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The anticarcinogenic potential of dietary natural compounds on colorectal 

carcinoma: Effects on signaling pathways related to cell proliferation and cell death 

 

Abstract 

Colorectal cancer (CRC) is the third most prevalent cancer worldwide and the 

incidence is highly influenced by diet. Epidemiological studies have supported the idea 

that some dietary food components may influence the risk of CRC through modulation of 

several biological processes, including proliferation, survival and cell death. The 

PI3K/Akt and MAP kinases (ERK, JNK and p38) pathways are frequently altered in CRC 

and components of these pathways are important molecular targets for CRC treatment. 

Moreover, the apoptotic and non-apoptotic pathways of cell death have been shown good 

targets for anticancer drugs. The aim of the thesis was to identify potentially 

anticarcinogenic natural compounds and characterize their effects on signaling pathways 

related to proliferation and cell death, in CRC cell lines. The role of these natural 

compounds in combination with 5-fluorouracil (5-FU) was also evaluated. 

Initially, the anticarcinogenic effect of some water extracts (prepared as a tea) in 

two human colon carcinoma-derived cell lines, HCT15 and CO115 was studied. In 

chapter II, we demonstrated the anticarcinogenic activity of Salvia fruticosa (SF) and 

Salvia officinalis (SO), that seems to be due, at least partially, to the inhibition of the 

MAPK/ERK pathway, through effects upstream of BRAF. This effect was not due to 

rosmarinic acid (RA), the major phenolic compound present in these sage plants. In a 

subsequent study (chapter III), we showed the potential of Hypericum androsaemum 

(HA) in inhibiting cell proliferation and inducing apoptosis, at least in part, through 

inhibition of mutant BRAF and PI3K/Akt pathway, as well as, by the induction of p38 

and JNK MAP kinases. As in the case of RA also here the main phenolic compound 

present in HA extract, chlorogenic acid, tested alone did not show any of those effects. 

Taking into account the previous observations, we further evaluated the potential 

anticarcinogenic effects of quercetin (Q), luteolin (L) and ursolic acid (UA) in CRC cells. 

These phenolic compounds (Q and L) and triterpenoid (UA) are present (or appear as 

derivates) in the water extracts previously used, and have been demonstrated to modulate 

many steps of the carcinogenic process. In chapter IV, we found that Q and L have 

antiproliferative and proapoptotic effects that seem to be due, at least in part, to effects on 
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KRAS through regulation of both MAPK/ERK and PI3K pathways. UA demonstrated 

anticarcinogenic effects by acting on PI3K.  

In chapter V, we performed a combined study of Q, L and UA with the most 

common chemotherapeutic agent used in CRC treatment, 5-FU. Resistance to 5-FU 

arises, especially in tumors with p53 mutations, make combinations with other drugs a 

necessary strategy to increase 5-FU’s efficacy. In the first part of this study, we 

demonstrated that Q and L enhanced 5-FU-induced apoptosis and a synergistical effect 

was observed with Q in the p53 wild type CO115 cells. Q may increase 5-FU-induced 

apoptosis by modulating the mitochondrial pathway dependent on p53. In the second 

part, UA was observed to synergistically enhance 5-FU-induced apoptosis in the p53 

mutant HCT15 cells. The increase on apoptosis was not dependent on caspases and it was 

almost completely abrogated by an inhibitor of JNK, suggesting that in these cells UA 

induces apoptosis through JNK activation. Moreover, the increase of total cell death and 

the accumulation of LC3, induced by UA, were also dependent on JNK activation.  

In order to explore the remarkable induction of cell death by UA, which was not 

all explained by increased apoptosis, we verified the involvement of UA in the 

autophagic process (chapter VI). Interestingly, we found that UA inhibits autophagy in 

HCT15 cells at the maturation step, since no fusion events between lysosomes and 

autophagosomes were detected. Taking advantage of techniques established for MCF-7 

breast cancer cells, including the tandem fluorescent construct tagged with LC3 and the 

measurement of LC3 turnover using a luciferase-based real time assay, the results above 

were confirmed. Furthermore, UA increased lysosomal membrane permeabilization and 

decreased the total lysosomal hydrolases activities, indicating a possible impact on 

lysosomal biogenesis and/or a direct destabilizing effect on lysosomal membranes.    

In conclusion, this work adds SF, SO and HA to the list of potential plants to use 

in CRC dietary strategies, as well as, the natural compounds Q, L and UA present in 

human diet. These natural compounds control CRC progression by modulating important 

molecular targets, as well as, by enhancement of 5-FU efficiency. UA was the most 

promising compound, destabilizing the lysosomes and, consequently, inhibiting 

autophagy, which could sensitize cells to death and thus, may have a possible interest as 

adjuvant in cancer therapy.    
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Estudo do potencial anticarcinogénico de compostos naturais provenientes da dieta 

no cancro colorectal: Efeitos ao nível de vias de sinalização relacionadas com a 

proliferação e morte celular  

 

Resumo 

O cancro colorectal (CRC) é o terceiro cancro mais comum a nível mundial 

estando a sua incidência fortemente influenciada pela dieta. Estudos epidemiológicos 

revelam que compostos presentes na dieta podem influenciar o risco de CRC, modulando 

vários processos biológicos, incluindo a proliferação, sobrevivência e morte celular. As 

vias de sinalização PI3K/Akt e MAP kinases (ERK, JNK e p38) estão frequentemente 

alteradas no CRC e por isso, componentes destas vias constituem alvos moleculares 

importantes para o seu tratamento. Além disso, as vias apoptóticas e não-apoptóticas de 

morte celular têm demonstrado ser bons alvos de drogas anticarcinogénicas. A presente 

tese teve como objectivo identificar compostos naturais com potencial anticarcinogénico 

e caracterizar os seus efeitos ao nível das vias relacionadas com proliferação e morte 

celular em linhas de CRC. O papel destes compostos em combinação com o 5-

Fluorouracilo (5-FU) foi também abordado.   

Inicialmente, os efeitos anticarcinogénico de alguns extractos aquosos (preparados 

como chás) foram estudados em duas linhas celulares humanas de carcinoma do cólon, 

HCT15 e CO115. No capítulo II, demonstrou-se a actividade anticarcinogénica das 

plantas Salvia fruticosa (SF) e Salvia officinalis (SO), em que o seu efeito pareceu dever-

se, pelo menos em parte, à inibição da via MAPK/ERK, através de efeitos a montante do 

BRAF. O ácido rosmarínico (RA), composto fenólico maioritário presente nas Salvias 

não foi o responsável pelos efeitos observados. No capítulo III, demonstrou-se que o 

extracto aquoso de Hypericum androsaemum (HA) é capaz de inibir a proliferação 

celular e induzir a apoptose, pelo menos em parte, por inibir o BRAF mutado e a via 

PI3K/Akt, assim como, por induzir as MAP kinases p38 e JNK. Tal como no caso do RA, 

também o composto fenólico maioritário presente no extracto HA, o ácido clorogénico, 

testado sózinho, não mostrou nenhum destes efeitos.     

Tendo em conta os resultados anteriores, foi-se de seguida avaliar o potencial 

anticarcinogénico da quercetina (Q), luteolina (L) e ácido ursólico (UA). Estes compostos 

fenólicos (Q e L) e triterpenoide (UA) encontram-se presentes (ou aparecem como 

derivados) nos extractos aquosos anteriormente estudados, e têm a capacidade em 
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modular várias etapas do processo carcinogénico. No capítulo IV, observou-se o efeito 

antiproliferativo e pró-apoptótico da Q e L, que foi relacionado, pelo menos em parte, 

com efeitos no KRAS regulando as vias PI3K e MAPK/ERK. O efeito anticarcinogénico 

do UA foi observado ao nível do PI3K.       

No capítulo V, o efeito combinado da Q, L e UA com 5-FU, agente 

quimioterapêutico mais usado no tratamento do CRC, foi avaliado. O aumento das 

resistências ao 5-FU, especialmente em tumores com mutações no p53, leva a estratégias 

de combinações com outras drogas necessárias para aumentar a eficácia do 5-FU. Na 

primeira parte deste estudo, a Q e a L aumentaram a apoptose induzida pelo 5-FU, e um 

efeito sinergético foi obtido para a Q nas células CO115 com p53 normal. A Q 

provavelmente aumentou a apoptose induzida pelo 5-FU através da modulação da via 

mitocondrial dependente do p53. Na segunda parte, observou-se que UA 

sinergeticamente aumentou a apoptose induzida pelo 5-FU em células HCT15 com p53 

mutado. O aumento da apoptose não foi dependente das caspases e foi quase 

completamente inibido por um inibidor da JNK, sugerindo que nestas células o UA induz 

apoptose via activação da JNK. Além disso, o aumento da morte celular total e a 

acumulação do LC3, induzidos pelo UA, foi também dependente da activação da JNK.  

Por fim, para explorar o efeito marcante da indução da morte celular pelo UA, na 

qual não foi totalmente explicado pelo aumento da apoptose, foi estudado o involvimento 

do UA no processo autofágico (capítulo VI). Interessantemente, verificou-se que o UA 

inibiu a autofagia nas células HCT15 ao nível da maturação, uma vez que não foi 

detectado fusão entre lisossomas e autofagossomas. Estes resultados foram confirmados 

tirando vantagem de técnicas estabelecidas para a linha MCF-7 de cancro da mama, como 

a construção fluorescente tandem ligado ao LC3 e a medição do turnover do LC3 usando 

o ensaio de luciferase em tempo real. Adicionalmente, observou-se que UA aumentou a 

permeabilidade da membrana lisossomal e diminuiu a actividade total das hidrolases 

lisossomais, indicando um possível impacto na biogénese lisossomal e/ou uma 

destabilização directa na membrana dos lisossomas.     

Em conclusão, este trabalho adiciona SF, SO e HA, à lista de potenciais plantas a 

usar em estratégias alimentares contra o CRC, assim como a Q, L e UA presentes na 

dieta. Estes compostos naturais controlam a progressão do CRC modulando importantes 

alvos moleculares e aumentando a eficiência do 5-FU. O UA foi o composto mais 

promissor, destabilizando os lisossomas e, consequentemente, inibindo a autofagia, e por 

isso, possuindo elevado interesse como adjuvante na terapia do cancro. 
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Preface 

 

Several studies have been developed at the Department of Biology, in the 

University of Minho, with aromatic and medicinal plants that grow spontaneously or are 

cultivated in Portugal. Aromatic plants have a wide applicability, for example, in 

cosmetic, food, beverage and pharmaceutical industries. These plants are known to be 

rich in a number of bioactive compounds, which have demonstrated to possess different 

therapeutical properties. This research project arose from the interest to identify 

medicinal plants, such as Salvia and Hypericum species, with anticarcinogenic effects in 

colorectal cancer (CRC). The overall positive results obtained during the studies 

performed with these plants led us to elucidate which bioactive compounds, present in 

these water extracts, were behind these effects and their molecular targets. Thus, these 

natural compounds, which are also present in human diet, were studied.  

The possible mechanism of action of the extracts and natural compounds were 

focused on some signalling pathways related to proliferation and cell death. Several 

molecular markers of these pathways have also been shown, by the research group of 

cancer genetics in IPATIMUP, to be important targets in CRC therapy, and thus being 

suggested for this work. In addition, effects on lysosomes and/or regulation of the 

autophagic process have also been shown to be relevant molecular targets. In the 

Apoptosis Laboratory, Institute of Cancer Biology at the Danish Cancer Society, it was 

possible to identify and characterize the effects of one compound on these targets. All 

these studies were performed in vitro, taking advantage of several cancer cell lines 

harbouring different mutations. However, we are aware that studies in vivo are needed 

and crucial to validate our findings.    

In summary, this work was organized in seven chapters, where the first is a 

general introduction, with a brief review of the field from the last 10 years. The 

following five chapters are the results obtained during the four years, which were 

published or are soon to be published in peer-reviewed journals. Finally, in the last 

chapter, a global discussion of the work is presented to highlight the main findings and 

some implications of the results in cancer research. Additionally, future research goals 

are mentioned. 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER I  

GENERAL INTRODUCTION  
 

Overview of the past 10 years 
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1. CANCER  

 

In the past decades cancer has emerged as a major health issue being responsible 

for more than 10% of deaths worldwide. Cancer arises as a result of a stepwise process 

called carcinogenesis, that consists in the accumulation of genetic mutations and 

epigenetic changes that compromise the control of cell proliferation, survival, 

differentiation, migration and interaction with neighbor cells [Pelengaris and Khan, 

2006]. This multistep process can be divided in three phases: initiation, promotion and 

progression. A mutational event in a single cell results in irreversible changes that 

confer an intrinsic capacity to proliferate uncontrollably to form an adenoma (initiation). 

A continuous division of initiated cells facilitates the acquisition of further mutations 

and originates a mass of abnormal cells that gives rise to the carcinoma (promotion). 

Cells will then acquire the ability to invade and metastasize during the progression 

phase [Frank, 2007].  

The carcinogenesis model proposed by Fearon and Vogelstein in 1990 has 

colorectal cancer (CRC) as a good model for the study of morphology and genetic 

stages in cancer progression [Frank, 2007]. Using this model, they identified a mutation 

in the tumor suppressor adenomatous polyposis coli (APC) gene as the first event 

involved in premalignant lesion to initiate the formation of a malignant tumor. 

Disruption of the APC pathway may be sufficient to start a small adenoma, affecting 

cell division through disturbing of the Wnt signaling. Then, mutations in the oncogene 

v-ki-ras 2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and in the tumor 

suppressor gene tumor protein p53 (TP53) appear later in tumor progression, leading to 

the formation of a carcinoma. However, other genetic changes in other key important 

genes, including in DNA mismatch repair (MMR) genes, which result in multiple errors 

in repetitive DNA sequences during DNA replication, can also arise during the 

carcinogenesis process contributing to cancer development [Frank, 2007; Souglakos, 

2007]. 

Genetic alterations can occur as germline mutations, resulting in inherited cancer 

predisposition that appear in hereditary tumors, or more commonly occur in somatic 

cells (somatic mutations), where their accumulation in association with several 

environmental factors give rise to sporadic tumors [Pelengaris and Khan, 2006; 

Souglakos, 2007]. The presence of inherited mutations can start cancer initiation, but 
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other modifications such as somatic mutations and epigenetic alterations are still needed 

for cancer to develop. Numerous studies now point to the crucial interplay between 

these last changes and environmental factors as key determinants of tumor progression 

[Pelengaris and Khan, 2006].   

 

1.1. Colorectal Cancer (CRC) 

 

Colorectal cancer (CRC) is the third most common type of cancer worldwide 

being mainly a disease of industrialized countries, such as North American, parts of 

Europe, Australia, New Zealand and Japan, remaining relatively uncommon in low-

income countries, such as in Africa and much of Asia [WCRF/AICR, 2007]. Although 

the overall 5-year survival rate of CRC has increased during the past 2 decades from 

51% to 65%, its incidence and mortality are continually increasing [Gralow et al., 

2008]. Approximately 1 in 3 people who develop CRC die of this disease and 90% of 

CRC cases appear in patients after age 50 [Souglakos, 2007]. 

 CRC is divided in sporadic, inherited and familial. The majority of the patients, 

around 70% of the cases, have sporadic CRC (nonhereditary) in which there is no 

evidence of CRC in family history. In this case, the patients are usually older than 50 

years of age, environmental factors being most likely responsible for this high 

incidence. The other remaining types of CRC have an associated genetic component 

with patients having an inherited predisposition to develop CRC [Souglakos, 2007]. The 

two well-described CRC genetic syndromes are subdivided according to whether or not 

colonic polyps are manifested: the familial adenomatous polyposis (FAP) and the 

hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome, which 

accounts about 1% and 3-4% of all CRC, respectively [Rustgi, 2007]. The familial CRC 

is the least well understood syndrome, where up to 25% of the affected patients have a 

family history, but present low risk of developing CRC compared to the inherited type 

[Souglakos, 2007].  

Carcinogenesis in the colon epithelium results from the accumulation of multiple 

genetic mutations where the mutation in the APC gene has an important role in the early 

process of CRC, in both inherited and sporadic tumors (Fig. 1). Mutations in ß-catenin 

gene, which, as APC, are involved in Wnt signaling, have also been demonstrated to 

play a key role in the first events of CRC, appearing in most sporadic CRC with normal 
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or wild-type (wt) APC. Subsequently, mutations in TP53 and KRAS genes appear later 

during adenoma progression. Other genetic alterations in Bcl-2-associated X protein 

(BAX), SMAD4, transforming growth factor β receptor II (TGFβ-RII), cyclooxygenase 2 

(COX2) and phosphotase and tensin homologue (PTEN) genes had also found to be 

frequently involved in CRC development [Soreide et al., 2006; Souglakos, 2007]. 

Additionally, alterations in genes encoding enzymes involved in the DNA MMR 

system, which lead to microsatellite instability (MSI), have been demonstrated to 

contribute to the CRC progression, in both hereditary and sporadic CRC. In HNPCC 

cases, 90% of the tumors are MSI due to germline mutations in hMSH2 and hMLH1 

mismatch repair genes, while in sporadic CRC approximately 15% of tumors have MSI 

due to alterations in hMLH1 gene [Soreide et al., 2006].  

 
 

 
Fig. 1. Schematic representation of some key genetic alterations during colorectal cancer (CRC) 
carcinogenesis.  Mutations in the adenomatous polyposis coli (APC) and ß-catenin genes occur in the 
initiation process of CRC carcinogenesis, while mutations in the KRAS and TP53 genes appear during 
the adenoma progression. Mutations in Bcl-2-associated X protein (BAX), SMAD4, transforming 
growth factor β receptor II (TGFβ-RII), cyclooxygenase 2 (COX2) and phosphotase and tensin 
homologue (PTEN) genes have also found to be involved in CRC development. Genetic alterations in 
DNA mismatch repair genes (MMR), such as MLH1, MSH2 and MSH6, also aride during the 
carcinogenesis process. Adapted from [Soreide et al., 2006; Souglakos, 2007]. 

 

1.2. CRC and Nutrition 

 

1.2.1. Importance of Diet 

Genetic and environmental risk factors modulate CRC, diet being considered the 

most important environmental factor contributing to the high CRC incidence [Davis and 

Hord, 2005; Souglakos, 2007]. Many studies have reported a relationship between 
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nutritional factors and CRC, supporting the idea that dietary constituents may affect 

CRC by reducing or enhancing its risk [Ryan-Harshman and Aldoori, 2007]. Recently, 

an international review from the World Cancer Research Fund (WCRF) heightened the 

implication of food and nutrition in CRC, although there are some inconsistencies 

between different studies [WCRF/AICR, 2007].  

The WCRF adverts that there are convincing evidences that red and processed 

meat are risk factors of CRC, while diets containing dietary fibre, garlic, milk and 

calcium most likely protect against this disease. Additionally, the report of the WCRF 

indicates that, although with limited evidence, fish and foods containing folate, vitamin 

D and selenium may also protect against CRC. The benefits of fruit and vegetables 

consumption have appeared controversial among different studies, but there seems to be 

a significant association between their consumption and a reduced risk of CRC 

incidence [WCRF/AICR, 2007].  

More recently, different reports discussed the effects of diet in CRC. One study 

showed that high consumption of fruit and vegetables is associated with a reduced risk 

of CRC, although their results suggest that probably only specific types of fruit and 

vegetables, or their related nutrients, may confer CRC protection [van Duijnhoven et 

al., 2009]. Other recent report demonstrated that an intake of fish was statistically 

associated with a decrease risk of having CRC [Hall et al., 2008]. A diet poor on 

calcium and vitamin D consumption was also showed to induce CRC tumors on long-

term feeding in mice, implying that their intake may protect against CRC development 

[Newmark et al., 2009]. In aggrement with that, calcium intake was able to reduce CRC 

promotion induced by red meat in rats [Pierre et al., 2008]. Besides the previous report 

of WCRF 2007, these examples shows that consumption of fruits, vegetables, fish, 

calcium and vitamin D could be included in the list of foods that convincingly reduce 

the risk of CRC. 

 

Overall, an appropriate diet may minimize CRC risk, suggesting the possible 

benefit of preventive strategies based on dietary supplements and a potential therapeutic 

role for the compounds responsible for these effects. 

 

 

 

 



Chapter I  General Introduction 

9 

 

1.2.2. Variability in Nutritional Responses 

The variability of results concerning the effects of dietary constituents on CRC, 

and the variation in CRC incidence among and within populations with similar dietary 

patterns, suggests the involvement of individual responses to a dietary constituents 

[Davis and Milner, 2004; Davis and Hord, 2005]. In fact, it has been found that several 

food components are able to modify the expression of a number of genes, which suggest 

an interaction between nutrition/diet and the individual’s genome (nutrigenomic), as 

well as, to influence protein expression (proteomic). However, for a bioactive food 

component to influence a key molecular event in a cell or organism, at a given moment 

(metabolomic), it is necessary to reach the target at an effective concentration and with 

an appropriate timing of exposure [Davis and Milner, 2004; Davis and Hord, 2005].  

Several types of diets and food constituents have been found to alter the 

expression of certain genes and/or proteins, allowing the identification of genetic 

susceptibilities towards these particular dietary components. For example, Diergaarde et 

al, showed that red meat consumption could enhance the development of MSI-L and 

MSS carcinomas in particular, whereas fruit consumption can decrease this risk of MSI-

H carcinomas that exhibit alterations in hMLH1 [Diergaarde et al., 2003]. In addition, 

the authors also demonstrated that consumption of fruits and dietary fiber might also 

decrease the risk of CRC in individuals with HNPCC [Diergaarde et al., 2007]. A study 

performed with different types of vegetables pinpointed their capacity to modulate 

specific genes involved in the prevention of CRC, such as CASP3 [van Breda et al., 

2005]. Another study demonstrated an increase of PKC isozyme expression in rats fed 

with red meat, suggesting a possible mechanism of red meat on CRC carcinogenesis 

[Pajari et al., 2000]. Interestingly, the consumption of beef, pork and other meat 

products were associated with CRC tumors with wild-type KRAS gene, suggesting that 

they may exert their action through a pathway independent of a KRAS mutation [Brink 

et al., 2005].  

 

Thus, all these studies suggest that certain genes can be modulated and modified 

by specific dietary components, being essential to consider the genomic profile of each 

individual to determine who may or may not respond to CRC dietary interventions. 
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2. CANCER CELL SIGNALLING RELATED TO 

PROLIFERATION AND CELL DEATH 

 

 Carcinogenesis involves an accumulation of genetic alterations that in turn lead 

to alterations in important biological pathways of cell proliferation and cell death, such 

as phosphotidylinositol-3 kinase (PI3K)/protein kinase B (PKB/Akt), mitogen-activated 

protein kinases (MAPKs) [extracellular-signal-regulated kinase (ERK), c-Jun N-

terminal kinase (JNK) and p38] and apoptotic and non-apoptotic pathways.  

 

2.1. RAS Signaling 

 

The small GTP-binding protein Ras is a common upstream molecule of several 

signaling pathways, including PI3K/Akt, MAPK/ERK and RAlGDS (Ral guanine 

nucleotide-dissociation stimulator). Three Ras proteins, H-Ras, K-Ras and N-Ras, have 

been identified differing in the ability to activate different pathways. KRAS is the most 

frequently mutated RAS isoform in human cancers. Ras is activated by changes from the 

inactive Ras-GDP conformation to active Ras-GTP form through farnesylated or 

geranylgeranylated in cysteine residue. Ras is able to bind to the p110 catalytic subunit 

of class I PI3K, resulting in its translocation to the plasma membrane and consequent 

PI3K activation. Ras is also able to recruit the protein Raf to the plasma membrane and 

thus activate the MAPK/ERK pathway (Fig. 2) [McCubrey et al., 2006; Schubbert et 

al., 2007].  

