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SOME ORTHODOX MONOIDS WITH ASSOCIATE INVERSE
SUBSEMIGROUPS

B. BILLHARDT, E. GIRALDES, P. MARQUES-SMITH, P. MENDES MARTINS

Abstract. By an associate inverse subsemigroup of a regular semigroup S we mean a

subsemigroup T of S containing a least associate of each x ∈ S, in relation to the natural

partial order ≤S in S. In this paper we investigate a class of orthodox monoids with an

associate inverse subsemigroup and obtain a known description of uniquely unit regular

orthodox semigroups as a corollary. Also, by considering a more general situation, we

identify the homomorphic image of a kind of semidirect product of a band with identity by

an inverse monoid, thus extending a known result for unit regular orthodox semigroups.

1. Introduction

Extending the concept of associate subgroup of a semigroup, first presented in [4],
the authors introduced in [3] the notion of associate inverse subsemigroup of a regular
semigroup S. This is a (necessarily inverse) subsemigroup S∗ of S containing a least
associate of each x ∈ S, x∗, say, in relation to the natural partial order of S. The main
result of [3] is a description of a regular semigroup with associate inverse subsemigroups
satisfying two natural conditions.

A monoid S is said to be [uniquely] unit regular if for every x ∈ S there is a [unique]
unit u ∈ S such that x = xux. This is an idea that has come to semigroups from the
theory of rings [8]. Examples of unit regular semigroups include the full transformation
semigroup on a finite set and the semigroup of endomorphisms of a finite-dimensional
vector space. In [5] the authors determined the structure of orthodox semigroups that
are uniquely unit regular. The structure that they obtained is in terms of the group of
units and the band of idempotents. Neither of the examples cited above is uniquely unit
regular. However, this class of semigroups coincides with a particular class of F -regular
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semigroups, i.e., semigroups for which there exists a group congruence such that every
congruence class contains a greatest element with respect to the natural partial order [7].
The problem of describing the structure of an arbitrary unit regular semigroup proved
to be difficult to solve. In [10] it is shown that every unit regular orthodox semigroup is
an idempotent-separating homomorphic image of a uniquely unit orthodox semigroup. In
this paper, following the work in [3], we investigate the class of some orthodox monoids
with an associate inverse subsemigroup and extend the main results of [5] and [10].

In section 2 we establish the structure of orthodox monoids S with an associate inverse
subsemigroup S∗, satisfying:

(A1) ∀s, t ∈ S, (st)∗ = t∗s∗;

(A2) ∀e ∈ E(S)∀f∗ ∈ E(S∗), ef∗ = f∗e

and obtain Blyth and McFadden’s description of uniquely unit orthodox semigroups as a
corollary. In section 3, we consider a more general situation and show that the orthodox
monoids S with an inverse subsemigroup V , containing an associate of each element and
satisfying ea = ae for all e ∈ E(S) and all a ∈ E(V ), are exactly the homomorphic images
of a λ-semidirect product of a band with identity by an inverse monoid. This extends
McFadden’s result for unit regular orthodox semigroups.

For standard notation in semigroup theory, we refer the reader to the books of Grillet
[9] and Petrich [11].

2. Restricted semidirect products

In this section we describe the class of orthodox monoids S with an associate inverse
subsemigroup S∗ satisfying conditions

(A1) ∀s, t ∈ S, (st)∗ = t∗s∗;

(A2) ∀e ∈ E(S) ∀f∗ ∈ E(S∗), ef∗ = f∗e.

The description that we provide uses the restricted semidirect product of semigroups.

Let V be an inverse semigroup acting on a band B by endomorphisms on the left. Let
π : B → E(V ) be an epimorphism such that, for each e ∈ B, v ∈ V ,

vv−1
e = e ⇔ eπ ≤ vv−1.

Then let S = {(e, v) ∈ B × V : vv−1 = eπ}.

Lemma 2.1. Let S be the set defined above and (e, v) ∈ S. Then,

v−1(eπ)v = (v−1
e)π.
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Proof. First, we notice that, for every α ∈ E(V ), we have

(1) α(v−1
e) = v−1

e =⇒ v−1(eπ)v ≤ α.

In fact,

α( v−1
e) = v−1

e =⇒ vαv−1
e = vv−1

e

=⇒ vαv−1
e = e ((e, v) ∈ S)

=⇒ eπ ≤ vαv−1 definition of π

=⇒ v−1(eπ)v ≤ v−1vαv−1v

=⇒ v−1(eπ)v ≤ α. V is inverse

Since ( v−1
e)π ∈ E(V ) and, by definition of π, ( v−1

e)π( v−1
e) = v−1

e, we have, by (1), that

(2) v−1(eπ)v ≤ ( v−1
e)π.

Moreover, again by the fact that (e, v) ∈ S and by definition of π, we have

v−1(eπ)v( v−1
e) = v−1(eπ)( vv−1

e) = v−1
((eπ)e) = v−1

e.

Thus, since v−1(eπ)v ∈ E(V ), we have

(3) (v
−1

e)π ≤ v−1(eπ)v.

By (2) and (3) equality follows. ¤

We are now in condition to prove the following result.

Theorem 2.2. The subset S of B × V defined as above is an orthodox semigroup under
the following multiplication:

(4) (e, v)(f, w) = (e vf, vw).

