
Quality of Service Constrained Routing

Optimization using Evolutionary

Computation

Miguel Rocha a, Pedro Sousa a, Paulo Cortez b, Miguel Rio c

aCenter of Computer Science and Technology - CCTC, University of Minho
Campus Gualtar, 4710-057 Braga, Portugal

Email: {mrocha,pns}@di.uminho.pt

bDepartment of Information Systems / Algoritmi Center- University of Minho
Campus Azurem, 4800-058 Guimarães, Portugal

Email: pcortez@dsi.uminho.pt

cDepartment of Electronic and Electrical Engineering -University College London
Torrington Place, WC1E 7JE, London, UK

Email: m.rio@ee.ucl.ac.uk

Abstract

In this work, a novel optimization framework is proposed that allows the im-
provement of Quality of Service levels in TCP/IP based networks, by configuring
the routing weights of link-state protocols such as OSPF. Since this is a NP-hard
problem, some algorithms from Evolutionary Computation were considered, work-
ing over a mathematical model that allows the definition of flexible cost functions
that can take into account several measures of the network behaviour, such as net-
work congestion and end-to-end delays. A number of experiments were performed,
over a large set of network topologies, where Evolutionary Algorithms (EAs), Dif-
ferential Evolution, local search methods and common heuristics were compared.
EAs make the most promising alternative leading to solutions with an effective net-
work performance, even under unfavourable scenarios. A number of state of the art
multiobjective optimization algorithms were also tested, but the proposed EAs still
hold as the most consistent method for network optimization.

Key words: Traffic engineering, Quality of Service, TCP/IP networks, OSPF,
Evolutionary Algorithms

Preprint submitted to Elsevier 19 October 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55612718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

In the last few years, several new types of applications have been integrated
into IP based networks, fostering the development of novel network solutions
that aim to provide end-users with Quality of Service (QoS) support. To ac-
complish this aim, distinct QoS aware architectures and specific traffic control
mechanisms were proposed by the networking research community to provide
distinct service levels to networked applications [28].

In the context of a QoS aware networking domain, Internet Service Providers
(ISPs) have Service Level Agreements (SLAs) [16] with their clients and with
peered ISPs that have to be strictly obeyed to avoid financial penalties. To
successfully face such requirements, there is an important set of configura-
tion tasks that have to be performed by administrators to assure that correct
resource provisioning is achieved in the ISP domain. As an example, these
configuration tasks may vary according with specific QoS provisioning solu-
tions adopted by ISPs, and might include distinct tasks such as: specifying the
forwarding treatment given at each network node (e.g. the per-hop-behaviours
[15,8] of DiffServ [3]), defining traffic classification and packet marking rules
at network edges, configuring admission control based mechanisms [27], con-
figuring routing algorithms [23] or, in the case of finer-grain QoS solutions,
enabling signaling protocols that allow per-flow resource reservation [5]. In
this way, there is not a unique solution to create a QoS aware network in-
frastructure and, in general, any solution requires a number of components
working together.

Independently of the set of mechanisms that might be in place in any QoS
capable infrastructure, there are some components which have a crucial im-
portance. One of such components has the ability to control the data path fol-
lowed by packets traversing a given domain. There are two major alternative
strategies for this purpose: Intra-domain routing protocols or Multi-Protocol
Label Switching (MPLS) [9][2]. The use of MPLS presents significant draw-
backs when used in the context of packet switching: firstly, it adds significant
complexity to the IP model when compared with the simplicity of some rout-
ing protocols, since per-flow state has to be stored in every router of the path;
secondly, MPLS Failure recovery mechanisms are considerably more complex
than the typical router convergence ones; finally, it represents a considerable
network management overhead.

The most commonly used intra-domain routing protocol is Open Shortest Path
First (OSPF) [21][26]. Here, the administrator assigns weights to each link in
the network, which are then used to compute the best path from each source
to each destination using the well known Dijkstra algorithm [11]. The results
of this method are then used to compute the routing tables in each node.

2

Since, in OSPF, the weight setting process is the only way administrators
can affect the network behaviour this choice is of crucial importance and may
have a major impact in the network performance. Nevertheless, in practice,
simple rules of thumb are typically used in this task, like setting the weights
inversely proportional to the link capacity. This approach often leads to sub-
optimal network resource utilization.

An ideal way to improve the process of OSPF weight setting is to implement
traffic engineering, assuming that the administrator has access to a matrix
representing traffic demands between each pair of nodes in the network. This
was the approach taken by Fortz et al [14] where this task was viewed as an
optimization problem, by defining a cost function that measures the network
congestion. The same authors proved that this task is a NP-hard problem
and proposed some local search heuristics that compared well with the MPLS
model. Another approach to this problem was the use of Evolutionary Algo-
rithms (EAs) to improve these results [13]. Both alternatives were also com-
bined to create hybrid EAs including local search operators that were able to
improve these results [6].

However, previous approaches did not accommodate delay based constraints
that are crucial to implement QoS aware networking services. In this work,
two optimization algorithms from Evolutionary Computation (EAs and Dif-
ferential Evolution) were used to calculate link-state routing weights that op-
timize traffic congestion while simultaneously complying with specific delay
requirements. Thus, the main contribution of this work is to provide a multi-
constrained QoS aware optimization framework. To accomplish this, a math-
ematical model of the problem that accommodates both congestion and delay
constraints was proposed and a bi-objective cost function was defined. This
will be used by the optimization algorithms to reach the optimal OSPF weights
for each network link. The EAs and DE are evaluated by resorting to a large
number of problem instances, where they are compared to other approaches
such as local search, common heuristics and multiobjective optimization al-
gorithms. In the comparison, the EAs emerge as the best alternative for this
task.