The upregulation of PI3K/Akt and Raf/MAP/ERK pathways by the oncogene 

RAS cooperates to regulate various cellular responses and generate resistance to therapy 

[Barault et al., 2008]. Moreover, it was found that Ras could downregulate PTEN 

expression through the Raf/MAPK/ERK pathway promoting activation of the PI3K/Akt 

pathway, which strengthens the connection between these two pathways [Vasudevan et 

al., 2007]. 

 

2.1.1. Mutations on KRAS in CRC 

It is known that about 30% of sporadic CRC tumors have mutations in KRAS 

[Oliveira et al., 2007; Barault et al., 2008]. In addition, CRC patients that display KRAS 

mutation alone or in combination with BRAF mutation (~0.4%) have bad prognosis and 
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poor survival [Oliveira et al., 2007]. It has been demonstrated that KRAS mutations 

have effects at tumor initiation, on cell growth and progression, as well as, in promoting 

invasion, angiogenesis and resistance to CRC therapy [Jiang et al., 2009].  

 

2.2. PI3K/Akt Pathway 

 

2.2.1. PI3K 

The phosphotidylinositol-3 kinases (PI3Ks) are a family of lipid kinases that are 

classified according to sequence homology and subtract specificity into class I, class II 

and class III. Class I PI3K is the major class and is involved in cell growth, proliferation 

and apoptosis [Zhao and Vogt, 2008]. Class I PI3K, a heterodimeric protein, is 

composed by a p110 catalytic subunit and a p85 regulatory subunit, both of which 

expressed in various isoforms. This class of PI3K can be activated by receptor tyrosine 

kinases (RTK), such as PDG-R, EGF-R or IGF-R through interaction with 

phosphotyrosine residues, and by G protein-coupled receptors, such as RAS. The 

activation of PI3K leads to the conversion of the lipid substrate phosphoinositol 4,5-

bisphosphate (PIP2) to the second messenger, the phosphatidylinositol-3,4,5-

triphosphate (PIP3) at the inner side of the plasma membrane (Fig. 2). PIP3 binds to 

target proteins that contain pleckstrin homology (PH) domains, such as PKA, PKC and 

Akt/PKB, the latter being the primary downstream mediator of PI3K effects [Vara et 

al., 2004; Michl and Downward, 2005; Zhao and Vogt, 2008].  

 

2.2.2.  Akt 

Akt is the human homologue of the viral oncogene v-Akt. Three members of the 

Akt family (Akt1, Akt2 and Akt3) have been identified and are ubiquitously expressed 

with their levels variable depending upon the tissue type [Vara et al., 2004; Blanco-

Aparicio et al., 2007]. The PH domain of Akt binds to PIP3 inducing conformational 

changes in the molecule, which make a threonine residue (T308) accessible for 

phosphorylation by the activated protein serine/treonine kinase 3´-phosphoinositide-

dependent kinase-1 (PDK-1). Full activation of Akt is also associated with 

phosphorylation of a serine 473 (S473), located in the C-terminal tail of Akt, by the 

target of rapamycin complex 2 (TORC2). Phosphorylations of T308 and S473 residues 

are essential for a complete activation of Akt function [Vara et al., 2004; Michl and 
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Downward, 2005; Blanco-Aparicio et al., 2007; Manning and Cantley 2007]. 

Subsequently, Akt phosphorylates a number of subtracts that play a central role in cell 

proliferation and cancer progression (Fig. 2).  

Akt can promote cell growth and affect the cell metabolism by indirectly 

activating the mammalian target of rapamycin complex 1 (mTORC1) and inhibiting the 

glycogen synthase kinase-3 (GSK-3). In addition, Akt is also able to phosphorylate the 

cyclin-dependent kinase inhibitors p27 and p21 affecting cell cycle progression. Akt can 

also block the function of proapoptotic proteins by directly phosphorylating and 

inhibiting BAD, procaspase-9 and the transcription factor Forkhead box (FOXO), as 

well as, by phosphorylating MDM2 and promoting its translocation to the nucleus 

where it negatively regulates p53 expression [Vara et al., 2004; Manning and Cantley, 

2007].  

 

2.2.3. PTEN 

 The activation of Akt has also been partially related to the loss of PTEN 

(phosphatase and tensin homologue deleted on chromosome 10), a tumor suppressor 

gene that functions as an intracellular inhibitor of the PI3K pathway. PTEN 

dephosphorylates PIP3 to generate PIP2, acting as a negative regulator for PI3K-

induced signaling (Fig. 2) [Vara et al., 2004; Blanco-Aparicio et al., 2007]. In addition, 

it was also reported that PTEN mediates effects, independently of Akt, on cell cycle and 

apoptosis [Blanco-Aparicio et al., 2007].     

 

2.2.4. PI3K/Akt Deregulation in CRC 

Nearly 40% of CRC tumors have been demonstrated to have alterations in one 

of the genes related with PI3K signaling [Parsons et al., 2005]. Approximately 30% of 

CRC tumors have showed somatic mutations in PIK3CA gene that encodes the p110α 

subunit of class I PI3K [Samuels and Velculescu, 2004; Michl and Downward, 2005; 

Barault et al., 2008]. This mutation has been demonstrated to occur as a primary genetic 

event in CRC, having a relevant importance in the carcinogenic process [Velho et al., 

2008].  

CRC cell lines with PIK3CA mutation have shown the capacity to proliferate 

and survive under environmental stresses [Wang et al., 2007], as well as, to be more 

resistant to apoptosis and to have high metastatic potential [Guo et al., 2007]. Moreover, 
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mutation in PIK3CA gene have been shown to occur more frequently in combination 

with other mutations in other components of the PI3K pathway, such as KRAS or BRAF, 

than in isolation, suggesting a possible synergistic effect in the signaling pathways 

controlled by them for an efficient malignant transformation [Velho et al., 2005; Oda et 

al., 2008]. More recently, a mutation in PIK3R1 gene, which encodes the p85α 

regulatory subunit, was found, which turns it to a novel oncogene with important effect 

on CRC development [Li et al., 2008].  

 

 
Fig. 2. Schematic representation of PI3K/Akt and MAPK/ERK pathways. The G protein-coupled 
receptor RAS activated by, for example, growth factors and receptor tyrosine kinases (RTK), changes 
from the inactive RAS-GDP to active GTP, being able to activate the class I phosphotidylinositol-3 
kinases (PI3K) and the protein RAF. RAF phosphorylates MEK1/2 and consequently activates ERK1/2 
pathway. The Class I PI3K, composed by the p110 catalytic and p85 regulatory subunits, leads to the 
conversion of the phosphoinositol 4,5-biphosphate (PIP2) to the phosphatidylinositol-3,4,5-triphosphate 
(PIP3), which could be reverted by the negative regulator PTEN (phosphatase and tensin homologue 
deleted on chromosome 10). The pleckstrin homology (PH) domain of Akt binds to PIP3 being 
activated by phosphorylations on T308 and S473 residued, and its phosphorylation by the protein 
serine/treonine kinase 3´-phosphoinositide-dependent kinase-1 (PDK-1) lead to the Akt activation. 
Then, Akt phosphorylates a number os substratcts, such as Bad, Forkhead box (FOXO), caspase-9, p53, 
p21, p27, mammalian target of rapamycin complex 1 (mTORC1) and glycogen synthase kinase-3 
(GSK-3), which are involved on various cellular functions, apoptosis, cell cycle regulation, cell growth 
and metabolism. The protein RAS could be inhibited by farnesyltransferase inhibitors and the PI3K 
pathway could be surpressed by several drugs such as, LY294002 and wortmannin. Adapted from 
[Manning and Cantley, 2007; Zhao and Vogt, 2008].  
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Mutations in the AKT gene are not common in humans, however, some studies 

have reported an up-regulation of Akt in about 50% of CRC carcinomas, demonstrating 

its essential role in CRC progression [Itoh et al., 2002; Roy et al., 2002; Khaleghpour et 

al., 2004]. More recently, Carpten et al. found an AKT 1 mutation in CRC in the PH 

domain of Akt [Carpten et al., 2007]. This mutation results in an Akt conformational 

change and its increased membrane association, which lead to a constitutive activation 

of Akt. Alterations in PTEN tumor suppressor function by loss or reduction of protein 

expression has also been demonstrated to be frequent in sporadic CRC tumors [Goel et 

al., 2004; Nassif et al., 2004]. A deficient PTEN expression was associated with a 

predictor of local recurrence in CRC patients [Colakoglu et al., 2008].  

Overall, alterations in components of the PI3K pathway have been demonstrated 

to occur with high frequency in CRC tumors contributing for its progression and 

consequently with impact on therapy resistance. Thus, this pathway became an 

attractive target for the development of novel anticancer agents to treat CRC.  

 

2.3. MAP Kinase Pathways  

 

The mitogen-activated protein kinases (MAPKs) are a large family of serine-

threonine kinases that are often altered in human cancer [McCubrey et al., 2006]. There 

are three major subfamilies of MAPK related to cancer: the extracellular-signal-

regulated kinase (ERK)1/2, the c-Jun N-terminal kinase (JNK)1/2/3 and the p38 MAP 

kinase (p38) α/β/γ/δ.  

The MAPK activity is regulated through a cascade of activations, in which 

MAPKs are phosphorylated by the MAPK kinase (MAPKK, MKK or MEK), which 

themselves are phosphorylated by MAPKK kinase (MAPKKK or MEKK). These 

MAPKKK are each capable to regulate multiple MAPKKs that lead to the activation of 

different families of MAPK, resulting in the activation of ERK1/2, p38 or JNK [Cuevas 

et al., 2007]. These pathways are regulated by diverse extracellular and intracellular 

stimuli, including growth factors, cytokines, hormones and various cellular stresses. In 

turn, MAPK proteins phosphorylate a number of substrates involved in several cellular 

events, such as cell proliferation, survival, apoptosis, cell migration, differentiation and 

inflammatory response [McCubrey et al., 2006; Cuevas et al., 2007].       
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2.3.1. RAF/ERK Pathway 

MAPK/RAF/ERK is an important pathway involved in cell proliferation, 

apoptosis and cell cycle progression being activated primarily by mitogenic stimuli, 

such as growth factors [McCubrey et al., 2006].  

The mammalian Raf protein is a serine/threonine kinase present in three forms, 

A-Raf, B-Raf and C-Raf. These proteins recruited to the membrane bind to Ras and are 

subjected to phosphorylations/dephosphorylations on different domains and to 

dissociation with the Raf kinase inhibitory protein (RKIP) promoting Raf activation 

[McCubrey et al., 2006]. When activated, the protein Raf, a MAPKKK, can 

phosphorylate two MAPKK proteins, MEK1 and MEK2, which consequently activates 

the MAP kinases ERK1 and ERK2 (Fig. 3). [McCubrey et al., 2006]. Subsequently, 

ERK phosphorylates important cytoplasmic and nuclear targets [Cuevas et al., 2007].  

In the cytosol, ERK can activate NF-κB by phosphorylating and activating the 

inhibitor κB kinase, as well as, phosphorylate caspase 9 on residue Thr125 leading to its 

inactivation. In the nucleus, ERK1/2 promotes the phosphorylation of many 

transcription factors, including c-Jun, c-Myc and c-Ets-1 that are required for activator 

protein 1 (AP-1) expression [McCubrey et al., 2006].  

 

2.3.2. JNK and p38 Pathways 

The JNK and p38 MAP Kinases, also called stress-activated protein kinases 

(SAPK), are activated by environmental and genotoxic stresses and they regulate 

apoptosis, survival and inflammation. The effects of these kinases, that have been 

shown to be cell type-specific and dependent on intensity and duration of the stimuli, 

function either as tumor suppressors or oncoproteins [Wagner and Nebreda, 2009].  

The JNK protein kinase is encoded by three genes, MAPK8, MAPK9 and 

MAPK10, which encodes JNK1, JNK2 and JNK3, respectively, and they are 

alternatively spliced to create at least 10 isoforms. The proteins JNK1 and JNK2 are 

believed to be expressed in almost every cell and tissue type, whereas the JNK3 protein 

is mainly found in neuronal tissues and in the heart. JNK are mainly activated by the 

upstream MAPKK proteins, MEK4 and/or MEK7, that in turn activates a number of 

proteins (Fig. 3) [Weston and Davis, 2007; Wagner and Nebreda, 2009].  

The three JNKs have been shown to be involved in stimulating apoptotic 

signaling through different mechanisms. JNK can directly modulate the activities of 
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mitochondrial pro- and antiapoptotic proteins through  phosphorylation of several 

members of the Bcl-2 family, such as Bcl-2, BAD, BIM, as well as, stimulating the 

release of cytocrome c [Dhanasekaran and Reddy, 2008]. Activated JNK cal also 

translocate to the nucleus where it activates a number of transcription factors, such as c-

Jun, AP-1 and p53, increasing the expression of pro-apoptotic genes [Dhanasekaran and 

Reddy, 2008]. JNK have also been shown to be involved in inflammation process since 

it can be activated by TNF-α, a proinflammatory cytokine [Wagner and Nebreda, 2009].  

The p38 MAP Kinases are encoded by four genes, MAPK14, MAPK11, 

MAPK12 and MAPK13, which encode p38α, p38β, p38γ, p38δ, respectively, and are 

mainly activated by MEK3, MEK6 and in some cases by MEK4 (Fig. 3). The p38α is 

highly abundant in most of cell types being the best known p38 MAPK, whereas p38β 

seems to be expressed at very low levels and p38γ and p38δ expressions have more 

restricted pattern of expression [Wagner and Nebreda, 2009].  

It has been shown that p38 MAPK activates a wide range of subtracts, such as 

transcription factors, protein kinases, cytosolic and nuclear proteins [Coulthard et al., 

2009]. The p38 plays an important role in inflammation by modulating the transcription 

factor NF-κB and regulating the induction of the pro-inflammatory mediator 

cyclooxygenase 2 (COX-2) and the production of many cytokines, such as TNFα and 

interleukins [Wagner and Nebreda, 2009]. In addition, p38 is also envolved in the 

negative regulation of cell cycle progression, as well as, in the induction of apoptosis 

and modulation of cell migration and differentiation [Coulthard et al., 2009; Wagner 

and Nebreda, 2009]. 

 

Since JNK and p38 MAPK pathways can be activated by the same stimulus and 

share several upstream regulators, they may cooperate to synergistically activate the 

same subtracts. Nevertheless, there are evidences indicating that the two stress-activated 

pathways could also have opposite effects or that p38 negatively regulate JNK activity 

in several contexts [Wagner and Nebreda, 2009]. 
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Fig. 3.  Schematic representation of MAPK signaling pathways (ERK, p38 and JNK). RAS activates 
RAF that in turns phosphorylates MEK1/2 and consequently activates ERK1/2 pathway. ERK pathway 
is involved in various biological responses, such as cell proliferation, survival, cell migration and 
differentiations and it could be inhibited by the grugs BAY 43-9006 and PD98059. The JNK and p38 
pathways are stimulated by various stresses that lead to effects on survival, apoptosis and inflammatory 
response. The p38 isoforms are mainly activated by MEK3 and MEK6 and could be inhibeted by 
SB203580, while the JNK 1/2/3 are mainly activated by MEK4 and MEK7 and could be inhibited by 
SP600125. Adapted from [Malemud, 2007]. 

 

2.3.3. Activation of MAP Kinases in CRC 

Activation of MAPK/ERK pathway has been demonstrated to be involved in 

CRC progression. Mutations upstream of this pathway are frequent in CRC, including 

mutations in KRAS and BRAF genes, participating in the upregulation of ERK signaling 

[Fang and Richardson, 2005]. About 5-10% of sporadic CRC tumors have mutations in 

BRAF [Oliveira et al., 2007; Barault et al., 2008] and these mutation have been 

correlated with cell growth and inhibition of apoptosis [Ikehara et al., 2005]. Moreover, 

MEK has also shown to be frequently phosphorylated in CRC tumors, which 

constitutivly activates the MAPK/ERK pathway [Lee et al., 2004].  

Mutations in JNK and p38 are not frequent in CRC, instead, alterations in the 

expression of these proteins and/or mutations in components of JNK and p38 pathways 

have been demonstrated. Loss-of-function mutation in the MKK4 gene, which activates 

both JNKs and p38α, were found in ~5% of CRC tumors [Wagner and Nebreda, 2009]. 
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A recent study, however, found a significant downregulation of MAPK activity in some 

CRC samples, suggesting that CRC tumors must be carefully evaluated for MAP 

kinases inhibitor therapy [Gulmann et al., 2009].  

The importance of SAPK in CRC has been demonstrated in several studies. It 

was shown that mutated KRAS activates p38γ, by inducing its expression, this being 

essential to maintain the Ras mutated phenotype and promoting CRC carcinogenesis 

[Tang et al., 2005]. Moreover, a cross talk between JNK and Wnt signaling was also 

found where an activation of JNK increases the expression of Wnt target genes, 

contributing to accelerate CRC tumorogenesis [Sancho et al., 2009].      

 

2.4. Apoptosis 

 

Apoptosis is a mechanisms of cell death in which several molecules are 

activated or inactivated working as a team for a controlled cellular self-destruction 

called programmed cell death. Apoptosis is essential to maintain homeostasis by 

removing unwanted, injured and infected cells and its dysfunction or deregulation is 

implicated in cancer progression [Degterev and Yuan, 2008]. During apoptosis, typical 

cellular morphologic changes occur, including nuclear chromatin condensation and 

fragmentation, membrane blebbing, cell shrinkage, loss of contact to its neighboring 

cells and the formation of apoptotic bodies [de Bruin and Medema, 2008; Degterev and 

Yuan, 2008].  

On the other hand, necrosis, another form of cell death, differently from 

apoptosis, is an uncontrolled form of death due to a violent environmental perturbation. 

In this case, an early disruption of the cell membrane occurs accompanied by organelle 

swelling, mitochondrial dysfunction and a collapse of cell structure, which result in the 

release of the cellular contents to the milieu causing damage to surrounding cells and a 

strong inflammatory response [de Bruin and Medema, 2008; Degterev and Yuan, 2008]. 

 

2.4.1. Classical Apoptotic Pathways 

The classical apoptotic pathways can be initiated via different stimuli, at the 

plasma membrane by death receptors (extrinsic pathway) or at the mitochondria 

(intrinsic pathway), and involve the activation of proteolytic enzymes called cysteine 

aspartic acid specific proteases (caspases) [Degterev and Yuan, 2008].  
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Caspases are synthesized as inactive proenzymes, being activated by 

autoproteolytic cleavage or being cleaved by other caspases at specific aspartic acid 

residues. They are subdivided, depending on their activity and subcellular localization, 

into proinflammatory and proapoptotic caspases. The latter are grouped as initiator 

(caspases 8, 9 and 10) or activator (caspases 3, 6 and 7) caspases. At the end, caspases 

modulate the activity of a variety of substrates, including the poly-(ADP-ribose) 

polymerase (PARP), a nuclear enzyme involved in initiating DNA repair, that losses its 

repair activity when cleaved by caspases [Degterev and Yuan, 2008].   

 

2.4.1.1. The Mitochondrial (intrinsic) Pathway  

The intrinsic pathway of apoptosis is activated by a variety of stress stimuli, 

including DNA damage, heat and ultraviolet radiation through p53 tumor suppressor 

protein. This activation leads to the insertion of the pro-apoptotic B-cell lymphoma 

protein-2 (Bcl-2) family proteins Bax and Bak into the outer mitochondrial membrane 

(OMM) causing mitochondria damage and the release of cytochrome c to the cytosol. 

The activity of Bax and Bak is modulated by the anti-apoptotic Bcl-2 family members, 

such as Bcl-2, Bcl-Xl and Mcl-1 that prevent cytochrome c release, whereas the pro-

apoptotic BH3 members of the Bcl-2 family, such as Bad, Bik, Bim, Bid, Puma and 

Noxa restored Bax and Bak activation. It is the ratio between anti-apoptotic and pro-

apoptotic members of Bcl-2 family that tightly regulate the permeability of the OMM 

and the release of cytochrome c. Subsequently, cytochrome c interacts with the 

apoptotic protease activating factor-1 (Apaf-1) and recruits the initiator pro-caspase-9, 

in the presence of ATP, to promote the formation of the apoptosome. This interaction 

leads to the cleavage and activation of caspase 9 that mediates the activation of the 

effector caspases 3, 6 and 7 to execute apoptosis (Fig. 4) [Ghavami et al., 2009; Pradelli 

et al., 2010].  

In addition to cytochrome c, mitochondria can also release a large number of 

other pro-apoptotic molecules, including second mitochondrial-derived activator of 

caspase/direct IAP-binding protein with low pI (Smac/Diablo), Omi/high temperature 

requirement protein A (HtrA2), endonuclease G (EndoG) and apoptosis-inducing factor 

(AIF) (Fig. 4). Smac/Diablo and Omi/HtrA2 promote caspase activation through 

inhibition of the inhibitor of apoptosis proteins (IAPs), while AIF and EndoG are able to 

cause DNA damage without caspase involvement [Ghavami et al., 2009; Pradelli et al., 

2010]. 
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The nuclear factor-κB (NF-κB) is a transcription factor that has been implicated 

in apoptosis by promoting and regulating the transcription of important anti-apoptotic 

genes such as the Bcl-2 family member Bcl-Xl [Naugler and Karin, 2008]. 

 

 
Fig. 4. The molecular mechanisms of apoptosis. Apoptosis pathways can be initiated at the plasma 
membrane by death receptors (extrinsic pathway) or at the mitochondria (intrinsic pathway). Stimulation 
of death receptors, such as FASR or TRAIL-R, results in the formation of death inducing signaling 
complex and the recruitment of the initiators caspases 8 or 10. Caspase 8 cleaves and activates the 
effector caspases 3, 6 and 7 to induce apoptosis, as well as, cleaves the pro-apoptotic protein Bid, 
generating the truncated form (tBid) that cause mitochondria damage and release of cytochrome c. The 
mitochondrial membrane permeabilisation is regulated by the pro-apoptotic B-cell lymphoma protein-2 
(Bcl-2) family proteins Bax and Bak and the pro-apoptotic BH3 members of the Bcl-2 family, such as 
Bad, Bik, Bim, Bid, Puma and Noxa, which cause the release of cytochrome c, and the anti-apoptotic Bcl-
2 family members, such as Bcl-2, Bcl-Xl and Mcl-1 that prevent this occurrence. The protein p53 can 
interact with members of the Bcl-2 family to induce the release of cytochrome c. Following, in the 
cytosol, cytochrome c interacts with the apoptotic protease activating factor-1 (Apaf-1) and recruits the 
initiator caspase-9, in the presence of ATP, to promote the formation of the apoptosome, that in turns 
activate the effectors caspases 3, 6 and 7 to execute apoptosis. The transmembrane channels across the 
mitochondrial outer membrane can also release other proteins, such as second mitochondrial-derived 
activator of caspase/direct IAP-binding protein with low pI (Smac/DIABLO), Omi/high temperature 
requirement protein A (HtrA2), endonuclease G (EndoG) and apoptosis-inducing factor (AIF) that 
translocate to the nucleus to induce apoptosis without caspase involvement, or they could also activate 
caspase pathway by inhibiting the inhibitor of apoptosis proteins (IAPs). Adapted from [Ghavami et al., 
2009; Qiao and Wong, 2009]. 
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2.4.1.2. The Death Receptor (extrinsic) Pathway  

In the extrinsic pathway, apoptosis is mediated by the activation of the 

transmembrane death receptors located in the cell membrane and they are activated by 

extracellular ligands. The binding of TNF family members, such as Fas-L or TRAIL-L, 

to their receptors causes the formation of death inducing signaling complexes and the 

recruitment, cleavage and activation of the initiator caspases 8 or 10. These caspases, in 

turn activate a cascade of other caspases that leads to the activation of the effector 

caspases 3, 6 and 7 to execute cell death. Thus, both classical apoptotic pathways 

(intrinsic and extrinsic pathway) converge in the activation of the same activator 

caspases. In addition, these apoptotic pathways could also crosstalk at the level of the 

mitochondria, since caspase 8 can also cleave and activate the pro-apoptotic protein Bid, 

generating the active or truncated form (tBid) that in turn cause mitochondria damage 

and release of cytochrome c (Fig. 4) [Ghavami et al., 2009; Pradelli et al., 2010]. 