Proof. Let (e, v), (f, w) ∈ S. From fπ = ww−1, we have

v(fπ)v−1 = vww−1v−1

and, by Lemma 2.1,

(vf)π = vww−1v−1.

Thus, from eπ = vv−1, we have

eπ( vf)π = vv−1vww−1v−1

that is

(e vf)π = vww−1v−1.

Since the operation is clearly associative, we conclude that S is a semigroup. Moreover,
for every (e, v) ∈ S, ( v−1

e, v−1) ∈ A((e, v)). Finally, (e, v) ∈ E(S) ⇔ v ∈ E(V ) and so the
semigroup is orthodox. ¤
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The semigroup S is called a restricted semidirect product of B by V and is denoted by
B ⊗ V (see [1]).

Notice that if B⊗ V is a restricted semidirect product, the mapping π of the definition
is surjective. In fact, if ev ∈ E(V ), then evev = ev, and, by definition of π, there exists
f ∈ B such that fπ = eve

−1
v = ev.

The previous theorem allows us to conclude that if (e, v), (f, w) ∈ S, then

vww−1v−1
e vww−1

f = e vf

and so the definition (4) is equivalent to the following one:

(e, v)(f, w) = (vww−1v−1
e vww−1

f, vw).

In what follows, we will use both definitions.

Theorem 2.3. Let S be an orthodox semigroup with associate inverse subsemigroup S∗

satisfying conditions (A1) and (A2). Then S is isomorphic to a restricted semidirect
product E(S)⊗ S∗.

Proof. We show first that S∗ acts on E(S) via

s∗e = s∗es∗∗, for all s∗ ∈ S∗.

Given e, f ∈ E(S), we have

s∗e s∗f = s∗es∗∗s∗fs∗∗ = s∗efs∗∗s∗s∗∗

= s∗efs∗∗ = s∗(ef).

Also, for s∗, t∗ ∈ S∗,

s∗t∗e = (ts)∗e = (ts)∗e(ts)∗∗ = s∗t∗et∗∗s∗∗.

Hence S∗ acts on E(S).

We proceed to define a homomorphism satisfying the conditions of the definition of
restricted semidirect product. For each e ∈ E(S), (ee)∗ = e∗ and (ee)∗ = e∗e∗ by (A1),
whence e∗ ∈ E(S∗). So, the assignment e 7→ e∗ is a mapping π, say, from E(S) into E(S∗).
Notice that π is a morphism – in fact, for every e, f ∈ E(S),

(ef)π = (ef)∗ = f∗e∗.

Since e∗, f∗ ∈ E(S∗) ⊆ E(S), it follows by (A2) that

(ef)π = e∗f∗ = (eπ)(fπ).

Thus π is a homomorphism.

Next we show that
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(I) ∀e ∈ E(S) ∀s∗ ∈ S∗ s∗(s∗)−1
e = e ⇔ eπ ≤ s∗(s∗)−1.

We have, on one hand,

s∗s∗∗e = e ⇔ s∗s∗∗e(s∗s∗∗)∗∗ = e ⇔ s∗s∗∗es∗∗∗s∗∗∗∗ = e ⇔ s∗s∗∗es∗s∗∗ = e

⇔
{

s∗s∗∗s∗s∗∗e = e

es∗s∗∗s∗s∗∗ = e
⇔

{
s∗s∗∗e = e

es∗s∗∗ = e
⇒

{
e∗s∗∗∗s∗∗ = e∗

s∗∗∗s∗∗e∗ = e∗

⇒
{

e∗s∗s∗∗ = e∗

s∗s∗∗e∗ = e∗
⇒ e∗ ≤ s∗s∗∗ ⇔ eπ ≤ s∗(s∗)−1.

Conversely, suppose that e∗ ≤ s∗s∗∗. We have

e = ee∗e = ee∗s∗s∗∗e = ee∗es∗s∗∗ = es∗s∗∗

and

e = ee∗e = ee∗s∗s∗∗e = s∗s∗∗ee∗e = s∗s∗∗e.

It follows that s∗s∗∗es∗s∗∗ = e and so s∗s∗∗e = e.

(II) ∀s∗ ∈ S∗∃e ∈ E(S) : eπ = s∗s∗∗.

Let s∗ ∈ S∗. The element s∗s is an idempotent of S since s = ss∗s. Moreover,

(s∗s)π = (s∗s)∗ = s∗s∗∗.

In view of this, we can define the restricted semidirect product of E(S) by S∗ with
respect to the action and π defined above:

E(S)⊗ S∗ = {(e, s∗∗) : s∗∗s∗ = e∗} .

Recall that the multiplication is given by

(e, s∗∗)(f, t∗∗) = (e s∗∗f, s∗∗t∗∗)

= (es∗∗fs∗, s∗∗t∗∗).

We show that S is isomorphic to the restricted semidirect product E(S)⊗ S∗.

