chondrogenic differentiation of human BMSCs and WJSCs was observed 

both in direct and indirect co-cultures. The soluble signals released by articular 

chondrocytes, either by the direct contact or in the form of soluble factors released in 

the culture medium, did effectively promote chondrogenic differentiation of hBMSCs 

and of hWJSCs. A recent study reported similar conclusions for the chondrogenic 

differentiation of adipose stem cells when co-cultured with chondrocytes [59]. In that 

report, adipose stem cells were cultured in pellets either directly or indirectly with 

chondrocytes, and it was concluded that the chondrocytes secreted signals promoted 

chondrogenic differentiation of adipose stem cells. The co-culture systems used in the 

present work were able to provide MSCs with the signals and the stimulation needed for 

their chondrogenic differentiation. A similar result was found when using conditioned 

medium from chondrocytes in the chondrogenic differentiation of embryonic stem cells 

[48]. The authors could show the coordination of signals between the co-cultures, 

suggesting that chondrogenic differentiation of embryonic stem cells can be achieved by 

co-cultures with chondrocytes, without other exogenous growth factors being required. 

No significant differences between the days in culture, in terms of proliferative ability, 

were found for the co-cultures using hBMSCs. Likewise, no significant differences 

were found for direct co-cultures using hWJSCs. However, when analysing the 

proliferative ability of hWJSCs in indirect co-cultures we observed significantly higher 

differences between the 21st day and all the other time points. Moreover, the values 

obtained for the DNA concentration of hWJSCs are higher than the ones obtained for 

the hBMSCs. The higher proliferative potential of hWJSCs compared to hBMSCs has 

been demonstrated earlier [15], as well as their enhanced chondrogenic potential [14]. 

Both types of co-cultures were able to produce and deposit GAGs. For the cultures with 

hBMSCs, a significantly lower GAG concentration value was found for the direct co-

cultures, comparing to the indirect. For the cultures using hWJSCs, no significant 

differences were found in terms of GAGs concentration between direct and indirect co-

cultures. These results show that indirect co-cultures may be more effective in ECM 
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components production, at least in terms of chondrogenic differentiation of hBMSCs, 

since no differences were found for hWJSCs. Our data with co-cultures of hBMSCs are 

similar to the results obtained in a study using passaged chondrocytes and primary 

bovine chondrocytes [19]. In that study, indirect co-cultures of primary and passaged 

chondrocytes were performed using filter inserts and it was found that the passaged 

cells accumulated ECM, when in contact with the conditioned medium produced by the 

primary chondrocytes. Although indirect co-cultures using hBMSCs seem to have an 

advantage in terms of GAGs accumulation, both types of co-cultures using these cells 

displayed a significantly lower value when compared to the chondrocytes culture 

(control condition). These results show that co-cultures with hBMSCs produced and 

accumulated less GAGs than the native chondrocytes cultures. In terms of GAGs, we 

can say that the hBMSCs co-cultures do not show a clear advantage over chondrocytes. 

Interestingly, both direct and indirect co-cultures using hWJSCs displayed a 

significantly higher concentration of GAGs at 28 days of culture, compared to 7 days. 

The values for GAGs concentration were higher in the cultures using hWJSCs than in 

the cultures using hBMSCs, indicating more formation and accumulation of these 

important components of the cartilaginous ECM.  Our results showed enhanced 

chondrogenesis in hWJSCs, when in indirect or direct co-cultures.  

In the histological sections, it is noticeable that both cultures of hBMSCs and of 

hWJSCs were able to produce ECM components, namely proteoglycans. These 

components were stained both with toludine blue and with safranin O, showing ECM 

deposition. ECM accumulation was also observed in passaged human chondrocytes, 

when in co-cultures with bovine chondrocytes [34]. Co-cultures of equine BMSCs with 

equine articular chondrocytes improved the expression of cartilage related genes, and 

induced the production of a more homogeneous ECM within the neo-cartilage [36].  

In terms of gene expression, for the cultures using hBMSCs, direct co-cultures 

showed significantly higher expression of Collagen type I than indirect co-cultures, at 

the end of the experiment. In terms of Collagen type II expression, direct co-cultures 

displayed a significantly higher expression at 7 days of culture than indirect co-cultures. 

On the other hand, towards the end of the experiment, indirect co-cultures showed a 

higher expression of collagen type II compared to the direct co-cultures. Again, the 

positive effect of using conditioned medium is evidenced by the results. For hWJSCs 

co-cultures, a significantly higher expression of Aggrecan was found for indirect co-

cultures of hWJSCs at 28 days, compared to the direct ones. The same significantly 
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higher expression was observed for Sox9 expression. For Collagen type II, there was a 

decrease in the last day of culture for the direct co-cultures. In this last time point, a 

significantly higher expression was found for the indirect co-cultures, when compared 

to the control conditions. Therefore, this system of co-culturing has a considerable 

clinic potential.  

The use of conditioned medium to promote the differentiation of MSCs for further 

implantation is a valuable concept in terms of regenerative medicine, because it will 

allow obtained conditioned medium of unrelated chondrocytes to promote the 

differentiation of autologous stem cells. In the present work, we propose a new strategy 

for cartilage tissue engineering strategies based on the use of conditioned medium, and 

we were able to demonstrate its effect in MSCs chondrogenesis. The positive effect of 

the conditioned medium in osteogenesis and chondrogenesis has been recently 

demonstrated, using MSCs seeded onto polycaprolactone/hydroxyapatite scaffolds and 

on alginate, respectively [60]. In a different approach, using porcine cells for 

chondrogenic differentiation for intervertebral disc repair, notochordal cell conditioned 

medium promoted MSCs differentiation, induced significantly more collagen type II 

expression and GAGs production in MSCs [61]. In the present work, the soluble factors 

released by hACs in culture were able to induce chondrogenic differentiation of both 

hBMSCs and hWJSCs without the addition of growth factors. This is a very interesting 

result, since in a clinical perspective it is preferable to use conditioned medium for 

chondrogenic differentiation of MSCs than to induce it with growth factors or even with 

direct co-cultures. There are many cost associated with the use of growth factors, so this 

cost could be reduced when using conditioned medium. Indeed, this technique should 

be further explored, as some reports show that the use of conditioned medium is very 

versatile. For example, conditioned medium from a human hepatocarcinoma cell line 

(HepG2) enhanced in vitro chondrogenesis of murine embryonic stem cells [62]. 

Therefore, chondrocyte cell lines could be eventually established for conditioned 

medium production, to further induce chondrogenic differentiation of autologous MSCs 

in 3D scaffolds prior to its implantation. However, it is very important to identify, in the 

first place, the soluble factors that are being release into the hACs culture medium and 

that successfully induced the chondrogenic differentiation of hBMSCs and hWJSCs. 

Indirect co-cultures of human MSCs using conditioned medium from hACs seem to 

be more suitable for engineered cartilage formation. The results of indirect co-cultures 

(either with BMSCs or with WJSCs) towards the end of the experiment were 
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significantly higher for all the tested parameters, namely GAGs accumulation and 

cartilage related-genes expression (Collagen type II, Aggrecan and Sox9). Concerning 

the type of human MSCs tested, we obtained strong evidence that hWJSCs are more 

promising than hBMSCs for cartilage related applications using this strategy. 

Additionally, more GAGs accumulation was measured again for both direct and indirect 

co-cultures using hWJSCs. These cultures also expressed Aggrecan, Sox9 and Collagen 

type II, genes related to articular cartilage. Collagen type I, related to fibrotic cartilage, 

did not have a significant expression in these cultures with hWJSCs. This result may be 

indirectly related to a superior chondrogenic performance of hWJSCs when compared 

to hBMSCs [7]. 

 

 

5. Conclusions 

 

Human adult MSCs were able to differentiate into the chondrogenic lineage, when co-

cultured with hACs in CPBS scaffolds. In terms of type of culture, indirect co-cultures 

(using conditioned medium) seem more effective for chondrogenic differentiation. This 

is a very interesting result to be further explored for clinical translation. In this way, 

conditioned medium without the addition of other supplements or growth factors can be 

employed to enhance MSCs expansion and chondrogenic differentiation, prior to 

implantation. Indirect co-cultures using conditioned medium, using either BMSCs or 

WJSCs, showed significant higher values in terms of GAGs accumulation and cartilage 

related genes expression, when compared to direct co-cultures. In terms of cell source, 

hWJSCs showed higher proliferation rates and higher chondrogenic differentiation 

ability when compared to hBMSCs. Human WJSCs expressed significant higher values 

of DNA concentration, GAGs accumulation and cartilage related genes (Aggrecan, 

Collagen type II and Sox9). Human BMSCs chondrogenic differentiation produced 

fibrous cartilage, as stated by the significantly higher expression of Collagen type I 

when compared to hWJSCs. 

In conclusion, indirect co-cultures of hWJSCs using conditioned medium obtained 

from hACs cultures are a new approach for cartilage tissue engineering that should be 

extensively studied for future clinical applications, as an alternative method for 

expanding autologous cells prior to implantation. 
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Abstract 

 

Chondrocytes are mainly responsible for maintaining the integrity of the extracellular 

matrix of articular cartilage and for the protection of the underlying subchondral bone. 

Mesenchymal Stem Cells (MSCs) are also believed to contribute to the maintenance of 

cartilage. Moreover, these cells have been recognized for their ability to differentiate 

into cells of different tissues such as bone, cartilage or adipose tissue, and therefore 

might be of great interest for developing cartilage therapeutic strategies. These cells are 

typically induced to differentiate by growth factors supplementation in the culture 

medium that will trigger differentiation into the desired cell phenotype.  

One frequent problem that occurs in cartilage tissue engineering is that expanded 

chondrocytes undergo dedifferentiation when in 2D culture. This process leads 

frequently to the undesired production of fibrocartilage, and is associated with the loss 

of their phenotype in vitro. The use of an additional cell source to enhance cell numbers, 

not loosing the differentiation potential upon expansion in vitro may be an original 

choice. Moreover, soluble factors released by chondrocytes have been shown to 

influence stem cells differentiation onto the chondrogenic lineage. The use of 

conditioned medium obtained from chondrocytes for stimulating stem cells 

chondrogenic differentiation may be a very interesting alternative for moving into the 

clinical application of these cells.  

In the present work, direct contact co-cultures and indirect co-cultures (using 

conditioned medium obtained from a culture of human articular chondrocytes) of 

human bone marrow-derived MSCs (hBMSCs) and human Wharton´s jelly MSCs 

(hWJSCs) were established. Cells were isolated from human samples collected at a 

local hospital, under donors’ informed consent. The co-cultures were performed in 

previously produced 3D scaffolds, composed by a blend of 50/50 chitosan and poly 

(butylene succinate) – CPBS. Co-cultures were maintained during 28 days. Both types 

of stem cells were able to undergo chondrogenic differentiation, either in direct or 

indirect co-cultures. By the end of the experiment, the indirect co-cultures (using 

conditioned medium) showed significantly higher values in terms of DNA content, 

glycosaminoglycans (GAGs) accumulation and specific cartilage-related genes 

expression, when compared to direct co-cultures, for both types of adult MSCs tested. 

Human BMSCs resulted in fibrous cartilage, as it can be concluded by the significantly 

higher expression of Collagen type I. The hWJSCs showed higher chondrogenic 
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differentiation ability when compared to hBMSCs, as denoted by the higher values for 

GAGs accumulation and cartilage related genes expression.  

Therefore, we were able to demonstrate the high chondrogenic potential of hWJSCs, 

and proved that co-cultures of articular chondrocytes with these cells are able to 

produce more cartilaginous ECM, when compared to co-cultures with hBMSCs. The 

use of conditioned medium obtained from articular chondrocytes induced MSCs 

chondrogenic differentiation and ECM formation. The obtained results showed that this 

new strategy is very interesting and should be further explored for clinical applications. 

 

 

1. Introduction 

 

Research concerning cartilage regeneration is of special importance, since this tissue 

lacks self-repairing capacity and causes a huge social and economic impact. Several cell 

types have been proposed for cartilage tissue engineering, as for example the direct use 

of autologous chondrocytes. However, this method is not very convenient, since it 

involves a biopsy used as cell source for primary chondrocytes that is always limited in 

size and consequently in cell numbers obtained [1]. Also, chondrocytes tend to 

dedifferentiate when expanded in 2D culture, in vitro [1]. The use of stem cells can be 

very useful to overcome these issues, as they can be expanded into clinically relevant 

numbers and further differentiate into the chondrogenic lineage. Applying a 3D milieu 

is pivotal when designing a cartilage TE strategy, because chondrocytes 

dedifferentiation is reversible, and when these cells are further cultured in a 3D 

environment, they may regain their phenotype [2-5]. 

The most widespread tissue source of adult mesenchymal stem cells (MSCs) is the 

bone marrow [6, 7]. Bone marrow MSCs (BMSCs) have been proposed and applied for 

various tissue engineering applications, including for cartilage repair [6, 8-11]. Yet, the 

number of available MSCs in bone marrow [12], and the possibility of donor site 

morbidity in the procedure to obtain bone marrow aspirates, leads to the need to identify 

other MSCs sources. Human umbilical cord Wharton´s jelly has been reported as a 

potential alternative tissue source [13, 14], since human umbilical cord MSCs share 

many properties with bone marrow mesenchymal stem cells, thus supporting their 

applicability for cell-based therapies [15]. Human WJSCs (hWJSCs) have a higher 

frequency of colony forming units (CFUs-F) than hBMSCs, thus a larger number of 
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MSCs may be obtained in the initial isolation from Wharton´s jelly [13]. Further details 

on Wharton´s jelly cells as a primitive stromal cell population can be found elsewhere 

[16, 17]. Human WJSCs have also shown a higher proliferative potential than hBMSCs 

[15], being able to undergo osteogenic, chondrogenic and adipogenic differentiation 

[14]. Thus, those cells are prospective candidates for cartilage tissue engineering, as 

they display a distinct chondrogenic potential. Moreover, the improved chondrogenic 

potential of cells derived from the umbilical cord was confirmed in a study comparing 

the differentiation potential of human BMSCs and human umbilical cord stem cells 

(UCSCs) in 2D cultures [18]. 