 
 

2.4.2. Others Relevant Pathways to Apoptosis 

 

2.4.2.1. Lysosomal Cell Death Pathway 

 Lysosomes are the main compartment for intracellular degradation and 

subsequent recycling of cellular constituents. They have a number of lysosomal 

hydrolases, such as cathepsin proteases, capable of digesting all major cellular 

macromolecules, being implicated in the control of cell death at several levels [Boya 

and Kroemer, 2008; Kirkegaard and Jaattela, 2009]. Lysosomal cell death pathway can 

activate apoptotic effectors, such as mitochondria and/or caspases, triggering cells to 

death by classical apoptosis. An induction of lysosomal membrane permeabilization 

(LMP) causes the release of cathepsins to the cytosol, which can activate pro-apoptotic 

Bcl-2 proteins, such as Bid, Bax and Bak, leading to mitochondrial membrane 

permeabilization and the release of cytochrome c, and subsequently, to the induction of 

apoptosis [Boya and Kroemer, 2008; Kirkegaard and Jaattela, 2009]. However, a 

massive induction of LMP results in an uncontrolled death by necrosis [Boya and 

Kroemer, 2008]. In addition, lysosomes are also able to break down the extracellular 

matrix, stimulating angiogenesis and migration, downregulate signaling from receptor 

tyrosine kinases, as well as, participate in the final step of the autophagic process 

[Kirkegaard and Jaattela, 2009].  
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A wide range of apoptotic stimuli can induce the LMP [Boya and Kroemer, 

2008; Kirkegaard and Jaattela, 2009]. The TNF death receptor family in the presence of 

the death domain-containing receptor interacting protein-1 (RIP-1) can trigger LMP and 

cell death. There are also evidences that p53 can induce LMP upstream of mitochondrial 

pathway. Oxidative stress has also been shown to induce LMP through generation of 

reactive oxygen species (ROS), which cause oxidation of lysosomal membrane lipids, 

resulting in the destabilization of the lysosomal membrane and leading to the release of 

lysosomal contents. Moreover, PI3K pathway has also been reported to function as an 

LMP inhibitor by regulating the lysossomal compartment through control of maturation, 

size, activity and stabilization of lysosomes [Boya and Kroemer, 2008; Kirkegaard and 

Jaattela, 2009].  

The induction of LMP has recently emerged as an effective way to kill cells, 

especially cancer cells resistant to apoptosis, and a number of compounds that induce 

lysosomal cell death are being discovered [Groth-Pedersen and Jaattela, 2010].  

 

2.4.2.2. PI3K and MAPK Pathways 

PI3K and MAPK pathways may also be implicated in the induction of apoptosis, 

since they are able to regulate the Bcl-2 family proteins and the protein p53. The protein 

Akt is able to phosphorylate BAX by inhibiting its conformational changes, which 

avoid its translocation to the mitochondria and cytochrome c release. Akt also 

phosphorylates Mdm2 by enhancing its nuclear localization that, in consequence, 

negatively regulates p53 expression [Manning and Cantley, 2007; Stiles, 2009].  

It has also been demonstrated that ERK1/2 is able to phosphorylate pro-

apoptotic Bcl-2 proteins, such as Bad and Bim, promoting their degradation and, thus, 

preventing cytochrome release [Balmanno and Cook, 2009]. In addition, JNK and p38 

kinases were also shown to regulate the expression of Bcl-2 proteins, such as Bax and 

BAD, modulating the membrane mitochondrial permeabilization [Wagner and Nebreda, 

2009]. 

 

2.4.2.3. Role of p53 in Apoptosis  

The tumor suppressor p53 mediates critical functions within cells, including 

inhibition of proliferation by induction of cell cycle arrest and induction of apoptotic 

cell death [Chari et al., 2009]. The p53 protein has a very short life and it is usually 

present at low levels within normal cells, although it can be transiently stabilized and 
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activated in response to several stresses, including hypoxia, heat shock and DNA 

damage agents. The stability of p53 is regulated by the E3 ubiquitin ligase and by the 

protein MDM2 that mediate the ubiquitination of p53 and allow its degradation by the 

proteosome, maintaining low the levels of p53. Moreover, MDM2, which can 

ubiquitinate itself and regulate its own stability, is a transcription target of p53 in a 

mechanism where p53 controls the expression of its own regulator [Chari et al., 2009].  

Upon p53 activation, this protein translocates to the nucleus where it binds to 

specific DNA sequence elements within the regulatory regions of target gene promoters 

regulating the transcription of several genes, such as Apaf-1, BAX, PUMA, NOXA, 

cathepsin D, TNF family members and some caspases [Chari et al., 2009]. In addition 

to its transcriptional regulator activity, p53 can also directly activate components of the 

apoptotic machinery through interaction with the members of the anti-apoptotic and 

pro-apoptotic Bcl-2 family proteins to induce the mitochondrial pathway [Vaseva and 

Moll, 2009] .  

 

2.4.3. Deregulation of Apoptosis in CRC 

Deregulation of apoptosis has been linked to cancer development and resistance 

to CRC treatment [Qiao and Wong, 2009]. In CRC, alterations in caspase activation, the 

central modulators of apoptosis, have been identified, including mutations in caspase 3, 

caspase 7 and caspase 8  [Hector and Prehn, 2009], as well as, mutations in caspase 4 

and caspase 5 [Ghavami et al., 2009]. Alterations in the Bcl-2 family members, such as 

high expressions of Bcl-2 and Bcl-Xl anti-apoptotic proteins and decreased expressions 

of the pro-apoptotic proteins Bax and Bak have also been demonstrated in CRC [Hector 

and Prehn, 2009]. In fact, overexpression of Bcl-2 protein was related with negative 

prognostic factor in CRC [Qiao and Wong, 2009].  

The death receptors Fas and TRAIL have been shown to be constitutively 

expressed in CRC [Qiao and Wong, 2009]. Moreover, mutations in the tumor 

suppressor gene TP53 have been reported in around 45% of CRC cases and clinical 

evidences suggest that p53 mutations associate with lower survival for patients treated 

by chemotherapy [Iacopetta, 2003]. 
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2.5. Autophagy 

 

Autophagy, which means self-eating in Greek, is responsible to the elimination 

of damaged structures and cell organelles, as well as, pathogens and long-lived proteins, 

contributing to the homeostatic function of the cell under normal conditions. Under 

stress, such as starvation, growth factors deprivation and/or hypoxia, autophagy is 

induced to provide essential nutrients and remove damaged constituents in order to 

promote cell survival. Autophagy is therefore a mechanism of survival that maintains 

the metabolic activity of the cell through lysosomal recycling of intracellular nutrients 

[Mathew et al., 2007; Brech et al., 2009; Morselli et al., 2009].  

In cancer cells, autophagy has been suggested to have a dual role. In one way, 

autophagy can stimulate oncogenesis by promoting cancer cells survival allowing their 

adaptation to adverse metabolic conditions. On the other hand, autophagy can also 

function as a tumor suppressor by inducing cellular self-degradation that leads to 

autophagic cell death [Brech et al., 2009; Morselli et al., 2009]. 

 

2.5.1. The Autophagic Process 

Autophagy is characterized by the capacity of cells to sequester and engulf 

cellular proteins, organelles and cytoplasm in an isolate membrane or phagophore that 

closure to form a double membrane structure named autophagosome. These 

autophagosomes undergo a maturation process fusing with lysosomes to form the 

autolysosomes, where the sequestered contents are then degraded by lysosomal 

hydrolyses and the amino acids and sugars recycled into the cytosol. The formation of 

the autophagosome is controlled by autophagy-related (atg) proteins that participate in 

the sequestration of intracellular constituents and in the elongation of the phagophore 

membrane to form the autophagosome. The fusion between autophagosomes and 

lysosomes is required for the completion of the autophagic process [Mathew et al., 

2007; Mizushima, 2007; Brech et al., 2009].  

The mechanism that leads to the formation of autophagosomes was first 

identified in yeast, where it was discovered over more than 30 Atg genes. Many Atg 

homologs have subsequently been identified and characterized in higher eukaryotes, 

suggesting that autophagy is a highly conserved pathway through evolution [He and 

Klionsky, 2009]. The first identified regulator of autophagy was Beclin 1 that functions 
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as a haploinsufficient tumors suppressor. Beclin 1 is the human homologue of 

Atg6/Vps30, which is a key regulator of autophagy in yeast. Beclin 1 was also found to 

be crucial for autophagy induction in mammalian cells, since it is involved in 

autophagosome formation by recruiting proteins from the cytosol, which will be used 

for autophagic degradation, or in supplying the autophagic pathway with membrane 

components. The expression level of Beclin 1 is therefore usually increased during 

autophagy [Brech et al., 2009]. Beclin-1 is part of the class III PI3K complex, where it 

allows the recruitment of others essential Atg proteins to the membrane and produces 

the lipid PI3 required for the formation of the phagophore. Moreover, Beclin 1 also 

contains a BH3 domain that mediates its interaction with Bcl-2 and other anti-apoptotic 

proteins inhibiting its function, whereas its dissociation is required for autophagic 

induction [Mathew et al., 2007; Brech et al., 2009; He and Klionsky, 2009]. 

The microtubule-associated protein 1 light chain 3 (MAP1LC3) is an ubiquitin-

like protein Atg8 that is cleaved during the autophagic process producing an active 

cytosolic precursor form, LC3-I, which subsequently conjugates with a phospholipid via 

a ubiquitylation-like system to form the active LC3-II. LC3-II then becomes a 

component of the inner membrane of the autophagosome and, following fusion with 

lysosomes, LC3-II is rapidly degraded by lysosomal enzymes [Mathew et al., 2007; He 

and Klionsky, 2009; Mizushima et al., 2010]. The relative amounts of LC3-II reflect the 

abundance of autophagosomes, which can occur in both induction and inhibition of the 

autophagic process. The level of mammalian polyubiquitin-binding protein 

p62/sequestosome 1 (SQSTM1), also called p62, which is associated with ubiquitinated 

proteins and interact with LC3-II incorporating into autophagolysosomes, has been 

demonstrated to be a reflex of autophagic fluxes [Pankiv et al., 2007; Mizushima et al., 

2010].  

 

2.5.2. Some Modulators of Autophagy 

Autophagy is a multistep process that could be altered in cancer cells at the 

levels of induction, regulation and lysosomal degradation [Hoyer-Hansen and Jaattela, 

2008]. Several cancer-associated alterations in genes that regulate various signaling 

cascades such as PI3K, MAPK and p53 pathways, have been implicated in up- or down-

regulation of autophagy [Brech et al., 2009; Corcelle et al., 2009; Maiuri et al., 2009; 

Morselli et al., 2009]. 
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2.5.2.1. PI3K Pathway 

The best known regulator of autophagy in human cells is the mammalian target 

of rapamycin (mTOR) kinase, a downstream component of the class I PI3K pathway, 

which downregulates autophagy when activated in response to growth factor signaling, 

nutritional status and energy level [Brech et al., 2009; Morselli et al., 2009]. Activated 

Akt promotes phosphorylation of the protein encoded by the tuberous sclerosis complex 

(TSC) 2 tumor suppressor gene, blocking the interaction between TSC2 and TSC1 and 

preventing the formation of the TSC1/TSC2 complex. The inhibition of this complex 

prevents the stimulation of the GTPase activity of Rheb, causing the presence of the 

active GTP-bound form that directly binds and activates the mammalian target of 

rapamycin complex 1 (mTORC1). Consequently, mTORC1 takes part in multiple 

signaling cascades that control cell growth, protein synthesis and promote mRNA 

translation through phosphorylation of its downstream targets, the kinase p70S6K1 and 

the elongation factor 4E-BP1. In addition, mTORC1 is also involved in the autophagic 

process by directly interacting with atg proteins (Fig. 5). The mTORC1 interacts with 

the autophagic regulator kinase ULK1 and the protein atg13 leading to the inactivation 

of the complex Atg13-ULK1 causing suppression of autophagy [Brech et al., 2009; 

Corcelle et al., 2009; He and Klionsky, 2009]. 

Nevertheless, studies have demonstrated that distinct classes of PI3K control 

autophagy in opposite directions. While products of class I PI3K have showed to inhibit 

autophagy, class III PI3K has been demonstrated to promote autophagy. The class III 

PI3K is part of a complex of proteins where Beclin-1, UVRAG and Bif-1 belong, which 

are essential to the formation of autophagosome [Brech et al., 2009; Corcelle et al., 

2009; Mizushima et al., 2010]. 

 

2.5.2.2. MAPK Pathways 

Similar to Akt, ERK1/2 has also been reported to regulate the formation of 

autolysosomes by inhibiting the complex TSC1/TSC2 through TSC2 phosphorylation 

[Ma et al., 2005] and consequently inducing the suppression of autophagy. Moreover, it 

was also demonstrated that ERK1/2 regulates the maturation of autophagosomes by 

affecting the lysosomal membrane protein LAMP-2, promoting the formation of large 

defective autolysosomes and thus blocking autophagy (Fig. 5) [Corcelle et al., 2007; 

Corcelle et al., 2009].  
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It has also been demonstrated that p38 pathway playa a role in autophagy by 

inhibiting the formation of autolysosomes, functioning as a negative regulator of 

autophagy [Corcelle et al., 2007; Webber and Tooze, 2010]. Thus, ERK and p38 

kinases can control autophagy, however, possesing opposing effects (Fig. 5) [Corcelle 

et al., 2007; Corcelle et al., 2009].   

Recent studies have also demonstrated the role of JNK pathway in autophagy 

induction via different forms. Activation of JNK can upregulate Beclin-1, since JNK 

phosphorylates Bcl-2 in three residues resulting in the dissociation of the complex Bcl-

2/Beclin 1 and the release of Beclin 1 (Fig. 5) [He and Klionsky, 2009]. In addition, the 

JNK target, c-Jun transcription factor, has also been shown to upregulate the 

transcription of autophagic genes, such as Beclin-1, and thereby increasing autophagy 

[He and Klionsky, 2009; Li et al., 2009]. Recently, it was also found that JNK can 

induce the lysosomal protein damage-regulated autophagy modulator (DRAM) that play 

a key role in controlling autophagic cell death [Lorin et al., 2010]. 

 

2.5.2.3. p53 Protein 

Recent evidences indicate that p53 regulates autophagy exerting, however, 

contradictory effects dependent on its localization in the cell [Tasdemir et al., 2008]. In 

the cytoplasm, p53 despite inducing mitochondrial membrane permeabilization and 

apoptosis, it can inhibit autophagy. In the nucleus, p53 acts as an inducer of apoptosis 

and an autophagy-promoting transcription factor [Tasdemir et al., 2008]. Moreover, it 

was also demonstrated that some variants of p53 mutations that localize the protein to 

the cytoplasm repress autophagy, while p53 mutants with nuclear distribution failed to 

inhibit autophagy [Morselli et al., 2008].  

In the cytoplasm, basal levels of p53 mediate an inhibition of autophagy directly 

at the endoplasmatic reticulum. However, an activation of p53 by cellular stresses and 

oncogenic signals have been reported to induce autophagy [Vousden and Ryan, 2009]. 

It has been demonstrated that p53 activates the AMP-activated kinase (AMPK), which 

is known to phosphorylate TSC2 or directly inhibit mTORC1, inducing autophagy (Fig. 

5) [Feng et al., 2005b; Corcelle et al., 2009]. Other p53 target genes such as Bax and 

PUMA, besides contributing to the induction of apotosis, have also recently been shown 

to be positive regulators of autophagy [Yee et al., 2009].  

In the nucleus, p53 can promote autophagy via transcriptional upregulation of 

the gene coding for the lysosomal protein DRAM (damage-regulated autophagy 
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modulator), a p53 target gene, which also contributes to damage-induced cell death 

[Crighton et al., 2006].  

 

 

 
 
 
Fig. 5. Schematic model of the autophagic process and their regulation by the major signaling pathways 
in mammals. Autophagy begins with an isolate membrane that sequesters and engulfed cellular proteins, 
organelles and cytoplasm to form a double membrane structure named autophagosomes, during the 
initiation phase. These autophagosomes fuse with lysosomes to undergo a maturation process forming the 
autolysosomes. Then sequestered contents are degraded by lysosomal hydrolyses and the amino acids and 
sugars recycled into the cytosol. The autophagic process is regulated by several important signaling 
pathways. The activation of the class I PI3K inhibits the formation of the complex tuberous sclerosis 
complex 1/2 (TSC1/TSC2) that in turn activates Rheb. This protein induces the mammalian target of 
rapamycin complex 1 (mTORC1) that is involved in protein synthesis and mRNA translation through 
phosphorylation of its downstream targets, the kinase p70S6K1 and the elongation factor 4E-BP1. In 
addition, mTORC1 also inhibits the autophagy-related proteins (atg) causing the suppression of 
autophagy. The mTORC1 can be inhibited by various drugs, such as rapamycin and its analogues, CCI-
779 and RAD-001. Contrarily, an activation of the class III PI3K promotes autophagy by inducing the atg 
proteins. This is negatively regulated through Beclin-1 interaction with Bcl-2, which could be disrupted 
by the JNK pathway to induce autophagy. The activation of the AMP-activated kinase (AMPK) by p53 
can also induce the formation of the complex TSC1/TSC2 promoting autophagy. Additionally, ERK and 
p38 pathways have been showed opposite effects in the control of autophagy during the maturation step. 
Adapted from [Brech et al., 2009; Corcelle et al., 2009; He and Klionsky, 2009]. 
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2.5.3. Impact of autophagy in CRC 

The autophagic process is regulated by important signaling pathways that are 

frequently altered in CRC. Activating mutations in class I PI3K, Akt and Ras, or 

inactivating mutation in PTEN, have been shown to decrease autophagy through 

activation of mTORC1 [Maiuri et al., 2009; Morselli et al., 2009].  

In advanced CRC cases, a high activity of mTOR has been observed, which is 

associated with increased in vitro and in vivo cell growth, demonstrating the importance 

of mTOR pathway in CRC progression [Zhang et al., 2009a] and the possible role of 

autophagy in CRC. In addition, an inhibition of p38α in CRC cell lines showed to cause 

autophagic cell death, suggesting an involvement of the p38 pathway in autophagy in 

CRC [Comes et al., 2007].  

 

3. THERAPY IN CRC  

 

3.1. Some Compounds Modulators of Cancer Cell Signaling  

 

3.1.1. Inhibitors of KRAS  

KRAS is an important therapeutic target due to the fact that activates important 

signaling pathways. Farnesyltransferase inhibitors have been developed to inhibit RAS 

(Fig. 2), however, pre-clinical results were disappointing because Ras could bypass 

farnesyltransferase blockage through the other related enzyme, the 

geranylgeranyltransferase [Schubbert et al., 2007; Sousa et al., 2008].  

 

3.1.2. Inhibitors of PI3K Pathway 

The strategy to target PI3K pathway consists in the use of inhibitors for 

individual components of this pathway, such as PI3K, Akt, PDK-1 and mTOR, [Cheng 

et al., 2005; Granville et al., 2006]. A number of drugs have been developed and some 

of them are in preclinical evaluation or in clinical trial showing synergistic effect with 

different types of therapies and the ability to overcome therapy resistances [Hennessy et 

al., 2005; LoPiccolo et al., 2008]. However, it should be kept in mind that targeting 

PI3K pathway is likely to be most effective in cases where tumors bear activation of this 

pathway, suggesting that a proper selection of patients is important [LoPiccolo et al., 

2008]. Interestingly, it was found recently that PDK-1 is not only important in 
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regulating components downstream of PI3K signaling but also in phosphorylating 

components downstream of MAPK pathway, showing the importance of PDK-1 as a 

target in CRC therapy regulating two different pathways [Lu et al., 2010].  

The best known pharmacological inhibitors of PI3K are wortmannin and 

LY294002 (Fig. 2), which target the p110 catalytic subunit of class I PI3K with 

antitumor activity in vitro and in vivo [Hennessy et al., 2005; LoPiccolo et al., 2008]. 

Wortmannin, a natural fungal metabolite, although it was shown its ability to inhibit 

PI3K at low concentrations, was found to be soluble in organic solvents and insoluble in 

water, which may limit its use in clinical trials [Cheng et al., 2005]. LY294002 is a 

derivate of the flavonoid quercetin, which is effective in inhibiting PI3K, requiring, 

however, a higher concentration when compared with wortmannin. LY294002 has low 

solubility in water and, it not only inhibits the ATP binding site of PI3K, but also other 

downstream components of the PI3K pathway [Cheng et al., 2005; Granville et al., 

2006].  

Despite the poor solubility and high toxicity of wortmannin and LY294002, 

these commercially available PI3K inhibitors in combination with chemotherapeutic 

agents have been shown effective results, demonstrating the advantage of their use in 

combination therapies. These compounds are not clinically useful but could provide 

powerful tools to study the cellular effects of PI3K inhibition and to develop other PI3K 

inhibitors [LoPiccolo et al., 2008]. Derivates of LY294002 and wortmannin are being 

developed to bypass their undesirable properties [Hennessy et al., 2005; Granville et al., 

2006]. 

 

3.1.3. Inhibitors of BRAF 

A number of RAF inhibitors have been developed and some of them have 

entered clinical trials [Halilovic and Solit, 2008]. One of the first RAF inhibitors in 

clinical trial was sorafenib (BAY 43-9006), however this drug showed to inhibit both wt 

and mutant BRAF (V600E), with also effects on another subset of RTK (Fig. 3). A 

second generation of RAF inhibitors have been developed that have greater selectivity 

for mutant BRAF [Halilovic and Solit, 2008]. In fact, more recently, it was found that 

ATP-competitive RAF inhibitors block MAPK signaling pathway, decreasing tumor 

growth in mutant BRAF (V600E) tumors, but surprisingly, they activate RAF-MEK-

ERK signaling in mutant KRAS and wt BRAF tumors, enhancing tumor growth 
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[Hatzivassiliou et al., 2010; Poulikakos et al., 2010]. These findings suggest RAF 

inhibitors are only effective in tumors in which BRAF is mutated.  

 

3.1.4. Inhibitors of MAPK Pathways 

Several compounds have been found to inhibit the enzyme activity of MAP 

kinases [Malemud, 2007]. One of them, PD98059 (Fig. 3), showed to inhibit MEK1 and 

MEK2 and partially MEK5 with an impact on ERK signaling [McCubrey et al., 2006]. 

Second-generation MEK inhibitors have also been developed with better 

pharmacological properties, higher effect against MEK activity and longer duration of 

suppression, demonstrating good results in clinical trials [Fang and Richardson, 2005]. 

Alterations in PI3K pathway, such as mutations in PIK3CA gene, have been recently 

found to be a major mechanism of acquired resistance to MEK inhibitors, suggesting a 

combination therapy of PI3K and MEK inhibitors to increase sensitivity to MEK 

inhibition [Wee et al., 2009].  