For each s ∈ S, the element (ss∗, s∗∗) of E(S)⊗ S∗ is uniquely determined. So, we can
define the mapping ψ as follows:

ψ : S → E(S)⊗ S∗

s 7→ (ss∗, s∗∗)

We show that ψ is a morphism. In fact, for any s, t ∈ S, we have

sψ · tψ = (ss∗, s∗∗)(tt∗, t∗∗) = (ss∗s∗∗tt∗s∗, s∗∗t∗∗)

= (stt∗s∗s∗∗s∗, s∗∗t∗∗) = (stt∗s∗, s∗∗t∗∗)

= (st)ψ.
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Moreover, ψ is injective. Let s, t ∈ S be such that sψ = tψ. We have

sψ = tψ ⇔ (ss∗, s∗∗) = (tt∗, t∗∗)

⇒ ss∗ = tt∗ and s∗∗ = t∗∗

⇒ s = s · s∗s∗∗ · s∗s = ss∗ss∗s∗∗ = ss∗s∗∗ = tt∗t∗∗ = t.

We finally show that ψ is surjective. Let (e, v) ∈ E(S)⊗S∗. We show that (e, v) = (ev)ψ.
We have

(ev)ψ = ((ev)(ev)∗, (ev)∗∗)

= (evv∗e∗, e∗∗v∗∗) = (ev∗∗v∗, e∗v)

= (ev∗∗v∗, vv∗v) = (e, v).
¤

Corollary 2.4. An orthodox monoid with an associate inverse subsemigroup satisfying
properties (A1) and (A2) is isomorphic to a restricted semidirect product of a band monoid
by an inverse monoid. ¤

The converse of Theorem 2.3 does not hold. Consider the following example.

Example 2.1. Let B = {x, y, z} be a right zero semigroup and G = {u, a} the two
element group. Let G be acting on B via ge = e, for all e ∈ B and for all g ∈ G. Clearly,
the constant morphism π : B → {u} satisfies, for each e ∈ B, g ∈ G,

gg−1
e = e ⇔ eπ ≤ gg−1

and, for each g ∈ G, there exists e ∈ B such that eπ = gg−1.

Let S = B × G. Then S = {(e, g) ∈ B × G : gg−1 = eπ}. By the definition of re-
stricted semidirect product, S = B ⊗G and S is orthodox (Theorem 2.2). Clearly, S∗ =
{(x, u), (y, u)} is an associate inverse subsemigroup of S. Also, E(S) = {(x, u), (y, u), (z, u)}.
However, condition (A2) does not hold: in fact, (y, u) ∈ E(S), (x, u) ∈ E(S∗) and

(y, u)(x, u) = (y ux, u) = (x, u) 6= (y, u) = (x, u)(y, u).

The next theorem shows that the converse of Corollary 2.4 is true.

Theorem 2.5. Let S = B ⊗ V be a restricted semidirect product of a band monoid B,
with identity ε, by an inverse monoid V with identity 1V . Then S is an orthodox monoid
with an associate inverse submonoid S∗ =

{
(vv−1

ε, v) : v ∈ V
}

isomorphic to V , satisfying
(A1) and (A2).

Proof. Let π : B → E(V ) be the morphism of the definition of restricted semidirect
product. We show first that (ε, 1V ) is the identity of S. In order to show that, notice
that επ = 1V since π is a surjective homomorphism. It follows that (ε, 1V ) ∈ S since
επ = 1V (= 1V 1−1

V ). Moreover, for each f ∈ B,
1V f = 1V ( fπf) = fπf = f
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and so 1V f = f . We can now show that (ε, 1V ) is the identity of S. Let (f, w) ∈ S. We
have

(ε, 1V )(f, w) = (ε 1V f, 1V w) = (εf, w) = (f, w)

and
(f, w)(ε, 1V ) = (f wε, w1V ) = (ww−1

f ww−1wε, w)

= (ww−1w(w−1
fε), w) = (ww−1ww−1

f, w) = (f, w).

We proceed to show that the set S∗ = {(vv−1
ε, v) : v ∈ V } is a submonoid of S(= B⊗V ).

(I) S∗ ⊆ B ⊗ V .
Let (vv−1

ε, v) ∈ S∗. Then (vv−1
ε, v) ∈ B×V and we show that vv−1 = (vv−1

ε)π.
On one hand, by definition of π,

vv−1
(vv−1

ε) = vv−1
ε =⇒ (vv−1

ε)π ≤ vv−1. (a)

On the other hand, let e ∈ B be such that vv−1 = eπ (according to the definition
of semidirect restricted product). We show that vv−1 ≤ (vv−1

ε)π. In fact,

vv−1(vv−1
ε)π = (vv−1

e)π(vv−1
ε)π = (vv−1

(eε))π = (vv−1
e)π = vv−1.

Since vv−1, (vv−1
ε)π ∈ E(S), we conclude that

vv−1 ≤ (vv−1
ε)π. (b)

From (a) and (b) it follows that vv−1 = (vv−1
ε)π. Thus S∗ ⊆ B ⊗ V .

(II) Let (vv−1
ε, v), (ww−1

ε, w) ∈ S∗. We have

(vv−1
ε, v)(ww−1

ε, w) = (vww−1v−1
ε vww−1

ε, vw)

= (vww−1
(v−1

εε), vw)

= (vww−1v−1
ε, vw)

= (vw(vw)−1
ε, vw) ∈ S∗.

Since (ε, 1V ) ∈ S∗, it follows that S∗ is a submonoid of S.