Several strategies have been proposed to direct chondrogenesis of stem cells, which 

can be applied either alone or in conjunction. The referred two strategies comprise the 

use of specific growth factors, employing 3D structures to act as supports for cell 

growth and differentiation, or to co-culture progenitor cells with conditioned medium 

obtained from cartilage explants [19]. Cartilage is a paracrine organ, which secretes 

humoral factors that influence the proliferation and differentiation of cells present in the 

surrounding tissues [20]. Chondrogenesis and osteogenesis of MSCs during in vitro 

micromass culture was affected by the use of conditioned medium obtained from 

cultures of chondrocytes [21]. It was observed that  chondrocytes secrete factors that 

may affect the differentiation status of stem cells, and can promote chondrogenesis and 

osteogenesis  [21]. In indirect co-cultures with chondrocytes and embryonic stem cells 

the interaction of paracrine factors secreted by chondrocytes with the referred cells was 

observed [22]. This interaction led to the enhancement of the embryonic stem cells 

chondrogenic commitment [22]. 

The use of a porous biodegradable scaffold to support cell growth is frequently 

proposed for tissue engineering approaches [23-26]. Chondrocytes tend to switch into a 

fibroblast-like phenotype when cultured in monolayer, in tissue culture flasks. The 

presence of a porous structure providing a 3D environment for their culture is pivotal 

for the phenotype development and stability in vitro [27]. In the case of adult stem cells, 

the influence of 3D porous structures is relevant when considering its chondrogenic 

differentiation. Both the proliferation and differentiation of MSCs can be positively 

influenced by the culture in 3D scaffolds. It was demonstrated in the literature that 

mesenchymal stem cells can be attracted into a cartilage defect by the guidance of a 

collagenous matrix after drilling a channel in the cartilage structure until reaching the 

subchondral bone [28]. 
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Our group has been investigating scaffolds produced with several of chitosan/ 

poly(butylene succinate) (CPBS) for cartilage tissue engineering. Those scaffolds 

showed good performance in supporting cell proliferation and ECM deposition [29-31]. 

CPBS scaffolds were reported to sustain the chondrogenic differentiation of a mouse 

mesenchymal progenitor cell line [30] and to promote cartilaginous ECM deposition 

when cultured with bovine articular chondrocytes [29, 31]. Moreover, CPBS fiber 

meshes were also proposed for bone-related strategies using MSCs, with positive results 

[23, 32]. These fiber meshes present a highly connected 3D porous structure, as well as 

a large surface area for cell attachment and proliferation [33]. The versatility of these 

scaffolds makes them very promising candidates for future osteochondral applications. 

Nevertheless, their suitability for cartilage TE using MSCs has not been assessed 

previously. We herein hypothesize that CPBS scaffolds can also support and promote 

human MSCs chondrogenic differentiation. This is the main reason for the selection of 

these scaffolds for the present work.  

Co-cultures aiming the regeneration of cartilage are the subject of recent scientific 

interest. Several studies in the literature propose their applicability for cartilage tissue 

engineering, either using articular chondrocytes from different sources [34] or passages 

[35], stem cells and articular chondrocytes [36], or embryonic stem cells and articular 

chondrocytes [37]. The co-culture of sheep BMSCs with synovial cells showed the 

expression of chondrocytic markers [38], while the use of rat BMSCs with allogenic 

cartilage explants revealed a sustained expression of Sox9 in an early stage of 

chondrogenesis and collagen type X at a later stage, which is an undesired outcome 

since it indicates hypertrophy [39]. Co-culture of synovial-derived stem cells with TGF-

β3 transfected articular chondrocytes resulted in significantly improved chondrogenesis 

of the progenitor cells [40]. The chondrogenic effect of co-culturing chondrocytes with 

MSCs may be influenced by the tissue of origin of stem cells [41, 42]. For instance, in a 

study with human adipose-derived MSCs (ASCs) co-cultures with human articular 

chondrocytes [41], it was demonstrated that co-cultured ASCs and chondrocytes clearly 

differ in their chondrogenic potential, when compared to articular chondrocytes cultured 

alone. The co-culture of ASCs with chondrocytes resulted in decreased chondrogenesis 

[41]. Conversely, in a work comparing chondrogenesis of ASCs and BMSCs seeded 

onto hyaluronic acid scaffolds, it was shown that chondrogenesis was more efficient 

using BMSCs than ASCs or chondrocytes alone [42]. In the case of WJSCs, to our best 

knowledge, only one report can be found in the literature referring to co-cultures of 
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hWJSCs with articular chondrocytes for chondrogenic differentiation [43]. Thus, we 

herein aimed at determining whether their previously reported enhanced chondrogenic 

potential when compared to BMSCs would be maintained, of even improved, in co-

cultures with articular chondrocytes using a 3D scaffold. Additionally, we aimed to 

verify if using conditioned medium from a separate articular chondrocyte culture would 

improve the induction of chondrogenic differentiation of stem cells when compared 

with direct contact between these cells in co-culture. The possibility of using 

conditioned medium opens interesting possibilities for obtaining larger numbers of 

differentiated cells prior to implantation, in the context of its clinical application. 

 

 

2. Materials and Methods 

 

2.1. CPBS fiber meshes  

 

The porous fiber meshes used as 3D scaffolds in the present work have been produced 

and successfully tested earlier by our group for bone related applications using human 

BMSCs [44]. A detailed description of the production methods can be found elsewhere 

[45]. The chitosan used for scaffolds production was supplied by France Chitin 

(Orange, France), with a degree of deacetylation of 85%. Bionolle™ 1050, a 

polybutylene succinate copolymer (MFI~50) was obtained from Showa Highpolymer 

Co. Ltd., Tokyo, Japan. Briefly, the CPBS fibers were obtained using a prototype single 

screw micro-extruder coupled to a capillary die. The extruded fibers were chopped and 

further loaded into a mould, which was heated above the melting temperature of the 

thermoplastic blend during 10 minutes. Immediately after removing the moulds from 

the oven, the fibers were slightly compressed by a Teflon cylinder to pack and bond the 

fibers. Finally, standardized scaffolds in the form of 2 mm thick discs, and with a 

diameter of 8 mm were obtained by cutting the fiber bonded meshes with a circular 

punch tool. 

 

2.2. Isolation and expansion of hBMSCs  

 

Human BMSCs were isolated from bone-marrow aspirates collected after obtaining 

informed consent from patients undergoing knee arthroplasties. Those samples were 
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obtained under the scope of the cooperation agreement established between the 3B´s 

Research Group of the University of Minho and the Orthopaedics Department of the 

Hospital de São Marcos, Braga, Portugal. During the surgeries, bone marrow was 

collected into a container with α-MEM medium, supplemented with antibiotic/ 

antimycotic solution and 5000 units of heparin (Sigma, H3393) and maintained in ice 

until the isolation procedure. Aspirates were homogenised, diluted in phosphate saline 

buffer – PBS (Sigma, D8537) (1:1) and incubated for 5 minutes at room temperature. 

Then, bone marrow was diluted in lyses buffer (1:10) and left under agitation for 10 

minutes. Lyses buffer was prepared with 10 mM of Tris-HCl (Sigma, T3253), 1.21 g of 

Tris Base (Sigma, T1503) and 8.3 g of NH4Cl (Merck, 1011455000), in 1L of distilled 

water.  Afterwards, the suspension was centrifuged at 1200 rpm, for 15 minutes at room 

temperature. Cells were ressuspended in α-MEM medium, supplemented with 

antibiotic/ antimycotic solution and 20 % FBS. Cell suspension was filtered for disposal 

of debris, using 100 µm and 70 µm Cell Strainer (BD Falcon™, 352360 and BD 

Falcon™, 352350). Cells were counted and plated at the density of 4.7x103 cells/cm2. 

Cells were expanded in the referred culture medium until obtaining the cell numbers 

needed for this study. The stemness character of the isolated hBMSCs was analysed 

previously by flow cytometry, (CD34 and CD45 –negative; CD29, CD44, CD73, CD90, 

CD105 and CD106 - positive), using a flow cytometer, and differentiation studies into 

osteogenic, chondrogenic, and adipogenic lineage [32]. 

 

2.3. Isolation and expansion of hWJSCs  

 

Human umbilical cords were obtained after obtaining informed consent from full-term 

caesarian sections donors, under the scope of the cooperation agreement of the 3B´s 

Research Group of the University of Minho and the Obstetrics Department of the 

Hospital de São Marcos, Braga, Portugal. Human WJSCs were isolated according to the 

procedure originally described by Sarugaser et al. [13]. Briefly, umbilical cords (UC) 

were cut into 3–5 cm segments. These segments were then dissected by separation of 

the UC section epithelium along its length, exposing the underlying Wharton’s jelly. 

Each vessel, with its surrounding Wharton’s jelly matrix, was pulled away, and the ends 

of each dissected vessel were tied together with a suture creating “loops”. Following, 

the loops were digested using a 1 mg/ml collagenase type I solution (Sigma, C0130) 

prepared with PBS. After 18–24 hours, the loops were removed. The remaining 
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suspension was diluted with PBS to reduce its viscosity, followed by a centrifugation at 

1200 rpm for 5 minutes. Cells were ressuspended in 10 ml culture medium consisting of 

α-MEM medium (Invitrogen, 12000-063), supplemented with antibiotic/ antimycotic 

solution (Gibco, 15240062), 10% fetal bovine serum (Baptista Marques, 

BSC0115/0943k) and counted in a hemocytometer. Finally, cells were plated and 

expanded until reaching 80–90% confluence. The stemness character of these cells was 

previously studied by flow cytometry for MSCs markers (CD34, CD45-negative and 

CD29, CD73, CD90, CD105, CD166-positive cells), using a flow cytometer (FACS 

Calibur (BD Biosciences)), and differentiation studies into osteogenic, chondrogenic, 

and adipogenic lineage [46]. 

 

2.4. Isolation and expansion of human articular chondrocytes 

 

The isolation of human articular chondrocytes (hACs) was performed according to a 

method previously reported in the literature [47]. HACs were isolated from human 

cartilage samples collected under informed consent from patients undergoing knee 

arthroplasties in the Orthopaedics Department of the Hospital de São Marcos, Braga, 

Portugal, under the scope of the previously referred agreement. During surgeries, the 

knee was collected into a container with PBS and maintained in ice until the isolation 

procedure.  Cartilage was dissected in small full-depth pieces and washed twice with 

PBS buffer. Then, it was digested with 0.25% (w/v) of trypsin solution (Sigma, E5134) 

for 30 minutes at 37ºC on a rotator. The solution was removed, cartilage was washed 

again in PBS buffer and then incubated in a 2 mg/ml collagenase type II solution 

(Sigma, E0130) overnight at 37ºC on a rotator. The following day, cells were washed 

twice with PBS, counted and platted at a density of 2x106 cells per Petri dish. Cells 

were cultivated with expansion medium: Dulbecco’s modified Eagle’s medium (Sigma, 

D5671), containing 10 mM Hepes buffer (Sigma, H0887), L-alanyl-L-glutamine 

(Sigma, G8541), Non Essential Aminoacids (Sigma, M7145), antibiotic/ antimycotic 

solution, 10% fetal bovine serum and 10 ng/ml of basic Fibroblast Growth Factor 

(bFGF) (PeproTech, 100-18B).  
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2.5. Co-cultures 

 

Cells were expanded until they reached the needed number. They were then split, 

counted and then seeded onto the CPBS fiber meshes. Two study groups were 

established: direct co-culture using one source of hMSCs (either hBMSCs or hWJSCs) 

and hACs; indirect co-culture using conditioned medium obtained from hACs cultures. 

The indirect co-culture method herein described is a variation of the transwell inserts 

technique [22, 48]. Instead of separating the two cultures with a transwell, we cultured 

separately the chondrocytes and the stem cells. As explained in the introduction, it is 

known that the 3D structure of the scaffolds can positively influence the chondrogenic 

commitment of MSCs. We hypothesised that by providing the microenvironment and 

the soluble factors present in the chondrocytes medium we would be able to influence 

the chondrogenic differentiation of both types of MSCs used in the present work. Thus, 

as the medium provided was previously consumed by the chondrocytes, we used 

conditioned medium mixed (50/50 in volume) with fresh medium. By means of diluting 

the factors secreted by the chondrocytes in fresh medium, it was our intention to provide 

the required nutrients to the MSCs indirect co-cultures, avoiding the risk of nutrient 

deprivation. 

 

2.5.1. Direct co-cultures 

A suspension of 1x106 cells (5x105 hBMSCs and 5x105 hACs) per scaffold was used 

for seeding the fiber meshes, in a rotator inside the incubator at 37ºC and 5% CO2, 

during 24 hours. Basic medium was used: Dulbecco’s modified Eagle’s Medium 

containing 10 mM Hepes solution, L–alanyl–L–glutamine, Non Essential Aminoacids, 

antibiotic/ antimicotic and 10% fetal bovine serum. Afterwards, constructs were 

transferred to new culture plates containing differentiation medium. This medium is a 

modification of the expansion medium: instead of adding bFGF, 1mg/ml of L-ascorbic 

acid (Sigma, A8960) and 50 mg/ml of insulin (Sigma, I5500) were added. Constructs 

were placed inside the incubator under the same conditions and cultured for 28 days. 

Medium was changed every other day. The same procedure was used for the direct co-

cultures of hWJSCs. 

 

 

 



Co-cultures of hACs and two sources of MSCs for cartilage TE 
 
 

196 

2.5.2. Indirect co-cultures 

Indirect co-cultures were performed using conditioned medium obtained from the 

chondrocytes in culture. First, a cell suspension containing 1x106 cells per scaffold was 

prepared for each type of cell (hBMSCs or hACs). Each cell type was seeded onto 

different CPBS scaffolds, in different culture plates. The seeding procedure was similar 

to the one described above for the direct co-cultures. Afterwards, cells were placed in 

new culture plates containing differentiation medium. After two days, the medium was 

changed. Human BMSCs medium was completely removed, and replaced by the 

mixture of conditioned and fresh medium. It consisted of a mixture of the medium 

which was removed from the chondrocytes culture, plus fresh differentiation medium 

(50/50). Medium of these cultures (hBMSCs) was changed every other day, using the 

referred mixture of conditioned medium. For the hACs cultures, fresh differentiation 

medium was used, and changed every other day. The two types of cultures were 

maintained for 28 days, in an incubator, at 37ºC and 5% CO2. The same procedure was 

used for the indirect co-cultures of hWJSCs. 