Inhibitors of p38α and JNK have been developed to trigger death in cancer cells 

when combined with other chemotherapeutic drugs [Coulthard et al., 2009; Wagner and 

Nebreda, 2009]. SP600125 is a commonly used JNK inhibitor demonstrating, however, 

little specificity and selectivity for the different JNK isoforms [Wagner and Nebreda, 

2009]. SB203580 is an inhibitor of p38α/ß that acts through blockage of the ATP 

binding site [Coulthard et al., 2009] (Fig. 3). Although there are a number of p38 and 

JNK inhibitors in ongoing clinical trials, it is essential to take in consideration the type 

of tumor for JNK and p38 targeted therapy [Wagner and Nebreda, 2009].  

 

3.1.5. Potential Molecular Targets to Cell Death 

Most of the chemotherapeutic drugs induce cell death by apoptosis through 

receptor or mitochondrial pathways. Molecules involved in these pathways have been 

demonstrated to be good targets in the discovery of new anticancer drugs [Qiao and 

Wong, 2009; Tan et al., 2009]. The alteration of the balance between pro-apoptotic and 

anti-apoptotic Bcl-2 family proteins, the cell surface death receptors, such as Fas, 

TRAIL and TNF and inhibition of components of the PI3K and MAPK signaling have 

been shown to be good strategies to trigger apoptosis [Qiao and Wong, 2009; Tan et al., 

2009]. Currently, strategies to restore p53 function and/or to specifically target 
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regulators of p53, such as Mdm2, have appeared [Vaseva and Moll, 2009], with a 

number of novel compounds demonstrated to modulate p53 [Wang and Sun, 2010].  

Furthermore, lysosomes have also been increasingly recognized as a promise 

target for cancer treatment, by allowing cell death to occur even in cells with defects in 

the classical apoptotic pathways [Kirkegaard and Jaattela, 2009]. Various drugs have 

been identified that affect the integrity of the lysosome membranes by inducing LMP, 

which results in cathepsin-mediated cell death [Kroemer and Jaattela, 2005]. 

 

3.1.6. Inducers/Inhibitors of Autophagy 

The impact of autophagy on cancer cells seems to depend on tumor type, in its 

intrinsic properties and on the nature of the cytotoxic therapy that is combined with it 

[Brech et al., 2009]. Many compounds present in clinical have shown the ability to 

inhibit or induce autophagy with anticancer effects. Inhibitors of autophagy have been 

shown more likely to succeed when they are combined with other types of cytotoxic 

drugs that activate a protective autophagy. On the other hand, inducers of autophagy 

that trigger autophagic cell death in various cancer cells, may succeed when tumors 

have defects on the apoptotic machinery [Hoyer-Hansen and Jaattela, 2008].   

Rapamycin, produced naturally by the bacterium Streptomyces hygroscopicus, 

was the first identified compound to target mTOR, which possesses poor aqueous 

solubility and strong immunosuppressive properties. Rapamycin was found to inhibit 

mTOR with anti-proliferative effects against several cancer cell lines and to induce 

autophagy in vitro and in vivo. Various analogues of rapamycin, such as CCI-779 and 

RAD-001, have been developed and entered in clinical trials with promising results 

when combined with other chemotherapeutic drugs (Fig. 5) [LoPiccolo et al., 2008]. On 

the other hand, a number of different autophagic inhibitors were also developed. The 

drug 3-methyladenine is one example that showed to specifically inhibit autophagy 

through effects on class III PI3K [Tan et al., 2009]. 

 

3.2.  Clinical Chemotherapeutic Drugs  

 

In CRC, chemotherapeutic agents have been developed over time and they have 

showed different mechanisms of action. The genetic variability is an important factor 

that regulates the response and toxicity of a drug and the introduction of genetic tests to 
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individualize treatment will allow better response to these therapeutic agents [Bhushan 

et al., 2009]. Currently, drugs such as 5-Fluorouracil (5-FU), oxaliplatin, irinotecan, 

capecitabine, bevacizumab cetuximab and panitumumab, are used as clinical options 

and in most of the cases in combinations to increase CRC treatment efficacy [Bhushan 

et al., 2009; De Dosso et al., 2009; Segal and Saltz, 2009].   

 

3.2.1. 5-Fluorouracil (5-FU) 

The best known and most used chemotherapeutic agent in CRC treatment is 5-

FU that has been used in clinical since more than 40 years [Bhushan et al., 2009]. 5-FU 

is a nucleoside analog that incorporates its active metabolites, the fluorodeoxyuridine 

triphosphate (FdUTP) and fluorodine triphosphate (FUTP), into RNA and DNA leading 

to the disruption of their synthesis. In addition, 5-FU inhibits the enzyme thymidylate 

synthase (TS) that is essential in DNA synthesis and repair [Warusavitarne and 

Schnitzler, 2007; Bhushan et al., 2009]. Resistance to 5-FU appears in tumors with 

alterations in enzymes associated with 5-FU mechanisms of action, including high TS 

expression [Warusavitarne and Schnitzler, 2007; Bhushan et al., 2009]. Moreover, 5-FU 

is also able to induce apoptosis through intrinsic and extrinsic pathways and thus defects 

in these apoptotic pathways contribute to 5-FU resistance [Hector and Prehn, 2009].  

Currently, the response rate to 5-FU has increased when used in combination 

with other chemotherapeutic drugs, such as irinotecan and oxiplatin [De Dosso et al., 

2009; Segal and Saltz, 2009].  

 

3.2.2. Other Chemotherapeutic Drugs 

A number of drugs had appeared to improve survival rate being used alone or in 

combination with 5-FU. Capecitabine is a prodrug that is converted to 5-FU at the site 

of the tumor and administered orally, demonstrating a good response rate [De Dosso et 

al., 2009; Segal and Saltz, 2009]. Irinotecan, a derivate from the natural alkaloid 

camptothecin, was a second-line agent following failure of 5-FU. This 

chemotherapeutic drug has effect by interacting with the enzyme topoisomerase I, 

which causes transient single-strand DNA breaks that are stabilized by irinotecan, 

leading to DNA fragmentation and cell death.[Bhushan et al., 2009; Segal and Saltz, 

2009]. Oxaliplatin is a platinum compound that forms a cross-link between 

complementary DNA strands, thereby blocking DNA replication and transcription 
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leading to apoptosis [Bhushan et al., 2009; De Dosso et al., 2009; Segal and Saltz, 

2009].  

More recently, inhibitors of growth factor receptors have appeared. 

Bevacizumab, a monoclonal antibody directly targets the vascular endothelium growth 

factor (VEGF), was shown to inhibit angiogenesis or new blood vessel formation. 

Cetuximab and panitumumab, two monoclonal antibodies developed to target the 

human epidermal growth factor receptor (EGFR), showed  to block the binding of EGF 

to its receptor, which is overexpressed in up to 80% of CRC tumors and responsible for 

a poor prognosis [Bhushan et al., 2009; De Dosso et al., 2009; Segal and Saltz, 2009]. 

 

3.2.3. Resistance and Limitations  

Even though a wide range of chemotherapeutic drugs are available for the 

treatment of CRC, resistances and limitations to the above drugs have been shown. 

Different types of tumors have different behaviors and consequently have different 

responses to CRC therapy. It is also essential to keep in mind that the use of a specific 

drug that inhibits only one target may not be enough against CRC progression. Thus, it 

is important to know the biology of the tumor and its mutations in signaling mediators 

to choose the best treatment.  

Mutations in the MMR genes and in the TP53 have been shown to influence the 

cellular response to some chemotherapeutic agents [Warusavitarne and Schnitzler, 

2007; Bhushan et al., 2009]. CRC cells with loss of MMR system, especially when 

combined with loss of p53, have showed to generate high cisplatin resistance during 

sequential drug exposure [Lin and Howell, 2006]. In addition, despite some 

controversy, evidences have also demonstrated a reduced response of CRC MSI tumors 

to 5-FU treatment [Jover et al., 2006; Warusavitarne and Schnitzler, 2007]. CRC tumors 

with mutations in TP53, TS enzyme and/or alterations on Bcl-2 family proteins have 

also shown to be resistant to 5-FU-induced apoptosis [Violette et al., 2002; Adamsen et 

al., 2007; Warusavitarne and Schnitzler, 2007]. Moreover, poor prognosis and reduced 

sensitivity to 5-FU were also shown to CRC tumors with MSI status and p53 

overexpression or high TS activity, compared with tumors without these alterations 

[Mori  et al., 2004; Warusavitarne and Schnitzler, 2007]. The use of TS inhibitors, such 

as CDK inhibitors, in combination with 5-FU has been shown to reduce TS expression, 

improving 5-FU responses [Takagi et al., 2008]. 
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The use of drugs inhibiting only one signaling pathway has failed in some 

subsets of tumors. For example, deregulation of the Ras/Raf/MAPK/ERK pathway in 

cancer cells has been associated with resistance to PI3K inhibitors, suggesting 

combined targeting of PI3K and MEK to an effective anticancer strategy [Yu et al., 

2008]. Another example is the resistance of CRC tumors to cetuximab and 

panitumumab, which happen when tumors harbor PIK3CA mutation/PTEN loss and/or 

RAS/BRAF mutations. These mutations are present downstream of EGFR and, therefore, 

related signaling pathways are activated even if EGF receptor is inhibited [Jhawer et al., 

2008; Laurent-Puig et al., 2009; Siddiqui and Piperdi, 2010].  In fact, panitumumab was 

the first drug to be approved for use only in cases without mutation of RAS, being 

required the applicability of genetic tests before EGFR therapy [Baselga and Rosen, 

2008]. MEK inhibitors, such as BRAF inhibitors, have also shown to be good 

candidates in cases where MAPK/ERK1/2 is activated, however, they demonstrate less 

favorable response in the presence of RAS or tyrosine kinases mutations, such as PI3K, 

where these alternative downstream pathways could substitute ERK in maintaining cell 

survival [Balmanno and Cook, 2009].  

 

4. POTENTIAL OF NATURAL COMPOUNDS TO MODULATE 

MOLECULAR SIGNALING PATHWAYS IN CRC  

 

Cancer cells are known to have alterations in multiple signaling pathways, which 

could lead to a disappointing inefficiency of specific synthetic inhibitors used as 

anticarcinogenic agents in cancer treatment, which only target one pathway. On the 

other hand, many natural compounds have been shown to modulate multiple cellular 

signaling pathways being usually classified as multi-target agents [Surh, 2003; 

Aggarwal and Shishodia, 2006; Sarkar et al., 2009], being therefore interesting 

compounds for anticancer interventions. In fact, an enormous progress in the 

characterization of natural products-related anticancer effects has been made. Not 

surprisingly, 60% of all cancer drugs that are used clinically are either natural products 

or owe their origin to a natural source [Heinrich et al., 2003]. Thus, natural compounds 

are continuing to be widely studied as possible anticancer agents and/or as enhancers of 

therapeutic responses of chemotherapeutic drugs when combined with them.  
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In CRC, several bioactive food components have been shown to modulate cell 

signaling pathways related to proliferation and cell death, being the PI3K/Akt and 

MAPKs (ERK, JNK and p38) pathways, as well as, molecules involved in apoptosis the 

most promising targets of these compounds [Aggarwal and Shishodia, 2006; Khan et 

al., 2008; Rajamanickam and Agarwal, 2008; Ramos, 2008; Sarkar et al., 2009]. In 

addition, effects on the autophagic process have also been demonstrated for some 

natural compounds, which may be used in order to sensitize cells to death [Singletary 

and Milner, 2008].  

 

4.1.  Medicinal Plants  

 

The National Cancer Institute (NCI) identified a large number of plant-based 

foods with anticancer properties through beneficial effects in a single or multiple 

molecular targets [Surh, 2003]. With respect to tea (from the plant Camellia sinensis), 

although some studies did not found positive effects, many epidemiological and 

laboratory studies have been found a positive correlation between tea consumption and 

reduction of human cancer risk, including CRC [Yang and Landau, 2000; Yang et al., 

2007].  

Many other plant extracts have been shown to provide a rich source of bioactive 

food compounds especially of phenolic compounds, which are considered to play an 

important role as anticarcinogenic agents due to their antioxidant properties [Yang et 

al., 2001; Yang et al., 2008]. Reactive oxygen species (ROS) and free radicals, 

produced by cancer cells, activate a number of genes and signal transduction pathways 

that mediate cancer cell proliferation and survival. Therefore, radical scavenging 

activity by the phenolic compounds present in plant foods by reducing ROS levels 

contribute to a decrease in the activity of redox-sensitive pathways, thus decreasing 

cancer progression [Loo, 2003; Fruehauf and Meyskens, 2007]. In addition, direct 

interactions between plant food constituents and multiple key elements in signaling 

transduction pathways have been reported [Surh, 2003; Ramos, 2008].    

 

4.1.1. Genus Salvia 

The word Salvia comes from the Latin salvare that means “to save”. Plants of 

the genus Salvia (family Lamiaceae) are aromatic plants that have been used by folk 
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medicine since Roman times due to its antiseptic, anti-inflammatory and hypoglycemic 

properties, among others. About 100 Salvia species have been characterized. They are 

plants native to the Mediterranean region and are cultivated nowadays all over the world 

[Topcu, 2006]. Studies have shown biological antioxidant effects of Salvia (sage), 

which have become an important source of bioactive compounds with health benefits 

for cosmetic and pharmaceutical industries [Lima, 2006; Lima et al., 2007].   

Due to the increasing scientific evidences of natural antioxidants in inhibiting 

cancer cell proliferation [Loo, 2003], sage plants have been suggested to be a natural 

source of potential antitumor agents. The anticarcinogenic effect of sage was 

demonstrated in several species, such as Salvia miltiorrhiza and Salvia menthaefolia, 

where their antiproliferative activity on several types of tumor cells was osberved [Liu 

et al., 2000; Fiore et al., 2006].  

 

4.1.1.1.  Salvia fruticosa and Salvia officinalis 

The anticancer activity of Salvia fruticosa (SF) and Salvia officinalis (SO), to 

our knowledge, were never reported until now. The compositions of the water extracts 

(tea) produced from these plants and used in this work are presented in Table 1. 

Rosmarinic acid (RA) is the major phenolic compound present in both sages, 

constituting about 58% of all phenolic compounds present in SF water extract and 70% 

in SO water extract [Lima, 2006; Lima et al., 2007]. In addition, derivatives of luteolin, 

6-hidroxyluteolin-7-glucoside (in SF) and luteolin-7-glucoside (in SO) are present as 

the major flavonoids in the sage extracts. Both sages also contain an important bioactive 

triterpenoid, ursolic acid, in their composition, although present at very low 

concentration in the water extracts (Braga et al., unpublished results).   

Studies have demonstrated that RA, in the water extracts, is a major contributor 

to the antioxidant activity at cellular level of SO [Lima et al., 2007]. In fact, this 

phenolic compound has shown to possess high antioxidant and anti-inflammatory 

activities [Lima et al., 2006]. Effects of RA on several signaling pathways in cancer 

cells were also reported. RA showed to inhibit ERK phosphorylation in colon and breast 

cancer cells [Scheckel et al., 2008] and activate PKA without effects on Akt and p38 in 

melanoma cells [Lee et al., 2007]. Studies also reported effects of RA on induction of 

apoptosis via mitochondrial pathway in human hepatoma cells [Lin et al., 2007] and 

human Jurkat lymphoma cells [Kolettas et al., 2006]. Therefore, RA could be one of the 

bioactive compounds present in sages. 
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4.1.2. Genus Hypericum 
 

Plants of the genus Hypericum (family Hypericaceae), which contain a variety of 

phenolic compounds, are been attributed some medicinal properties. There are about 

twenty seven species of this genus, where H. androsaemum and H. perforatum are 

widely used as herbal drugs in Portugal [Valentao et al., 2003].      

 

4.1.2.1.  Hypericum androsaemum 

Hypericum androsaemum (HA) is a medicinal plant, native to Europe and Asia 

and traditionally used in Portugal as diuretic, hepatoprotector, cholagogue, and also 

used in kidney failure and in the relief of digestive tract disorders [Guedes et al., 2004]. 

Studies in vitro have confirmed its reputed antioxidant and hepatoprotective activities 

[Valentao et al., 2002; Valentao et al., 2004b], although these results were not observed 

in in vivo studies [Valentao et al., 2004a]. The effects of HA have been attributed, at 

least in part, to the presence of several flavonoids, such as quercetin and its glycosides, 

Table 1 - Composition (µg/mg extract) in phenolic compounds and ursolic acid 
of Salvia fruticosa and Salvia officinalis water extracts after lyophilization 
([Lima, 2006; Azevedo, 2008] and Braga P. et al., unpublished results). 
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and phenolic acids, such as chlorogenic acid [Valentao et al., 2004b]. However, the 

anticancer activity of HA was never been studied, as far as we know.  

The composition of HA water extract (tea) produced from this plant and used in 

this work is presented in Table 2. Chlorogenic acid (CA; 5-caffeoylquinic acid) and its 

isomer (3-caffeoylquinic acid) are the main phenolic compounds present, and quercetin 

and derivatives of quercetin represent the major flavonoids. Studies have demonstrated 

that CA has high antioxidant properties and antitumor effects in several cancer cells [Jin 

et al., 2005; Belkaid et al., 2006], where effects on MAPK and NF-κB signaling were 

reported [Feng et al., 2005a]. Anticarcinogenic effects of CA in CRC, however, have 

not been observed [Xie et al., 2009; Park et al., 2010]. 

 

4.1.2.2.  Hypericum perforatum 

Hypericum perforatum (HP), also known as St. John´s wort, is the Hypericum 

specie more studied and used for its medicinal properties. This plant is found 

throughout the world and it is known for its high pharmacological activities, including 

antidepressant, antiviral and antibacterial properties [Barnes et al., 2001]. The 

anticarcinogenic activity of HP has been reported in several cancer cell types [Martarelli 

et al., 2004; Roscetti et al., 2004; Skalkos et al., 2005; Stavropoulos et al., 2006].  

The composition of HP water extract (tea) produced from this plant and used in 

this work is presented in Table 2. This plant has the glycoside of quercetin, quercetin 3-

rutinoside (also known as rutin), as the major constituent. Hypericin, which is also 

present in this plant, has been found in some Hypericum species (its main source), being 

extensively studied for its enormous applications in the photodynamic therapy, 

including in cancer therapy. This compound, when irradiated with visible light, is 

capable to generate ROS that are toxic when produced at high levels leading cells to 

death [Barnes et al., 2001; Kitanov, 2001]. Although the anticancer effects of HP could 

be related with the presence of hypericin even if in small amounts, other studies have 

demonstrated that different types of compounds could be responsible for the plant’s 

anticancer effects [Roscetti et al., 2004; Skalkos et al., 2005]. Effects on MAP Kinases 

have also been reported for this plant [Karioti and Bilia, 2010]. 

 

4.1.2.3.  Hypericum undulatum 

Hypericum undulatum (HU), a plant native to Europe and north of Africa, is one 

of the less studied herbal plants, being used for the same ailments as HP. A study in 
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vitro found high antioxidant activity of HU, as well as, an inhibitory effect on 

acetylcholinesterase with beneficial effects on memory [Ferreira et al., 2006]. The 

composition of HU water extract (tea) produced from this plant and used in this work is 

presented in Table 2. This plant has glycosides of quercetin, quercetin 3-galactoside 

(also known as hyperoside) and quercetin 3-glucoside (also known as isoquercitrin), as 

the major constituents. Hypericin is also present in HU’s composition. 

 

4.2. Flavonoids  

 

Phenolic compounds are highly abundant in fruits, vegetables, cereals and 

medicinal plants with more than 8000 different phenolic compounds described. They 

are characterized by the presence of one or more phenolic rings being divided in 

different classes based on their chemical structure. The most abundant dietary phenolic 

compounds are the flavonoids (such as quercetin, resveratrol, kaempferol, genistein, 

myricetin and luteolin) and phenolic acids (such as rosmarinic acid and clorogenic 

Table 2 – Composition (µg/mg extract) in phenolic compounds of Hypericum androsaemum, Hypericum 
perforatum and Hypericum undulatum water extracts after lyophilization (Lima E. et al., unpublished results). 
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acid), that accounts of 60% and 30%, respectively, of all polyphenols [Nichenametla et 

al., 2006; Ramos, 2008].  

Flavonoids are the largest class of phenolic compounds with more than 5000 

varieties described and ubiquitously distributed in most of plants [Yang et al., 2001]. 

Studies in vitro and in vivo have shown the potential of some flavonoids to modulate 

many steps of the carcinogenic process, although being dependent on tissue, cell type 

and doses [Nichenametla et al., 2006; Ramos, 2008].  

 

4.2.1. Quercetin 

Quercetin (3,3´,4´,5,7-pentahydroxyflavone; Fig. 6) 

is one of the main flavonoids present in the human diet 

and it can be found in many fruits, vegetables and 

beverages, particularly in onions, apples, cherries, 

broccoli, tomatoes, barriers, tea, red wine and leek 

[Ramos, 2008].  

 

Quercetin (Q) usually occurs in the diet as glycosides in which at least one 

hydroxyl group is substituted by a sugar. Onion is the major vegetable source of 

quercetin glycosides. The sugar group is frequently bound at the 3-position forming 

different conjugates, such as quercitrin, isoquercitrin, hyperoside and rutin. These 

conjugated metabolites are found in circulating blood, being stable precursors that could 

be converted to the active aglycone (i.e. quercetin without a sugar group) and exert its 

function at the target site [Murakami et al., 2008]. Q is known for its prominent dietary 

antioxidant activity and its strong anti-inflammatory capacities [Boots et al., 2008].  

Studies with Q have demonstrated its anticarcinogenic potential in many types of 

cancer cells. The ability of Q to inhibit several tyrosine kinases especially PI3K, has 

been shown and compounds such as LY294002, a PI3K inhibitor, have been designed 

based on quercetin’s structure [Walker et al., 2000]. Effects of Q in suppressing 

survival and inducing apoptosis through PI3K/Akt and/or MAPK/ERK pathways have 

been found for several types of cancer cells, such as hepatoma [Granado-Serrano et al., 

2008], neural [Spencer et al., 2003], skin epidermal [Lee et al., 2008] and breast [Gulati 

et al., 2006], while in lung cancer cells ERK activation was required for quercetin-

induced apoptosis [Nguyen et al., 2004].  

Fig. 6. Chemical structure of 
quercetin. 
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In CRC, effects of Q on PI3K/Akt and MAPK/ERK signaling pathways were 

also reported. Studies on gene expression have demonstrated effects of Q in genes 

involved in the MAPK signal pathways [van Erk et al., 2005], as well as, in cell cycle 

and apoptosis regulation genes [van Erk et al., 2005; Murtaza et al., 2006]. Proteomic 

studies also showed effects of Q via inhibition of Akt [Kim  et al., 2005b] and MAP 

kinase p38 [Wenzel et al., 2004], as well as, induction of the mitochondrial pathway of 

apoptosis [Kim et al., 2005b; Volate et al., 2005]. One of the most relevant reported 

effects of Q is its ability to effectively inhibit the expression of the 3 types of RAS 

proteins (H-Ras, K-Ras and N-Ras) in different CRC cell lines [Ranelletti et al., 2000]. 

A specific inhibition on mutated RAS was then described where Q only decreased RAS 

protein level in cells expressing oncogenic RAS [Psahoulia et al., 2007b]. In addition, it 

was found that Q sensitizes CRC cells to apoptotic death in tumors cells resistant to 

death receptor TRAIL directed therapies [Psahoulia et al., 2007a].  