Next we show that S∗ ' V . Let ϕ : V → S∗ be the mapping defined by vϕ = (vv−1
ε, v)

for each v ∈ V . It is clear that ϕ is a bijection. Also, given v, w ∈ V ,

vϕ · wϕ = (vv−1
ε, v)(ww−1

ε, w) = (vww−1v−1
ε vww−1

ε, vw)

= (vww−1
(v−1

εε), vw) = (vww−1v−1
ε, vw) = (vw)ϕ.

Hence ϕ is an isomorphism and so the monoid S∗ is inverse.

The monoid S∗ is also associate. Let (e, v) ∈ S. Since v ∈ V and V is inverse, v−1 is the
least associate of v. So, if there exists the least associate of (e, v) it must be (v−1vε, v−1).
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We show that (v
−1vε, v−1) is an associate of (e, v).

(e, v)(v−1vε, v−1)(e, v) = (e vv−1vε, vv−1)(e, v)

= (e vε, vv−1)(e, v)

= (e vεvv−1
e, v)

= (e v(εv−1
e), v)

= (e vv−1
e, v) = (e, v).

Finally we show that (A1) and (A2) are satisfied.

Let e, f ∈ B and v, w ∈ V . We have

((e, v)(f, w))∗ = (e vf, vw)∗ = ((vw)−1vwε, (vw)−1)

= (w−1v−1vwε, w−1v−1) = (w−1wε, w−1)(v−1vε, v−1)

= (f, w)∗(e, v)∗

Now let (e, v) ∈ E(S) and (ww−1
ε, w)∗ ∈ E(S∗). Then v, w ∈ E(V ). We have

(e, v)(ww−1
ε, w)∗ = (e, v)(wε, w) = (vwe vwε, vw) = (vw(eε), vw)

= (wv(εe), wv) = (wε, w)(e, v) = (ww−1
ε, w)∗(e, v)

¤

Combining Corollary 2.4 and Theorem 2.5 we obtain

Theorem 2.6. Let S = B ⊗ V be a restricted semidirect product of a band monoid B by
an inverse monoid V . Then S is an orthodox monoid with associate inverse subsemigroup
S∗, satisfying properties

(A1) ∀s, t ∈ S, (st)∗ = t∗s∗;

(A2) ∀e ∈ E(S)∀f∗ ∈ E(S∗), ef∗ = f∗e.

Conversely, every such semigroup T can be constructed this way, where B = E(T ) and
V = T ∗. ¤

The following example illustrates the previous theorem.

Example 2.2. Let B be the 3 element chain

c

b

a

•

•

•

,
8



G = {u, x} the two element group and S = B × G be the direct product. Then E(S) =
B × {u} and S is clearly orthodox with identity (a, u). Also, T = {(a, x), (a, u)} is a
subsemigroup of S isomorphic to G, where the least associate in T of the elements of
B × {u} and of B × {x} is, respectively, (a, u) and (a, x). Easy calculations show that
properties (A1) and (A2) are satisfied. The semigroup S is also unit regular.

We observe that Theorem 4 and Theorem 5 of [5] are corollaries of [[7], Theorem 6.4]
and of Corollary 2.4 above, respectively. In fact, if S is uniquely unit orthodox then S is
an orthodox monoid with an inverse subsemigroup satisfying (A1) and (A2) and so, by
Corollary 2.4, S is isomorphic to a restricted semidirect product of a band monoid by an
inverse monoid. In this case, the inverse monoid is the group of units and the mapping π

of the definition is trivial. So the restricted semidirect product is the classical semidirect
product. The converse is an immediate consequence of [[7], Theorem 6.4].

The next example shows that orthodox monoids with an inverse semigroup satisfying
(A1) and (A2) are not necessarily uniquely unit orthodox.

Example 2.3. Take I(X2), the symmetric inverse semigroup on a two element set.

Consider the subsemigroup V = {0, x, y, z, w, 1} of I(X2), where

x = (
1
1

), y = (
2
2

), z = (
1
2

), w = (
2
1

), 1 = idX2

and 0 is the empty map. Then 1 is the only unit of V and E(V ) = {0, x, y, 1}. Easy
calculations show that the semigroup V is regular and so, since the idempotents commute,
V is inverse. Also, since 0∗ = 0, 1∗ = 1, x∗ = x, y∗ = y, z∗ = w and w∗ = z, V is an
associate inverse semigroup of itself. It can easily be verified that both conditions (A1)
and (A2) are satisfied. However, since w1w = ww = 0 6= w, the semigroup V is not unit
regular and so it is not uniquely unit regular.

The characterization of a certain class of orthodox monoids that we obtain in section
3 uses the λ-semidirect product of a band by an inverse semigroup. We next define this
product and show that the λ-semidirect product of a band with identity by an inverse
monoid is a particular case of the restricted semidirect product.

Let V be an inverse semigroup acting on a band B by endomorphisms on the left. Then

{(e, v) ∈ B × V : vv−1
e = e}

is an orthodox semigroup under the multiplication

(e, v)(f, w) = (vww−1v−1
e vf, vw).

It is called the λ-semidirect product of B by V and it is denoted by B ∗λ V .
9



Proposition 2.7. Let S = B ∗λ V be a λ-semidirect product of a band with identity by an
inverse monoid V . Then S is a monoid isomorphic to a restricted semidirect product of a
band with identity by an inverse monoid.