 

2.6. Proliferation assay (DNA quantification) 

 

Evaluation of cells proliferation was performed using the PicoGreen dsDNA 

quantification Kit (Molecular Probes, P7589, Invitrogen), according to the manufacturer 

protocol. Samples from every culture were collected at each time point. Triplicates of 

each time point were produced. A standard curve was established. Fluorescence of both 

samples and standard curve was read with an excitation of 485 nm and an emission of 

528 nm, in a microplate reader (Synergie HT). The DNA concentration was 

extrapolated directly from the standard curve. 

 

2.7. Dimethylmethylene blue (DMB) assay for glycosaminoglycans quantification 

 

Dimethylmethylene blue assay was performed according to the method described by 

Kafienah and Sims, 2004 [49]. Briefly, samples were collected at 1 and 4 weeks of 

culture, frozen overnight and then digested. This digestion allowed separating the 

formed ECM from the scaffold. The digestion solution was prepared by adding 1 

mg/mL of proteinase K (Sigma, P8044) diluted in 50 mM Tris-HCl, at pH of 7.6. Tris-

HCl solution was prepared using the appropriate amount of Tris-HCl, adding sodium 
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azide (Sigma, 13412) to a final concentration of 0.05% (w/v). The pH was corrected to 

obtain the final value of 7.6. Samples were placed in 1.5 mL tubes and incubated with 1 

mL of the referred solution, overnight at 60ºC. Afterwards, samples were centrifuged in 

a bench centrifuge at 13000 rpm for 10 minutes and the supernatant was collected. 

Solutions for this assay were prepared as follows. Dimethymethylene Blue (DMB) 

stock solution was prepared dissolving 16 mg of DMB powder (Aldrich, 34088) in 900 

ml of distilled water containing 3.04 g of glycine (Sigma, G8898) and 2.73 g of NaCl 

(Sigma, S3014). This was mixed for 2 hours, covered with aluminium foil. pH was 

adjusted to 3.0 with HCl (Panreac, 1310202424) and a final volume of 1L. The solution 

was stored at room temperature covered with aluminium foil. Chondroitin sulphate 

(Sigma, C8529) solution was prepared in water, in a 5 mg/ml stock solution and kept 

refrigerated. This solution was diluted with water resulting in 5 unit increments from 0 

μg/ml to 50 μg/ml, in order to make a standard curve. 20 μl of water were added to a 96 

well plate, as a blank. The same quantity of chondroitin sulphate diluted solutions was 

added, in triplicate, and the same was performed with all the samples. DMB solution 

was added, 250 μl to each well, the plates were incubated for 10 minutes and then the 

optical density was measured in a microplate reader, at 525 nm. 

 

2.8. RNA isolation 

 

Samples were collected from all controls at 7 and 28 days of experiment. Samples 

were washed in PBS, immersed in TRIzol reagent (Invitrogen, 15596-018) and kept at -

80ºC for posterior RNA extraction. When the extraction was performed, samples were 

taken from the freezer, in order to thaw. Chloroform (Sigma, C2432) was added; 

samples were vigorously agitated for 15 seconds and then incubated in ice for 15 

minutes. After that incubation, samples were centrifuged at 13000 rpm, for 15 minutes, 

at 4ºC. Afterwards, the supernatant was collected for a sterile 1.5 mL tube, and an 

equivalent volume of isopropanol (Sigma, I9516) was added. Samples were incubated at 

-20ºC overnight, to precipitate the RNA. The next day, samples were centrifuged at 

13000 rpm, for 15 minutes, at 4ºC. Then, the supernatant was taken and 800 μl of 

ethanol 70% was added, in order to wash away the isopropanol. This ethanol 70% 

solution was prepared from absolute ethanol (Merck, 1.00983.2511) and ultra pure 

water. Tubes were agitated vigorously and centrifuged again, at 9000 rpm for 5 minutes, 

at 4ºC. The supernatant was again removed, and the pellet was left to air dry. Finally, 
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the pellet was ressuspended in 50 μl of distilled water DNase, RNase free (Gibco, 

10977-015). The concentration and purity of the extracted RNA was evaluated using the 

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies Inc, USA). 

 

2.9. Real-Time PCR 

 

The Real-Time PCR procedure used in the present work consisted of a two step 

fluorogenic assay using the PerfeCta™ SYBR® Green system (Quanta Biosciences, 

95055-100). All reagents used in this procedure were purchased from Quanta 

Biosciences, following the instructions of the manufacturer. Thermocycler reaction 

conditions used were also the ones mentioned in the kits. In the first step, RNA was 

reversed transcribed into cDNA, using the qScript cDNA Synthesis Kit (95047-500). A 

MasterCycler EP Gradient detection system (Eppendorf, USA) was used to perform the 

reaction. Afterwards, the obtained cDNA was used as template for the amplification of 

the targets genes sohwn in Table I, with the PerfeCta™ SYBR® Green FastMix™ kit 

(95072-05K). Tested genes were aggrecan, collagens type I and II and Sox9. GAPDH 

was used as house-keeping gene, and the expression of all target genes was normalized 

against the GAPDH of that sample for each time point of the study. All primer 

sequences were generated using Primer3 software [50] and acquired from MWG 

Biotech AG, Germany. Table I shows the primers sequences used. 

 

Table 7.1 – Primer sequences used for RT-PCR procedures *. 

Gene Forward (5´-3´) Reverse (5´-3´) 

AGC TGAGTCCTCAAGCCTCCTGT TGGTCTGCAGCAGTTGATTC 

COL II CGGTGAGAAGGGAGAAGTTG GACCGGTCACTCCAGTAGGA

COL I AGCCAGCAGATCGAGAACAT ACACAGGTCTCACCGGTTTC 

Sox9 TTCATGAAGATGACCGACGC GTCCAGTCGTAGCCCTTGAG 

GAPDH ACAGTCAGCCGCATCTTCTT ACGACCAAATCCGTTGACTC 

*AGC = Agreccan; COL II = Collagen type II; COL I = Collagen type I; Sox9 = Sry-type high mobility 

group box 9; GAPDH = Glyceraldehyde 3-phosphate dehydrogenase 

 

 

 

 



Co-cultures of hACs and two sources of MSCs for cartilage TE 
 

199 

2.10. Histological analysis 

 

Samples were collected at the end of the experiment and processed for histology. 

Samples were then fixed in 10% neutral buffered formalin and then dehydrated through 

crescent concentrations of ethanol, immersed in infiltration solutions, embedded in 

Technovit glycol methacrylate (kit 8100, Heraeus Kulzer, EBSciences, CO, USA) and 

then polymerized. Specimens were cut to obtain longitudinal sections of 7 µm of 

thickness, using a modified microtome equipped with a tungsten blade (Leica RM 

2155). Staining solution for toluidine blue assay was prepared by adding 1% of 

toluidine blue (Sigma, T0394) dissolved in distilled water containing 0.5 g of sodium 

borate, followed by filtering. One drop of this solution was added to each section for 1 

minute. Then, the sections were rinsed with distilled water and let to air dry overnight. 

Sections were cleared in xylene substitute (Sigma, A5597) and mounted in Histo clear 

(Frilabo, HS200). Safranin O staining was performed by washing slides in tap water, 

then immersed in 0.02% fast green solution (Fluka, 44715) for 6 minutes. Then, they 

were immersed in 1% acetic acid (Panreac, 131008) solution for 1 minute. After, slides 

were immersed in 0.1% safranin O (Fluka, 84120) solution for 10 minutes. By the end, 

slides were washed in tap water and let to air dry. Sections were cleared in xylene 

substitute and mounted as previously described. 

 

2.11. Statistical analysis 

 

Statistical analysis was performed using the SPSS statistic software (Release 15.0.0 

for Windows). Firstly, a Shapiro-Wilk test was used to ascertain about the data 

normality and variance equality. The normality condition was rejected and, 

consequently, nonparametric tests were used in further comparisons between direct and 

indirect co-cultures. A Kruskal-Wallis test followed by Tukey’s HSD test was applied 

to compare differences in between the days in culture type. P values lower than 0.001 

were considered statistically significant in the analysis of the results. 
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3. Results 

 

3.1. DNA quantification 

 

The DNA concentration for each type of co-culture was assessed. Samples were 

collected at each time point of the experiment. We determined if there were any 

differences in between the days of culture, for each type of co-culture (direct or 

indirect), and also in the control conditions. 

 

3.1.1. Co-cultures using hBMSCs 

In terms of DNA concentration, both types of co-cultures using hBMSCs seem to 

follow the same trend of proliferation. DNA contents increased with time in both types 

of co-cultures, whereas the positive control shows a decrease at 21 days, increasing 

again towards the end of the experiment (Figure 7.1A). These results indicate that both 

types of co-cultures using hBMSCs were proliferating at a comparable rate, whereas in 

the control conditions (hACs) cell numbers did not increased between 14 and 21 days, 

recovering only in the last time point. Figure 7.1B shows the table of results for the 

statistical analysis concerning the differences between the various time points of the 

experiment, for each type of co-culture using hBMSCs. We found no significant 

differences between the various time points either in direct co-cultures (p=0.172) or 

indirect co-cultures (p=0.062), showing that the proliferation was not very strong during 

the experiment. The control conditions show a significant increase from the 7th to the 

28th day of experiment, as observed in the statistical analysis results in Figure 7.1C. It is 

noteworthy that both the direct and indirect co-cultures show the highest levels of DNA 

concentration when compared to the controls in the last time point. 
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Figure 7.1 - Box plot of the DNA concentration in co-cultures using human bone 

marrow MSCs. A - Box plot of DNA concentration for direct and indirect co-cultures 

with hBMSCs and control conditions (hACs alone). B – Table with the statistical 

analysis results for the between days of culture differences (Kruskal-Wallis test, 

presented as median ± interquartile range (IQR)). C – Table with the statistical analysis 

results for between days differences in the control conditions (Kruskal-Wallis test 

followed by Tukey’s HSD test.). 

 

3.1.2. Co-cultures using hWJSCs 

The trend of DNA concentration of hWJSCs co-cultures is rather different than the 

DNA concentration found for the co-cultures using hBMSCs. Both direct and indirect 

co-cultures show a decreasing tendency in the first days of culture. Then, the DNA 

concentration in direct co-cultures continues decreasing until the 21st day, increasing 

afterwards until the end of the experiment (Figure 7.2A). This result might indicate that 

the proliferation of the direct co-cultures with hWJSCs slowed down up to the 21st day. 

Conversely, indirect co-cultures with hWJSCs show an increase in DNA concentration 

after 14 days of culture, showing a marked decrease towards the last time point. 
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Comparing the various time points, we found no significant differences between the 

days in direct co-cultures (p=0.04) using hWJSCs (Figure 7.2B). At 21 days, indirect 

co-cultures using hWJSCs displayed a significantly higher DNA concentration than in 

the other time points (p<0.001). On the contrary, at 28 days these cultures displayed a 

significantly lower DNA concentration than all the other time points (p<0.001). This 

result seems to indicate that the proliferation is slowing down towards the end of the 

experiment. On the contrary, the control conditions showed a significant increase 

comparing the 7th and 28th day of the experiment (Figure 7.2C). The highest DNA 

concentration after 28 days of culture was obtained by direct co-cultures. 

 

Figure 7.2 - Box plot of the DNA concentration in co-cultures using human WJSCs. 

A - Box plot of DNA concentration for direct and indirect co-cultures with hWJSCs and 

control conditions (hACs alone). B – Table with the statistical analysis results for the 

between days of culture differences (Kruskal-Wallis test, presented as median ± 

interquartile range (IQR)). C – Table with the statistical analysis results for between 

days differences in the indirect co-cultures and in control conditions (Kruskal-Wallis 

test followed by Tukey’s HSD test.). 
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3.2. Glycosaminoglycans quantification 

 

The GAGs content for each type of co-culture was assessed. Samples were collected 

at 7 and 28 days of the experiment. We compared GAGs content between the types of 

co-cultures (direct vs indirect). We also compared the differences between both types of 

co-cultures and our control condition, hACs to determine if the co-cultures were 

accumulating more GAGs than chondrocytes alone. Afterwards, we determined if any 

differences were observed between the different time points, for each type of co-culture 

(direct or indirect). 

 

3.2.1. Co-cultures with hBMSCs 

Both direct and indirect co-cultures with hBMSCs show a small decrease in the GAG 

content from 7 to 28 days of the experiment, whereas control conditions showed the 

expected significant increase in GAGs deposition over time (Figure 7.3A). 

 

 

 

Figure 7.3 - Box plot of the GAGs concentration in both types of co-cultures, along 

the experiment. A - Box plot of GAGs concentration for direct and indirect co-cultures 

with hBMSCs and control conditions (hACs alone). B - Box plot of the GAGs 

concentration for direct and indirect co-cultures using hWJSCs and control conditions 

(hACs alone). Data were analyzed by nonparametric way of a Kruskal-Wallis test 

followed by Tukey’s HSD test. * denotes significant differences compared to direct co-

cultures. 

 



Co-cultures of hACs and two sources of MSCs for cartilage TE 
 
 

204 

No significant difference between direct and indirect co-cultures using hMSCs was 

found for 7 days of culture (p=0.061). At the end of the experiment, direct co-cultures 

displayed a significantly lower amount of GAGs than indirect co-cultures (p=0.006), as 

well as lower than the values for the control conditions (p=0.002). These results show 

that those co-cultures did not deposit more GAGs than the control condition. No 

significant differences between 7 and 28 days were observed in direct co-cultures 

(p=0.534) and in indirect co-cultures with hBMSCs (p=0.963).  

 

3.2.2. Co-cultures using hWJSCs 

In co-cultures using hWJSCs, a consistent trend was observed for all the conditions. 