The framework proposed in this paper should be viewed as a traffic engineering
tool which, while focusing only at the OSPF routing level, aims at improving
the overall QoS performance of a given domain. This does not hinder that other
complementary QoS aware mechanisms might be used by network adminis-
trators, either to improve the network performance or to provide more strict
QoS guarantees. The key point is that, based on the experiments, networks
using the proposed optimization algorithms are able to clearly outperform the
QoS performance obtained by networks using common OSPF weight setting
heuristics. This means that irrespective of the QoS solutions in place, the pro-
posed framework will always be an add-on to improve the QoS level of network

3

domains using OSPF routing mechanisms.

2 Problem description

2.1 General Description

The main objective of the proposed optimization framework is to provide
network administrators with efficient OSPF link configurations, taking into
account the users demands, the topology and other features of a given network
domain (see Figure 1). This work assumes that client demands are mapped into
a matrix, summarizing, for each source/destination router pair, a given amount
of bandwidth and end-to-end delay required to be supported by the network
domain. For instance, there are several techniques on how to obtain traffic
demand matrices [18][10] which provide estimations regarding the overall QoS
requirements within a given network domain.

*** insert Figure 1 around here ***

As an illustrative example, consider the network scenario included in Figure
1 and consider an individual demand between two network nodes (X and Y).
If this demand is expressed in terms of a target delay, then the OSPF weight
setting process should be able to provide a data path with the minimum prop-
agation delay between X and Y (PATH 2). However, if no delay requirements
are considered, and the only constraint between X and Y is a given bandwidth
requirement, e.g. 90Mbps, then the OSPF setting process should try to min-
imize the network congestion and assign OSPF weights to force a data path
inducing the lowest level of losses in the traffic (PATH 1). Considering now
that a given demand has simultaneously bandwidth and delay constraints,
then it is expected that the OSPF weight setting process should try to find
a data path representing a trade-off between the bandwidth and delay met-
rics. In addition, if one considers that, after studying the QoS demands of
the network domain users, each router pair of the domain may have specific
multiconstrained QoS requirements (i.e. congestion vs. delay demands), then
it is easy to understand the complex nature of the problem of obtaining OSPF
weights able to optimize the QoS levels of a given network domain.

2.2 Problem Formulation

The general routing problem [1], that underpins our work, represents routers
and transmission links by a set of nodes (N) and a set of arcs (A) in a directed

4

graph G = (N, A). In this model, ca represents the capacity of each link
a ∈ A. Additionally, a demand matrix D is available, where each element dst

represents the traffic demand between each pair of nodes s and t from N . Let
us assume that, for each arc a, the variable f (st)

a represents how much of the
traffic demand between s and t travels over arc a. The total load on each arc
a (la) can be defined in the following way:

la =
∑

(s,t)∈N×N

f st
a (1)

while the link utilization rate ua is given by:

ua =
la
ca

(2)

It is then possible to define a congestion measure for each link (Φa = p(ua))
[14], where p is a penalty function p that has small penalties for values near
0. However, as the values approach the unity it becomes more expensive and
exponentially penalizes values above 1:

p(x) =

x, x ∈ [0, 1/3)

3x − 2/3, x ∈ [1/3, 2/3)

10x − 16/3, x ∈ [2/3, 9/10)

70x − 178/3, x ∈ [9/10, 1)

500x − 1468/3, x ∈ [1, 11/10)

5000x − 16318/3, x > 11/10

(3)

Under this framework, it is possible to define a linear programming instance
[14], where the purpose is to set the value of the variables f st

a that minimize
the following objective function:

Φ =
∑

a∈A

Φa (4)

subject to:

∑

u:(u,v)∈A

f
(s,t)
(u,v) −

∑

u:(v,u)∈A

f
(s,t)
(u,v) =

−dst, if v = s

dst, if v = t

0, otherwise,

v, s, t ∈ N (5)

5

la =
∑

(s,t)∈N×N

f st
a , a ∈ A (6)

Φa ≥ la, a ∈ A (7)

Φa ≥ 3la − 2/3ca, a ∈ A (8)

Φa ≥ 10la − 16/3ca, a ∈ A (9)

Φa ≥ 70la − 178/3ca, a ∈ A (10)

Φa ≥ 500la − 1468/3ca, a ∈ A (11)

Φa ≥ 5000la − 16318/3ca, a ∈ A (12)

f (s,t)
a ≥ 0, a ∈ A, s, t ∈ N (13)

where dst means the value of D in row s and column t. Constraints 5 represent
flow conservation in the network, ensuring the desired traffic flow is routed
from source s to destination t; constraints 6 define the way load is calculated
on each arc; finally, constraints 7 to 12 define the penalties (cost) on each arc.
In the following, the optimal solution to this problem is denoted by ΦOpt.

In OSPF, all arcs are associated with an integer weight. Every node uses
these weights in the Dijkstra algorithm [11] to calculate the shortest paths to
all other nodes in the network, where each of these paths has a length equal to
the sum of its arcs. All the traffic from a given source to a destination travels
along the shortest path. If there are two or more paths with the same length,
between a given source and a destination, traffic is evenly divided among the
arcs in these paths (load balancing) [20].

Let us assume a given solution, i.e. a weight assignment (w), and the corre-
sponding utilization rates on each arc (ua). In this case, the total routing cost
is expressed by:

Φ(w) =
∑

a∈A

Φa(w) (14)

for the loads and corresponding penalties (Φa(w)) calculated based on the
given OSPF weights. In this way, the OSPF weight setting problem is equiv-
alent to finding the optimal weight values for each link (wopt), in order to
minimize the function Φ(w).

The congestion measure can be normalized over distinct topology scenarios,
dividing by a scaling factor defined as:

ΦUNCAP =
∑

(s,t)∈N×N

dsthst (15)

where hst is the minimum hop count between nodes s and t.