Proof. S is a monoid. Let ε be the identity of B and 1V be the identity of V . We show
that (1V ε, 1V ) is the identity of S. In fact, since 1V 1−1

V (1V ε) =1V 1V ε =1V ε, (1V ε, 1V ) ∈ S.
Moreover, for each (e, v) ∈ S, we have

(e, v)(1V ε, 1V ) = (vv−1
e vε, v) = (v(v−1

eε), v)

= (vv−1
e, v) = (e, v)

and
(1V ε, 1V )(e, v) = (vv−1

ε vv−1
e, v) = (vv−1

(εe), v)

= (vv−1
e, v) = (e, v).

Define the following subset of S

S∗ = {(vv−1
ε, v) : v ∈ V }.

Then, S∗ is a subsemigroup of S. In fact, for every v, w ∈ V , (vv−1
ε, v) ∈ B × V and

vv−1
(vv−1

ε) =vv−1
ε. Moreover, for (vv−1

ε, v), (ww−1
ε, w) ∈ S∗, we have

(vv−1
ε, v)(ww−1

ε, w) = (vww−1v−1vv−1
ε vww−1

ε, vw)

= (vww−1
(v−1

εε), vw) = (vww−1v−1
ε, vw)

= (vw(vw)−1
ε, vw) ∈ S∗.

The semigroup S∗ is clearly inverse because the mapping ψ : V −→ S∗ defined by

vψ = (vv−1
ε, v) (v ∈ V )

is easily verified to be an isomorphism.

As before, for each (e, v) ∈ S, the element (v
−1vε, v−1) of S∗ is the least associate of

(e, v) in S∗.

Finally, similar calculations show that conditions (A1) and (A2) are satisfied.

So, by Corollary 2.4, S is isomorphic to a restricted semidirect product of a band by an
inverse semigroup. ¤

3. Homomorphic images

In this section we consider a more general situation in which an orthodox monoid S

has an inverse subsemigroup containing an associate (not necessarily a least one) of each
element of S. These semigroups occur naturally as homomorphic images of a λ-semidirect
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product of a band with identity by an inverse monoid. The main result of this section,
Theorem 3.4, provides a characterization of all such homomorphic images. In this context,
the following conditions on orthodox monoids containing an inverse subsemigroup are
crucial:

(H1) For each s ∈ S, A(s) ∩ V 6= ∅;

(H2) For all e ∈ E(S) and for all a ∈ E(V ), ea = ae.

Notice that such an inverse subsemigroup of S is necessarily a submonoid of S since by
(H1) the identity of S is in V .

We begin with two examples of such orthodox monoids.

Example 3.1. Let B be a set and A a proper subset of B with at least two elements.
Consider the following subset of the symmetric inverse semigroup on B

S = {α ∈ I(B) : domα ⊂ B, ranα ⊂ B and (x ∈ A ⇔ xα ∈ A)} .

S1 is clearly an inverse monoid and, hence, an orthodox submonoid of I(B). The subset
S∗ :=

{
α ∈ S1 : α|A is a permutation of A} is an inverse subsemigroup of S1 which is not

associate. In fact, if α ∈ S1 is such that A \ domα = {x1, x2}, then A \ ran α has exactly
two elements, y1 and y2, say. So, the mappings α′, α′′ : ran α∪{y1, y2} → domα∪{x1, x2}
defined by

xα′ =





xα−1 if x ∈ ranα

x1 if x = y1

x2 if x = y2

xα′′ =





xα−1 if x ∈ ranα

x2 if x = y1

x1 if x = y2

are two non-comparable associates of α in S∗. Since any other associate β of α in S∗ is
such that β ≥ α′ or β ≥ α′′, the least associate of α in S∗ doesn’t exist. Clearly, (H1) and
(H2) are satisfied.

Example 3.2. Consider S = {x ∈ R : x ≤ 2}\{√2} with xy :=min{x, y}, with respect to
the usual order. Then V =]

√
2, 2] is an inverse subsemigroup of S containing an associate

of every element of S. However, if x ∈ S \ V , there is not a least associate for x in V .
Conditions (H1) and (H2) are trivially satisfied.

We proceed to characterize the orthodox monoids referred to in the beginning of this
section.

Proposition 3.1. Let S be an orthodox monoid with an inverse subsemigroup V which
satisfies conditions (H1) and (H2). Then, every homomorphic image T of S has an inverse
subsemigroup satisfying (H1) and (H2).

Proof. Let ϕ : S → T be an epimorphism. We show that V ϕ is the required inverse
subsemigroup of T . By [[9], VII Proposition 1.2], V ϕ is an inverse semigroup. Obviously T
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satisfies (H1) with respect to V ϕ. We now show that condition (H2) holds. Let a ∈ E(V ϕ).
Then a = uϕ, for some u ∈ V . Let w = u(u2)−1u. Clearly, w is an idempotent of V . Also,

wϕ = [u(u2)−1u]ϕ = uϕ((uϕ)2)−1uϕ = a(a2)−1a = a.