Direct and indirect co-cultures, as well as the control conditions, show an increase in 

GAGs content along the time in culture (Figure 7.3B). For co-cultures using hWJSCs no 

significant difference between direct and indirect co-cultures was found after 7 days 

(p=0.138) nor after 28 days (p=0.733). Significant differences were found between 7 

and 28 days of culture for both direct and indirect co-cultures. After 28 days, all the 

conditions displayed a significantly higher GAG concentration compared to 7 days 

(p<0.01), meaning that the GAGs accumulation is very alike to the control conditions, 

with native chondrocytes.  

The GAGs concentration values obtained for all the time points for direct or indirect 

co-cultures with hBMSCs show consistently lower values when comparing to the ones 

obtained for the co-cultures with hWJSCs. 

 

3.3. Real-Time PCR 

 

Samples were collected for Real-Time PCR at 7 and 28 days of experiment. The aim 

was to determine the expression of several cartilage-related genes and to compare the 

differences between the expressions in both types of co-cultures, on both time points. 

 

3.3.1. Co-cultures using hBMSCs 

 In both types of co-cultures using hBMSCs, no significant differences were found 

between the cultures for Aggrecan or Sox9, at 7 days (p=0.072 and p=0.868, 

respectively) or 28 days (p=0.183 and p=0.115, respectively), as shown in Figure 7.4. 

Direct co-cultures using hBMSCs expressed significantly higher values of Collagen 

type I, compared either to indirect co-cultures or to the control conditions (p<0.001), 
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indicating the formation of fibrocartilage in direct co-cultures.  Collagen type II 

expression in indirect co-cultures of hBMSCs, displayed a significantly higher 

expression than direct co-cultures and control conditions (p<0.001) at 7 day of culture. 

After 28 days, direct co-cultures displayed a significantly higher Collagen type II 

expression than indirect co-cultures (p=0.009) and control conditions (p=0.002). 

 

 

Figure 7.4 – Bar plots of chondrogenic markers present in direct and indirect co-

cultures using hBMSCs, normalized for the reference gene GAPDH, after 7 and 28 days 

of culture. Data were analyzed by nonparametric way of a Kruskal-Wallis test for 

Aggrecan and Sox9. Data related with Collagen type I and Collagen type II were 

analyzed by nonparametric way of a Kruskal-Wallis test followed by Tukey’s HSD test. 

* denotes significant differences compared to direct co-cultures, # denotes significant 

differences compared to indirect co-cultures. 

 

3.3.2. Co-cultures using hWJSCs 

Statistic analysis of gene expression in direct and indirect co-cultures using hWJSCs 

showed significant differences for almost all the genes (Figure 7.5). For Aggrecan, there 

was a significantly lower expression on the control conditions, when compared to direct 

and indirect co-cultures (p<0.001), at 7 days of culture. However, at 28 days of culture, 
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both types of co-cultures using hBMSCs showed a significantly higher expression of 

Aggrecan than control conditions (p<0.001). Additionally, indirect co-cultures also 

displayed a significantly higher value for Aggrecan expression when compared to direct 

co-cultures (p=0.007). 

Indirect co-cultures also expressed significantly higher values of Sox9 expression, at 

28 days of culture, when compared to direct co-cultures and control conditions 

(p<0.001). For Collagen type I, no significant difference between cell type was found 

either at 7 (p=0.044) or 28 days of culture (p=0.498). However, the trend was to 

decrease its expression for the longer time periods. 

Direct co-cultures using hWJSCs displayed a significantly higher expression of 

Collagen type II than indirect co-cultures, after 7 days in culture. In contrast, indirect 

co-cultures displayed a significantly higher Collagen type II expression than the control 

conditions (p=0.006), and a significant trend to increase the expression of this important 

gene, in contrast to other culture conditions. 

 

 

 

Figure 7.5 – Bar plots of chondrogenic markers present in direct and indirect co-

cultures using hWJSCs, normalized for the reference gene GAPDH, after 7 and 28 days 

of culture. Data were analyzed by nonparametric way of a Kruskal-Wallis test for 
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Collagen type I. Data related to Aggrecan, Sox9 and Collagen type II expressions were 

analyzed by nonparametric way of a Kruskal-Wallis test followed by Tukey’s HSD test. 

* denotes significant differences compared to direct co-cultures, # denotes significant 

differences compared to indirect co-cultures. 

 

3.4. Histological staining 

 

By the end of the experiment, samples of every co-culture were collected for 

histological sectioning. Sections were stained for cartilagineous ECM using toluidine 

blue and safranin O assays (Figure 7.6). Both types of cells, either in direct or indirect 

co-culture, were able to produce ECM, as shown by the positive stain of toluidine blue 

and safranin O for ECM components. The cells were able to proliferate around the fiber 

meshes, and were able to grow in between the fibers inside the structure of the 

scaffolds. For co-cultures using hBMSCs no evident differences in terms of the quantity 

of cartilage ECM formation are observed in the histological staining results, either for 

direct or indirect co-cultures. Nevertheless, positive staining for proteoglycans can be 

observed either with toluidine blue or with safranin O stain. These observations are 

consistent with the previously obtained results for GAGs accumulation, as well as the 

RT-PCR results that showed the expression of cartilage related genes at the end of the 

experiment. 

In the case of co-cultures using hWJSCs, the same observations were made. It is 

possible to state ECM formation both in direct and indirect co-cultures, stained with 

toluidine blue and safranin O. These observations are also consistent with the previously 

obtained results for GAGs accumulation and cartilage related genes expression at 28 

days of culture. 
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Figure 7.6 – Histological sections of direct and indirect co-cultures using human 

BMSCs and WJSCs, stained for ECM localisation. 

 

 

4. Discussion 

 

The use of biomaterial scaffolds to enhance ECM-cell interactions has been reported 

as a very important factor when using stem cells for TE [7, 42, 51]. For detailed 

overview on this matter, please refer to [52, 53]. The positive effect of 3D scaffolds in 

the chondrogenic differentiation of BMSCs [54-56] and UCSCs [32, 57] has been 

reported elsewhere. In the present work we showed that both hBMSCs and hWJSCs 

were able to undergo chondrogenic differentiation when seeded onto CPBS fiber 
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meshes. Polyglycolic acid (PGA) scaffolds were recently used for comparing the 

potential of hBMSCs and hUCSCs for cartilage tissue engineering. The authors 

observed enhanced chondrogenic differentiation of hUCSCs when compared to 

hBMSCs [7]. The chondrogenic differentiation of MSCs on chitosan fibrous scaffolds 

and chitosan sponges was compared, demonstrating that chondrogenesis on chitosan 

scaffolds is superior on microfibers, when compared to sponges [58]. 

Herein, chondrogenic differentiation of human BMSCs and WJSCs was observed 

both in direct and indirect co-cultures. The soluble signals released by articular 

chondrocytes, either by the direct contact or in the form of soluble factors released in 

the culture medium, did effectively promote chondrogenic differentiation of hBMSCs 

and of hWJSCs. A recent study reported similar conclusions for the chondrogenic 

differentiation of adipose stem cells when co-cultured with chondrocytes [59]. In that 

report, adipose stem cells were cultured in pellets either directly or indirectly with 

chondrocytes, and it was concluded that the chondrocytes secreted signals promoted 

chondrogenic differentiation of adipose stem cells. The co-culture systems used in the 

present work were able to provide MSCs with the signals and the stimulation needed for 

their chondrogenic differentiation. A similar result was found when using conditioned 

medium from chondrocytes in the chondrogenic differentiation of embryonic stem cells 

[48]. The authors could show the coordination of signals between the co-cultures, 

suggesting that chondrogenic differentiation of embryonic stem cells can be achieved by 

co-cultures with chondrocytes, without other exogenous growth factors being required. 

No significant differences between the days in culture, in terms of proliferative ability, 

were found for the co-cultures using hBMSCs. Likewise, no significant differences 

were found for direct co-cultures using hWJSCs. However, when analysing the 

proliferative ability of hWJSCs in indirect co-cultures we observed significantly higher 

differences between the 21st day and all the other time points. Moreover, the values 

obtained for the DNA concentration of hWJSCs are higher than the ones obtained for 

the hBMSCs. The higher proliferative potential of hWJSCs compared to hBMSCs has 

been demonstrated earlier [15], as well as their enhanced chondrogenic potential [14]. 

Both types of co-cultures were able to produce and deposit GAGs. For the cultures with 

hBMSCs, a significantly lower GAG concentration value was found for the direct co-

cultures, comparing to the indirect. For the cultures using hWJSCs, no significant 

differences were found in terms of GAGs concentration between direct and indirect co-

cultures. These results show that indirect co-cultures may be more effective in ECM 
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components production, at least in terms of chondrogenic differentiation of hBMSCs, 

since no differences were found for hWJSCs. Our data with co-cultures of hBMSCs are 

similar to the results obtained in a study using passaged chondrocytes and primary 

bovine chondrocytes [19]. In that study, indirect co-cultures of primary and passaged 

chondrocytes were performed using filter inserts and it was found that the passaged 

cells accumulated ECM, when in contact with the conditioned medium produced by the 

primary chondrocytes. Although indirect co-cultures using hBMSCs seem to have an 

advantage in terms of GAGs accumulation, both types of co-cultures using these cells 

displayed a significantly lower value when compared to the chondrocytes culture 

(control condition). These results show that co-cultures with hBMSCs produced and 

accumulated less GAGs than the native chondrocytes cultures. In terms of GAGs, we 

can say that the hBMSCs co-cultures do not show a clear advantage over chondrocytes. 

Interestingly, both direct and indirect co-cultures using hWJSCs displayed a 

significantly higher concentration of GAGs at 28 days of culture, compared to 7 days. 

The values for GAGs concentration were higher in the cultures using hWJSCs than in 

the cultures using hBMSCs, indicating more formation and accumulation of these 

important components of the cartilaginous ECM.  Our results showed enhanced 

chondrogenesis in hWJSCs, when in indirect or direct co-cultures.  

In the histological sections, it is noticeable that both cultures of hBMSCs and of 

hWJSCs were able to produce ECM components, namely proteoglycans. These 

components were stained both with toludine blue and with safranin O, showing ECM 

deposition. ECM accumulation was also observed in passaged human chondrocytes, 

when in co-cultures with bovine chondrocytes [34]. Co-cultures of equine BMSCs with 

equine articular chondrocytes improved the expression of cartilage related genes, and 

induced the production of a more homogeneous ECM within the neo-cartilage [36].  

In terms of gene expression, for the cultures using hBMSCs, direct co-cultures 

showed significantly higher expression of Collagen type I than indirect co-cultures, at 

the end of the experiment. In terms of Collagen type II expression, direct co-cultures 

displayed a significantly higher expression at 7 days of culture than indirect co-cultures. 

On the other hand, towards the end of the experiment, indirect co-cultures showed a 

higher expression of collagen type II compared to the direct co-cultures. Again, the 

positive effect of using conditioned medium is evidenced by the results. For hWJSCs 

co-cultures, a significantly higher expression of Aggrecan was found for indirect co-

cultures of hWJSCs at 28 days, compared to the direct ones. The same significantly 
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higher expression was observed for Sox9 expression. For Collagen type II, there was a 

decrease in the last day of culture for the direct co-cultures. In this last time point, a 

significantly higher expression was found for the indirect co-cultures, when compared 

to the control conditions. Therefore, this system of co-culturing has a considerable 

clinic potential.  

The use of conditioned medium to promote the differentiation of MSCs for further 

implantation is a valuable concept in terms of regenerative medicine, because it will 

allow obtained conditioned medium of unrelated chondrocytes to promote the 

differentiation of autologous stem cells. In the present work, we propose a new strategy 

for cartilage tissue engineering strategies based on the use of conditioned medium, and 

we were able to demonstrate its effect in MSCs chondrogenesis. The positive effect of 

the conditioned medium in osteogenesis and chondrogenesis has been recently 

demonstrated, using MSCs seeded onto polycaprolactone/hydroxyapatite scaffolds and 

on alginate, respectively [60]. In a different approach, using porcine cells for 

chondrogenic differentiation for intervertebral disc repair, notochordal cell conditioned 

medium promoted MSCs differentiation, induced significantly more collagen type II 

expression and GAGs production in MSCs [61]. In the present work, the soluble factors 

released by hACs in culture were able to induce chondrogenic differentiation of both 

hBMSCs and hWJSCs without the addition of growth factors. This is a very interesting 

result, since in a clinical perspective it is preferable to use conditioned medium for 

chondrogenic differentiation of MSCs than to induce it with growth factors or even with 

direct co-cultures. There are many cost associated with the use of growth factors, so this 

cost could be reduced when using conditioned medium. Indeed, this technique should 

be further explored, as some reports show that the use of conditioned medium is very 

versatile. For example, conditioned medium from a human hepatocarcinoma cell line 

(HepG2) enhanced in vitro chondrogenesis of murine embryonic stem cells [62]. 

Therefore, chondrocyte cell lines could be eventually established for conditioned 

medium production, to further induce chondrogenic differentiation of autologous MSCs 

in 3D scaffolds prior to its implantation. However, it is very important to identify, in the 

first place, the soluble factors that are being release into the hACs culture medium and 

that successfully induced the chondrogenic differentiation of hBMSCs and hWJSCs. 

Indirect co-cultures of human MSCs using conditioned medium from hACs seem to 

be more suitable for engineered cartilage formation. The results of indirect co-cultures 

(either with BMSCs or with WJSCs) towards the end of the experiment were 
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significantly higher for all the tested parameters, namely GAGs accumulation and 

cartilage related-genes expression (Collagen type II, Aggrecan and Sox9). Concerning 

the type of human MSCs tested, we obtained strong evidence that hWJSCs are more 

promising than hBMSCs for cartilage related applications using this strategy. 

Additionally, more GAGs accumulation was measured again for both direct and indirect 

co-cultures using hWJSCs. These cultures also expressed Aggrecan, Sox9 and Collagen 

type II, genes related to articular cartilage. Collagen type I, related to fibrotic cartilage, 

did not have a significant expression in these cultures with hWJSCs. This result may be 

indirectly related to a superior chondrogenic performance of hWJSCs when compared 

to hBMSCs [7]. 