6

Finally, the scaled congestion measure cost is defined as:

Φ∗(w) =
Φ(w)

ΦUNCAP

(16)

and the following relationships hold [14]:

1 ≤ Φ∗

OPT ≤ Φ∗

(wopt) ≤ 5000 (17)

It is important to note that when Φ∗ equals 1, all loads are below 1/3 of the
link capacity; in the case when all arcs are exactly full the value of Φ∗ is 10
2/3. This value will be considered as a threshold that bounds the acceptable
working region of the network.

To enable an enlarged set of QoS constraints, an extension to this model is
proposed in this work. This enrichment allows the inclusion of delay require-
ments for each pair of routers in the network. These are modelled as a matrix
DR, that for each pair of nodes (s, t) ∈ N ×N (where dst > 0) gives the delay
target for traffic between origin s and destination t (denoted by DRst). A cost
function was developed to evaluate the delay compliance for each scenario (a
set of OSPF weights). This function takes into account the average delay of
the traffic between the two nodes (Delst), a value calculated by considering all
paths between s and t with minimum cost and averaging the delays in each.

It was considered that, in the scenarios where this work would be applicable,
the delay in each path is dominated by the component given by propagation de-
lays in its arcs and that queuing delays can be neglected. However, if required,
queuing delays can be introduced in the model by approximating its values
resorting to queuing theory [4], taking into account the following parameters
at each node: the capacity of the corresponding output links, their utilization
rates and more specific technical parameters such as the mean packet size and
the overall queue size associated with each link.

The delay compliance ratio for a given pair (s, t) ∈ N×N is, therefore, defined
as:

dcst =
Delst
DRst

(18)

A penalty for delay compliance can be calculated using function p. So, the γst

function is defined according to the following equation:

γst = p(dcst) (19)

7

This, in turn, allows the definition of a delay minimization cost function, given
a set of OSPF weights (w):

γ(w) =
∑

(s,t)∈N×N

γst(w) (20)

where the γst(w) values represent the delay penalties for each end-to-end path,
given the routes determined by the OSPF weight set w.

This function can be normalized dividing the values by the sum of all mini-
mum end-to-end delays (for each pair of nodes the minimum end-to-end delay
minDelst is calculated as the delay of the path with minimum possible overall
delay):

γ∗(w) =
γ(w)

∑

(s,t)∈N×N minDelst
(21)

It is now possible to define the optimization problem addressed in this work
that is clearly multi-objective. Indeed, given a network represented by a graph
G = (N, A), a demand matrix D and a delay requirements matrix DR, the
aim is to find the set of OSPF weights (w) that simultaneously minimizes the
functions Φ∗(w) and γ∗(w). When a single objective is considered the cost
of a solution w is calculated using functions Φ∗(w) for congestion and γ∗(w)
for delays. For multi-objective optimization, all algorithms described in the
following section use a linear weighting scheme where the cost of the solution
is given by:

f(w) = αΦ∗(w) + (1 − α)γ∗(w), α ∈ [0, 1] (22)

This scheme, although simple, can be effective since both cost functions are
normalized in the same range. The parameter α can be used to tune the
trade-off between both components of the cost function.

3 Algorithms for OSPF weight setting

3.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) [19] can address the problems defined in the
previous section. In the proposed EA, each individual encodes a solution as a
vector of integer values, where each value (gene) corresponds to the weight of a
link (arc) in the network (the values range from 1 to wmax). Therefore, the size

8

of the individual equals the number of links in the network. The individuals
in the initial population are randomly generated, with the arc weights taken
from a uniform distribution.

In order to create new solutions, several reproduction operators were used,
more specifically two mutation and one crossover operator:

• Random Mutation, replaces a given gene by a random value, within the
allowed range;

• Incremental/decremental Mutation, replaces a given gene by the next or by
the previous value (with equal probabilities) within the allowed range;

• Uniform crossover, a standard crossover operator [25], suitable when the
order of the variables in the individual (solution) is not important. This
operator works by taking two parents as input and generating two offspring.
For each position in the genome, a binary variable is randomly generated: if
its value is 1, the first offspring takes the gene from the first parent in that
position, while the second offspring takes the gene from the second parent;
if the random value is 0, the roles of the parents are reversed.

In the proposed EA, whenever a new individual needs to be created, one of the
previous reproduction operators is selected, with equal probabilities. Unlike
traditional EAs, only one operator is applied to create each new individual. In
this context, the crossover internal probability is set to 1, meaning that when
it is used the crossover will always be applied. The mutation operators always
use an internal probability of 0.01, which means that when they are used to
create offspring, they will modify in average 1% of the genes in the parent.

The overall structure of the EA is given by:

(1) Generate and evaluate the initial population (P0).
(2) While the termination criteria is not met:

(i) Select from Pt individuals for reproduction.
(ii) Apply the reproduction operators to breed the offspring and evaluate

them.
(iii) Insert the offspring into the next population (Pt+1).
(iv) Select the survivors from Pt to be kept in Pt+1.

The selection procedure is done by converting the fitness value into a linear
ranking in the population, and then applying a roulette wheel scheme. In each
generation, 50% of the individuals are kept from the previous generation,
and 50% are bred by the application of the reproduction operators. In the
experiments a population size of 100 individuals was considered.

9

3.2 Differential Evolution

The Differential Evolution (DE) method differs from the EA essentially in the
reproduction operators. DE generates trial individuals by calculating vector
differences between other randomly selected members of the population. A
variant of the DE algorithm called DE/rand/1 was considered that uses a
binomial crossover [24], so the following scheme is followed for each individual
i:

(1) Randomly select 3 individuals r1, r2, r3 distinct from i;
(2) Generate a trial vector based on: ~t = ~r1 + F · (~r2 − ~r3);
(3) Perform crossover between this vector and the vector of the current in-

dividual, with probability CR, using at least one dimension of the trial
vector;

(4) Evaluate the candidate and use it in the new generation if it is at least
as good as the current individual.