Studies in vivo were also performed to validate the anticarcinogenic activity of Q 

in CRC. This flavonoid showed to decrease 75% of aberrant crypt foci (ACF) incidence 

in azoxymethane (AOM)-induced CRC mice [Volate et al., 2005]. A more recent study 

[Warren et al., 2009] also showed a reduction on ACF development in AOM model, 

however, without effects on PI3K/Akt signaling. In contrast with data from cell culture 

experiments, in this in vivo study a decrease in COX-1 and COX-2 expression was 

found, suggesting that effects on proliferation and apoptosis may result from the ability 

of Q to suppress the expression of proinflammatory mediators. This was confirmed by 

another study where authors showed that AMPK-COX-2 signaling is important in 

quercetin-mediated cancer control [Lee et al., 2009].    

 

4.2.2. Luteolin 

 Luteolin (3 ,́4 ,́5,7-tetrahydroxyflavone; Fig. 7) is an important member of the 

flavonoid family being present in various fruits and 

vegetables, such as parsley, thyme, celery, oregano, 

green chili and peppers [Ramos, 2008]. Luteolin (L) 

usually occurs in the diet as luteolin-7-O-glucoside, 

being biotransformed into the aglycone, luteolin, in the 

intestine by microorganisms and hydrolases. This 

compound is structurally related with Q but has no Fig. 7. Chemical structure of luteolin. 
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hydroxyl group at position 3, which renders it more lipophilic. This higher lipophilicity 

may explain the potent intracellular antioxidant activity because it may confer better 

access to intracellular targets within the cell [Lima et al., 2006]. Besides its antioxidant 

activity, some studies have demonstrated the anticarcinogenic activity of L in several 

cancer cell lines, such as leukemia [Ko et al., 2002], pancreatic [Lee et al., 2002] and 

human hepatoma [Chang et al., 2005; Lee et al., 2005; Lee et al., 2006] cells.  Effects 

on PI3K/Akt and MAPK/ERK pathways [Lee et al., 2006], JNK signaling [Lee et al., 

2005] and the involvement of the mitochondrial pathway [Chang et al., 2005; Lee et al., 

2005] were also reported to contribute to cell growth inhibition and induction of 

apoptosis in human hepatoma cells. 

In CRC, some reports have also shown that L has anticarcinogenic effects. In 

particular, studies demonstrated apoptosis induction by L mediated through 

downregulation of Bcl-2 and Mdm-2 proteins, by increased caspase activities [Lim do et 

al., 2007] and by inhibition of TNF [Shi et al., 2004]. Effects on cell cycle arrest were 

also found in different CRC cell lines [Wang et al., 2004; Lim do et al., 2007]. It was 

also found that L is able to inhibit NF-κB signaling and suppress MAP kinases [Kim et 

al., 2005a]. Activation of JNK was also reported [Shi et al., 2004]. In addition, L was 

able to sensitize colon cancer cells to cisplatin-induced apoptosis, one of the most 

commonly cancer therapeutic agent, via increase of p53 protein level and activation of 

JNK pathway [Shi et al., 2007]. 

Studies in vivo were also performed where L was able to reduce the incidence of 

ACF and enhance the activity of antioxidants enzymes in AOM-induced colon 

carcinogenesis mice [Ashokkumar and Sudhandiran, 2008]. In addition, L decreased the 

multiplicity of foci and their incidence in 1,2-dimethyl hydrazine (DMH)-induced 

tumorigenesis in mice [Manju and Nalini, 2007], confirming the potential of this natural 

compound as possible anticancer agent in CRC. 

 

4.3. Triterpenoids 

 

Triterpenoids are compounds structurally related to steroids synthesized by great 

number of plants. They are especially abundant in ginseng, legumes and oats, among 

others. Currently, more than 80 different triterpenoid structures have been identified, 



Cristina Xavier 

44 

 

which are spread in the plant kingdom in the form of free acid or aglycones and their 

importance in medicine have been growing [Ikeda et al., 2008].  

 

4.3.1. Ursolic acid  

Ursolic acid (Fig. 8), a natural pentacyclic 

triterpenoid carboxylic acid, is the major 

component of some traditional medicinal herbs, 

such as rosemary, sage, olive, oregano, and it is 

also found in some fruits, such as apple, blueberry, 

cranberry and guava.  

 

A wide range of biological functions has been known for ursolic acid (UA), such 

as anti-inflammatory, hepatoprotective and anticancer combined with low toxicity 

[Ikeda et al., 2008]. The potential of UA to modulate several important signaling 

pathways related to proliferation and cell death was also demonstrated in several types 

of cancers with few studies reported in CRC.  

In CRC, UA showed the ability to suppress MAP Kinases [Shan et al., 2009], 

activate caspases [Andersson et al., 2003; Shan et al., 2009] and to induce cell cycle 

arrest [Li et al., 2002]. In other cell types, such as prostate cancer cell lines [Kassi et al., 

2007; Zhang et al., 2009b; Zhang et al., 2010a; Zhang et al., 2010b] and leukemia cells 

[Liu and Jiang, 2007], UA induced apoptosis through phosphorylation of Bcl-2, 

activation of caspases and induction of JNK pathway, while in breast cancer cells [Yeh 

et al., 2010] UA suppressed the JNK pathway. Effects on PI3K/Akt and/or MAPK/ERK 

pathways are also reported in prostate [Zhang et al., 2010a], breast [Yeh et al., 2010], 

endometrial [Achiwa et al., 2007] and ovarian [Wang et al., 2009] cancer cells, as well 

as, effects on cell cycle progression in lung cancer cells [Hsu et al., 2004]. In addition, 

effects on angiogenesis through inhibition of VEGF levels and effects on the expression 

of matrix metalloproteinases MMP-2 and MMP-9 proteins were reported in B16F-10 

melanoma cells [Kanjoormana and Kuttan, 2010].  

UA has also been linked to anti-inflammatory activity in several studies in 

melanoma [Manu and Kuttan, 2008], leukemia [Shishodia et al., 2003] and breast 

cancer [Yeh et al., 2010] cells, where an inhibition of the nuclear transcription factor 

NF-κB activity by UA was reported. More recently, UA, at low doses, was also found to 

Fig. 8. Chemical structure of ursolic acid. 
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be able to sensitized cancer cell lines to chemotherapeutic agents, such as taxol and 

cisplatin, through suppression of NF-κB, helping in the induction of apoptosis and the 

reduction of the necessary drug doses for cancer treatment [Li et al., 2010]. An effect on 

mitochondrial membrane permeability through decrease of sodium pump NA+-K+ 

ATPase by UA was recently reported in several liver cancer cell lines [Yan et al., 2010].  

 

4.4. Natural Compounds in Clinical Trials 
 

For a compound to enter clinical trial many steps are required. The compound 

must be promising in vitro and in vivo to proceed for in-depth efficacy evaluation 

concerning toxicity and pharmacokinetics. The compounds that prove to have low 

toxicity and high efficiency in animal models are allowed to enter for clinical evaluation 

in studies involving humans. Only compounds successfully arriving the phase III are 

considered as possible future chemotherapeutic drugs [Kakizoe, 2003]. It is not high the 

number of natural compounds that have passed through this process. 

 

4.4.1. Curcumin  

Curcumin, a polyphenol, is an active principle of the herb Curcuma longa, 

commonly known as turmeric and it is one of the most well studied natural compounds. 

Curcumin possesses anticancer effects on different stages of carcinogenesis in several 

cancer cell lines and exhibits antitumor activity in animal models, including in CRC. 

Curcumin is able to downregulate the activity of multiple kinases and to interact with 

important targets, affecting different signaling pathways. Current clininal trials of 

curcumin are ongoing for different diseases, including pancreatic and colorectal cancers, 

oral premalignat lesions and in conditions linked to inflammation such as psoriasis and 

alzheimer´s disease. Although with poor bioavailability, curcumin was remarkably well 

tolerated and safe in phase I clinical trial, thus a promising outcome is awaited [Goel et 

al., 2008; Hatcher et al., 2008]. Currently, some analogues of curcumin, such as JC-9, 

have progressed to phase II clinical trials against prostate cancer, demonstrating 

candidates to anticancer drugs [Lee, 2010]. 
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4.4.2. Resveratrol 

Resveratrol is a natural polyphenol found in grapes, red wine, berries, peanuts 

and other plants, which was first described as a phenolic component of the medicinal 

herb hellebore (Veratrum grandiflorum). The ability of resveratrol to bind several 

biomolecules involved in different signaling pathways has been shown to result in 

diverse biological effects with interest for anticancer treatment. Resveratrol has 

anticancer effects in vitro and in vivo, with effects on cell proliferation and death, 

inflammation, angiogenesis and metastasis processes. Although data in humans have 

revealed that resveratrol is pharmacologically quite safe, few clinical studies in humans 

have been performed. Clinical trials for patients with cancer and type 2 diabetes are 

underway. Because of its low bioavailability, structural analogues of resveratrol are also 

being improved as potential therapeutic agents for cancer treatment [Aggarwal et al., 

2004; Marques et al., 2009].    

 

Natural compounds are possible pharmacological agents’ themselfes or can be 

used as leads to design new compounds based on their structures creating synthetic 

analogues with better pharmacological activities.  
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Epidemiological studies have shown that nutri tion is a key factor in 
modulating sporadic colorectal carcinoma (CRC) risk. Aromatic 
plants of the genus Salvia (sage) have been attributed many medic- 
inal properties, which include anticancer activity. In the present 
study, the antiproliferative and proapoptotic effects of water ex- 
tracts of Salvia fruticosa (SF) and Salvia officinalis (SO) and of 
their main phenolic compound rosmarinic acid (RA) were evalu- 
ated in two human colon carcinoma-derived cell lines, HCT15 and 
CO115, which have different mutations in the MAPK/ERK and 
PI3K/Akt signalling pathways. These pathways are commonly al- 
tered in CRC, leading to increased proliferation and inhibition of 
apoptosis. Our results show that SF, SO, and RA induce apoptosis 
in both cell lines, whereas cell proliferation was inhibited by the 
two sage extracts only in HCT15. SO, SF, and RA inhibited ERK 
phosphorylation in HCT15 and had no effects on Akt phosphory- 
lation in CO115 cells. The activity of sage extracts seems to be due, 
at least in part, to the inhibition of MAPK/ERK pat hway. 
 
 
 
INTRODUCTION  
    Cancer is an important health problem and one of the most 
common forms is colorectal carcinoma (CRC). Phosphatidyli- 
nositol 3-kinase (PI3K)/Akt and mitogen-activated protein ki- 
nase/extracellular signal-regulated kinase (MAPK/ERK) sig- 
nalling pathways play critical roles in cell proliferation and 
survival and are frequently activated in CRC (1–3). Deregula- 
tion of these pathways is also thought to determine response to 
treatment (4). Mutations of KRAS and BRAF in sporadic CRC 
(70–80% of total cases) (5) are alternative in which the former 
 
 

constitutively activates both MAPK/ERK and PI3K/Akt path- 
ways, and the latter activates the MAPK/ERK pathway (3,4,6– 
8). As presented by Schubbert et al. (9), mutations in CRC of 
either KRAS or BRAF genes occur in 32% and 14% of cases, 
respectively. Studies have also shown that CRC is frequently 
associated with mutations in genes that encode for PI3K, p110 
catalytic subunit PI3KCA, and PTEN (an endogenous inhibitor 
of PI3K activity), resulting in an overexpression of Akt (10– 
13). Considering the high incidence of CRC, inhibitors of these 
pathways are actively being searched for use in the control of 
cancer progression (14–16). 
    Epidemiologic studies have shown that Western type diets, 
poor in vegetables and fruits, are risk factors known to be as- 
sociated with CRC, suggesting that nutritional factors may also 
be preventive and also helpful in the control of cancer (17–19). 
In fact green and black tea consumption has been shown to 
be effective in the initiation, promotion, and progression stages 
of carcinogenesis, although effects on colon cancer are incon- 
clusive (20). Plants of the genus Salvia (sage) such as Salvia 
miltiorrhiza and Salvia menthaefolia have also been suggested 
to have anticancer properties based on antiproliferative activ- 
ity on tumor cells (21,22). In addition, reactive oxygen species 
(ROS) have been reported to play a role in signalling trans- 
duction enhancing proliferation and survival of cancer cells. 
Antioxidant phytochemicals, through their ROS scavenging ac- 
tivity, may suppress altered redox-sensitive signalling events in 
cancer (23,24). 
    Salvia fruticosa (SF) and Salvia officinalis (SO), poorly stud- 
ied with regard to their anticancer activity, are Mediterranean 
medicinal and aromatic plants that contain rosmarinic acid (RA; 
Fig. 1) as major phenolic compound in their water extracts. RA 
constitutes about 58% of all phenolic compounds present in SF 
water extract and 70%  in SO water extract (25 ,26). This phenolic 

 



Cristina Xavier 

62 

 

 
 
 

 
 

FIG. 1.   Chemical structure of rosmarinic acid. 
 
compound has high antioxidant and anti-inflammatory activities 
(22,27), but little is known about its effects on cancer cells and 
especially on CRC. 
    In the present article, we report on the antiproliferative and 
proapoptotic effects of 2 Salvia water extracts, SF and SO, 
and their major phenolic compound, RA, in 2 human colon 
cancer-derived cell lines, HCT15 and CO115 , through effects on 
the MAPK/ERK and PI3K/Akt pathways and caspase-mediated 
apoptosis. These 2 cell lines possess different activating muta- 
tions in these 2 pathways: HCT15 has a KRAS (G13D) mutation 
(28), whereas CO115 has a BRAF (V599E) mutation (29). 
    In view of these genetic differences, we further speculate on 
the mechanisms behind the antiproliferative and proapoptotic 
effects of sage extracts and RA and the involvement of PI3K/Akt 
and MAPK/ERK signalling pathways in these effects. 
 

MATERIAL AND METHODS 

Reagents and Plant Extracts 
    All reagents and chemicals used were of analytical grade. 
Wortmannin (W), RA, and staurosporine were purchased from 
Sigma-Aldrich  (St.  Louis,  MO)  and  PD-98059  (PD)  was 
from Calbiochem (San Diego, CA). The primary antibodies 
anti-phospho-Akt (Ser473), anti-Akt total, anti-phospho-PTEN 
(Ser380/Thr382/383), anti-PTEN total, anti-p44/42 MAPK to- 
tal, and anti-cleaved caspase-9 (Asp315) were purchased from 
Cell  Signalling (Danvers, MA); the  anti-phospho-ERK and 
caspase-3 (H-277) were from Santa Cruz Biotechnology, Inc. 
(Santa Cruz, CA); and the anti-β -actin was from Sigma-Aldrich. 
The secondary antibodies HRP donkey antirabbit and sheep an- 
timouse were from GE Healthcare (Bucks, United Kingdom). 
    The water extracts of Salvia fruticosa and Salvia officinalis 
were prepared as previously described by Lima et al. (30) by 
pouring boiling water onto the dried plant material (at a ratio of 
150 ml of water to each 2 g of plant) and allowing it to steep 
for 5 min. After filtering, the water extract was lyophilized to 
dryness. The extracts of both sages were made using batches 
of the plants whose composition, in terms of phenolics com- 
pounds, have already been published (25,26). In brief, SF water 
extract contains as major phenolic compound RA (71.5 µg/ml), 
6-hydroxyluteolin-7-glucoside (22.7 µg/ml),  a not identified 
flavone heteroside (28.6 µg/ml), and the remaining phenolic 
compounds represent 0.8 µg/ml. SO water extract contain as ma- 

jor phenolic compounds RA (52.0 µg/ml), luteolin-7-glucoside 
(19.7 µg/ml) and the remaining phenolic compounds represent 
2.7 µg/ml. 
    Stocks solutions of PD and W were made in dimethyl sul- 
foxide (DMSO), and aliquots were kept at –20∘C. Therefore, 
DMSO (0.5%) was included in cell culture for the other condi- 
tions (controls and extracts/RA) to exclude any possible DMSO 
effect. 
 
Cell Culture  
    HCT15 and CO115 human CRC-derived cell lines were a    
gift from Dr. Raquel Seruca (IPATIMUP, University of Porto, 
Portugal) and were maintained in culture at 37∘C in a humidified 
5% CO2  atmosphere in RPMI-1640 medium (Sigma-Aldrich) 
supplemented with 10 mM HEPES, 0.1 mM pyruvate, 1% 
antibiotic-antimycotic solution (Sigma-Aldrich), and 10% fetal 
bovine serum (FBS; EU standard; Cambrex, Verviers, Belgium). 

Cells were seeded onto 6-well plates at a density of 0.75 × 105 

(HCT15) and 1.0 × 105 (CO115) cells/well. Incubations with 
different concentrations of sage extracts and RA were performed 
in serum free medium for 48 h to quantify BrdU incorporation 
and TUNEL positive cells and for 24 h for Western blot analysis. 
 
Assessment of Proliferation by BrdU Incorporation 
    Preliminary experiments using the MTT assay were per- 
formed in order to choose concentrations of SF and SO extracts 
that inhibited around 50% cell proliferation without cytotoxic 
effects. RA was tested in similar concentrations to the ones 
found in the extracts at the concentrations used and also did 
not induce cytotoxic effect. After 45 h of treatment with sage 
extracts or RA at different concentrations, bromodeoxyuridine 
(BrdU; Sigma-Aldrich) was added to the culture medium to give 
a final concentration of 10 µM and then incubated for another 
3 h. Both adherent and nonadherent cells were collected from 
each sample, fixed with 4% paraformaldehyde for 15 min at 
room temperature, and then attached into a polylysine-treated 
slide using a Shandon Cytospin (Thermo Fisher Scientific Inc, 
Waltham, MA). Cells were incubated with HCl 2 M for 20 min, 
washed in PBS containing 0.5% Tween-20 and 0.05% BSA 
(TPBS-B) and then incubated with monoclonal mouse anti- 
BrdU antibody (DakoCytomation, Glostrup, Denmark) for 1 h 
at room temperature . After washing in TPBS-B, cells were incu- 
bated with antimouse IgG FITC-conjugated secondary antibody 
(Sigma-Aldrich) for 1 h at room temperature, washed again, and 
then incubated with Hoechst for nuclei staining. The percentage 
of proliferating cells was calculated as the ratio between BrdU 
positive cells and total number of cells (nuclei staining with 
Hoechst), from a count higher than 500 cells per slide under a 
fluorescent microscope. Results are presented as mean ± SEM 
of at least 3 independent experiments. 
 
Assessment of Apoptosis by TUNEL Assay 
    Cells treated as above for 48 h were collected (both float- 
ing and attached cells) and fixed with 4% paraformaldehyde for 
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15 min at room temperature and then attached into a polylysine- 
treated slide using a Shandon Cytospin. Cells were washed in 
PBS and permeabilized with 0.1% Triton X-100 in 0.1% sodium 
citrate for 2 min on ice. TUNEL assay was performed using a 
kit from Roche (Mannheim, Germany) following the manufac- 
ture’s instructions. Cells were incubated with Hoechst for nuclei 
staining. The percentage of apoptotic cells was calculated from 
the ratio between TUNEL positive cells and total number of 
cells (nuclei staining with Hoechst) from a count higher than 
500 cells per slide under a fluorescent microscope. Results are 
presented as mean ± SEM  of at least 3 independent experiments. 

 
Protein Extraction and Western Blotting 
    After 24 h of treatment with sage extracts or RA at the high- 
est concentration used in the BrdU and TUNEL assay, cells 
were washed with PBS and lysed for 15 min at 4∘C with ice 
cold RIPA buffer (1% NP-40 in 150 mM NaCl, 50 mM Tris (pH 
7.5), 2 mM EDTA), supplemented with 20 mM NaF, 1 mM 
phenylmethylsulfonyl fluoride (PMSF), 20 mM Na2 V 3 O4 and 
protease inhibitor cocktail (Roche). Protein concentration was 
quantified using a Bio-Rad DC protein assay (Bio-Rad Labo- 
ratories, Inc., Hercules, CA) with BSA as a protein standard. 
Twenty micrograms of protein for each sample were separated 
by SDS gel electrophoresis and then electroblotted to a Hybond- P 
polyvinylidene difluoride membrane (GE Healthcare). Mem- 
branes were blocked in TPBS (PBS with 0.05% Tween-20) con- 
taining 5% (wt/vol) non-fat dry milk or BSA, incubated with the 
primary antibody, and followed by the secondary antibody 
conjugated with IgG horseradish peroxidase. Membranes were 
washed 3 times with TPBS between the different incubations. 
Immunoreactive bands were detected using the Immobilon so- 
lutions (Millipore, Billerica, MA) under a chemiluminescence 
detection system, the Chemi Doc XRS (Bio-Rad Laboratories, 
Inc.). Band area intensity was quantified using the Quantity One 
software from Bio-Rad. β -actin was used as a loading control. 
Results are presented as mean ± SEM of at least 3 independent 
experiments. 
 
 
Statistical Analysis 
    One-way ANOVA followed by the Student–Newman–Keuls 
test was used to perform statistical analysis for BrdU, TUNEL, 
and Western blot data. GraphPad Prism 4.0 software (San Diego, 

CA) was used, and P values ≤ 0.05 were considered statistically 
significant. 
 
 
RESULTS 
 
Effects on Cell Proliferation 
    To test the effects of SF, SO, and RA on cell proliferation of 
human colon cancer cells, 2 different colon carcinoma-derived 
cell lines, HCT15 and CO115, were used. 
    Based on preliminary experiments using the MTT assay (data 
not shown) in which cells were incubated with several concen- 

 
 
trations of sage extracts for 48 h, concentrations of each extract 
that were not cytotoxic and inhibited cell proliferation around 
50% were chosen for the subsequent studies. Since RA is the 
main phenolic compound of these extracts, we also tested RA 
in similar concentrations to the ones found in the extracts under 
our experimental conditions. 
    The effects of sage extracts and RA on cell proliferation of 
both cell lines were tested using the BrdU incorporation as- 
say. As shown in Fig. 2A, a significant inhibition of HCT15 
cell proliferation by both SF and SO was observed at all con- 
centrations tested. Levels of BrdU incorporation significantly 
decreased from 26.2% in the control to 4.7% in HCT15 cells 
treated with 50 µg/ml of SF and SO extracts. In CO115 cells, SF 
and SO did not significantly inhibit cell proliferation (Fig. 2B). 
No significant inhibition of cell proliferation was observed in 
neither of the cell lines when treated with RA (Fig. 2). Compar- 
ing the effects of sage extracts in the 2 cell lines, we observed 
that SF extract was somewhat more active than SO, and HCT15 
cells were more sensitive to the sage extracts. 
 
 
 
 
 

 
 
 
 
FIG. 2.   Effect of different concentrations of Salvia fruticosa (SF), Salvia 
officinalis (SO), and rosmarinic acid (RA) for 48 h on bromodeoxyuridine 

(BrdU) incorporation in A: HCT15 and B: CO115 cells. Values are mean ± 

standard error of the mean of at least 3 independent experiments. ∗ P  ≤ 0.05 
and ∗ ∗ ∗ P ≤ 0.001 when compared to control. DMSO, dimethyl sulfoxide. 
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FIG. 3.   Effect of different concentrations Salvia fruticosa (SF), Salvia offic- 
inalis (SO), and rosmarinic acid (RA) on apoptosis for 48 h as assessed by 

the TUNEL assay of A: HCT15 and B: CO115 cell lines. Values are mean ± 

standard error of the mean of at least 3 independent experiments. ∗ P  ≤ 0.05, 
∗ ∗ P ≤ 0.01, and ∗ ∗ ∗ P ≤ 0.001 when compared to control. TUNEL, terminal de- 
oxynucleotidyl transferase-mediated dUTP nick-end labeling; DMSO, dimethyl 
sulfoxide. 
 