 

 

5. Conclusions 

 

Human adult MSCs were able to differentiate into the chondrogenic lineage, when co-

cultured with hACs in CPBS scaffolds. In terms of type of culture, indirect co-cultures 

(using conditioned medium) seem more effective for chondrogenic differentiation. This 

is a very interesting result to be further explored for clinical translation. In this way, 

conditioned medium without the addition of other supplements or growth factors can be 

employed to enhance MSCs expansion and chondrogenic differentiation, prior to 

implantation. Indirect co-cultures using conditioned medium, using either BMSCs or 

WJSCs, showed significant higher values in terms of GAGs accumulation and cartilage 

related genes expression, when compared to direct co-cultures. In terms of cell source, 

hWJSCs showed higher proliferation rates and higher chondrogenic differentiation 

ability when compared to hBMSCs. Human WJSCs expressed significant higher values 

of DNA concentration, GAGs accumulation and cartilage related genes (Aggrecan, 

Collagen type II and Sox9). Human BMSCs chondrogenic differentiation produced 

fibrous cartilage, as stated by the significantly higher expression of Collagen type I 

when compared to hWJSCs. 

In conclusion, indirect co-cultures of hWJSCs using conditioned medium obtained 

from hACs cultures are a new approach for cartilage tissue engineering that should be 

extensively studied for future clinical applications, as an alternative method for 

expanding autologous cells prior to implantation. 
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Abstract 

 

Chondrocytes are mainly responsible for maintaining the integrity of the extracellular 

matrix of articular cartilage and for the protection of the underlying subchondral bone. 

Mesenchymal Stem Cells (MSCs) are also believed to contribute to the maintenance of 

cartilage. Moreover, these cells have been recognized for their ability to differentiate 

into cells of different tissues such as bone, cartilage or adipose tissue, and therefore 

might be of great interest for developing cartilage therapeutic strategies. These cells are 

typically induced to differentiate by growth factors supplementation in the culture 

medium that will trigger differentiation into the desired cell phenotype.  

One frequent problem that occurs in cartilage tissue engineering is that expanded 

chondrocytes undergo dedifferentiation when in 2D culture. This process leads 

frequently to the undesired production of fibrocartilage, and is associated with the loss 

of their phenotype in vitro. The use of an additional cell source to enhance cell numbers, 

not loosing the differentiation potential upon expansion in vitro may be an original 

choice. Moreover, soluble factors released by chondrocytes have been shown to 

influence stem cells differentiation onto the chondrogenic lineage. The use of 

conditioned medium obtained from chondrocytes for stimulating stem cells 

chondrogenic differentiation may be a very interesting alternative for moving into the 

clinical application of these cells.  

In the present work, direct contact co-cultures and indirect co-cultures (using 

conditioned medium obtained from a culture of human articular chondrocytes) of 

human bone marrow-derived MSCs (hBMSCs) and human Wharton´s jelly MSCs 

(hWJSCs) were established. Cells were isolated from human samples collected at a 

local hospital, under donors’ informed consent. The co-cultures were performed in 

previously produced 3D scaffolds, composed by a blend of 50/50 chitosan and poly 

(butylene succinate) – CPBS. Co-cultures were maintained during 28 days. Both types 

of stem cells were able to undergo chondrogenic differentiation, either in direct or 

indirect co-cultures. By the end of the experiment, the indirect co-cultures (using 

conditioned medium) showed significantly higher values in terms of DNA content, 

glycosaminoglycans (GAGs) accumulation and specific cartilage-related genes 

expression, when compared to direct co-cultures, for both types of adult MSCs tested. 

Human BMSCs resulted in fibrous cartilage, as it can be concluded by the significantly 

higher expression of Collagen type I. The hWJSCs showed higher chondrogenic 
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differentiation ability when compared to hBMSCs, as denoted by the higher values for 

GAGs accumulation and cartilage related genes expression.  

Therefore, we were able to demonstrate the high chondrogenic potential of hWJSCs, 

and proved that co-cultures of articular chondrocytes with these cells are able to 

produce more cartilaginous ECM, when compared to co-cultures with hBMSCs. The 

use of conditioned medium obtained from articular chondrocytes induced MSCs 

chondrogenic differentiation and ECM formation. The obtained results showed that this 

new strategy is very interesting and should be further explored for clinical applications. 

 

 

1. Introduction 

 

Research concerning cartilage regeneration is of special importance, since this tissue 

lacks self-repairing capacity and causes a huge social and economic impact. Several cell 

types have been proposed for cartilage tissue engineering, as for example the direct use 

of autologous chondrocytes. However, this method is not very convenient, since it 

involves a biopsy used as cell source for primary chondrocytes that is always limited in 

size and consequently in cell numbers obtained [1]. Also, chondrocytes tend to 

dedifferentiate when expanded in 2D culture, in vitro [1]. The use of stem cells can be 

very useful to overcome these issues, as they can be expanded into clinically relevant 

numbers and further differentiate into the chondrogenic lineage. Applying a 3D milieu 

is pivotal when designing a cartilage TE strategy, because chondrocytes 

dedifferentiation is reversible, and when these cells are further cultured in a 3D 

environment, they may regain their phenotype [2-5]. 

The most widespread tissue source of adult mesenchymal stem cells (MSCs) is the 

bone marrow [6, 7]. Bone marrow MSCs (BMSCs) have been proposed and applied for 

various tissue engineering applications, including for cartilage repair [6, 8-11]. Yet, the 

number of available MSCs in bone marrow [12], and the possibility of donor site 

morbidity in the procedure to obtain bone marrow aspirates, leads to the need to identify 

other MSCs sources. Human umbilical cord Wharton´s jelly has been reported as a 

potential alternative tissue source [13, 14], since human umbilical cord MSCs share 

many properties with bone marrow mesenchymal stem cells, thus supporting their 

applicability for cell-based therapies [15]. Human WJSCs (hWJSCs) have a higher 

frequency of colony forming units (CFUs-F) than hBMSCs, thus a larger number of 
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MSCs may be obtained in the initial isolation from Wharton´s jelly [13]. Further details 

on Wharton´s jelly cells as a primitive stromal cell population can be found elsewhere 

[16, 17]. Human WJSCs have also shown a higher proliferative potential than hBMSCs 

[15], being able to undergo osteogenic, chondrogenic and adipogenic differentiation 

[14]. Thus, those cells are prospective candidates for cartilage tissue engineering, as 

they display a distinct chondrogenic potential. Moreover, the improved chondrogenic 

potential of cells derived from the umbilical cord was confirmed in a study comparing 

the differentiation potential of human BMSCs and human umbilical cord stem cells 

(UCSCs) in 2D cultures [18]. 

Several strategies have been proposed to direct chondrogenesis of stem cells, which 

can be applied either alone or in conjunction. The referred two strategies comprise the 

use of specific growth factors, employing 3D structures to act as supports for cell 

growth and differentiation, or to co-culture progenitor cells with conditioned medium 

obtained from cartilage explants [19]. Cartilage is a paracrine organ, which secretes 

humoral factors that influence the proliferation and differentiation of cells present in the 

surrounding tissues [20]. Chondrogenesis and osteogenesis of MSCs during in vitro 

micromass culture was affected by the use of conditioned medium obtained from 

cultures of chondrocytes [21]. It was observed that  chondrocytes secrete factors that 

may affect the differentiation status of stem cells, and can promote chondrogenesis and 

osteogenesis  [21]. In indirect co-cultures with chondrocytes and embryonic stem cells 

the interaction of paracrine factors secreted by chondrocytes with the referred cells was 

observed [22]. This interaction led to the enhancement of the embryonic stem cells 

chondrogenic commitment [22]. 

The use of a porous biodegradable scaffold to support cell growth is frequently 

proposed for tissue engineering approaches [23-26]. Chondrocytes tend to switch into a 

fibroblast-like phenotype when cultured in monolayer, in tissue culture flasks. The 

presence of a porous structure providing a 3D environment for their culture is pivotal 

for the phenotype development and stability in vitro [27]. In the case of adult stem cells, 

the influence of 3D porous structures is relevant when considering its chondrogenic 

differentiation. Both the proliferation and differentiation of MSCs can be positively 

influenced by the culture in 3D scaffolds. It was demonstrated in the literature that 

mesenchymal stem cells can be attracted into a cartilage defect by the guidance of a 

collagenous matrix after drilling a channel in the cartilage structure until reaching the 

subchondral bone [28]. 
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Our group has been investigating scaffolds produced with several of chitosan/ 

poly(butylene succinate) (CPBS) for cartilage tissue engineering. Those scaffolds 

showed good performance in supporting cell proliferation and ECM deposition [29-31]. 

CPBS scaffolds were reported to sustain the chondrogenic differentiation of a mouse 

mesenchymal progenitor cell line [30] and to promote cartilaginous ECM deposition 

when cultured with bovine articular chondrocytes [29, 31]. Moreover, CPBS fiber 

meshes were also proposed for bone-related strategies using MSCs, with positive results 

[23, 32]. These fiber meshes present a highly connected 3D porous structure, as well as 

a large surface area for cell attachment and proliferation [33]. The versatility of these 

scaffolds makes them very promising candidates for future osteochondral applications. 

Nevertheless, their suitability for cartilage TE using MSCs has not been assessed 

previously. We herein hypothesize that CPBS scaffolds can also support and promote 

human MSCs chondrogenic differentiation. This is the main reason for the selection of 

these scaffolds for the present work.  

Co-cultures aiming the regeneration of cartilage are the subject of recent scientific 

interest. Several studies in the literature propose their applicability for cartilage tissue 

engineering, either using articular chondrocytes from different sources [34] or passages 

[35], stem cells and articular chondrocytes [36], or embryonic stem cells and articular 

chondrocytes [37]. The co-culture of sheep BMSCs with synovial cells showed the 

expression of chondrocytic markers [38], while the use of rat BMSCs with allogenic 

cartilage explants revealed a sustained expression of Sox9 in an early stage of 

chondrogenesis and collagen type X at a later stage, which is an undesired outcome 

since it indicates hypertrophy [39]. Co-culture of synovial-derived stem cells with TGF-

β3 transfected articular chondrocytes resulted in significantly improved chondrogenesis 

of the progenitor cells [40]. The chondrogenic effect of co-culturing chondrocytes with 

MSCs may be influenced by the tissue of origin of stem cells [41, 42]. For instance, in a 

study with human adipose-derived MSCs (ASCs) co-cultures with human articular 

chondrocytes [41], it was demonstrated that co-cultured ASCs and chondrocytes clearly 

differ in their chondrogenic potential, when compared to articular chondrocytes cultured 

alone. The co-culture of ASCs with chondrocytes resulted in decreased chondrogenesis 

[41]. Conversely, in a work comparing chondrogenesis of ASCs and BMSCs seeded 

onto hyaluronic acid scaffolds, it was shown that chondrogenesis was more efficient 

using BMSCs than ASCs or chondrocytes alone [42]. In the case of WJSCs, to our best 

knowledge, only one report can be found in the literature referring to co-cultures of 
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hWJSCs with articular chondrocytes for chondrogenic differentiation [43]. Thus, we 

herein aimed at determining whether their previously reported enhanced chondrogenic 

potential when compared to BMSCs would be maintained, of even improved, in co-

cultures with articular chondrocytes using a 3D scaffold. Additionally, we aimed to 

verify if using conditioned medium from a separate articular chondrocyte culture would 

improve the induction of chondrogenic differentiation of stem cells when compared 

with direct contact between these cells in co-culture. The possibility of using 

conditioned medium opens interesting possibilities for obtaining larger numbers of 

differentiated cells prior to implantation, in the context of its clinical application. 

 

 

2. Materials and Methods 

 

2.1. CPBS fiber meshes  

 

The porous fiber meshes used as 3D scaffolds in the present work have been produced 

and successfully tested earlier by our group for bone related applications using human 

BMSCs [44]. A detailed description of the production methods can be found elsewhere 

[45]. The chitosan used for scaffolds production was supplied by France Chitin 

(Orange, France), with a degree of deacetylation of 85%. Bionolle™ 1050, a 

polybutylene succinate copolymer (MFI~50) was obtained from Showa Highpolymer 

Co. Ltd., Tokyo, Japan. Briefly, the CPBS fibers were obtained using a prototype single 

screw micro-extruder coupled to a capillary die. The extruded fibers were chopped and 

further loaded into a mould, which was heated above the melting temperature of the 

thermoplastic blend during 10 minutes. Immediately after removing the moulds from 

the oven, the fibers were slightly compressed by a Teflon cylinder to pack and bond the 

fibers. Finally, standardized scaffolds in the form of 2 mm thick discs, and with a 

diameter of 8 mm were obtained by cutting the fiber bonded meshes with a circular 

punch tool. 

 

2.2. Isolation and expansion of hBMSCs  

 

Human BMSCs were isolated from bone-marrow aspirates collected after obtaining 

informed consent from patients undergoing knee arthroplasties. Those samples were 
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obtained under the scope of the cooperation agreement established between the 3B´s 

Research Group of the University of Minho and the Orthopaedics Department of the 

Hospital de São Marcos, Braga, Portugal. During the surgeries, bone marrow was 

collected into a container with α-MEM medium, supplemented with antibiotic/ 

antimycotic solution and 5000 units of heparin (Sigma, H3393) and maintained in ice 

until the isolation procedure. Aspirates were homogenised, diluted in phosphate saline 

buffer – PBS (Sigma, D8537) (1:1) and incubated for 5 minutes at room temperature. 

Then, bone marrow was diluted in lyses buffer (1:10) and left under agitation for 10 

minutes. Lyses buffer was prepared with 10 mM of Tris-HCl (Sigma, T3253), 1.21 g of 

Tris Base (Sigma, T1503) and 8.3 g of NH4Cl (Merck, 1011455000), in 1L of distilled 

water.  Afterwards, the suspension was centrifuged at 1200 rpm, for 15 minutes at room 

temperature. Cells were ressuspended in α-MEM medium, supplemented with 

antibiotic/ antimycotic solution and 20 % FBS. Cell suspension was filtered for disposal 

of debris, using 100 µm and 70 µm Cell Strainer (BD Falcon™, 352360 and BD 

Falcon™, 352350). Cells were counted and plated at the density of 4.7x103 cells/cm2. 