Thus a ∈ (E(V ))ϕ. Now let e ∈ E(T ). By Lallement’s Lemma, e = fϕ for some f ∈ E(S).
Since, by (H2), wf = fw, we have, by the homomorphism, ae = ea. ¤

Combining Propositions 3.1 and 2.7 and Theorem 2.6, we obtain

Proposition 3.2. Let S be a homomorphic image of a λ-semidirect product of a band with
identity by an inverse monoid. Then S is an orthodox monoid which contains an inverse
subsemigroup V satisfying conditions (H1) and (H2). ¤

Proposition 3.3. Let S be an orthodox monoid which contains an inverse semigroup V

satisfying conditions (H1) and (H2). Then S is a homomorphic image of a λ-semidirect
product of a band with identity by an inverse monoid.

Proof. Since S is orthodox and has an identity, E(S) is a band with identity 1S . Also, by
(H1) there is v ∈ V such that 1Sv1S = 1S ; thus v = 1S and so 1S ∈ V . Hence the inverse
subsemigroup of S is a monoid.

We proceed to construct E(S) ∗λ V . In order to do this, we define an action of V on
E(S) by ve = vev−1, for each e ∈ E(S) and v ∈ V . In fact,

• vef = vefv−1 = vv−1vefv−1 = vev−1vfv−1 = ve vf ;
• vwe = (vw)e(vw)−1 = vwew−1v−1 = v( we)v−1 = v(we);
• 1V e = 1V e1−1

v = e.

Notice that, by (H2), this action is such that

vv−1
e = vv−1e(vv−1)−1 = evv−1(vv−1)−1 = evv−1

and similarly, vv−1
e = vv−1e.

Let U = E(S) ∗λ V be a λ-semidirect product of E(S) by V , with respect to the action
defined above. Then

U = {(e, v) ∈ E(S)× V : vv−1
e = e} = {(e, v) ∈ E(S)× V : vv−1e = e}

and
(e, v)(f, w) = (vww−1v−1

e vf, vw) = (vww−1v−1evfv−1, vw)

= (evww−1v−1vfv−1, vw) = (evv−1vww−1fv−1, vw)

= (evww−1fv−1, vw) = (evfv−1, vw) = (e vf, vw).

Notice that U is a subsemigroup of the semidirect product E(S) ∗ V .
12



Next define a mapping ψ : U → S by (e, v)ψ = ev. For any (e, v), (f, w) ∈ U ,

((e, v)(f, w))ψ = (evfv−1, vw)ψ = evfv−1vw

= evv−1vfw = evfw

= (e, v)ψ(f, w)ψ.

.

Thus ψ is a homomorphism. It is also surjective. In fact, if s ∈ S then by (H1) s = svs =
svv−1vs, for some v ∈ V . Since vv−1 ∈ E(V ) and vs ∈ E(S), (H2) gives

(5) s = svsvv−1 = svv−1,

where sv ∈ E(S) and v−1 ∈ V . Since

v−1vsv = v−1vsvv−1v = v−1vsv = svv−1v = sv,

it follows that (sv, v−1) ∈ U . Finally, (5) gives

s = svv−1 = (sv, v−1)ψ,

whence ψ is surjective. The result follows. ¤

Combining Propositions 3.2 e 3.3 we obtain the following characterization.

Theorem 3.4. Let S be a homomorphic image of a λ-semidirect product of a band with
identity by an inverse monoid. Then S is an orthodox monoid containing an inverse
subsemigroup V which satisfies

(H1) For each s ∈ S, A(s) ∩ V 6= ∅;

(H2) For all e ∈ E(S) and for all a ∈ E(V ), ea = ae.

Conversely, every such semigroup can be constructed this way. ¤

We observe that [[10] Theorem 1.4] is a corollary of Theorem 3.4 above: if S is a unit
regular orthodox semigroup and U is its group of units, then (H2) is trivially satisfied
and (H1) follows from the fact that S is unit regular. So, ϕ : E(S) ∗λ U → S defined by
(e, u)ϕ = eu is an epimorphism. Since E(E(S) ∗λ U) = E(S)× {1S}, S is an idempotent-
separating homomorphic image of a λ-semidirect product of E(S) by U . [[10] Theorem
1.4] now follows from Proposition 2.7.

Not every orthodox monoid S with an inverse semigroup satisfying conditions (H1) and
(H2) is unit regular. In fact, although the orthodox monoid S1 defined in Example 3.1
has an inverse subsemigroup containing an associate of each of its elements and satisfies
conditions (H1) and (H2), S1 is not unit regular since idB is the only unit of S1.
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4. A particular case: F -regular semigroups

F -regular semigroups were first described by Edwards in [6] where it is proven that
F -regular semigroups are orthodox monoids. Further characterizations of F -regular semi-
groups are provided in [7] and [2].

In this section we prove that F -regular semigroups have an inverse subsemigroup S,
satisfying conditions (H1) and (H2) stated at the beginning of Section 3, which is associate
when S is finite. If S is not finite, this subsemigroup is not necessarily associate, as it is
shown by Example 4.1.

Let S be an F -regular semigroup and σ the least group congruence on S. For each
a ∈ S, we denote the greatest element of aσ by a>> and the greatest element of (aσ)−1

by a>. By [[7], Corollary 2.5], a> is an associate of a in S (in fact, the greatest one).

Proposition 4.1. Let S be an F -regular semigroup and W the subsemigroup of S gener-
ated by {a>> : a ∈ S}. Then W is a regular submonoid of S in which each element lies
beneath a generator of W .