Since OSPF weights are integer, it is necessary to round the values used in
the DE before the evaluation. It is important to notice that in the DE all
individuals go through the previous reproduction step. In the experiments,
the population size was 20, F was set to 0.5 and CR to 0.6.

3.3 Local search

A local search (LS) scheme was devised to improve the quality of a solution
and works as follows: taking a set of weights wi, a link is randomly selected to
start the process. Firstly, it increases the value of this weight by 1, if this leads
to a better solution. This process is repeated while the solution improves. If
the first increase operation did not lead to a better solution, a decrease is
tried and repeated while the solution improves. The process is repeated for
the next position, until all positions have been tested. The overall process is
then repeated while the solution improves.

Based on this LS operator, a multi-start LS (MS-LS) algorithm was devised:
it starts with a random solution and applies the LS operator; this process is
repeated and the best solution found is kept. The process is terminated when
a maximum number of solutions have been evaluated.

10

3.4 Heuristic methods

A number of heuristic methods were implemented to assess the order of magni-
tude of the improvements obtained by the proposed methods when compared
with the traditional weight setting heuristics:

• InvCap - sets each link weight to a value inversely proportional to its
capacity;

• L2 - sets each link weight to a value proportional to the its Euclidean
distance;

• Random - a number of randomly generated solutions are analyzed and the
best is selected.

4 Experiments and Results

4.1 Setup

To evaluate the proposed algorithms, a number of experiments were con-
ducted. The experimental platform used in this work is presented in Figure
2.

*** insert Figure 2 around here ***

All the algorithms and the OSPF routing simulator were implemented using
the Java language. A set of 12 networks was created using the Brite topology
generator [17], varying the number of nodes (N = 30, 50, 80, 100) and the aver-
age degree of each node (m = 2, 3, 4). This resulted in networks ranging from
57 to 390 links. The link bandwidth was generated by a uniform distribution
between 1 and 10 Gbits/s. The network was generated using the Barabasi-
Albert model, using a heavy-tail distribution and an incremental grow type
(parameters HS and LS were set to 1000 and 100, respectively).

Next, the demand and delay constraints matrices (D and DR) were generated.
For each network, a set of three distinct D and DR matrices were created. A
parameter (Dp) was considered, representing the expected mean of congestion
in each link (values for Dp in the experiments were 0.1, 0.2 and 0.3). For DR
matrices, the strategy was to calculate the average of the minimum possible
delays, over all pairs of nodes. A parameter (DRp) was considered, representing
a multiplier applied to the previous value (values for DRp were 3, 4 and 5).
Overall, a set of 12 × 3 × 3 = 108 instances of the optimization problem were
considered.

11

The termination criteria was the same for all optimization algorithms (EAs,
DE and MS-LS) consisting in the maximum number of solutions evaluated.
This value ranged from 50000 to 300000, increasing linearly with the number
of links in the instance. In all cases, wmax was set to 20. For all the stochastic
algorithms, 10 runs were executed in each case.

The results are grouped into two sets according to the cost function used.
The first considers a single objective cost function, for the optimization of
network congestion. The latter considers the case of simultaneous optimization
of congestion and delays. In all figures presented in this section, the data was
plotted in a logarithmic scale, given the exponential nature of the penalty
function adopted.

4.2 Congestion

Since the number of experiments is quite high, it was decided to show aggregate
results that can be used to draw conclusions. Table 1 shows the results for all
the networks, averaged by the demand levels (Dp), including in the last line
the overall mean value. It is clear that the results get worse with the increase
of Dp, as would be expected. Figure 3 plots the same results in a graphical way,
showing in the white area the acceptable working region, i.e. the congestion
requirements are satisfied, whereas an increasing level of grey is used to identify
regions with increasing levels of service degradation.

The comparison between the methods shows a superiority of the EA that
achieves solutions which manage a very reasonable behaviour in all scenarios.
The heuristics manage very poorly, and even InvCap, quite used in practice,
gets poor results when Dp is 0.2 or 0.3, which means that the optimization
with the EAs assures good network behaviour in scenarios where demands are
at least 200% larger than the ones where InvCap would assure similar levels
of congestion. The results of DE and MS-LS are acceptable, but nevertheless
significantly worse than the ones obtained by the EA, and the gap increases
with larger values of Dp.

Table 1
Results for the optimization of congestion (Φ∗) - averaged by demand levels

Dp Random EA DE MS-LS L2 InvCap

0.1 75.8 1.02 1.02 1.12 216 1.50

0.2 499 1.18 1.41 1.50 772 57.7

0.3 893 1.73 3.64 6.08 1289 326

Overall 489 1.31 2.02 2.90 759 129

*** insert Figure 3 around here ***

12

Table 2 shows the results for congestion, averaged by the number of nodes in
the network. It is clear that the results obtained by the EAs are quite scalable
since the quality levels are not affected by the number of nodes in the network
graph (the same is true when the analysis considers the number of links). The
results obtained in this section show that the EA makes an effective method
for the optimization of OSPF weights, in order to minimize the congestion of
the network. These results confirm the findings of Ericsson et al [13], although
a precise comparison of the approaches is impossible since the original data is
not available.
Table 2
Results for the optimization of congestion(Φ∗) - averaged results by the number of
nodes.