Cells were expanded in the referred culture medium until obtaining the cell numbers 

needed for this study. The stemness character of the isolated hBMSCs was analysed 

previously by flow cytometry, (CD34 and CD45 –negative; CD29, CD44, CD73, CD90, 

CD105 and CD106 - positive), using a flow cytometer, and differentiation studies into 

osteogenic, chondrogenic, and adipogenic lineage [32]. 

 

2.3. Isolation and expansion of hWJSCs  

 

Human umbilical cords were obtained after obtaining informed consent from full-term 

caesarian sections donors, under the scope of the cooperation agreement of the 3B´s 

Research Group of the University of Minho and the Obstetrics Department of the 

Hospital de São Marcos, Braga, Portugal. Human WJSCs were isolated according to the 

procedure originally described by Sarugaser et al. [13]. Briefly, umbilical cords (UC) 

were cut into 3–5 cm segments. These segments were then dissected by separation of 

the UC section epithelium along its length, exposing the underlying Wharton’s jelly. 

Each vessel, with its surrounding Wharton’s jelly matrix, was pulled away, and the ends 

of each dissected vessel were tied together with a suture creating “loops”. Following, 

the loops were digested using a 1 mg/ml collagenase type I solution (Sigma, C0130) 

prepared with PBS. After 18–24 hours, the loops were removed. The remaining 



Co-cultures of hACs and two sources of MSCs for cartilage TE 
 
 

194 

suspension was diluted with PBS to reduce its viscosity, followed by a centrifugation at 

1200 rpm for 5 minutes. Cells were ressuspended in 10 ml culture medium consisting of 

α-MEM medium (Invitrogen, 12000-063), supplemented with antibiotic/ antimycotic 

solution (Gibco, 15240062), 10% fetal bovine serum (Baptista Marques, 

BSC0115/0943k) and counted in a hemocytometer. Finally, cells were plated and 

expanded until reaching 80–90% confluence. The stemness character of these cells was 

previously studied by flow cytometry for MSCs markers (CD34, CD45-negative and 

CD29, CD73, CD90, CD105, CD166-positive cells), using a flow cytometer (FACS 

Calibur (BD Biosciences)), and differentiation studies into osteogenic, chondrogenic, 

and adipogenic lineage [46]. 

 

2.4. Isolation and expansion of human articular chondrocytes 

 

The isolation of human articular chondrocytes (hACs) was performed according to a 

method previously reported in the literature [47]. HACs were isolated from human 

cartilage samples collected under informed consent from patients undergoing knee 

arthroplasties in the Orthopaedics Department of the Hospital de São Marcos, Braga, 

Portugal, under the scope of the previously referred agreement. During surgeries, the 

knee was collected into a container with PBS and maintained in ice until the isolation 

procedure.  Cartilage was dissected in small full-depth pieces and washed twice with 

PBS buffer. Then, it was digested with 0.25% (w/v) of trypsin solution (Sigma, E5134) 

for 30 minutes at 37ºC on a rotator. The solution was removed, cartilage was washed 

again in PBS buffer and then incubated in a 2 mg/ml collagenase type II solution 

(Sigma, E0130) overnight at 37ºC on a rotator. The following day, cells were washed 

twice with PBS, counted and platted at a density of 2x106 cells per Petri dish. Cells 

were cultivated with expansion medium: Dulbecco’s modified Eagle’s medium (Sigma, 

D5671), containing 10 mM Hepes buffer (Sigma, H0887), L-alanyl-L-glutamine 

(Sigma, G8541), Non Essential Aminoacids (Sigma, M7145), antibiotic/ antimycotic 

solution, 10% fetal bovine serum and 10 ng/ml of basic Fibroblast Growth Factor 

(bFGF) (PeproTech, 100-18B).  
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2.5. Co-cultures 

 

Cells were expanded until they reached the needed number. They were then split, 

counted and then seeded onto the CPBS fiber meshes. Two study groups were 

established: direct co-culture using one source of hMSCs (either hBMSCs or hWJSCs) 

and hACs; indirect co-culture using conditioned medium obtained from hACs cultures. 

The indirect co-culture method herein described is a variation of the transwell inserts 

technique [22, 48]. Instead of separating the two cultures with a transwell, we cultured 

separately the chondrocytes and the stem cells. As explained in the introduction, it is 

known that the 3D structure of the scaffolds can positively influence the chondrogenic 

commitment of MSCs. We hypothesised that by providing the microenvironment and 

the soluble factors present in the chondrocytes medium we would be able to influence 

the chondrogenic differentiation of both types of MSCs used in the present work. Thus, 

as the medium provided was previously consumed by the chondrocytes, we used 

conditioned medium mixed (50/50 in volume) with fresh medium. By means of diluting 

the factors secreted by the chondrocytes in fresh medium, it was our intention to provide 

the required nutrients to the MSCs indirect co-cultures, avoiding the risk of nutrient 

deprivation. 

 

2.5.1. Direct co-cultures 

A suspension of 1x106 cells (5x105 hBMSCs and 5x105 hACs) per scaffold was used 

for seeding the fiber meshes, in a rotator inside the incubator at 37ºC and 5% CO2, 

during 24 hours. Basic medium was used: Dulbecco’s modified Eagle’s Medium 

containing 10 mM Hepes solution, L–alanyl–L–glutamine, Non Essential Aminoacids, 

antibiotic/ antimicotic and 10% fetal bovine serum. Afterwards, constructs were 

transferred to new culture plates containing differentiation medium. This medium is a 

modification of the expansion medium: instead of adding bFGF, 1mg/ml of L-ascorbic 

acid (Sigma, A8960) and 50 mg/ml of insulin (Sigma, I5500) were added. Constructs 

were placed inside the incubator under the same conditions and cultured for 28 days. 

Medium was changed every other day. The same procedure was used for the direct co-

cultures of hWJSCs. 
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2.5.2. Indirect co-cultures 

Indirect co-cultures were performed using conditioned medium obtained from the 

chondrocytes in culture. First, a cell suspension containing 1x106 cells per scaffold was 

prepared for each type of cell (hBMSCs or hACs). Each cell type was seeded onto 

different CPBS scaffolds, in different culture plates. The seeding procedure was similar 

to the one described above for the direct co-cultures. Afterwards, cells were placed in 

new culture plates containing differentiation medium. After two days, the medium was 

changed. Human BMSCs medium was completely removed, and replaced by the 

mixture of conditioned and fresh medium. It consisted of a mixture of the medium 

which was removed from the chondrocytes culture, plus fresh differentiation medium 

(50/50). Medium of these cultures (hBMSCs) was changed every other day, using the 

referred mixture of conditioned medium. For the hACs cultures, fresh differentiation 

medium was used, and changed every other day. The two types of cultures were 

maintained for 28 days, in an incubator, at 37ºC and 5% CO2. The same procedure was 

used for the indirect co-cultures of hWJSCs. 

 

2.6. Proliferation assay (DNA quantification) 

 

Evaluation of cells proliferation was performed using the PicoGreen dsDNA 

quantification Kit (Molecular Probes, P7589, Invitrogen), according to the manufacturer 

protocol. Samples from every culture were collected at each time point. Triplicates of 

each time point were produced. A standard curve was established. Fluorescence of both 

samples and standard curve was read with an excitation of 485 nm and an emission of 

528 nm, in a microplate reader (Synergie HT). The DNA concentration was 

extrapolated directly from the standard curve. 

 

2.7. Dimethylmethylene blue (DMB) assay for glycosaminoglycans quantification 

 

Dimethylmethylene blue assay was performed according to the method described by 

Kafienah and Sims, 2004 [49]. Briefly, samples were collected at 1 and 4 weeks of 

culture, frozen overnight and then digested. This digestion allowed separating the 

formed ECM from the scaffold. The digestion solution was prepared by adding 1 

mg/mL of proteinase K (Sigma, P8044) diluted in 50 mM Tris-HCl, at pH of 7.6. Tris-

HCl solution was prepared using the appropriate amount of Tris-HCl, adding sodium 
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azide (Sigma, 13412) to a final concentration of 0.05% (w/v). The pH was corrected to 

obtain the final value of 7.6. Samples were placed in 1.5 mL tubes and incubated with 1 

mL of the referred solution, overnight at 60ºC. Afterwards, samples were centrifuged in 

a bench centrifuge at 13000 rpm for 10 minutes and the supernatant was collected. 

Solutions for this assay were prepared as follows. Dimethymethylene Blue (DMB) 

stock solution was prepared dissolving 16 mg of DMB powder (Aldrich, 34088) in 900 

ml of distilled water containing 3.04 g of glycine (Sigma, G8898) and 2.73 g of NaCl 

(Sigma, S3014). This was mixed for 2 hours, covered with aluminium foil. pH was 

adjusted to 3.0 with HCl (Panreac, 1310202424) and a final volume of 1L. The solution 

was stored at room temperature covered with aluminium foil. Chondroitin sulphate 

(Sigma, C8529) solution was prepared in water, in a 5 mg/ml stock solution and kept 

refrigerated. This solution was diluted with water resulting in 5 unit increments from 0 

μg/ml to 50 μg/ml, in order to make a standard curve. 20 μl of water were added to a 96 

well plate, as a blank. The same quantity of chondroitin sulphate diluted solutions was 

added, in triplicate, and the same was performed with all the samples. DMB solution 

was added, 250 μl to each well, the plates were incubated for 10 minutes and then the 

optical density was measured in a microplate reader, at 525 nm. 

 

2.8. RNA isolation 

 

Samples were collected from all controls at 7 and 28 days of experiment. Samples 

were washed in PBS, immersed in TRIzol reagent (Invitrogen, 15596-018) and kept at -

80ºC for posterior RNA extraction. When the extraction was performed, samples were 

taken from the freezer, in order to thaw. Chloroform (Sigma, C2432) was added; 

samples were vigorously agitated for 15 seconds and then incubated in ice for 15 

minutes. After that incubation, samples were centrifuged at 13000 rpm, for 15 minutes, 

at 4ºC. Afterwards, the supernatant was collected for a sterile 1.5 mL tube, and an 

equivalent volume of isopropanol (Sigma, I9516) was added. Samples were incubated at 

-20ºC overnight, to precipitate the RNA. The next day, samples were centrifuged at 

13000 rpm, for 15 minutes, at 4ºC. Then, the supernatant was taken and 800 μl of 

ethanol 70% was added, in order to wash away the isopropanol. This ethanol 70% 

solution was prepared from absolute ethanol (Merck, 1.00983.2511) and ultra pure 

water. Tubes were agitated vigorously and centrifuged again, at 9000 rpm for 5 minutes, 

at 4ºC. The supernatant was again removed, and the pellet was left to air dry. Finally, 
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the pellet was ressuspended in 50 μl of distilled water DNase, RNase free (Gibco, 

10977-015). The concentration and purity of the extracted RNA was evaluated using the 

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies Inc, USA). 

 

2.9. Real-Time PCR 

 

The Real-Time PCR procedure used in the present work consisted of a two step 

fluorogenic assay using the PerfeCta™ SYBR® Green system (Quanta Biosciences, 

95055-100). All reagents used in this procedure were purchased from Quanta 

Biosciences, following the instructions of the manufacturer. Thermocycler reaction 

conditions used were also the ones mentioned in the kits. In the first step, RNA was 

reversed transcribed into cDNA, using the qScript cDNA Synthesis Kit (95047-500). A 

MasterCycler EP Gradient detection system (Eppendorf, USA) was used to perform the 

reaction. Afterwards, the obtained cDNA was used as template for the amplification of 

the targets genes sohwn in Table I, with the PerfeCta™ SYBR® Green FastMix™ kit 

(95072-05K). Tested genes were aggrecan, collagens type I and II and Sox9. GAPDH 

was used as house-keeping gene, and the expression of all target genes was normalized 

against the GAPDH of that sample for each time point of the study. All primer 

sequences were generated using Primer3 software [50] and acquired from MWG 

Biotech AG, Germany. Table I shows the primers sequences used. 

 

Table 7.1 – Primer sequences used for RT-PCR procedures *. 

Gene Forward (5´-3´) Reverse (5´-3´) 

AGC TGAGTCCTCAAGCCTCCTGT TGGTCTGCAGCAGTTGATTC 

COL II CGGTGAGAAGGGAGAAGTTG GACCGGTCACTCCAGTAGGA

COL I AGCCAGCAGATCGAGAACAT ACACAGGTCTCACCGGTTTC 

Sox9 TTCATGAAGATGACCGACGC GTCCAGTCGTAGCCCTTGAG 

GAPDH ACAGTCAGCCGCATCTTCTT ACGACCAAATCCGTTGACTC 

*AGC = Agreccan; COL II = Collagen type II; COL I = Collagen type I; Sox9 = Sry-type high mobility 

group box 9; GAPDH = Glyceraldehyde 3-phosphate dehydrogenase 
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2.10. Histological analysis 

 

Samples were collected at the end of the experiment and processed for histology. 

Samples were then fixed in 10% neutral buffered formalin and then dehydrated through 

crescent concentrations of ethanol, immersed in infiltration solutions, embedded in 

Technovit glycol methacrylate (kit 8100, Heraeus Kulzer, EBSciences, CO, USA) and 

then polymerized. Specimens were cut to obtain longitudinal sections of 7 µm of 

thickness, using a modified microtome equipped with a tungsten blade (Leica RM 

2155). Staining solution for toluidine blue assay was prepared by adding 1% of 

toluidine blue (Sigma, T0394) dissolved in distilled water containing 0.5 g of sodium 

borate, followed by filtering. One drop of this solution was added to each section for 1 

minute. Then, the sections were rinsed with distilled water and let to air dry overnight. 

Sections were cleared in xylene substitute (Sigma, A5597) and mounted in Histo clear 

(Frilabo, HS200). Safranin O staining was performed by washing slides in tap water, 

then immersed in 0.02% fast green solution (Fluka, 44715) for 6 minutes. Then, they 

were immersed in 1% acetic acid (Panreac, 131008) solution for 1 minute. After, slides 

were immersed in 0.1% safranin O (Fluka, 84120) solution for 10 minutes. By the end, 

slides were washed in tap water and let to air dry. Sections were cleared in xylene 

substitute and mounted as previously described. 