 
Effects on Apoptosis 
    The  ability of SF, SO, and RA to induce apoptosis in hu- 
man CRC-derived cells were studied using the TUNEL assay. 
As shown in Fig. 3, both Salvia extracts and RA significantly 
induced apoptosis in a concentration-dependent manner in both 
HCT15 and CO115 cells. Apoptotic cells in HCT15 increased 
from 0.4% in the control to 6.6%, 5.8%, and 2.5% in SF, SO, 
and RA treatments, respectively, at the higher concentrations 
tested (Fig. 3A). In CO115 cells, apoptotic cells increased from 
1.8% in the control to 6.8%, 3.8%, and 3.6% in the conditions 
treated with the higher concentrations tested of SF, SO, and RA, 
respectively (Fig. 3B). Since the basal levels of apoptosis were 
higher in the CO115 cell line, overall it seems that the HCT15 
cells were more sensitive to the extracts and RA. Again, SF 
extract showed to be more active than SO extract and RA alone. 
    The involvement of caspases 3 and 9 in the apoptosis in- 
duction by sage extracts and RA was also studied by Western 
blot. After 24 h of treatment with the highest concentrations 
used of SF, SO, and RA, we did not observe cleaved caspase-9 

 
 
 
and caspase-3 in either cell line in contrast with the reference 
compound, staurosporine (data not shown). 

 
Effects on MAPK/ERK Pathway 
    The effects of sage extracts and RA for 24 h  were studied 
on the MAPK/ERK pathway by Western blot. Salvia extracts 
and RA significantly decreased phospho-ERK protein levels 
in HCT15 cells (Fig. 4A), whereas no effects were observed 
in CO115 cells (Fig. 4B). The reference inhibitor of phospho- 
ERK, PD-98059 (PD), was effective in both cell lines (Fig. 4) 
in a similar way to SF, SO, and RA in HCT15 cells. 

 
Effects on PI3K/Akt Pathway 
    The  effects  of  sage  extracts and  RA  on  the   expression  
of phospho-Akt and phospho-PTEN (a negative regulator of 
PI3K/Akt pathway) were also tested. Phospho-Akt was ob- 
served in CO115; however, it was not detected in HCT15 in 
medium with and without serum (data not shown). Neither of the 
Salvia extracts nor RA inhibited significantly the expression of 
phospho-Akt in CO115 cells (Fig. 5A). A significant inhibition 
of Akt phosphorylation was observed for the reference PI3K 
inhibitor, wortmannin (W). HCT15 cells expressed phospho- 
PTEN, and this expression was not significantly changed by 
Salvia extracts, RA or W (Fig. 5B). CO115 cells did not express 
phospho-PTEN or total PTEN in medium with and without 
serum (data not shown). 
 

 
DISCUSSION 
    To assess the potential of sage in the control of CRC pro- 
gression, the antiproliferative and proapoptotic effects of Salvia 
fruticosa (SF) and Salvia officinalis (SO) water extracts and their 
main phenolic compound, rosmarinic acid (RA), were studied 
in two human CRC-derived cell lines, HCT15 and CO115. Both 
sage water extracts (SF and SO) were effective in inhibiting pro- 
liferation in a concentration-dependent manner in HCT15 but 
not in CO115 cells. SF, SO, and RA induced apoptosis. SF was 
more effective than SO with regard to both antiproliferative and 
proapoptotic effects. To identify the bioactive compound behind 
these effects, sage’s major phenolic compound (RA) was tested 
individually at concentrations similar to those present in the 
extracts. However, RA was found not to have antiproliferative 
activity but to be proapoptotic in both cell lines, although to less 
extent than sage extracts. In view of these results, it seems that 
other active compounds present in the extracts may be respon- 
sible for the antiproliferative and proapoptotic effects of SF and 
SO. 
    The 2 cell lines used harbor different activating mutations: 
HCT15 has a KRAS (G13D) activating mutation (28) with po- 
tential to constitutively activate both PI3K/Akt and MAPK/ERK 
pathways, whereas CO115 harbors a BRAF (V599E) mutation 
(29) that affects the MAPK/ERK pathway. The highest sensi- 
tivity of HCT15 could be a result of these genetic differences. 
HCT15 cells, even though presenting an activating mutation of 
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FIG. 4.   Effects of Salvia fruticosa 50 µg/ml (SF50), Salvia officinalis 50 µg/ml (SO50), and rosmarinic acid 100 µM (RA100) for 24 h on the expression of 
phospho-extracellular-regulated kinase (p-ERK) in A: HCT15 cells and B: CO115 cells. PD-98059 50 µM (PD50) was used as a reference inhibitor of p-ERK. 
Values are mean ± standard error of the mean of at least 3 independent experiments. ∗ P ≤ 0.05 and ∗ ∗ ∗ P ≤ 0.001 when compared to control. DMSO, dimethyl 
sulfoxide; W, wortmannin. 
 
 
 

 
 
 
FIG. 5.   Effects of Salvia fruticosa 50 µg/ml (SF50), Salvia officinalis 50 µg/ml (SO50), and rosmarinic acid 100 µM (RA100) for 24 h on the expression of 
phospho-v-akt murine thymoma viral oncogene homolog (p-Akt) in A: CO115 cells and phosphophosphatase and tensin homolog (p-PTEN) in B: HCT15 cells. 
Wortmannin 1 µM (W1) was used as a reference inhibitor of phosphatidylinositol 3 kinase. No p-Akt expression was observed in HCT15 cells, and no PTEN 
expression was observed in CO115 cells. Values are mean ± standard error of the mean of at least 3 independent experiments. ∗ ∗ P  ≤ 0.01 when compared to 
control. DMSO, dimethyl sulfoxide; W, wortmannin. 
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the RAS oncogene, did not express phospho-Akt possibly as a 
consequence of the high levels of the strong negative regulator 
of this pathway, phospho-PTEN, found in this cell line. In these 
cells, the antiproliferative effects of SF and SO correlate with an 
inhibition of phospho-ERK. However, RA showed a significant 
inhibition of phospho-ERK without inhibiting HCT15 cell pro- 
liferation. Inhibition of phospho-ERK seems, therefore, not to 
be the only factor involved in inhibition of cell proliferation in 
this cell line. Our findings are in agreement with previous stud- 
ies (6,31), which have shown that an inhibition of MAPK/ERK 
pathway in KRAS mutated cell lines is not sufficient to inhibit 
cell proliferation. Therefore, the KRAS mutated HCT15 cells 
do not depend exclusively on MAPK/ERK pathway to prolifer- 
ate, and as a result, SF and SO seem also to be inhibiting other 
proliferation pathways, which in these cells do not include Akt 
phosphorylation (Fig. 6). 
    In CO115 cells, where SF and SO did not have antipro- 
liferative effect, there was no inhibition of phospho-ERK or 
phospho-Akt. RA also did not inhibit proliferation of CO115 
cells. However, in contrast to the effects on the other cell line, RA 
was without effect on phospho-ERK. Inhibition of MAPK/ERK 
pathway by sage extracts and RA in HCT15 and not CO115 
indicates that the effect may be upstream of BRAF and could be 
on KRAS (Fig. 6). In CO115 cells, a potential inhibition of RAS 
by sage extracts would not result in antiproliferative effects due 
to the downstream activating mutation of BRAF (Fig. 6). An 
inhibition of RAS oncogene has also been recently shown for 
quercetin, a common, natural-occurring, phenolic compound 
(32,33). It seems that the effects of RA depend on cell type 
and/or genetic background because others have also shown that 
RA decreases ERK phosphorylation in cardiac muscle cells,  but 
it is without effect on Akt and ERK in melanoma cells (34,35). 

 
 
    SF, SO, and RA induced apoptosis in both cell lines. It 
seems, however, that under these conditions, apoptosis is not 
dependent on the cleavage of either caspase-9 or caspase-3 in 
both cell lines. Nevertheless, some authors have shown that 
RA promotes apoptosis in human Jurkat cells and HepG2 cells 
via the mitochondrial pathway and Bcl-2 suppression in which 
caspases are involved (36–38). Also, the mitochondrial path- 
way was induced by RA in activated T cells from rheumatoid 
arthritis patients (39). It seems, therefore, that the induction of 
caspase pathways by RA is cell type specific and/or dependent 
on concentration and time of exposure, which may explain the 
discrepancy between these and our results. The inhibition of 
MAPK/ERK pathway may contribute, at least in part, to the 
effects on apoptosis in HCT15 cells. 
    Besides a possible interaction with KRAS, sage extracts may 
act as antiproliferative and proapoptotic in these cancer cell 
lines through their antioxidant activity. It is known that cancer 
cells produce increased amounts of ROS, in particular hydrogen 
peroxide, which could inhibit protein fosfatases and also be 
associated with signalling events in MAPK pathways that lead 
to activation of redox-sensitive transcription factors, mediating 
cancer cell proliferation and survival (23,24). Therefore, the 
radical scavenging activity of the phenolic compounds present 
in the sage extracts may be reducing the ROS levels in these 
cancer cells contributing also to a decreased activity of redox- 
sensitive proliferative pathways through RAS signalling. Based 
on RA results, the effects described in this study seem, however, 
not to be totally explained by the antioxidant properties of the 
sage extracts. 
    In conclusion, our results show that SF and SO water ex- 
tracts inhibit proliferation and induce apoptosis in CRC-derived 
cell lines, whereas RA was only effective on the induction of 

 
 
 

 
 
 
FIG. 6.   Model for the inhibition of extracellular-regulated kinase (ERK) phosphorylation by Salvia fruticosa (SF), Salvia officinalis (SO), and rosmarinic acid 
(RA) in HCT15 but not in CO115 cells. SF, SO, and RA inhibit mutant V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) leading to a decrease on 
the levels of phospho-ERK in HCT15 cell line. In CO115 cells, SF, SO, and RA do not change ERK phosphorylation levels due to a V-raf murine sarcoma viral 
oncogene homolog B1 (BRAF) activating mutation downstream of RAS oncogene. The missing phosphatase and tensin homolog (PTEN) in CO115 cells and 
phospho-v-akt murine thymoma viral oncogene homolog (Akt) in HCT15 cells were also observed in this study. MAPK, mitogen-activated protein kinase; PI3K, 
phosphatidylinositol 3 kinase. 
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apoptosis. Sage extracts and RA did not affect the PI3K/Akt 
pathway but inhibited the MAPK/ERK pathway in the KRAS 
mutated HCT15 cell line. The inhibitory effects of sage extracts 
on phospho-ERK seem to result from an inhibition of KRAS, 
upstream to BRAF, because it was not observed in CO115 cells. 
The inhibition of MAPK/ERK by sage extracts seems, however, 
not to completely explain the inhibition of cell proliferation in 
HCT15 because RA inhibits phospho-ERK without affecting 
cell proliferation. These data add S. fruticosa and S. officinalis 
to the list of potential sources of new active anticancer com- 
pounds useful in particular in tumors with a mutagenic KRAS 
activation and also suggest their possible use in dietary strategies 
for the control of CRC progression. 
 
 
ACKNOWLEDGMENTS  
    The authors thank Dr. Raquel Seruca (from IPATIMUP, Por- 
tugal) for providing the HCT15 and CO115 cell lines as well 
as Dr. Ana Preto for PD-98059. This work was supported by   
the Foundation for Science and Technology, Portugal, research 
grant POCI/AGR/62040/2004. C. P. R. Xavier and C. F. Lima 
were supported by the Foundation for Science and Technol-  
ogy, Portugal, through the grants SFRH/BD/27524/2006 and 
SFRH/BPD/26316/2006, respectively. 
 

 
 
REFERENCES 
1. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, and Nicosia SV: The Akt/PKB 

pathway: molecular target for cancer drug discovery. Oncogene 24, 7482–
7492, 2005. 

2. Thompson N and Lyons J: Recent progress in targeting the Raf/MEK/ERK 
pathway with inhibitors in cancer drug discovery. Curr Opin Pharmacol 5, 
350–356, 2005. 

3. Barault L, Veyries N, Jooste V, Lecorre D, Chapusot C, et al.: Mutations in 
the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling 
network correlate with poor survival in a population-based series of colon 
cancers. Int J Cancer 122, 2255–2259, 2008. 

4. McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, et al.: Roles of the 
RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant trans- 
formation and drug resistance. Adv Enzyme Regul 46, 249–279, 2006. 

5. Karoui M, Tresallet C, Brouquet A, Radvanyi H, and Penna C: Colorectal 
carcinogenesis: 1. Hereditary predisposition and colorectal cancer. J Chir 
(Paris) 144, 13–18, 2007. 

6. Preto A, Figueiredo J, Velho S, Ribeiro A, Soares P, et al.: BRAF provides 
proliferation and survival signals in MSI colorectal carcinoma cells dis- 
playing BRAF(V600E) but not KRAS mutations. J Pathol 214, 320–327, 

2008. 
7. Oliveira C, Velho S, Moutinho C, Ferreira A, Preto A, et al.: KRAS and 

BRAF oncogenic mutations in MSS colorectal carcinoma progression. 
Oncogene 26, 158–163, 2007. 

8. Oikonomou E and Pintzas A: Cancer genetics of sporadic colorectal cancer: 
BRAF and PI3KCA mutations, their impact on signaling and novel targeted 
therapies. Anticancer Res 26, 1077–1084, 2006. 

9. Schubbert S, Shannon K, and Bollag G: Hyperactive Ras in developmental 
disorders and cancer. Nat Rev Cancer 7, 295–308, 2007. 

10. Itoh N, Semba S, Ito M, Takeda H, Kawata S, et al.: Phosphorylation of 
Akt/PKB is required for suppression of cancer cell apoptosis and tu-           
mor progression in human colorectal carcinoma. Cancer 94, 3127–3134, 
2002. 

 

 

11. Roy HK, Olusola BF, Clemens DL, Karolski WJ, Ratashak A, et al.: AKT 
proto-oncogene overexpression is an early event during sporadic colon 
carcinogenesis. Carcinogenesis 23, 201–205, 2002. 

12. Velho S, Oliveira C, Ferreira A, Ferreira AC, Suriano G, et al.: The preva- 
lence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer 41, 
1649–1654, 2005. 

13. Khaleghpour K, Li Y, Banville D, Yu Z, and Shen SH: Involvement of the 
PI 3-kinase signaling pathway in progression of colon adenocarcinoma. 
Carcinogenesis 25, 241–248, 2004. 

14. Manson MM: Cancer prevention—the potential for diet to modulate molec- 
ular signalling. Trends Mol Med 9, 11–18, 2003. 

15. Sarkar FH and Li YW: Targeting multiple signal pathways by chemopre- 
ventive agents for cancer prevention and therapy. Acta Pharmacol Sin 28, 
1305–1315, 2007. 

16. HemaIswarya  S  and  Doble  M:  Potential  synergism  of  natural  prod- 
ucts   in   the   treatment   of   cancer.   Phytother   Res   20,   239–249, 
2006. 

17. Aggarwal BB and Shishodia S: Molecular targets of dietary agents for 
prevention and therapy of cancer. Biochem Pharmacol 71, 1397–1421, 
2006. 

18. Davis CD and Hord NG: Nutritional “omics” technologies for elucidating 
the role(s) of bioactive food components in colon cancer prevention. J Nutr 
135, 2694–2697, 2005. 

19. Davis CD and Milner JA: Biomarkers for diet and cancer prevention re- 
search: potentials and challenges. Acta Pharmacol Sin 28, 1262–1273, 
2007. 

20. Yang CS and Landau JM: Effects of tea consumption on nutrition and 
health. J Nutr 130, 2409–2412, 2000. 

21. Fiore G, Nencini C, Cavallo F, Capasso A, Bader A, et al.: In vitro antipro- 
liferative effect of six Salvia species on human tumor cell lines. Phytother 
Res 20, 701–703, 2006. 

22. Liu J, Shen HM, and Ong CN: Salvia miltiorrhiza inhibits cell growth and 
induces apoptosis in human hepatoma HepG(2) cells. Cancer Lett 153, 
85–93, 2000. 

23. Loo G: Redox-sensitive mechanisms of phytochemical-mediated inhibi- 
tion of cancer cell proliferation (review). J Nutr Biochem 14, 64–73, 
2003. 

24. Fruehauf JP and Meyskens FL Jr: Reactive oxygen species: a breath of life 
or death? Clin Cancer Res 13, 789–794, 2007. 

25. Lima CF, Valentao PC, Andrade PB, Seabra RM, Fernandes-Ferreira M, et 
al.: Water and methanolic extracts of Salvia officinalis protect HepG2 cells 
from t-BHP induced oxidative damage. Chem Biol Interact 167, 107–115, 
2007. 

26. Lima CF: Effects of Salvia officinalis in the liver: relevance of glutathione 
levels. Unpublished Doctoral thesis. Braga, Portugal: University of Minho, 
2006. 

27. Lima CF, Fernandes-Ferreira M, and Pereira-Wilson C: Phenolic com- 
pounds protect HepG2 cells from oxidative damage: relevance of glu- 
tathione levels. Life Sci 79, 2056–2068, 2006. 

28. Gayet J, Zhou XP, Duval A, Rolland S, Hoang JM, et al.: Extensive charac- 
terization of genetic alterations in a series of human colorectal cancer cell 
lines. Oncogene 20, 5025–5032, 2001. 

29. Oliveira C, Pinto M, Duval A, Brennetot C, Domingo E, et al.: BRAF 
mutations characterize colon but not gastric cancer with mismatch repair 
deficiency. Oncogene 22, 9192–9196, 2003. 

30. Lima CF, Andrade PB, Seabra RM, Fernandes-Ferreira M, and Pereira- 
Wilson C: The drinking of a Salvia officinalis infusion improves liver 
antioxidant  status  in  mice  and  rats.  J  Ethnopharmacol 97,  383–389, 
2005. 

31. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, et al.: BRAF 
mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362, 
2006. 

32. Psahoulia FH, Moumtzi S, Roberts ML, Sasazuki T, Shirasawa S, et al.: 
Quercetin mediates preferential degradation of oncogenic Ras and causes 

 
 
 
 



Cristina Xavier 

68 

 

 
 

    autophagy in Ha-RAS-transformed human colon cells. Carcinogenesis 28, 
1021–1031, 2007. 

33. Ranelletti FO,  Maggiano N,  Serra FG,  Ricci R, Larocca LM, et al.: 
   Quercetin  inhibits  p21-RAS  expression in human colon cancer cell lines 
   and in primary colorectal tumors. Int J Cancer 85, 438–445, 2000. 
34. Kim DS, Kim HR, Woo ER, Hong ST, Chae HJ, et al.: Inhibitory ef- 

fects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac 
muscle cells by inhibiting reactive oxygen species and the activations of 
c-Jun N-terminal kinase and extracellular signal-regulated kinase. Biochem 
Pharmacol 70, 1066–1078, 2005. 

35. Lee J, Kim YS, and Park D: Rosmarinic acid induces melanogenesis through 
protein kinase A activation signaling. Biochem Pharmacol 74, 960–968, 
2007. 

 

 

36. Kolettas E, Thomas C, Leneti E, Skoufos I, Mbatsi C, et al.: Rosmarinic 
acid failed to suppress hydrogen peroxide-mediated apoptosis but induced 
apoptosis of Jurkat cells which was suppressed by Bcl-2. Mol Cell Biochem 
285, 111–120, 2006. 

37. Hur YG, Yun Y, and Won J: Rosmarinic acid induces p56lck-dependent 
apoptosis in Jurkat and peripheral T cells via mitochondrial pathway inde- 
pendent from Fas/Fas ligand interaction. J Immunol 172, 79–87, 2004. 

38. Lin CS, Kuo CL, Wang JP, Cheng JS, Huang ZW, et al.: Growth inhibitory 
and apoptosis inducing effect of Perilla frutescens extract on human hep- 
atoma HepG2 cells. J Ethnopharmacol 112, 557–567, 2007. 

39. Hur YG, Suh CH, Kim S, and Won J: Rosmarinic acid induces apoptosis 
of activated T cells from rheumatoid arthritis patients via mitochondrial 
pathway. J Clin Immunol 27, 36–45, 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reprinted from Nutrition and Cancer, 61 (4),  Xavier CP, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C, Salvia 
fruticosa, Salvia officinalis and rosmarinic acid induce apoptosis and inhibit proliferation of Human Colorectal cell lines: the 
role in MAPK/ERK pathway, 564-571, Copyright (2009), with permission from Taylor & Francis’s. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANTICARCINOGENIC EFFECTS 
OF HYPERICUM EXTRACTS  

CHAPTER III  





Chapter III   Anticarcinogenic effects of Hypericum extracts 

 

71 

 

 

 

Hypericum androsaemum water extract inhibits mutant 

BRAF with inhibition of human colorectal cancer cells 

proliferation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

The work presented in this chapter is submitted to Journal of Biomedicine and 
Biotechnology:  

 
Xavier CP, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C (2010). Hypericum 

androsaemum water extract inhibits mutant BRAF with inhibition of human colorectal 
cancer cells proliferation. 

 



Cristina Xavier 

72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter III   Anticarcinogenic effects of Hypericum extracts 

 

73 

 

 

Hypericum androsaemum water extract inhibits mutant BRAF with 

inhibition of human colorectal cancer cells proliferation 

 
Cristina P.R. Xavier1, Cristovao F. Lima2, Manuel Fernandes-Ferreira2,3 and Cristina Pereira-Wilson1 

1CBMA – Centre of Molecular and Environmental Biology/Department of Biology, University of Minho, 4710-057 Braga, Portugal 
2CITAB – Centre for the Research and Technology of Agro-Environmental and Biological Sciences/Department of Biology, 

University of Minho, 4710-057 Braga, Portugal 
3Department of Biology, Faculty of Science, University of Porto, 4169-007 Porto, Portugal. 

 

 

 

Abstract   

 MAP kinase and PI3K/Akt signalling pathways are commonly altered in 

colorectal carcinoma (CRC) leading to increased proliferation and inhibition of 

apoptosis. Several species of the genus Hypericum are medicinal plants to which 

digestive tract effects have been attributed. In the present study, the antiproliferative 

effects of the water extracts of H. androsaemum (HA), H. perforatum (HP) and H. 

undulatum (HU) were investigated in two human colon carcinoma-derived cell lines, 

HCT15 and CO115, which harbour activating mutations on KRAS and BRAF, 

respectively. Contrarily to HU and HP, HA significantly inhibited cell proliferation and 

induced apoptosis in both cell lines. HA decreased BRAF and phospho-ERK 

expressions in CO115 cells, but not in HCT15. HA also decreased Akt phosphorylation 

in CO115, suggesting an inhibition of PI3K/Akt pathway. Furthermore, an induction of 

p38 and JNK stress-activated kinases were observed in both cell lines. Chlorogenic 

acid, the main phenolic compound present in the HA extract and less represented in the 

other two species, did, however, not show any of those effects. In conclusion, HA 

controlled CRC proliferation and specifically acted on mutant BRAF. 

 

 

Keywords: Chlorogenic acid, Colorectal Carcinoma, Hypericum androsaemum, MAP 

kinases, PI3K/Akt Pathway 
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 Introduction 

 

 Environmental factors, many of which diet related, are responsible for 70-80% of 

total cases of colorectal carcinoma (CRC), an important health problem worldwide [1, 

2]. Activating mutations of KRAS, BRAF and/or PI3K have been found in more than 

50% of CRC cases and constitutively activate the mitogen-activated protein 

kinase/extracellular signal-regulated kinase (MAPK/ERK) and/or the 

phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathways [3, 4]. The constitutive 

activation of these pathways plays an important role during CRC progression and 

results in a higher cell proliferation rates and in inhibition of apoptosis [3, 5-7]. Since 

MAPK/ERK and PI3K/Akt pathways are involved in CRC progression and drug 

resistance, proteins associated with these pathways are good molecular therapeutic 

targets for drug discovery [8, 9]. 