Nodes L2 InvCap Random EA DE MS-LS

30 598 95.7 264 1.29 1.97 4.93

50 815 105 419 1.28 1.59 2.44

80 731 157 594 1.31 2.67 2.01

100 891 156 680 1.36 1.86 2.23

4.3 Simultaneous optimization of congestion and delays

In this section, the results for the simultaneous optimization of congestion and
delays, using a linear weight combination of the objectives are discussed. The
results are presented in terms of the values for the two objective functions (Φ∗

and γ∗), since the value of f for these solutions can be easily obtained and is
not relevant to the analysis.

In a first stage, only the value of α = 0.5 will be considered, thus considering
each aim to be of equal importance. Table 3 shows the results averaged by
the demand level (Dp) for all the algorithms. From the table, it is clear that
the EA outperforms all other algorithms, followed by the DE and MS-LS. The
heuristics behave quite badly, when both aims are taken into account. Since,
in the heuristic methods, the solution is built disregarding the cost function,
the results for multi-objective optimization only change due to the increase in
the Dp parameter. A similar picture is found looking at Table 4, where the
results are averaged by the delay requirement parameter DRp.

A different view is offered by Figure 4 where the results are plotted with the
two objectives in each axis. In the left (a), the results averaged by Dp are
shown, while in the right (b) those are averaged by DRp. In these graphs, the
good overall network behaviour of the solutions provided by the EA is clearly
visible, both in absolute terms, regarding the network behaviour in terms of
congestion and delays, and when compared to all other alternative methods.

13

Table 3
Results for the simultaneous optimization of congestion and delays - averaged by
Dp, with α = 0.5

D Random EA DE MS-LS L2 InvCap

Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗

0.1 88.0 107 1.17 1.92 1.18 2.04 1.73 4.07 216 1.76 1.50 260

0.2 481 137 1.47 2.32 1.65 2.92 3.38 8.30 772 1.76 57.7 260

0.3 950 149 2.41 3.23 4.58 5.64 15.3 15.9 1289 1.76 326 260

All 506 131 1.68 2.49 2.47 3.53 6.81 9.44 759 1.76 126 260

Table 4
Results for the simultaneous optimization of congestion and delays - averaged by
DRp, with α = 0.5

DR Random EA DE MS-LS L2 InvCap

Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗

3 535 283 1.95 4.22 2.78 6.42 9.65 21.3 759 2.94 128 578

4 506 82.0 1.59 1.78 2.44 2.36 6.12 4.65 759 1.25 128 159

5 478 27.2 1.51 1.48 2.38 1.82 4.65 2.39 759 1.10 128 44.1

It is easy to see that no single heuristic is capable of acceptable results in
both aims simultaneously. L2 behaves well in the delay minimization but fails
completely in congestion; InvCap is better on congestion but fails completely
in the delays. The DE gets results that are in an acceptable range, but are
always significantly worse than those of the EAs, and MS-LS does not manage
good results when the problem instances get harder.

*** insert Figure 4 around here ***

To study the impact of the parameter α, three distinct values were tested:
0.25, 0.5 and 0.75. The value of 0.5 considers each aim to be of equal impor-
tance, while the 0.25 favors the minimization of delays and the 0.75 will give
more weight to congestion. In this analysis, only the DE and the EA (the two
best algorithms in the previous case) will be considered. In Table 5, the results
obtained were summarized averaging by the parameter α. The first column
represents the parameter α; the next two indicate the results for the DE algo-
rithm and, finally, the last two give the results of the EA for both congestion
and delays, each with an extra information indicating the percentage by which
this results exceed the ones obtained by the corresponding algorithm under a
single objective cost function.

The results shown in this table make clear the effect of parameter α, once it

14

Table 5
Overall results for simultaneous optimization of congestion and delays - averaged
by α

α DE EA

Φ∗ γ∗ Φ∗ (%) γ∗ (%)

0.25 2.98 (46.5%) 2.81 (54.7%) 2.02 (47.2%) 2.33 (32.5%)

0.5 2.47 (23.4%) 3.53 (93.2%) 1.68 (25.7%) 2.49 (43.8%)

0.75 2.45 (18.6%) 5.08 (168.8%) 1.61 (19.5%) 2.92 (69.5%)

is possible to observe different trade-offs between the two objectives. Indeed,
when α increases the results on congestion improve, while the reverse happens
to the delay minimization. The EA provides smoother changes being able
to offer better results with all configurations. In particular, the intermediate
value of α (0.5) provides a good compromise between the two objectives. In
this case, the overall results show that, in average, there is a 25% decrease
in the congestion performance and around 44% in the delays minimization,
both when comparing to single objective optimization. These values are quite
good, since in this case both aims have to be simultaneously obeyed, even if
they are contradictory. In fact, a decrease in the performance, when compared
to single objective optimization would always be expected. If the absolute
average values for both cost functions are taken into account this indicates a
quite acceptable network performance, well within the defined working region.

Table 6 confirms the good scalability properties of both the EA and the DE.
The results are almost constant for the different network sizes (in this case,
measured by the number of nodes).

Table 6
Results for the simultaneous optimization of congestion and delays - averaged by
the number of nodes (α = 0.5).

Nodes DE EA

Φ∗ γ∗ Φ∗ γ∗

30 2.23 2.99 1.58 2.25

50 2.25 4.03 1.78 2.96

80 3.18 3.70 1.62 2.37

100 2.21 3.41 1.75 2.38

Finally, Figure 5 show graphs similar to Figure 4 but considering only the EAs
and plotting the results for different values of α. The trade-offs between the
two objectives are clear. Regarding the figure on the left (a), the obtained delay
and congestion cost values are averaged for distinct values of traffic demands
(Dp). Moreover, three distinct lines are plotted, each one representing the

15

results obtained assuming distinct values of α (0.25, 0.5 and 0.75). The results
plotted in the figure on the right (b) show the obtained delay and congestion
cost values averaged now for distinct values of the delay requests (DRp). The
results show the correctness of the proposed optimization model, since higher
values of α lead to an improvement in the congestion metric but, at the same
time, a decrease in the delay performance.