 

2.11. Statistical analysis 

 

Statistical analysis was performed using the SPSS statistic software (Release 15.0.0 

for Windows). Firstly, a Shapiro-Wilk test was used to ascertain about the data 

normality and variance equality. The normality condition was rejected and, 

consequently, nonparametric tests were used in further comparisons between direct and 

indirect co-cultures. A Kruskal-Wallis test followed by Tukey’s HSD test was applied 

to compare differences in between the days in culture type. P values lower than 0.001 

were considered statistically significant in the analysis of the results. 
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3. Results 

 

3.1. DNA quantification 

 

The DNA concentration for each type of co-culture was assessed. Samples were 

collected at each time point of the experiment. We determined if there were any 

differences in between the days of culture, for each type of co-culture (direct or 

indirect), and also in the control conditions. 

 

3.1.1. Co-cultures using hBMSCs 

In terms of DNA concentration, both types of co-cultures using hBMSCs seem to 

follow the same trend of proliferation. DNA contents increased with time in both types 

of co-cultures, whereas the positive control shows a decrease at 21 days, increasing 

again towards the end of the experiment (Figure 7.1A). These results indicate that both 

types of co-cultures using hBMSCs were proliferating at a comparable rate, whereas in 

the control conditions (hACs) cell numbers did not increased between 14 and 21 days, 

recovering only in the last time point. Figure 7.1B shows the table of results for the 

statistical analysis concerning the differences between the various time points of the 

experiment, for each type of co-culture using hBMSCs. We found no significant 

differences between the various time points either in direct co-cultures (p=0.172) or 

indirect co-cultures (p=0.062), showing that the proliferation was not very strong during 

the experiment. The control conditions show a significant increase from the 7th to the 

28th day of experiment, as observed in the statistical analysis results in Figure 7.1C. It is 

noteworthy that both the direct and indirect co-cultures show the highest levels of DNA 

concentration when compared to the controls in the last time point. 
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Figure 7.1 - Box plot of the DNA concentration in co-cultures using human bone 

marrow MSCs. A - Box plot of DNA concentration for direct and indirect co-cultures 

with hBMSCs and control conditions (hACs alone). B – Table with the statistical 

analysis results for the between days of culture differences (Kruskal-Wallis test, 

presented as median ± interquartile range (IQR)). C – Table with the statistical analysis 

results for between days differences in the control conditions (Kruskal-Wallis test 

followed by Tukey’s HSD test.). 

 

3.1.2. Co-cultures using hWJSCs 

The trend of DNA concentration of hWJSCs co-cultures is rather different than the 

DNA concentration found for the co-cultures using hBMSCs. Both direct and indirect 

co-cultures show a decreasing tendency in the first days of culture. Then, the DNA 

concentration in direct co-cultures continues decreasing until the 21st day, increasing 

afterwards until the end of the experiment (Figure 7.2A). This result might indicate that 

the proliferation of the direct co-cultures with hWJSCs slowed down up to the 21st day. 

Conversely, indirect co-cultures with hWJSCs show an increase in DNA concentration 

after 14 days of culture, showing a marked decrease towards the last time point. 
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Comparing the various time points, we found no significant differences between the 

days in direct co-cultures (p=0.04) using hWJSCs (Figure 7.2B). At 21 days, indirect 

co-cultures using hWJSCs displayed a significantly higher DNA concentration than in 

the other time points (p<0.001). On the contrary, at 28 days these cultures displayed a 

significantly lower DNA concentration than all the other time points (p<0.001). This 

result seems to indicate that the proliferation is slowing down towards the end of the 

experiment. On the contrary, the control conditions showed a significant increase 

comparing the 7th and 28th day of the experiment (Figure 7.2C). The highest DNA 

concentration after 28 days of culture was obtained by direct co-cultures. 

 

Figure 7.2 - Box plot of the DNA concentration in co-cultures using human WJSCs. 

A - Box plot of DNA concentration for direct and indirect co-cultures with hWJSCs and 

control conditions (hACs alone). B – Table with the statistical analysis results for the 

between days of culture differences (Kruskal-Wallis test, presented as median ± 

interquartile range (IQR)). C – Table with the statistical analysis results for between 

days differences in the indirect co-cultures and in control conditions (Kruskal-Wallis 

test followed by Tukey’s HSD test.). 
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3.2. Glycosaminoglycans quantification 

 

The GAGs content for each type of co-culture was assessed. Samples were collected 

at 7 and 28 days of the experiment. We compared GAGs content between the types of 

co-cultures (direct vs indirect). We also compared the differences between both types of 

co-cultures and our control condition, hACs to determine if the co-cultures were 

accumulating more GAGs than chondrocytes alone. Afterwards, we determined if any 

differences were observed between the different time points, for each type of co-culture 

(direct or indirect). 

 

3.2.1. Co-cultures with hBMSCs 

Both direct and indirect co-cultures with hBMSCs show a small decrease in the GAG 

content from 7 to 28 days of the experiment, whereas control conditions showed the 

expected significant increase in GAGs deposition over time (Figure 7.3A). 

 

 

 

Figure 7.3 - Box plot of the GAGs concentration in both types of co-cultures, along 

the experiment. A - Box plot of GAGs concentration for direct and indirect co-cultures 

with hBMSCs and control conditions (hACs alone). B - Box plot of the GAGs 

concentration for direct and indirect co-cultures using hWJSCs and control conditions 

(hACs alone). Data were analyzed by nonparametric way of a Kruskal-Wallis test 

followed by Tukey’s HSD test. * denotes significant differences compared to direct co-

cultures. 
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No significant difference between direct and indirect co-cultures using hMSCs was 

found for 7 days of culture (p=0.061). At the end of the experiment, direct co-cultures 

displayed a significantly lower amount of GAGs than indirect co-cultures (p=0.006), as 

well as lower than the values for the control conditions (p=0.002). These results show 

that those co-cultures did not deposit more GAGs than the control condition. No 

significant differences between 7 and 28 days were observed in direct co-cultures 

(p=0.534) and in indirect co-cultures with hBMSCs (p=0.963).  

 

3.2.2. Co-cultures using hWJSCs 

In co-cultures using hWJSCs, a consistent trend was observed for all the conditions. 

Direct and indirect co-cultures, as well as the control conditions, show an increase in 

GAGs content along the time in culture (Figure 7.3B). For co-cultures using hWJSCs no 

significant difference between direct and indirect co-cultures was found after 7 days 

(p=0.138) nor after 28 days (p=0.733). Significant differences were found between 7 

and 28 days of culture for both direct and indirect co-cultures. After 28 days, all the 

conditions displayed a significantly higher GAG concentration compared to 7 days 

(p<0.01), meaning that the GAGs accumulation is very alike to the control conditions, 

with native chondrocytes.  

The GAGs concentration values obtained for all the time points for direct or indirect 

co-cultures with hBMSCs show consistently lower values when comparing to the ones 

obtained for the co-cultures with hWJSCs. 

 

3.3. Real-Time PCR 

 

Samples were collected for Real-Time PCR at 7 and 28 days of experiment. The aim 

was to determine the expression of several cartilage-related genes and to compare the 

differences between the expressions in both types of co-cultures, on both time points. 

 

3.3.1. Co-cultures using hBMSCs 

 In both types of co-cultures using hBMSCs, no significant differences were found 

between the cultures for Aggrecan or Sox9, at 7 days (p=0.072 and p=0.868, 

respectively) or 28 days (p=0.183 and p=0.115, respectively), as shown in Figure 7.4. 

Direct co-cultures using hBMSCs expressed significantly higher values of Collagen 

type I, compared either to indirect co-cultures or to the control conditions (p<0.001), 
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indicating the formation of fibrocartilage in direct co-cultures.  Collagen type II 

expression in indirect co-cultures of hBMSCs, displayed a significantly higher 

expression than direct co-cultures and control conditions (p<0.001) at 7 day of culture. 

After 28 days, direct co-cultures displayed a significantly higher Collagen type II 

expression than indirect co-cultures (p=0.009) and control conditions (p=0.002). 

 

 

Figure 7.4 – Bar plots of chondrogenic markers present in direct and indirect co-

cultures using hBMSCs, normalized for the reference gene GAPDH, after 7 and 28 days 

of culture. Data were analyzed by nonparametric way of a Kruskal-Wallis test for 

Aggrecan and Sox9. Data related with Collagen type I and Collagen type II were 

analyzed by nonparametric way of a Kruskal-Wallis test followed by Tukey’s HSD test. 

* denotes significant differences compared to direct co-cultures, # denotes significant 

differences compared to indirect co-cultures. 

 

3.3.2. Co-cultures using hWJSCs 

Statistic analysis of gene expression in direct and indirect co-cultures using hWJSCs 

showed significant differences for almost all the genes (Figure 7.5). For Aggrecan, there 

was a significantly lower expression on the control conditions, when compared to direct 

and indirect co-cultures (p<0.001), at 7 days of culture. However, at 28 days of culture, 
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both types of co-cultures using hBMSCs showed a significantly higher expression of 

Aggrecan than control conditions (p<0.001). Additionally, indirect co-cultures also 

displayed a significantly higher value for Aggrecan expression when compared to direct 

co-cultures (p=0.007). 

Indirect co-cultures also expressed significantly higher values of Sox9 expression, at 

28 days of culture, when compared to direct co-cultures and control conditions 

(p<0.001). For Collagen type I, no significant difference between cell type was found 

either at 7 (p=0.044) or 28 days of culture (p=0.498). However, the trend was to 

decrease its expression for the longer time periods. 

Direct co-cultures using hWJSCs displayed a significantly higher expression of 

Collagen type II than indirect co-cultures, after 7 days in culture. In contrast, indirect 

co-cultures displayed a significantly higher Collagen type II expression than the control 

conditions (p=0.006), and a significant trend to increase the expression of this important 

gene, in contrast to other culture conditions. 

 

 

 

Figure 7.5 – Bar plots of chondrogenic markers present in direct and indirect co-

cultures using hWJSCs, normalized for the reference gene GAPDH, after 7 and 28 days 

of culture. Data were analyzed by nonparametric way of a Kruskal-Wallis test for 
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Collagen type I. Data related to Aggrecan, Sox9 and Collagen type II expressions were 

analyzed by nonparametric way of a Kruskal-Wallis test followed by Tukey’s HSD test. 

* denotes significant differences compared to direct co-cultures, # denotes significant 

differences compared to indirect co-cultures. 

 

3.4. Histological staining 

 

By the end of the experiment, samples of every co-culture were collected for 

histological sectioning. Sections were stained for cartilagineous ECM using toluidine 

blue and safranin O assays (Figure 7.6). Both types of cells, either in direct or indirect 

co-culture, were able to produce ECM, as shown by the positive stain of toluidine blue 

and safranin O for ECM components. The cells were able to proliferate around the fiber 

meshes, and were able to grow in between the fibers inside the structure of the 

scaffolds. For co-cultures using hBMSCs no evident differences in terms of the quantity 

of cartilage ECM formation are observed in the histological staining results, either for 

direct or indirect co-cultures. Nevertheless, positive staining for proteoglycans can be 

observed either with toluidine blue or with safranin O stain. These observations are 

consistent with the previously obtained results for GAGs accumulation, as well as the 

RT-PCR results that showed the expression of cartilage related genes at the end of the 

experiment. 

In the case of co-cultures using hWJSCs, the same observations were made. It is 

possible to state ECM formation both in direct and indirect co-cultures, stained with 

toluidine blue and safranin O. These observations are also consistent with the previously 

obtained results for GAGs accumulation and cartilage related genes expression at 28 

days of culture. 
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Figure 7.6 – Histological sections of direct and indirect co-cultures using human 

BMSCs and WJSCs, stained for ECM localisation. 

 

 

4. Discussion 

 

The use of biomaterial scaffolds to enhance ECM-cell interactions has been reported 

as a very important factor when using stem cells for TE [7, 42, 51]. For detailed 

overview on this matter, please refer to [52, 53]. The positive effect of 3D scaffolds in 

the chondrogenic differentiation of BMSCs [54-56] and UCSCs [32, 57] has been 

reported elsewhere. In the present work we showed that both hBMSCs and hWJSCs 

were able to undergo chondrogenic differentiation when seeded onto CPBS fiber 
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meshes. Polyglycolic acid (PGA) scaffolds were recently used for comparing the 

potential of hBMSCs and hUCSCs for cartilage tissue engineering. The authors 

observed enhanced chondrogenic differentiation of hUCSCs when compared to 

hBMSCs [7]. The chondrogenic differentiation of MSCs on chitosan fibrous scaffolds 

and chitosan sponges was compared, demonstrating that chondrogenesis on chitosan 

scaffolds is superior on microfibers, when compared to sponges [58]. 

Herein, chondrogenic differentiation of human BMSCs and WJSCs was observed 

both in direct and indirect co-cultures. The soluble signals released by articular 

chondrocytes, either by the direct contact or in the form of soluble factors released in 

the culture medium, did effectively promote chondrogenic differentiation of hBMSCs 

and of hWJSCs. A recent study reported similar conclusions for the chondrogenic 

differentiation of adipose stem cells when co-cultured with chondrocytes [59]. In that 

report, adipose stem cells were cultured in pellets either directly or indirectly with 

chondrocytes, and it was concluded that the chondrocytes secreted signals promoted 

chondrogenic differentiation of adipose stem cells. The co-culture systems used in the 

present work were able to provide MSCs with the signals and the stimulation needed for 

their chondrogenic differentiation. A similar result was found when using conditioned 

medium from chondrocytes in the chondrogenic differentiation of embryonic stem cells 

[48]. The authors could show the coordination of signals between the co-cultures, 

suggesting that chondrogenic differentiation of embryonic stem cells can be achieved by 

co-cultures with chondrocytes, without other exogenous growth factors being required. 

No significant differences between the days in culture, in terms of proliferative ability, 

were found for the co-cultures using hBMSCs. Likewise, no significant differences 

were found for direct co-cultures using hWJSCs. However, when analysing the 

proliferative ability of hWJSCs in indirect co-cultures we observed significantly higher 

differences between the 21st day and all the other time points. Moreover, the values 

obtained for the DNA concentration of hWJSCs are higher than the ones obtained for 

the hBMSCs. The higher proliferative potential of hWJSCs compared to hBMSCs has 

been demonstrated earlier [15], as well as their enhanced chondrogenic potential [14]. 