 The stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 are 

two other major MAPK pathways also frequently deregulated in cancers, including 

CRC [9, 10]. These pathways are activated by diverse cellular stresses including UV 

light, X-rays, hydrogen peroxide, heat and osmotic shock and have been implicated in 

the control of cell proliferation, differentiation, migration, apoptosis and survival and 

their effects appear to be largely dependent on cell type and/or cellular context [10, 11].  

In particular, JNK activation is involved in the control of cell growth and proliferation, 

as well as apoptosis, since JNK may induce activation of the mitochondrial pathway 

[11, 12]. Activation of the p38 pathway has also been shown to promote growth arrest, 

to induce apoptosis by activating p53 and to block tumor growth. On the other hand, 

p38 inactivation has been shown to induce cell proliferation and enhance cellular 

transformation [13, 14]. Therefore, p38 and JNK MAP kinases may also be considered 

as potential targets for cancer therapy [10]. 

 Plants of the genus Hypericum (family Hypericaceae) have been attributed 

important medicinal properties. Hypericum perforatum (HP), also known as St. John’s 

wort, is the species more studied and it is known for its high pharmacological activities, 

such as antidepressant, antiviral and antibacterial properties [15]. The anticarcinogenic 

activity of HP has also been reported in several cancer cell types, but not in CRC cells 

[16-19]. Its antitumor effects have been related with one of its main constituents, 

hypericin [20-22]. Hypericum androsaemum (HA) is less known and it is used as 

diuretic, hepatoprotector, cholagogue, and also in kidney failure and in the relief of 
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digestive tract disorders [23, 24]. Its anticarcinogenic activity has, to our knowledge, 

never been reported. Recent in vitro studies showed the antioxidant and 

hepatoprotective activities of HA water extract [25, 26]. The effects of HA have been 

attributed, at least in part, to the presence of several flavonoids, such as quercetin and its 

glycosides, and phenolic acids, such as chlorogenic acid [26]. Hypericum undulatum 

(HU) is the least known of the three species. Antioxidant activity and effects on 

memory have been found [27]. Plants containing a variety of phenolic compounds have 

been shown to play an important role as dietary antioxidants in cancer prevention [28, 

29]. However, evidence is increasing that the anticarcinogenic properties of plant food 

constituents is not only the result of their antioxidant activity. In fact, many of these 

natural compounds have been demonstrated to act on multiple key elements in 

signalling transduction pathways related to cellular proliferation and apoptosis [30, 31]. 

Since H. androsaemum, H. undulatum and H. perforatum (HP) are popularly 

consumed as herbal tea (water extract) for the relief of digestive tract disorders and they 

contain quercetin (mainly as glycosides), which we have shown in a previous study to 

possess anticarcinogenic activity against colon cancer cells [32], the antiproliferative 

and proapoptotic effects of the water extracts of these three Hypericum plants were 

tested in two human colon cancer-derived cell lines, HCT15 and CO115. These cell 

lines harbour different activating mutations that affect both MAPK/ERK and/or 

PI3K/Akt pathways: HCT15 has a KRAS (G13D) mutation [33] while CO115 harbour a 

BRAF (V599E) mutation [34], being representative of many CRC cases. The 

involvement of stress induced kinases p38 and JNK, and apoptotic markers were also 

studied.  

 

Materials and methods  

 

Reagents and Antibodies  

All reagents and chemicals used were of analytical grade. Wortmannin (W), LY-

294,002 (LY), staurosporine, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) and chlorogenic acid (CA) were purchased from Sigma-Aldrich (St. 

Louis, MO, USA); PD-98059 (PD) was from Calbiochem (San Diego, CA, USA). 

Stocks solutions of W, LY, PD and STS were made in dimethyl sulfoxide (DMSO) and 

aliquots were kept at -20 ºC. DMSO (0.5%, final concentration) was used in the other 

conditions (control and HA extract alone) to exclude any solvent effect.  
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The primary antibodies, anti-phospho-Akt (Ser473), anti-Akt, anti-phospho-

PTEN (Ser380/Thr382/383), anti-PTEN, anti-p44/42 MAPK and anti-phospho-p38 

MAPK (Thr180/Tyr182) were purchased from Cell Signaling (Danvers, MA, USA); the 

anti-phospho-ERK, anti-Raf-B, anti-K-Ras, anti-PKC total, anti-PARP-1, anti-p38, anti-

phospho-JNK and anti-JNK were from Santa Cruz Biotechnology, Inc. (Santa Cruz, 

CA, USA); the anti-caspase-3 was from Calbiochem (San Diego, CA); and the anti-β-

actin from Sigma-Aldrich. The secondary antibodies HRP donkey anti-rabbit and sheep 

anti-mouse were from GE Healthcare (Bucks, UK).  

 

Cell culture and conditions 

HCT15 and CO115 human colon carcinoma-derived cell lines were a gift from 

Dr. Raquel Seruca (IPATIMUP, University of Porto, Portugal) and were maintained in 

culture at 37 ºC in a humidified 5 % CO2 atmosphere in RPMI-1640 medium (Sigma-

Aldrich) supplemented with 10 mM HEPES, 0.1 mM pyruvate, 1 % antibiotic-

antimycotic solution (Sigma-Aldrich) and 6 % fetal bovine serum (FBS; EU standard, 

Cambrex, Verviers, Belgium). Cells were seeded onto six (2 ml) and twelve (1 ml) well 

plates at a density of 0.75×105 (HCT15) and 1.0×105 (CO115) cells/ml. Incubations for 

48 h with different concentrations of the water extracts were performed for MTT and 

TUNEL analysis, and for 24 h and 48 h for western blot. 

 

Preparation of HA extract 

 Plant of Hypericum androsaemum (HA) was cultivated at Canidelo, Northern of 

Portugal, in a farm owned by Cantinho das Aromaticas Lda., whereas Hypericum 

perforatum (HP) and Hypericum undulatum (HU) were obtained from Mapprod Lda., 

Braga, Portugal; plants are kept in active bank under the responsibility of the respective 

companies. The aerial parts of the plants were collected in July 2008 for HA and HU, 

and in July 2009 for HP; then, they were air-dried before being subjected to the water 

extraction by infusion. Batches of dried plant material are maintained at -20 ºC under 

the responsibility of CITAB with the accession numbers HA102008, HP072009 and 

HU122008, for HA, HP and HU, respectively. The plant infusions were prepared by 

pouring 150 ml of boiling deionized water onto 2 g of air-dried plant material and 

allowing it to steep for 5 min. After filtering, the water extracts were lyophilized to 

dryness and yields in terms of initial crude plant material dry weight of 27.0% (w/w), 

16.7% (w/w) and 13.0% (w/w), for HA, HP and HU, respectively, were obtained. 
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Phenolic compounds were analyzed by HPLC as previously performed [23] and, for 

HA, a similar composition with a previous report of a water extract was obtained [26]. 

The main phenolic compounds found in the plant water extracts differ in quantity 

between them. The following compounds are present. In HA: chlorogenic acid (CA) 

and isomer (3-O and 5-O-caffeoylquinic acid; 53.82 µg/mg), quercetin 3-galactoside 

(16.35 µg/mg), quercetin 3-glucoside (5.41 µg/mg), quercetin 3-rutinoside (2.73 µg/mg) 

and quercetin (1.32 µg/mg). In HU: quercetin 3-galactoside (34.12 µg/mg), quercetin 3-

glucoside (21.70 µg/mg), chlorogenic acid (CA) and isomer (3-O and 5-O-

caffeoylquinic acid; 14.85 µg/mg), quercetin (4.97 µg/mg), quercetin 3-rhamnoside 

(1.97 µg/mg), amenthoflavone (0.30 µg/mg) and hypericin (0.03 µg/mg). In HP: 

quercetin 3-rutinoside (38.07 µg/mg), quercetin 3-galactoside (16.00 µg/mg), quercetin 

3-glucoside (6.47 µg/mg), chlorogenic acid (CA) and isomer (3-O and 5-O-

caffeoylquinic acid; 5.75 µg/mg), quercetin (3.39 µg/mg), quercetin 3-rhamnoside (0.24 

µg/mg), amenthoflavone (0.33 µg/mg) and hypericin (0.03 µg/mg). CA is much more 

abundant in HA water extract than in the other two species where quercetin and related 

compounds are the most representative. 

 

Cell proliferation/viability assay 

MTT reduction assay was used as previously described [32]. Cells were treated 

with different concentrations of water extracts and CA for 46 h followed by two hours 

in the presence of MTT (final concentration 0.5 mg/ml). Hydrogen chloride 0.04 M in 

isopropanol was then used to dissolve the formazan crystals. The number of viable cells 

in each well was estimated by spectrophotometry. Results are presented as mean ± SEM 

of at least three independent experiments. 

 

Assessment of apoptosis by TUNEL assay 

 Cells treated with different concentrations of HA for 48 h were collected (both 

floating and attached cells) and fixed with 4% paraformaldehyde for 15 min at room 

temperature and then attached into a polylysine treated slide using a Shandon Cytospin 

4 (Thermo Scientific, Waltham, MA, USA). Cells were washed in PBS and 

permeabilized with 0.1% Triton X-100 in 0.1% sodium citrate for 2 min on ice. TUNEL 

(TdT mediated dUTP Nick End Labelling) assay was performed using a kit from Roche 

(Mannheim, Germany), following the manufacturer’s instructions. Cells were incubated 

with Hoechst for nuclei staining. The percentage of apoptotic cells was calculated from 
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the ratio between TUNEL positive cells and total number of cells (nuclei staining with 

Hoechst), from a count higher than 500 cells per slide under a fluorescent microscope. 

Results are presented as mean ± SEM of at least three independent experiments. 

 

Protein extraction and western blot 

 After incubation periods, cells were first washed with PBS and then lysed for 15 

min at 4 ºC with ice-cold RIPA buffer (1% NP-40 in 150 mM NaCl, 50 mM Tris (pH 

7.5), 2 mM EDTA), supplemented with 20 mM NaF, 1 mM phenylmethylsulfonyl 

fluoride (PMSF), 20 mM Na2V3O4 and protease inhibitor cocktail (Roche, Mannheim, 

Germany). Protein concentration was quantified using a Bio-Rad DC protein assay 

(Bio-Rad Laboratories, Inc., Hercules, CA, USA) with BSA as a protein standard. 

Twenty micrograms of protein from each sample were separated by SDS gel 

electrophoresis and then electroblotted to a Hybond-P polyvinylidene difluoride 

membrane (GE Healthcare). Membranes were blocked in TPBS (PBS with 0.05% 

Tween-20) containing 5% (w/v) non-fat dry milk or BSA, incubated with the primary 

antibody followed by the secondary antibody conjugated with IgG horseradish 

peroxidase. Immunoreactive bands were detected using the Immobilon solutions 

(Millipore, Billerica, MA, USA) under a chemiluminescence detection system, the 

Chemi Doc XRS (Bio-Rad Laboratories, Inc.). Band area intensity was quantified using 

the Quantity One software from Bio-Rad. β-actin was used as a loading control. Results 

are presented as mean ± SEM of at least three independent experiments.  

 

Statistical analysis 

 Student’s t-test or one-way ANOVA followed by the Student-Newman-Keuls 

test was used to perform statistical analysis for TUNEL and western blot data. 

GraphPad Prism 4.0 software (San Diego, CA, USA) was used and P-values ≤ 0.05 

were considered statistically significant.  

 

Results  

 

Anticarcinogenic effects of three Hypericum species  

 The effects of water extracts from H. undulatum, H. perforatum and H.  

androsaemum on cell viability/proliferation, in HCT15 and CO115 human colon 

carcinoma-derived cell lines, were investigated using the MTT assay. As shown in 
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Figure 1A, HCT15 cells were more resistant to HU extract than CO115 cells, while 

having the same sensitivity to the HP extract. However, effects on cell viability of both 

cell lines incubated with HU and HP were only observed from concentrations above  

200 µg/ml. The HA extract was the most efficient in inhibiting cell proliferation in a 

concentration-dependent manner in both cell lines, with an IC50 (the concentration that 

inhibited cell growth by 50%) of around 85 µg/ml in HCT15 and 65 µg/ml in CO115 

cells. The higher concentration tested of HA in HCT15 cells induced cell death by 

necrosis (negative value in Fig. 1A). Incubation of CRC cells with HA also significantly 

induced apoptosis in a concentration-dependent manner in both cell lines (Figure 1B). 

HA was the only extract with anticarcinogenic potential in CRC. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 1. Effects of different 
concentrations of water extracts of 
Hypericum undulatum, Hypericum 
perforatum and Hypericum androsaemum 
on cell viability/proliferation assessed by 
MTT reduction (A). Effect of Hypericum 
androsaemum on apoptosis assessed by 
TUNEL assay (B), for 48 h, in HCT15 and 
CO115 cells. Values are mean ± SEM of at 
least 3 independent experiments. ** P≤ 0.01 
and *** P≤ 0.001 when compared to 
control. In A: line represents the inhibition 
of 50% of cell proliferation (IC50); the 
negative value mean that the cells reduction 
capacity after 48 h in that condition was 
below than the one obtained in the control in 
the beginning of the treatment period (0 h), 
being a indirect indication of cell death by 
necrosis. 
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In order to characterize effects of HA on signaling pathways related to 

proliferation and/or apoptosis, the IC50 concentration for each cell line (85 µg/ml for 

HCT15 and 65 µg/ml for CO115) and a concentration below this were used and the 

effects on the levels of relevant molecular targets followed in subsequent experiments 

by western blot.  

 

Effect of chlorogenic acid (CA) on cell proliferation  

 H. androsaemum was the most efficient plant water extract in inhibiting cell 

growth in HCT15 and CO115 CRC cell lines. In an attempt to find the compound 

responsible for these effects, the main phenolic present in this extract, chlorogenic acid 

(CA), which also distinguishes this extract from those of the other two plants, was 

evaluated individually at different concentrations, using MTT assay. CA is present at 

about 54 µg/mg in HA water extract, while in HU and HP CA is present in smaller 

amounts (about 15 and 6 µg/mg, respectively). No effects were observed on cell 

proliferation in both cell lines treated with CA up to 200 µM, which corresponds to a 

concentration 20 times higher than the one found in 100 µg/ml of HA (Figure 2). It 

seems therefore that the inhibition of cell proliferation produced by HA is not due to 

CA. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Effects of different concentrations of chlorogenic acid on cell viability/proliferation assessed by 
MTT reduction. 
 

Effects of HA on PI3K/Akt and MAPK/ERK pathways  

Constitutive activations of MAPK/ERK and PI3K/Akt pathways are present in a 

large number of CRC cases, leading to an increase of proliferation and an inhibition of 

apoptosis [3]. Phosphorylation of ERK and Akt, respectively, are indicators of their 

activation. As shown in Figure 3A, HA significantly decreased phospho-Akt protein 
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level in CO115 cells, in a concentration-dependent manner, after 24 h of incubation. 

This effect was not observed in HCT15 since there were no detectable amounts of 

phospho-Akt in these cells (data not shown), which is in agreement with previous 

observations [32]. As expected, reference inhibitors of PI3K, wortmannin (W) and LY-

294,002 (LY), also significantly decreased phospho-Akt levels. The effect of HA on 

phospho-PTEN, a negative regulator of PI3K/Akt pathway, was also tested. As shown 

in Figure 3B, HA did not change phospho-PTEN levels in HCT15 cells. As previously 

reported [32], no detectable expression of PTEN was observed in CO115 cells (data not 

shown).  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 
 
Figure 3. Effects of Hypericum androsaemum (HA) for 24 h on the levels of phospho-Akt in CO115 cells 
(A), phospho-PTEN in HCT15 cells (B) and phospho-ERK in HCT15 and CO115 cells (C) at 85 µg/ml 
(HA85), 65 µg/ml (HA65) and 45 µg/ml (HA45), using western blot. β-Actin was used as loading 
control. Wortmannin 1 µM (W1) and LY-294,002 20 µM (LY20) were used as a reference inhibitor of 
PI3K and PD-98059 50 µM (PD50) was used as a reference inhibitor of phospho-ERK. Values are mean 
± SEM of at least 3 independent experiments. * P≤ 0.05,  ** P≤ 0.01 and *** P≤ 0.001 when compared to 
control.  
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Concerning effects on the MAPK/ERK pathway, a significant decrease in 

phospho-ERK protein level was observed in CO115 cells, but not in HCT15, induced by 

the higher concentration of HA tested (Figure 3C). As expected, a significant reduction 

of phospho-ERK levels in both cell lines was also induced by PD-98059 (PD), a 

reference inhibitor of the MAPK/ERK pathway. In addition, we also treated both cell 

lines with CA. This compound did not decrease phospho-Akt or phospho-ERK protein 

levels at 10 and 100 µM in both cell lines (data not shown). 

  

Effects of HA on BRAF and KRAS levels   

 Subsequently, since KRAS activates both MAPK/ERK and PI3K/Akt pathways 

and BRAF activates MAPK/ERK pathway, effects of HA on the protein expression of 

KRAS and BRAF oncogenes were studied. As shown in Figure 4A, the higher HA 

concentration tested was able to significantly decrease the levels of BRAF in CO115 

cells (cells with mutant BRAF), after 24 h. In HCT15 cells, which express the wild type 

BRAF, no effect of HA on BRAF protein expression was observed. No significant 

changes were observed in wild type or mutant KRAS levels induced by HA (Figure 

4B). CA did not change KRAS or BRAF levels at 10 and 100 µM in both cell lines 

(data not shown). 

 

 
Figure 4. Effects of Hypericum androsaemum (HA) for 24 h on BRAF (A) and KRAS (B) levels in 
HCT15 and CO115 cells at 85 µg/ml (HA85), 65 µg/ml (HA65) and 45 µg/ml (HA45), using western 
blot. β-Actin was used as loading control. Values are mean ± SEM of at least 3 independent experiments. 
* P≤ 0.05 when compared to control. 
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Effects of HA on p38 and JNK pathways  

 The effect of HA on p38 and JNK signalling pathways, two stress-activated 

protein kinases that are involved in the control of proliferation and induction of 

apoptosis [10], were also studied. Our results show a remarkable induction of phospho-

p38 expression at both concentrations tested and of phospho-JNK expression mainly at 

the higher concentration tested after 48 h in both cell lines (Figure 5A and 5B).  

 

Effects of HA on Caspase-3 and PARP-1 

 In order to verify the role of caspase activation on the apoptotic effect of the 

extract HA, we studied caspase-3 and Poly (ADP-ribose) polymerase-1 (PARP-1) 

expressions by western blot. As shown in Figure 5C, HA water extract increased 

cleaved caspase-3 and cleaved PARP-1 in CO115 cells. In HCT15, we did not observe 

cleaved caspase-3 or cleaved PARP-1, although a decrease in total PARP-1 was 

detected. A higher expression level of total PARP-1 was observed in HCT15 as 

compared to CO115 cells. The cleavage of caspase-3 and PARP-1 were also induced by 

staurosporine, an apoptotic inducer used here as positive control, in both cell lines (data 

not shown).   

 

 

 

 

 
 

Figure 5. Effects of Hypericum androsaemum (HA) for 48 h on the levels of phospho-p38 (A), phospho-
JNK (B) and caspase-3 and PARP-1 (C)  in HCT15 and CO115 cells at 85 µg/ml (HA85), 65 µg/ml 
(HA65) and 45 µg/ml (HA45), using western blot. β-Actin was used as loading control. Images are 
representative of at least 3 independent experiments.  
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Figure 6. Proposed model for the inhibition of cell proliferation and induction of apoptosis in colon 
cancer cells by Hypericum androsaemum (HA), in particular with effects on PI3K/Akt, MAPK/ERK, 
JNK and p38 signaling pathways. The anticarcinogenic effect of HA could be due to an inhibition of 
PI3K/Akt pathway, a decrease on BRAF mutation leading to an inhibition of MAPK/ERK pathway and 
an induction of both p38 and JNK signalling.  

 

Discussion 

 

 In the present study, the potential anticarcinogenic effects of water extracts of 

the medicinal plants H. androsaemum, H. perforatum and H. undulatum, as well as, the 

main phenolic constituent present in HA extract, chlorogenic acid (CA), were studied in 

vitro using HCT15 and CO115 human colorectal-derived cell lines. The extracts HU 

and HP did not show significant effects on cell viability in both cell lines. Previously we 

showed that quercetin has antiproliferative effects on these colorectal cancer cells [32], 

and since HU and HP water extracts are rich in quercetin and related compounds, these 

results were somewhat surprising. On the other hand, HA efficiently inhibited cell 

proliferation and induced apoptosis in a concentration-dependent manner in both cell 

lines. CO115 cells showed to be more sensitive to HA extract (IC50 ~65 µg/ml) when 

compared with HCT15 cells (IC50 ~85 µg/ml). As far as we know, this is the first report 
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of the anticarcinogenic effect of H. androsaemum, which is popularly used to treat 

problems of the gastrointestinal tract. Anticarcinogenic activities have been found for H. 

perforatum in other cell types [16-19] and related with one of its main constituents, 

hypericin [20-22], which is present in HP and HU water extracts (although at very small 

amounts) but not in the water extract of H. androsaemum [35]. These results suggest 

that the anticarcinogenic effects observed for HA reflect the presence of other 

compounds in this species. We, therefore, studied the antiproliferative effect of the CA, 

which is abundant in HA and present only in small amounts in HP and HU. However, 

this compound did not have any effect on cell proliferation in neither of the cell lines at 

the concentrations tested.  

The differences on genetic background of the two cell lines used allowed the 

study of the relevance of KRAS mutation versus BRAF mutation for HA’s effects. In 

CO115 cells (that harbour a BRAF mutation and overexpress Akt) a significant 

decrease of phospho-Akt expression was observed in a concentration-dependent 

manner. HA had no effect on PTEN, the endogenous inhibitor of PI3K, in HCT15 cells. 

These results show the ability of HA to decrease PI3K/Akt signalling probably by 

inhibiting PI3K activity, as happens with the inhibitors W and LY, and have also been 

shown for some flavonoids, such as quercetin [32, 36, 37]. HA was also able to decrease 

MAPK/ERK signalling in CO115 cells, as shown by a significant decrease in the 

phospho-ERK expression levels, an effect also observed with the inhibitor PD [38]. 

Importantly, HA also decreased BRAF expression in these cells. Since HA did not 

affect the expression of phospho-ERK or BRAF in HCT15, our results indicate that the 

HA water extract only affects mutant BRAF. Previous studies have shown that 

pharmacologic inhibition of RAF is highly effective at inhibiting the growth of BRAF 

mutant CRC cells [39]. Moreover, recent reports found that RAF inhibitors block 

MAPK signalling in tumor cells harbouring mutant BRAF but activate RAF-MEK-ERK 

pathway in cells harbouring wild-type BRAF, indicating the importance to inhibit 

specifically mutant BRAF to avoid secondary effects [40, 41]. It seems that the 

anticarcinogenic effects of HA in CO115 cells are, at least in part, related to an 

inhibition of PI3K/Akt and MAPK/ERK pathways, and the latter effect is associated 

with decreased levels of mutant BRAF (Figure 5). CA, the main phenolic compound 

present in HA water extract, has no effect on levels of phospho-Akt, phospho-ERK and 

BRAF in CO115 cells. 
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Regarding the RAS oncogene, no changes on the levels of KRAS induced by 

HA extract were observed in neither of the cell lines. Previously, we have shown that 

quercetin, at around 20µM, inhibits the proliferation of these cell lines in association 

with a decrease in KRAS levels [32]. Although the HA extract contains quercetin and 

glycosides of quercetin, their concentrations are low (less than 5µM), which may 

explain the lack of effect on KRAS. Mainly in the HCT15 cells that harbour the KRAS 

activating mutation, the HA-induced inhibition of cell proliferation and increased 

apoptosis seems to not result from effects on MAPK/ERK or PI3K/Akt pathways. Since 

no effect on cell proliferation was observed for CA when tested individually, other 

compounds or a synergism between the compounds present in the water extract of HA 

may be responsible for the inhibitory effects observed. Studies with CA in skin cancer 

have shown that this phenolic acid has an anti-inflammatory effect, interfering with NF-

kβ activation and COX-2 activity, and has an inhibitory effect on skin cancer promotion 

[42, 43]. However, studies in CRC agree with our results where no effect on colonic cell 

proliferation has been observed for CA [43, 44]. 