*** insert Figure 5 around here ***

5 Experiments with multiobjective optimization algorithms

The multiobjective optimization problem addressed in this work was approa-
ched in the previous sections by considering a linear weighting of the objective
values of the two distinct optimization aims. This approach assumes that the
parameter α can be set to fine tune the optimization process and achieve
solutions with the adequate trade-off between the two targets. This strategy
presented good results, but it suffers from one main drawback, since it assumes
that there is one single trade-off that is optimum. Therefore, the algorithms
typically return one single solution that has to be implemented by the network
administrator.

An alternative would be to have algorithms that could return a set of solu-
tions with distinct trade-offs between the two objectives, and let the network
administrator decide which solution to implement. A number of algorithms
have been proposed in the last few years to address this task, in the arena
of Multiobjective Optimization (MOO) and EAs are among the most popu-
lar ones [7]. These methods are able to give as output not only one optimal
solution, but rather a set of solutions that are non-dominated.

A solution is dominated by another solution, if the first is worse than the
second in at least one of the objectives and it is not better in none. More
precisely, the aim of these methods is to return a Pareto front (PF), i.e. a set
of non-dominated solutions, for a given problem. This PF should be as near as
possible to the optimal set of non-dominated solutions and also as distributed
as possible, i.e. it should cover the whole set of possible trade-offs between the
optimization aims.

In order to evaluate the performance of this class of algorithms, in the OSPF
weight setting task previously defined, a number of state-of-the-art alternatives
was implemented. In this task, the jMetal software [12] was used to implement
the following algorithms: SPEA2, NSGA-II, PESA-II, PEAS, PSO, AbYSS
and MOCell. These encompass several types of multiobjective EAs, namely
Particle Swarm Optimization, Evolution Strategies and Scatter Search, thus

16

covering the most popular multiobjective optimization algorithms available
today.

To conduct an evaluation of these methods, a subset of the previous network
topologies (3 out of the 12) was considered (this reduction was imposed by the
computational effort). All methods were run with the standard setup provided
by the jMetal software and were stopped when a maximum number of solutions
were evaluated as in the previous methods. The aim was to compare these
algorithms among each other, but also to evaluate the merits of this approach
versus the one described in the previous sections.

Evaluating the performance of MOO algorithms is a complex task and to com-
pare the results of MOO approaches with traditional methods is still trickier.
This study does not intend to be exhaustive in this comparison and two simple
performance metrics were used to evaluate the approaches:

• C-measure [29]: It is based on the concept of solution dominance. Given
two PFs (PF1,PF2), the measure C(PF1, PF2) returns the fraction of
solutions in PF2 that are dominated by at least one solution in PF1. A
value of 1 indicates that all points in PF2 are dominated by points in PF1,
so values near 1 clearly favour the method that generated PF1; values
near 0 show that few solutions in PF2 are dominated by solutions in PF1.
This concept can be extended to traditional single-solution methods by
calculating C(S1, PF2) where S1 is a single solution. Therefore, it simply
indicates the proportion of solutions in PF2 that are dominated by S1.

• Trade-off analysis (TOA): For a pareto front PF1, and given a value of β,
the solution that maximizes βΦ∗+(1−β)γ∗ is selected. Parameter β can take
distinct values in the range [0, 1], thus defining different trade-offs between
the objectives (working in a way similar to the parameter α in previous
sections, but applied only after the optimization process). The values with
the same β can be compared among the several MOO algorithms and also
with those from traditional algorithms. In this last case, only one solution
is available, so the process is simplified.

In Table 7, the results for the C-measure are shown. The overall mean value
for the distinct instances (27 in this case) and 10 runs was computed. For each
instance, C(M1, M2) is computed for all pairs of distinct runs of M1 and M2.
In Table 8, the TOA results are displayed. As before, means were calculated
over all instances and runs, for each value of β.

An analysis of the results of both tables shows that, when comparing the
MOO approaches, the NSGA-II and SPEA2 outperform all other alternatives.
In fact, in Table 7 they show the highest values in the rows and the lowest
in the columns, thus having PFs with few dominated and many dominating
solutions. In Table 8, they also present the lowest results for the distinct values

17

Table 7
Results for the C-measure in MOO (mean of C(M1,M2) computed over all instances
and runs).

AbYSS MOCell NSGA PAES PESA PSO SPEA

AbYSS 0 0.350 0.028 0.112 0.163 0.099 0.018

MOCell 0.493 0 0.029 0.124 0.211 0.121 0.006

NSGA-II 0.921 0.905 0 0.456 0.707 0.650 0.347

PAES 0.651 0.631 0.224 0 0.451 0.328 0.167

PESA-II 0.680 0.600 0.165 0.225 0 0.343 0.120

PSO 0.773 0.734 0.122 0.260 0.419 0 0.070

SPEA2 0.889 0.866 0.420 0.418 0.740 0.632 0

EA-α = 0.25 0.824 0.797 0.508 0.392 0.607 0.557 0.444

EA-α = 0.5 0.781 0.785 0.461 0.360 0.560 0.572 0.416

EA-α = 0.75 0.666 0.685 0.369 0.303 0.461 0.547 0.329

Table 8
Results for the TOA in MOO (mean over all instances and runs given the value of
β).

Algorithm β = 0 β = 0.25 β = 0.5 β = 0.75 β = 1

AbYSS 8.91 31.1 53.3 75.4 97.6

MOCell 8.12 33.9 59.7 85.5 111

NSGA-II 4.21 12.8 21.3 29.9 38.4

PAES 5.79 96.2 187 277 367

PESA-II 5.50 30.3 55.1 80.0 105

PSO 6.10 26.4 46.7 67.0 87.3

SPEA2 3.41 11.8 20.3 28.7 37.1

EA-α = 0.25 3.21 2.91 2.60 2.30 1.99

EA-α = 0.5 3.80 3.26 2.72 2.18 1.63

EA-α = 0.75 4.19 3.52 2.84 2.16 1.48

of β. Overall, the SPEA2 seems to be the best alternative.