Both types of co-cultures were able to produce and deposit GAGs. For the cultures with 

hBMSCs, a significantly lower GAG concentration value was found for the direct co-

cultures, comparing to the indirect. For the cultures using hWJSCs, no significant 

differences were found in terms of GAGs concentration between direct and indirect co-

cultures. These results show that indirect co-cultures may be more effective in ECM 
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components production, at least in terms of chondrogenic differentiation of hBMSCs, 

since no differences were found for hWJSCs. Our data with co-cultures of hBMSCs are 

similar to the results obtained in a study using passaged chondrocytes and primary 

bovine chondrocytes [19]. In that study, indirect co-cultures of primary and passaged 

chondrocytes were performed using filter inserts and it was found that the passaged 

cells accumulated ECM, when in contact with the conditioned medium produced by the 

primary chondrocytes. Although indirect co-cultures using hBMSCs seem to have an 

advantage in terms of GAGs accumulation, both types of co-cultures using these cells 

displayed a significantly lower value when compared to the chondrocytes culture 

(control condition). These results show that co-cultures with hBMSCs produced and 

accumulated less GAGs than the native chondrocytes cultures. In terms of GAGs, we 

can say that the hBMSCs co-cultures do not show a clear advantage over chondrocytes. 

Interestingly, both direct and indirect co-cultures using hWJSCs displayed a 

significantly higher concentration of GAGs at 28 days of culture, compared to 7 days. 

The values for GAGs concentration were higher in the cultures using hWJSCs than in 

the cultures using hBMSCs, indicating more formation and accumulation of these 

important components of the cartilaginous ECM.  Our results showed enhanced 

chondrogenesis in hWJSCs, when in indirect or direct co-cultures.  

In the histological sections, it is noticeable that both cultures of hBMSCs and of 

hWJSCs were able to produce ECM components, namely proteoglycans. These 

components were stained both with toludine blue and with safranin O, showing ECM 

deposition. ECM accumulation was also observed in passaged human chondrocytes, 

when in co-cultures with bovine chondrocytes [34]. Co-cultures of equine BMSCs with 

equine articular chondrocytes improved the expression of cartilage related genes, and 

induced the production of a more homogeneous ECM within the neo-cartilage [36].  

In terms of gene expression, for the cultures using hBMSCs, direct co-cultures 

showed significantly higher expression of Collagen type I than indirect co-cultures, at 

the end of the experiment. In terms of Collagen type II expression, direct co-cultures 

displayed a significantly higher expression at 7 days of culture than indirect co-cultures. 

On the other hand, towards the end of the experiment, indirect co-cultures showed a 

higher expression of collagen type II compared to the direct co-cultures. Again, the 

positive effect of using conditioned medium is evidenced by the results. For hWJSCs 

co-cultures, a significantly higher expression of Aggrecan was found for indirect co-

cultures of hWJSCs at 28 days, compared to the direct ones. The same significantly 
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higher expression was observed for Sox9 expression. For Collagen type II, there was a 

decrease in the last day of culture for the direct co-cultures. In this last time point, a 

significantly higher expression was found for the indirect co-cultures, when compared 

to the control conditions. Therefore, this system of co-culturing has a considerable 

clinic potential.  

The use of conditioned medium to promote the differentiation of MSCs for further 

implantation is a valuable concept in terms of regenerative medicine, because it will 

allow obtained conditioned medium of unrelated chondrocytes to promote the 

differentiation of autologous stem cells. In the present work, we propose a new strategy 

for cartilage tissue engineering strategies based on the use of conditioned medium, and 

we were able to demonstrate its effect in MSCs chondrogenesis. The positive effect of 

the conditioned medium in osteogenesis and chondrogenesis has been recently 

demonstrated, using MSCs seeded onto polycaprolactone/hydroxyapatite scaffolds and 

on alginate, respectively [60]. In a different approach, using porcine cells for 

chondrogenic differentiation for intervertebral disc repair, notochordal cell conditioned 

medium promoted MSCs differentiation, induced significantly more collagen type II 

expression and GAGs production in MSCs [61]. In the present work, the soluble factors 

released by hACs in culture were able to induce chondrogenic differentiation of both 

hBMSCs and hWJSCs without the addition of growth factors. This is a very interesting 

result, since in a clinical perspective it is preferable to use conditioned medium for 

chondrogenic differentiation of MSCs than to induce it with growth factors or even with 

direct co-cultures. There are many cost associated with the use of growth factors, so this 

cost could be reduced when using conditioned medium. Indeed, this technique should 

be further explored, as some reports show that the use of conditioned medium is very 

versatile. For example, conditioned medium from a human hepatocarcinoma cell line 

(HepG2) enhanced in vitro chondrogenesis of murine embryonic stem cells [62]. 

Therefore, chondrocyte cell lines could be eventually established for conditioned 

medium production, to further induce chondrogenic differentiation of autologous MSCs 

in 3D scaffolds prior to its implantation. However, it is very important to identify, in the 

first place, the soluble factors that are being release into the hACs culture medium and 

that successfully induced the chondrogenic differentiation of hBMSCs and hWJSCs. 

Indirect co-cultures of human MSCs using conditioned medium from hACs seem to 

be more suitable for engineered cartilage formation. The results of indirect co-cultures 

(either with BMSCs or with WJSCs) towards the end of the experiment were 
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significantly higher for all the tested parameters, namely GAGs accumulation and 

cartilage related-genes expression (Collagen type II, Aggrecan and Sox9). Concerning 

the type of human MSCs tested, we obtained strong evidence that hWJSCs are more 

promising than hBMSCs for cartilage related applications using this strategy. 

Additionally, more GAGs accumulation was measured again for both direct and indirect 

co-cultures using hWJSCs. These cultures also expressed Aggrecan, Sox9 and Collagen 

type II, genes related to articular cartilage. Collagen type I, related to fibrotic cartilage, 

did not have a significant expression in these cultures with hWJSCs. This result may be 

indirectly related to a superior chondrogenic performance of hWJSCs when compared 

to hBMSCs [7]. 

 

 

5. Conclusions 

 

Human adult MSCs were able to differentiate into the chondrogenic lineage, when co-

cultured with hACs in CPBS scaffolds. In terms of type of culture, indirect co-cultures 

(using conditioned medium) seem more effective for chondrogenic differentiation. This 

is a very interesting result to be further explored for clinical translation. In this way, 

conditioned medium without the addition of other supplements or growth factors can be 

employed to enhance MSCs expansion and chondrogenic differentiation, prior to 

implantation. Indirect co-cultures using conditioned medium, using either BMSCs or 

WJSCs, showed significant higher values in terms of GAGs accumulation and cartilage 

related genes expression, when compared to direct co-cultures. In terms of cell source, 

hWJSCs showed higher proliferation rates and higher chondrogenic differentiation 

ability when compared to hBMSCs. Human WJSCs expressed significant higher values 

of DNA concentration, GAGs accumulation and cartilage related genes (Aggrecan, 

Collagen type II and Sox9). Human BMSCs chondrogenic differentiation produced 

fibrous cartilage, as stated by the significantly higher expression of Collagen type I 

when compared to hWJSCs. 

In conclusion, indirect co-cultures of hWJSCs using conditioned medium obtained 

from hACs cultures are a new approach for cartilage tissue engineering that should be 

extensively studied for future clinical applications, as an alternative method for 

expanding autologous cells prior to implantation. 
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Concluding remarks and future work 

 

 

In the present thesis, three distinct TE strategies were tested, based on different in 

vitro models. The rationale of the developed works relied on testing various primary 

cell cultures derived from different sources, combined with nano or macro scaffolds as 

supports for cell chondrogenic differentiation (in the case of adult MSCs) or for 

chondrocytes phenotype maintenance.  

 

 

1. Concluding remarks 

 

In section III of the present thesis, bovine articular chondrocytes (BAC) were cultured 

in vitro, using different scaffolds structures and compositions. In chapter 3 we used this 

model to determine if starch-polycaprolactone (SPCL) and polycaprolactone (PCL) 

electrospun nanofiber meshes would sustain BAC growth and ECM production. In this 

chapter, we confirmed the literature evidences which sustain that PCL nanofiber meshes 

are a valid scaffold for cartilage tissue engineering strategies. Moreover, we propose a 

new electrospun scaffold for this approach: SPCL nanofiber meshes.  

In chapter 4, the BAC in vitro model was applied to microporous scaffolds with 

different pore sizes and geometries. Microporous 80 CPBS scaffolds facilitate the 

formation of cartilage like tissue in a greater extent than in the 60 CPBS scaffolds. The 

larger pores present in microporous 80 CPBS scaffolds may contribute to the enhanced 

ECM deposition. 

From section III we concluded that BAC model is a valuable tool for cartilage tissue 

engineering. A massive colonization by BAC of all the tested structures was observed, 

producing cartilage ECM. We also were able to identify some advantages concerning 

the choice of scaffolds for further studies. Electrospun nanofiber meshes supported 

cartilage formation; therefore it was decided to continue the investigation of these 

structures using other cell types. Microporous scaffolds also supported ECM deposition, 

but we considered that other scaffold morphologies should be used in further studies, 

such as microfiber meshes. Dynamic culture conditions were considered as very 
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interesting for our strategies, as they stimulated ECM formation when using 

microporous scaffolds.  

Section IV of the present thesis discussed the influence of flow perfusion in the 

chondrogenic differentiation of hBMSCs using nano and micro fiber meshes. In chapter 

5 we described the culture of hBMSCs seeded onto electrospun PCL nanofiber meshes. 

We consider that this strategy is very useful in the pre-clinical context, as it can be 

employed in a MACI modified technique, using a bioreactor to expand and differentiate 

cells in the membrane that will be further applied for covering the cartilage defect.  

In chapter 6 we explored chitosan-based microfiber meshes cultures in the referred 

bioreactor. Improved ECM deposition and collagen type II production was found in 

bioreactor samples when compared to static controls. The structure of the microfiber 

meshes seems to be adequate as cells were able to grow and differentiate into the 

CPBTA scaffolds, both in the bioreactor and in static controls. We showed that flow 

perfusion can influence hBMSCs chondrogenic differentiation, inducing cells 

differentiation at early time points than in the static conditions. 

From section IV, we can conclude that perfusion conditions influence hBMSCs 

chondrogenic differentiation, independently of the scaffold formulation, shape or 

structure used for the culture. Indeed, the chondrogenic differentiation started at earlier 

stages of the experiment for cells seeded onto both nanofiber meshes and microfiber 

meshes in dynamic cultures. 

 

Section V is composed by one chapter (chapter 7) referring to the last studied in vitro 

model: co-cultures. In this chapter, adult hMSCs were able to differentiate into 

chondrogenic lineage when co-cultured with hACs, and using CPBS microfiber meshes 

as 3D supports. Indirect co-cultures using conditioned medium obtained from the hACs 

cultures was more effective for chondrogenic differentiation. Human WJSCs showed 

enhanced chondrogenic differentiation ability when compared to hBMSCs.  

 

All the referred results found during this PhD work allowed us to draw some key 

conclusions that will be very valuable for the future work. In terms of electrospun 

nanofiber meshes, we showed that both PCL and SPCL structures supported both BAC 

and hBMSCs models could be used for cartilage TE strategies. In all tested scaffolds, it 

was possible to produce cartilagineous ECM in vitro, therefore validating our proposed 

models. The use of chitosan-based scaffolds in different morphologies proved to 
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support the referred ECM formation in a greater extent than the one obtained with the 

other scaffolds tested. Our results evidenced the advantages of using chitosan blends for 

the models proposed herein. 

 

Static and dynamic culture conditions showed different effects in our models, 

depending on the structure used as scaffold or on the type of cell used. We can state that 

nanofiber meshes cultures may be negatively affected by the stirring. On the other hand, 

the cultures using the flow perfusion bioreactor were positively affected, as enhanced 

chondrogenic differentiation was observed. Dynamic culture conditions effect in 

cartilage production in vitro was more pronounced in the cultures using microporous 

structures or microfiber meshes. Stirred conditions significantly enhanced ECM 

deposition by BAC. When CPBTA microfibrous meshes were cultured in the flow 

perfusion bioreactor, enhanced chondrogenic differentiation of hBMSCs was also 

observed. Results of these experiments revealed the important effect of the flow 

perfusion in our cultures. In the overall, we consider that dynamic stimulus is beneficial 

for the strategies proposed herein.  

 

The final work describes a new approach that puts together the best features of all the 

previous works. Indirect co-cultures using conditioned medium from hACs cultures 

showed more ECM accumulation when compared to direct contact co-cultures. This 

strategy is a promising alternative method of expanding cells and mature constructs in 

vitro prior to implantation. The use of conditioned medium to enhance mesenchymal 

stem cells chondrogenic differentiation is, in our perspective, a very interesting tool to 

explore. This method could be applied in the clinic, avoiding the use of growth factors 

to induce chondrogenic differentiation, which is economically advantageous. Further 

studies and optimization of the method will be conducted in the future, having in mind 

its translation into the clinic. 

 

 

2. Future work 

 

After compiling all the results obtained in the 5 years of this PhD we have a 

perspective of what features could be further explored to optimize our models. In our 

future experiments, we will study some modifications of electrospun nanofiber meshes 
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to enhance chondrogenic differentiation, such as surface plasma modifications, 

combining nanofiber meshes with micro and macrostructures or incorporating bioactive 

agents. Moreover, in vivo studies are planned in order to study the nanofiber meshes in 

a large animal model.  

Concerning the flow perfusion bioreactor herein described, it is our belief that further 

experiments will allow optimizing the dynamic conditions. A detailed study using 

several flow velocities and their effects either in electrospun nanofiber meshes or fiber 

meshes cultures, using the models herein described is required. 

Further work will be pivotal to consolidate our last in vitro strategy, the co-cultures. 

We believe this is a very promising model in terms of its clinical translation potential. 

Therefore, extensive studies will be conducted for identification of the mechanisms 

underlying the conditioned medium potential to induce chondrogenic differentiation 

without the use of growth factors. 
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