Proof. Since S is F -regular, it follows by [[7], Corollary 2.4] that S has an identity 1S , say;
since 1S = 1>>S , it follows that W is a submonoid of S. By [[7], Theorem 2.2], for each
a ∈ W , the element a> is an associate of a and, since a> = (a>)>> by [[7], Proposition
4.1(iii)], it follows that W is a regular submonoid of S. Finally, by [[7], Proposition 4.1(i)],
a ≤ a>>, for each a ∈ W . ¤

Lemma 4.2. Let S be an F -regular semigroup. Then, for all idempotent e ∈ S and all
s>>1 , s>>2 , ..., s>>n ∈ W (n ∈ N), we have

s>>1 s>>2 · · · s>>n s>n · · · s>2 s>1 · e = e · s>>1 s>>2 · · · s>>n s>n · · · s>2 s>1 .

Proof. We prove this lemma using induction on the number of factors in s>>1 , s>>2 , ..., s>>n .

For n = 1, we have, for all e ∈ E(S), by [[7], Propositions 4.1(vii) and 4.2(viii)], that

s>>1 s>1 · e = s>>1 · s>1 e = s>>1 · s>1 es>>1 s>1

= s>>1 s>1 es>>1 · s>1 = es>>1 s>1
14



Now, let k ∈ N, s1, s2, ..., sk be k arbitrarily chosen elements in S and e ∈ E(S). Consider
the elements s>>1 , s>>2 , ..., s>>k ∈ W and suppose that the result holds for k − 1. We have

s>>1 s>>2 · · · s>>k−1s
>>
k s>k s>k−1 · · · s>2 s>1 e = s>>1 s>>2 · · · s>>k−1s

>>
k s>k s>k−1 · · · s>2 s>1 es>>1 s>1

[[7], Proposition 4.1(vii)]

= s>>1 · s>>2 · · · s>>k−1s
>>
k s>k s>k−1 · · · s>2 (s>1 es>>1 ) · s>1

= s>>1 (s>1 es>>1 )s>>2 · · · s>>k−1s
>>
k s>k s>k−1 · · · s>2 s>1

[induction hypothesis]

= es>>1 s>>2 · · · s>>k−1s
>>
k s>k s>k−1 · · · s>2 s>1 .

The result follows by induction. ¤

Lemma 4.3. Let S be an F -regular semigroup and W the regular submonoid generated
by {s>> : s ∈ S}. Then each idempotent s>>1 s>>2 · · · s>>k of W (k ∈ N) can be written
both as s>>1 s>>2 · · · s>>k s>k · · · s>2 s>1 and s>k · · · s>2 s>1 s>>1 s>>2 · · · s>>k .

Proof. We prove this lemma using induction on the number of factors in s>>1 s>>2 · · · s>>k .

For k = 1,

s>>1 ∈ E(S) ⇒ s1σ = E(S) ⇒ s>>1 = 1S ⇒ s>1 = 1S

and so, s>>1 = s>>1 s>1 .

For k = 2, we have

s>>1 s>>2 ∈ E(S) ⇒ s>>1 s>>2 = s>>1 s>1 = s>>1 s>1 s>>1 s>1 = s>>1 s>>2 s>2 s>1 .

Now let k ∈ N and let s>>1 s>>2 · · · s>>k and idempotent of S. Suppose that the result
holds for k− 1. Our argument to show that the result is also valid for k uses the fact that
it holds for k = 3. So we start by showing that

s>>1 s>>2 s>>3 = s>>1 s>>2 s>>3 s>3 s>2 s>1 = s>3 s>2 s>1 s>>1 s>>2 s>>3 .

Since s>>1 s>>2 s>>3 ∈ E(S), we have

s>>1 s>>2 s>>3 = s>>1 s>>2 (s1s2)>

= s>>1 s>>2 s>2 s>1 [[2], Lemma1(iv)]

= s>>1 s>>2 s>>3 s>3 s>2 s>1 . [[7], Proposition 4.2(viii)]
15



Now suppose that s>>1 s>>2 · · · s>>k is an idempotent of S. We have

s>>1 s>>2 · · · s>>k−2s
>>
k−1s

>>
k = (s>>1 s>>2 · · · s>>k−2)(s

>>
k−1s

>>
k )

= s>>1 s>>2 · · · s>>k−2((s1s2 · · · sk−2)>(s1s2 · · · sk−2)>>)s>>k−1s
>>
k

= (s>>1 s>>2 · · · s>>k−2(s1s2 · · · sk−2)>)((s1s2 · · · sk−2)>>s>>k−1s
>>
k )

= s>>1 s>>2 · · · s>>k−2(s1s2 · · · sk−2)>(s1s2 · · · sk−2)>>s>k−2 · · · s>2 s>1 ·
·(s1s2 · · · sk−2)>>s>>k−1s

>>
k s>k s>k−1(s1s2 · · · sk−2)>

= (s>>1 s>>2 · · · s>>k−2(s1s2 · · · sk−2)>(s1s2 · · · sk−2)>>)·
·(s>k−2 · · · s>2 s>1 (s1s2 · · · sk−2)>>) · (s>>k−1s

>>
k s>k s>k−1(s1s2 · · · sk−2)>)