When comparing the MOO performance with the one obtained by the pro-
posed EA, it is also clear that the solutions obtained by MOO are, in general,
not good alternatives for network management (from Table 8). In fact, they
are quite far from the results obtained by the EA that, regardless of the values
of α (used in the optimization) and β, always shows quite low values. There-

18

fore, the proposed EA with linear weighting shows a better trade-off between
both objectives, while MOO methods show a bias, behaving better in delay
optimization and failing in congestion.

From Table 7 it is also possible to conclude that a large number of MOO
solutions are dominated by the EA’s solutions, while the reverse is not true. In
fact, the columns for the EAs are not shown in the table because its values were
always zero. This means that the final solution for the EA is never dominated
by any solution obtained by a MOO algorithm.

6 Conclusions and further work

The optimization of OSPF weights brings important tools for traffic engineer-
ing, without demanding modifications on the basic network model. This work
presented Evolutionary Computation approaches for multiobjective routing
optimization in the Internet. Resorting to a set of network configurations,
each constrained by bandwidth and delay requirements, it was shown that the
proposed Evolutionary Algorithms (EAs) were able to provide OSPF weights
that can lead to good network behaviour. The performance of EAs was com-
pared with other algorithms (Differential Evolution, local search, heuristics)
clearly showing its superiority.

Although a simple weighting method was used to face the multiobjective na-
ture of the problem, the results were of high quality. This is probably due to
the effort of normalizing both cost functions in a coherent manner. In fact,
a comparison was conducted with a number of state-of-the-art methods for
multiobjective optimization (MOO) and the results of the proposed EA still
hold as the more consistent, presenting the best trade-off between both aims.
This does not invalidate further research on the development of more effec-
tive MOO methods to search for a near-optimal pareto front, since returning
a number of high quality solutions with distinct trade-offs between the two
objectives is quite useful as an outcome to a network administrator.

The proposed optimization framework, although requiring some computa-
tional effort, can be achieved in useful time (e.g. for a network with 50 nodes,
a good solution can be obtained by the EA in less than half an hour). If very
distinct traffic profiles occur in different times of day (e.g. night and day) the
corresponding matrices can be used to optimize distinct OSPF weights. Fur-
thermore, the adaptation to a new solution is always faster than running from
scratch, since a good solution is available to boost the search and therefore
any change that demands reoptimization will be rapidly achieved. Given all
these facts, we can say that the proposed framework could be implemented in
a straightforward way in a real world scenario.

19

One important topic for future work is the integration of distinct classes of
QoS demands in the proposed optimization model. On this topic, the Internet
Engineering Task Force (IETF) has proposed standards on Multi-topology
Routing aiming at providing different paths for different types of traffic [22].

Acknowledgments

The authors wish to thank the Portuguese National Conference of Rectors
(CRUP)/British Council Portugal (B-53/05 grant), the Nuffield Foundation
(NAL/001136/A grant), the Engineering and Physical Sciences Research Coun-
cil (EP/522885 grant) and Project SeARCH (Services and Advanced Research
Computing with HTC/HPC clusters), funded by FCT under contract CONC-
REEQ/443/2001, for the computational resources made available.

References

[1] R.K. Ahuja, T.L. Magnati, and J.B. Orlin. Network Flows. Prentice Hall, 1993.

[2] D. Awduche and B. Jabbari. Internet traffic engineering using multi-protocol
label switching (MPLS). Computer Networks, 40:111–129, 2002.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. RFC 2475:
An architecture for differentiated services, 1998.

[4] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. Qeueing Networks and
Markov Chains - Modeling and Performance Evaluation with Computer Science
Applications. Wiley-Interscience; 2 edition, 2006.

[5] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource Reservation
Protocol (RSVP). RFC 2205, September 1997.

[6] L. Buriol, M. Resende, C. Ribeiro, and M. Thorup. A hybrid genetic algorithm
for the weight setting problem in OSPF/IS-IS routing. Networks, 46:36–56,
2005.

[7] C.A. Coello Coello. Recent Trends in Evolutionary Multiobjective Optimization,
pages 7–32. Springer-Verlag, London, 2005.

[8] B. Davie, A. Charny, J. C. R. Bennet, K. Benson, J. Y. Le Boudec, W. Courtney,
S. Davari, V. Firoiu, and D. Stiliadis. An Expedited Forwarding PHB (Per-Hop
Behavior). RFC 3246, March 2002.

[9] B. Davie and Y. Rekhter. MPLS: Multiprotocol Label Switching Technology and
Applications. Morgan Kaufmann, USA, 2000.

20

[10] A. Davy, D. Botvich, and B. Jennings. An efficient process for estimation of
network demand for qos-aware ip networking planning. In G. Parr, D. Malone,
and M. Foghlú, editors, 6th IEEE International Workshop on IP OPerations
and Management, IPOM 2006, LNCS 4268, pages 120–131. Springer-Verlag,
2006.

[11] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(269-271), 1959.

[12] J.J. Durillo, A.J. Nebro, F. Luna, B. Dorronsoro, and E. Alba. jMetal: A
Java Framework for Developing Multi-Objective Optimization Metaheuristics.
Technical Report ITI-2006-10, Departamento de Lenguajes y Ciencias de la
Computación, University of Málaga, E.T.S.I. Informática, Campus de Teatinos,
December 2006.

[13] M. Ericsson, M.G.C. Resende, and P.M. Pardalos. A Genetic Algorithm for the
Weight Setting Problem in OSPF Routing. J. of Combinatorial Optimization,
6:299–333, 2002.

[14] B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing OSPF
Weights. In Proceedings of IEEE INFOCOM, pages 519–528, 2000.

[15] J. Heinenen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB
Group. RFC 2597, June 1999.

[16] Y. Liu, C. Tham, and Y. Jiang. Conformance analysis in networks with service
level agreements. Computer Networks and ISDN Systems, 47(6):885–906, 2005.

[17] A. Medina, A. Lakhina, I. Matta, and John Byers. BRITE: Universal
Topology Generation from a User’s Perspective. Technical Report 2001-003,
http://citeseer.ist.psu.edu/article/medina01brite.html, January 2001.

[18] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic
matriz estimation: Existing techniques and new directions. Computer
Communication Review, 32(4):161–176, 2002.

[19] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, USA, third edition, 1996.

[20] J. Moy. OSPF, Anatomy of an Internet Routing Protocol. Addison Wesley,
1998.

[21] J. Moy. RFC 2328: OSPF version 2, April 1998.

[22] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault. Multi-
topology (mt) routing in ospf (internet draft), January 2006.

[23] T. Slattery and W. Burton. Advanced IP Routing in Cisco Networks. McGraw-
Hill, 1999.

[24] R. Storn and K. Price. Differential Evolution - a Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces. Journal of Global
Optimization, 11:341–359, 1997.

21

[25] Gilbert Syswerda. Schedule optimization using genetic algorithms. In L. Davis,
editor, Handbook of Genetic Algorithms. Van Nostrand, 1991.

[26] T.M. ThomasII. OSPF Network Design Solutions. Cisco Press, 1998.

[27] T. Tsuchiya. Call Admission Control with QoS Class Modification. IEICE
Transactions on Communications, Special Issue on Internet Technology III,
E86-B(2):682–689, February 2003.

[28] Z. Wang. Internet QoS: Architectures and Mechanisms for Quality of Service.
Morgan Kaufmann Publishers, 2001.

[29] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

22

List of Figure Captions

Figure 1 Example of an ISP network scenario with distinct end-to-end paths
between nodes A and B.

Figure 2 Experimental platform for OSPF performance evaluation.

Figure 3 Graphical representation of the results obtained by the different meth-
ods in congestion optimization (averaged by Dp).

Figure 4 Graphical representation of the results obtained by the different meth-
ods in the multi-objective optimization with α = 0.5: (a) averaged by Dp and
(b) averaged by DRp.

Figure 5 Graphical representation of the results obtained by the EAs for dif-
ferent values of α: (a) averaged by Dp and (b) averaged by DRp.

23

[1Mbps,10ms]

[10 Mbps,80ms]

[100 Mbps,70ms]

[1
0

M
bp

s,
60

m
s]

[10 Mbps,50ms]

[1Mbps,10ms]

[100 Mbps,100ms]

[2
M

bp
s,

5m
s]

[100 Mbps,50ms]

[1
00

 M
bp

s,
50

m
s]

[5
0M

bp
s,

5m
s]

A

B

PATH 1
PATH 2

A

B

X

Y

Network Scenario Example

Network
Management

Tool

Network

Administrators

 Solution
weight

weight

weight

weight

weight

weight
weightweight

weight
weight ?

QoS

QoS
Demands

Demands

Fig. 1.

OSPF Scenario #n

OSPF Routing Simulator

Computing
Cluster

Generator
Brite Topology

Delay and Demand
Matrices

Heuristics

 Multiobjective Optimization
OSPF Weight Setting and

−InvCap
−Random
−L2

EA, DE, MS−LS

Fig. 2.

1

10

100

1000

10000

0.1 0.2 0.3

C
on

ge
st

io
n

C
os

t (
Φ

*)

Demand (Dp)

Congestion Cost Values (averaged by demand)

L2
InvCap

 Random
EA
DE

MS-LS

InvCap

Random

L2

EA
DE

MS−LS

Fig. 3.

24

1

10

100

1000

1 10 100 1000 10000

D
el

ay
 C

os
t (

γ*
)

Congestion Cost (Φ*)

Congestion vs. Delay Cost Values (averaged by demand)

Dp=0.1 Dp=0.2 Dp=0.3

Dp=0.1
Dp=0.2

Dp=0.3

L2
Dp=0.1 Dp=0.2 Dp=0.3

InvCap

Random

DE

MS−LSDp=0.3

Dp=0.2

Dp=0.1
Dp=0.3

EA
Dp=0.3

Dp=0.2
Dp=0.1 1

10

100

1000

1 10 100 1000

D
el

ay
 C

os
t (

γ*
)

Congestion Cost (Φ*)

Congestion vs. Delay Cost Values (averaged by delay request)

Random

L2

InvCap

DRp=3

DRp=4
DRp=3

DRp=4

DRp=5

DRp=3

DRp=4
DRp=5

DRp=p5

DE

MS−LS

DRp=3
EA

DRp=5

DRp=4

DRp=3

DRp=4

DRp=3

DRp=4

DRp=5
DRp=5

Fig. 4.

1

2

3

4

5

1 2 3

D
el

ay
 C

os
t (

γ*
)

Congestion Cost (Φ*)

Congestion vs. Delay Costs (α = 0.25, 0.5, 0.75)

α=0.5

Dp=0.1
Dp=0.2

Dp=0.3α=0.25

α=0.75

1

2

3

4

5

6

1 2 3

D
el

ay
 C

os
t (

γ*
)

Congestion Cost (Φ*)

Congestion vs. Delay Costs (α = 0.25, 0.5, 0.75)

DRp=3

α=0.75 α=0.5 α=0.25

DRp=4

DRp=5

Fig. 5.

25