= s>>1 s>>2 · · · s>>k−2 · (s>k−2 · · · s>2 s>1 (s1s2 · · · sk−2)>>)·
·(s>>k−1s

>>
k s>k s>k−1)(s1s2 · · · sk−2)>

= s>>1 s>>2 · · · s>>k−2s
>>
k−1s

>>
k s>k s>k−1(s

>
k−2 · · · s>2 s>1 (s1s2 · · · sk−2)>>(s1s2 · · · sk−2)>>)

= (s1s2 · · · sk−2)>>(s1s2 · · · sk−2)>>s>>1 s>>2 · · · s>>k−2s
>>
k−1s

>>
k s>k s>k−1s

>
k−2 · · · s>2 s>1

= s>>1 s>>2 · · · s>>k−2s
>>
k−1s

>>
k s>k s>k−1s

>
k−2 · · · s>2 s>1 .

The result follows by induction.

Similarly, we can prove that

s>>1 s>>2 · · · s>>k = s>k · · · s>2 s>1 s>>1 s>>2 · · · s>>k .

¤

Proposition 4.4. Let S be an F -regular semigroup and W the submonoid generated by
the set {s>> : s ∈ S}. Then W satisfies the following properties:

(H1) For each s ∈ S A(s) ∩W 6= ∅;

(H2) For each e ∈ E(S) and for every a ∈ E(W ), ea = ae.

Proof. (H1) Let s ∈ S. Since the semigroup S is F -regular, it follows by [[7], Theorem
2.2] that s = ss>s. By [[7], Proposition 4.1(iii)], s> = s>>> ∈ W and the result follows.

(H2) This is an immediate consequence of Lemmas 4.2 and 4.3. ¤

Corollary 4.5. In an F -regular semigroup, the submonoid W generated by the set {s>> :
s ∈ S} is an F -inverse semigroup.

Proof. By Proposition 4.1, the monoid W is regular. By Proposition 4.4 the idempotents
of W commute. Thus the semigroup W is inverse. Also, by Proposition 4.1, each x ∈ W

is such that x ≤ x>> ∈ W . Hence, by [[7], Theorem 5.3(ii)], W is an F -semigroup and
the result follows. ¤
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Corollary 4.6. Every F -regular semigroup is an orthodox monoid that has an inverse
subsemigroup satisfying conditions (H1) and (H2). ¤

Proposition 4.7. For a finite F -regular semigroup, the inverse subsemigroup W is asso-
ciate.

Proof. Let s ∈ S and u, v ∈ A(s) ∩W . By [[2], Lemma 1(ii)], u = us>>u and v = vs>>v

and so the elements us>>, s>>v are idempotents of W . Thus us>>v ∈ W lies beneath
both u and v. We have, by [[2], Lemma 1(i)], us>>s> = u = s>s>>u and vs>>s> = v =
s>s>>v. Then, since su ∈ E(S) and s>>v ∈ E(W ), it follows from (H2) that

sus>>vs = s>>vsus = s>>vs = s>>vss>s = ss>s>>vs = svs = s.

So, the element us>>v ∈ A(s) ∩W is such that us>>v ≤ u, v. Thus, if S is finite, the
inverse subsemigroup W of S is associate. ¤

The following example shows that if an F -regular semigroup S is not finite then the
subsemigroup W of S is not necessarily associate.

Example 4.1. Let E be the infinite chain

•
•
•····•····•

ε

ε1

ε2

εn

0

and FAG(X) be the free abelian group on the infinite set X = {x1, x2, ..., xn, ...}. Consider
the direct product E ×FAG(X) and let S be the inverse submonoid of FAG(X) generated
by the set M = {(0, 1), (ε, 1)} ∪ {(εn, xn) | n ∈ N}. We claim that S is an infinite F -
regular semigroup, for which the inverse subsemigroup W is not associate. The binary
relation σ on S given by the equality of the second component is a group congruence on
S. If x = xn1

i1
xn2

i2
...xnk

ik
, with n1, n2, ..., nk ∈ Z, i1, i2, ..., ik ∈ N and i1 < i2 < ... < ik,

and (εj , x) ∈ S then j ≥ ik and (εj , x) = (εj , xj)(εj , x
−1
j )(εik , x). Thus, [(εj , x)] =

{(0, x)}∪{(εi, x) | i ≥ ik}, giving (εj , x)>> = (εik , x). Clearly, (0, 1)>> = (ε, 1)>> = (ε, 1),
(0, xn)>> = (0, xn) and (ε, xn)>> = (ε, xn), for all n ∈ N. Therefore, the monoid S is
F -inverse, with W = S \ {(0, x) : x ∈ FAG(X)}. However, since the associate elements of
(0, 1) in W are precisely the elements (εn, 1) (n ∈ N) and (ε, 1), there is no least one in
W and so the inverse subsemigroup W of S is not associate.
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Finally, we observe that, by [[7], Theorem 6.4], F -regular >-semigroups are uniquely
unit regular. So, it follows from the observation after Example 2.2 that F -regular >-
semigroups are orthodox monoids that contain an inverse subsemigroup satisfying (A1)
and (A2) stated in Section 2. Notice that in Example 4.1, since W is not associate, it also
follows that S is not a >-semigroup.
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