The effect of HA on two other major MAPK pathways, the p38 and JNK, were 

also studied, since these stress-activated kinases are also involved in the control of 

proliferation and/or apoptosis. HA significantly induced the phosphorylation of p38 and 

JNK in both cell lines (Figure 5). HA could act on an upstream regulator of both 

pathways which could explain, at least in part, the anticarcinogenic activity [10, 45] of 

HA in these cells, and in particular in HCT15 cells. An induction of caspase-3 and Poly 

(ADP-ribose) polymerase-1 (PARP-1) cleavage was also observed in CO115 cells when 

incubated with HA. The induction of JNK by the extract may contribute to the 

activation of the mitochondrial caspase cascade [12] and lead to the high levels of 

apoptosis observed in these cells. On other hand, in HCT15 cleavage of caspase-3 or 

PARP-1 were not observed despite the induction of JNK. In fact, these cells showed to 

be more resistant to apoptosis. Also in a previous studied [32], the ability of quercetin to 

induce apoptosis in HCT15 cells was weak, and independent of caspase induction. The 

p53 mutation in HCT15 cells [33] may explain the high apoptosis resistance of these 

cells [46, 47]. In HCT15, the antiproliferative effect of HA is much more relevant then 

the effect on apoptosis, which suggests that effects on cell cycle could be involved 

through induction of p38 [10].  
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Conclusion 

Our study shows that the water extract of H. androsaemum inhibits cell 

proliferation and induces apoptosis in CRC-derived cell lines more efficiently than H. 

perforatum, the most well known Hypericum species. The effects of HA may partially 

result from a specific inhibition of mutant BRAF, which leads to an inhibition of 

MAPK/ERK pathway only in BRAF mutant cells. Inhibition of PI3K/Akt pathway, as 

well as, an induction of both p38 and JNK pathways may also contribute to the 

anticarcinogenic activity of HA. Chlorogenic acid, the main phenolic compound present 

in the HA extract, seems not to be responsible for the anticarcinogenic effects observed. 

These data add H. androsaemum to the list of potential plants used in dietary strategies 

for the control of CRC progression and, as source of anticarcinogenic compounds. 
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ABSTRACT 
 
KRAS and BRAF mutations are frequent in colorectal carcinoma (CRC) and have the poten- 
tial to activate proliferation and survival through MAPK/ERK and/or PI3K signalling path- 
ways. Because diet is one of the most important determinants of CRC incidence and 
progression, we studied the effects of  the dietary phytochemicals quercetin  (Q),  luteolin 
(L) and ursolic acid (UA) on  cell proliferation and apoptosis in two human CRC derived cell 
lines, HCT15 and CO115, harboring KRAS and BRAF activating mutations, respectively. In 
KRAS mutated HCT15 cells, Q and L significantly decreased ERK phosphorylation, whereas 
in BRAF mutated CO115 cells the three compounds decreased Akt phosphorylation but had 
no effect on phospho-ERK. Our findings show that these natural compounds have antipro- 
liferative and proapoptotic effects and simultaneously seem to act on KRAS and PI3K but 
not on BRAF. These results shed light on the molecular mechanisms of action of Q, L and 
UA and emphasize the potential of dietary choices for the control of CRC progression. 

. 
 
 
 

 
1. Introduc tion 

 
    Colorectal carcinoma (CRC) is  the third most common 
cancer worldwide. In particular sporadic CRC correspond- 
ing  to  70–80%  of total cases [1]  is influenced by  environ- 
mental  factors,  many  of   which  diet  related  [2].   The 
mitogen-activated protein kinase/extracellular signal-reg- 
ulated  kinase (MAPK/ERK)  and the phosphatidylinositol 
3-kinase (PI3K)/Akt are signalling pathways that have been 
implicated in oncogenic transformation in CRC. They  con- 
fer  a  proliferative phenotype  and resistance to  therapy 
which is  reflected in  low  patient  survival [3–7]. Compo- 
nents of  MAPK/ERK and PI3K/Akt   pathways  constitute, 
therefore, molecular targets for  anticancer strategies [8– 

 
 

 

 

10].  Mutations of either KRAS (32%) or  BRAF (14%) genes 
occur alternatively [11]  in CRC, causing activation of either 
MAPK/ERK and PI3K pathways or  MAPK/ERK pathway, 
respectively. Activation of  MAPK/ERK pathway  regulates 
the expression of a  large number of proteins involved in 
the  control of cell proliferation, differentiation and apopto- 
sis [4,12]. Activation of PI3K gene and inactivation of PTEN, 
common in  CRC, result in  overexpression of downstream 
targets, including Akt and PKC, which promote cell growth 
and rescue from apoptosis [13–17]. 

Epidemiological studies show that cancer incidence is 
inversely correlated with the consumption of diets rich  in 
fruits and vegetables [18].  Natural compounds present in  
the  diet, such  as   resveratrol and  curcumin have been 
shown to  be  protective against cancer, contributing to  de- 
crease cancer risk  and progression rate through their ef- 
fects  on   signalling pathways  related  to  proliferation and 
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apoptosis [18,19]. Studies in  cell  lines and animal models 
have shown that flavonoids inhibit cell  proliferation and 
induce apoptosis in many types of cancer cells  through dif- 
ferent signalling pathways, which corroborate the sugges- 
tion that dietary choices may limit cancer progression [20– 
22].  Quercetin (Q) and luteolin (L) (Fig. 1)  are  two flavo- 
noids found in fruits, vegetables and aromatic plants with 
high antioxidant activity [23]  to  which anticancer proper- 
ties   in  CRC are  attributed [24–27]. In  addition, a  recent 
study  showed that  quercetin reduces the  formation of 
aberrant crypt foci  in  a rat colon cancer induction model, 
suggesting the importance of  this compound also  in  the 
prevention of colon cancer by decreasing cancer initiating 
events [28].  Although structurally related, the absence of 
the hydroxyl group at position 3 of L renders it more lipo- 
philic than Q which may confer better access to intracellu- 
lar targets. In agreement with this, we have previously 
shown that L  is  a  more potent intracellular antioxidant 
than Q, and that this was  related with its higher lipophilic- 
ity  [23].  Ursolic acid  (UA; Fig. 1), a natural pentacyclic tri- 
terpenoid  carboxylic acid,   present ubiquitously in  plant 
foods and  also   a  major constituent  in  some  medicinal 
plants possesses a wide range of biological activities, such 
as hepatoprotective and anti-inflammatory combined with 
low  toxicity [29–31]. However, contrarily to Q and L, UA is 
not   an  antioxidant at relevant cellular redox conditions 
[32].   Antitumor properties  have also   been attributed to 
UA and in colon cancer cells  UA has  been shown to induce 
apoptosis and inhibit proliferation [33–35]. Although po- 
tential  effects on   proliferation  have  been  described  for 
these three  compounds their effects on  MAPK/ERK and 
PI3K pathways have not  been established. 

In spite of the general benefit of plant rich  diets, varia- 
tion in  cancer incidence among individuals with similar 
dietary habits suggests interactions of  food  constituents 
with genetic factors [2,18]. In the present study we  report 
on  the effects of Q, L and UA on  two human derived cell 
lines which harbor different oncogene activating muta- 
tions, representative  of  a  large number  of  CRC: HCT15 
has  a  KRAS (G13D)  mutation [36]  whereas CO115  has  a 
BRAF (V599E)  mutation [37].  These mutations impact on 
MAPK/ERK and PI3K  pathways.  The relevance of  effects 
on  both these pathways for  successful cancer treatment 
has  recently been emphasized [38].  CRC remains a human 
malignant tumor often resistant to available treatment and 
knowledge of anticancer properties of dietary constituents 
may guide dietary choices for cancer patients with partic- 
ular genetic backgrounds and possibly also  suggest their 
use  in combination with conventional therapy in order to 
enhance therapeutic effects [39,40]. 

 

2.  Material and methods 

 
2.1.  Reagents and  antibodies 

 
Quercetin (Q), ursolic acid (UA), wortmannin (W) and 3- 

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro- 
mide (MTT) were purchased from Sigma–Aldrich (St. Louis, 
MO,  USA). Luteolin (L)  was   from Extrasynthese  (Genay, 
France) and PD-98059 (PD)  from Calbiochem (San  Diego, 
CA). All other reagents and chemicals used were of analyt- 
ical grade. Stock  solutions of Q, L and UA were made in di- 
methyl sulfoxide (DMSO) and aliquots kept at —20 °C. 

Primary antibodies were purchased from the following 
sources: Cell Signaling (Danvers, MA, USA) the anti-p44/ 
42  MAPK (ERK1/2)  total, anti-phospho-Akt (Ser473), anti- 
Akt   total,  anti-phospho-PTEN (Ser380/Thr382/383)  and 
anti-PTEN total; Santa Cruz Biotechnology, Inc. (Santa Cruz, 
CA, USA) the anti-phospho-ERK1/2, Raf-B and K-Ras;  and 
Sigma–Aldrich the anti-b-actin. Secondary antibodies HRP 
donkey anti-rabbit and sheep anti-mouse were purchased 
from GE Healthcare (Bucks, UK). 

 
2.2.  Cell culture 

 
HCT15 and CO115  human colon carcinoma-derived cell 

lines were maintained at 37 °C in  a  humidified 5% CO2 

atmosphere in  RPMI-1640 medium  (Sigma–Aldrich) sup- 
plemented with 10 mM  HEPES, 0.1 mM  pyruvate, 1% anti- 
biotic/antimycotic solution (Sigma–Aldrich) and 10% fetal 
bovine serum (FBS; EU standard, Lonza, Verviers, Belgium). 
Cells were seeded onto six  (2 ml)  and twelve (1 ml)  well 
plates at a  density of  0.75  x 105 (HCT15)  and 1.0 x 105 

(CO115) cells/ml.  Incubations  with  different  concentra- 
tions of test compounds were made in serum free  medium 
for 48 h for MTT test, BrdU incorporation and TUNEL assay, 
and for  24 h (Akt,  ERK and PTEN) or  6 h (BRAF and KRAS) 
for western blot  analysis. 

 
2.3.  Assessment of cell toxicity/proliferation by MTT reduction 
test 

 
A MTT reduction assay was  performed in order to select 

concentrations of the test compounds that were not  cyto- 
toxic and  significantly inhibited  cell   proliferation.  Cells 
were treated with test compounds for  46 h before the 2 h 
incubation  with  MTT   (final  concentration  0.5 mg/ml). 
Hydrogen chloride 0.04 M in  isopropanol was  then added 
to  dissolve the formazan crystals. The number of  viable 
cells  in each well  was  estimated by the cell capacity to re- 
duce MTT. The  results were expressed as percentage rela- 

 

 
 

Fig.  1.  Chemical structures of quercetin (Q),  luteolin (L) and ursolic acid (UA). 
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tive  to the control (cells without any  test compound). MTT 
reduction at the beginning of incubation (t = 0 h) was  sub- 
tracted from all  the experimental conditions used above, 
including the control. Since  the effects of the compounds 
were studied after 48 h of incubation and cells  grow signif- 
icantly within this time period, the point at the beginning 
of the incubation allows to distinguish between cell  death 
and inhibition of proliferation. MTT negative values indi- 
cate necrotic cell death due to cytotoxicity. Values between 
0% and 100% indicate inhibition of cell  proliferation. 

 
2.4.  Assessment of proliferation by BrdU incorporation 

 
After 45 h of treatment with test compounds at the cho- 

sen concentrations, cells  were incubated with bromode- 
oxyuridine 10 µM (BrdU;  Sigma–Aldrich) for  another 3 h. 
Both  adherent and non-adherent cells  were collected from 
each sample, fixed with 4% paraformaldehyde for 15 min at 
room temperature and attached into a polylysine treated 
slide using a  Shandon Cytospin (Thermo Fisher Scientific 
Inc, Waltham MA, USA). 

Cells  were incubated with HCl 2 M for  20 min,  washed 
in  PBS containing 0.5% Tween-20 and 0.05% BSA (TPBS-B) 
and  then  incubated  with  monoclonal mouse  anti-BrdU 
antibody (DakoCytomation, Glostrup, Denmark) for  1 h at 
room temperature.  After   washing in  TPBS-B, cells   were 
incubated with anti-mouse IgG FITC conjugated secondary 
antibody  (Sigma–Aldrich) for  1 h  at room temperature, 
washed again and then incubated with Hoechst for  nuclei 
staining. The  percentage of  proliferating cells  was  calcu- 
lated as the ratio between BrdU positive cells  and total cell 
number (nuclei staining with Hoechst) from a count higher 
than 500  cells  per  slide under a fluorescence microscope. 
Results are  presented as mean ± SEM of at least three inde- 
pendent experiments. 

 
2.5.  Assessment of apoptosis by TUNEL assay 

 
Cells  treated with the test compounds at chosen con- 

centrations for  48 h  were collected (both floating and at- 
tached  cells) and  fixed  with  4%  paraformaldehyde  for 
15 min at room temperature and attached to  a polylysine 
treated slide using a Shandon Cytospin. Cells were washed 
in  PBS and permeabilized with 0.1% Triton X-100 in  0.1% 
sodium citrate  for  2 min on   ice.  TUNEL (TdT  mediated 
dUTP  Nick  End  Labelling) assay  was   performed using a 
kit from Roche  (Mannheim, Germany), following the man- 
ufacture’s instructions. Cells were incubated with Hoechst 
for  nuclei staining. The  percentage of apoptotic cells  was 
calculated from the  ratio between TUNEL positive  cells 
and total number of cells  (nuclei staining with Hoechst), 
from a count higher than 500  cells  per  slide under a fluo- 
rescence microscope. Results are  presented as mean ± SEM 
of at least three independent experiments. 

 
2.6.  Protein extraction and  western blotting 

 
After treatment with the chosen concentration of test 

compounds,  cells   were washed with PBS and  lysed for 
15 min at 4 °C  with ice  cold   RIPA buffer (1%  NP-40 in 
150  mM  NaCl, 50 mM  Tris  (pH  7.5),  2 mM  EDTA), supple- 

 

mented with 20 mM NaF, 1 mM phenylmethylsulfonyl fluo- 
ride (PMSF), 20 mM Na2V3O4 and protease inhibitor cocktail 
(Roche, Mannheim, Germany). Protein concentration was 
quantified using a Bio-Rad  DC protein assay (Bio-Rad Labo- 
ratories, Inc., Hercules, CA, USA) and BSA used as a protein 
standard. Twenty micrograms of total protein from each cell 
lysate were separated by SDS gel electrophoresis and then 
electroblotted  to   a  Hybond-P polyvinylidene difluoride 
membrane (GE Healthcare). Membranes were blocked in 
TPBS (PBS with 0.05% Tween-20) containing 5% (w/v) non- 
fat dry milk or BSA (bovine serum albumin), washed in TPBS 
and then incubated with primary antibody. After  washing, 
membranes were incubated with secondary antibody con- 
jugated with IgG horseradish peroxidase and immunoreac- 
tive  bands were detected using the Immobilon solutions 
(Millipore, Billerica, MA, USA) under a chemiluminescence 
detection system, the Chemi Doc XRS (Bio-Rad Laboratories, 
Inc.). Band area intensity was  quantified using the Quantity 
One software from Bio-Rad. b-actin was used as loading con- 
trol.  Results are  presented as mean ± SEM of at least three 
independent experiments. 

 
2.7.  Statistical analysis 

 
One-way ANOVA followed by  the Student-Newman– 

Keuls  test was  used to  perform statistical analysis, using 
GraphPad Prism 4.0  software (San  Diego,  CA, USA), and P- 
values ≤ 0.05  were considered statistically significant. 

 
3.  Results 

 
3.1.  Effects  of Q, L and UA on  cell  p ro life rat ion  

 
In order to choose doses that do not cause significant toxicity (necro- 

sis) and have antiproliferative effects on the two human CRC derived cell 
lines , HCT 15 and CO 11 5, a MTT assay was performed with different con- 
centrations of the test compounds. The  results showed that necrotic cell 
death  (negative values in Fig.   2)  occurred  in  HCT15 cells with  L  at 

20 µM and in CO115 with UA at 15 µM. All the test compounds inhibited 
cell proliferation in a concentration-dependent  manner in both cell lines 
as shown by  MTT  assay (Fig.  2). Both reference inhibitors, wortmannin 
(W) and PD-98059 (PD),  at the higher tested concentration did not induce 
cell toxicity. Based on MTT results, three concentrations of Q, L and UA (2 
in case of CO1 15 ce lls ) that inhibited cell proliferation without significant 
toxic effects, were selected and used in the following BrdU and TUNEL 
assays. 

For the BrdU incorporation assay, cells were treated with compounds 
for  48 h.  As shown in Fig.  3, a significant inhibition of  proliferation indi- 
cated by  lower levels of  BrdU incorporation  was observed for  Q,  L and 
UA in both cell lines, in a dose dependent manner. In HCT15 ce lls , the lev- 
els  of  BrdU incorporation  decreased  from 22.0%  in  the   cont ro l  to  5.2%, 

3.4%  and 9.8%  in cells treated  with Q  20 µM,  L 15 µM  and UA  4 µM , 
respectively (Fig.  3a). In  CO115 cells, the percentage of  cell proliferation 
significantly decreased  from 19.1%   in the  control to 3.8%,  11.1%   and 

10.2%  in cells treated with Q 15 µM, L 12 µM and UA 10 µM , respectively 
(Fig. 3b). The  structurally-related flavonoids, Q and L, showed different re- 
sponses in the two cell lines: L was a stronger proliferation inhibitor in 
HCT15 than  in CO115, whereas  Q was more effective in CO115 than in 
HCT15. The   reference inhibitors, W,  a PI3K  inhibitor, and PD,  a phos- 
pho-ERK inhibitor,  significantly  inhibited  cell  proliferation  in  HCT15 
and CO115 cells, respectively (Fig.  3). 

 
3.2.  Effects  of Q, L and UA on  apoptos is  

 
The ability of the test compounds to induce apoptosis was addressed 

by the TUNEL assay. As shown in Fig.  4, all compounds significantly in- 
duced  apoptosis  in  both  HCT15 and  CO115 cells. Apoptotic cells in 
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Fig.  2.  Effect of  treatment with different concentrations of  quercetin (Q),  luteolin (L) and ursolic acid (UA)  for  48 h 
on MTT  reduction in HCT15 (a)  and CO115 (b)  cells. Wortmannin  (W) and PD-98059 (PD)  were used as reference 
inhibitors of  PI3K/Akt and MAPK/ERK  pathways, respectively. Values are mean ± SEM  of at least three independent 

experiments. * P ≤ 0.05, ** P ≤ 0.01 and *** P ≤ 0.001 when compared to control. 
 
 

HCT15 increased from 0.3% in the control to 4.4%, 3.9% and 6.6% in cells 
treated  with  the  higher concentrations of   Q,  L  and UA,  respectively 
(Fig. 4a). In CO115 cells, apoptotic cells increased from 1.9% in the control 
to 36.2%,  15.1%  and 12.4%  in cells treated with the higher concentrations 
of Q, L and UA, respectively (Fig. 4b). Between the two flavonoids, Q seems 
to be a more potent inducer of apoptosis in both cell lines compared to L. 
In  addition, UA sho wed  to be th e  most  e ffect ive  in  HCT1 5, where it in- 
duced 20 times more apoptosis at 4 µM when compared with control. 

 
3.3.  Effects  of Q, L and UA on  ERK phosphorylation 

 
Activation of MAPK/ERK pathway is representative of a large number  

of CRC cases and the phosphorylation of ERK is an indicator of this activa- 
tion. We observed high levels of  phospho-ERK in both cell lines (Fig.  5). 
Incubations with L (15 µM ) and Q (20 µM ) significantly decreased phos- 
pho-ERK protein  level in HCT15 cells (Fig.  5a), but not in CO115 cells, 
while UA did not have any effect on either of  the cell lines (Fig.  5a and 
b).  A significant reduction of  phospho -ERK by  PD,  a reference inhibitor 
of  MAPK/ERK  pathway, was observed in both cell lines. Interestingly, L 
was a stronger inhibitor of ERK in HCT15 ce lls than the reference inhibitor 
PD and than the structure-related compound Q. 

 
3.4.  Effects  of Q, L and UA on  Akt phosphorylation 

 
Because MAPK/ERK  and PI3K/A kt pathways are both activated by RAS, 

we also checked if th e PI3K/A kt  pathway was affected by  the test com- 
pounds, measuring  phospho-Akt and phospho-PTEN expression  levels. 
In  HCT15 cells, there  were  no detectable  amounts  of  phospho-Akt, in 
incubations with and without serum (Fig.  6a). High expression  levels of 
phospho-PTEN were  detected  in HCT15 cells but  were  not  altered  by 
the  test  compounds (data  not  shown). In   CO115 cells, phospho-Akt 

expression was observed and significantly decreased by   Q  (15 µM ),  L 

(12 µM )  and UA (10 µM ),  as shown in Fig.  6b. Wortmannin, a reference 

PI3K   inhibitor,  also significantly decreased  Akt   phosphorylation, con- 
trarily to PD  that did not alter phospho-Akt levels in CO115 cells. Phos- 
pho-PTEN and total PTEN  expression were not observed in CO115 cells, 
in medium with and without serum, in contrast with what was observed 
with HCT15 cells (Fig.  6c). The  lack of  phospho-Akt  in HCT15 and PTEN 
signal in CO115 cells was reproducible and checked in the presence of  a 
positive reactive sample (Fig.  6a and c).  These observations seem, there- 
fore, also not to be the  result of  protein degradation during protein 
extraction or sample preparation. 

 
3.5.  Effects  of Q, L and UA on  KRAS and BRAF exp ress ion  

 
To check if the effects of the test compounds reflect direct effects on 

KRAS or BRAF, expression of  these proteins was also monitored by  wes- 
tern blot. As shown in Fig. 7, Q and L remarkably decreased the expression 
of  KRAS but not BRAF in both cell lines. UA  significantly changed the 
expression of KRAS only in HCT15 ce lls, but not as efficiently as the flavo- 
noids. No  significant changes were induced by  UA in BRAF expression. 

 
4.  Discussion 
 

The effects of quercetin (Q), luteolin (L) and ursolic acid 
(UA), natural compounds common in  diets rich  in  fruits 
and vegetables, were studied in two different human colon 
carcinoma-derived  cell   lines representative  of  common 
CRC cases. We observed that the three test compounds, 
at concentrations that did not induce significant cell toxic- 
ity  (necrosis), inhibited proliferation and induced apopto- 
sis    in    both  cell    lines  in    a   concentration-dependent 
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Fig.  3.  Effect on cell proliferation of different concentrations of quercetin (Q), luteolin (L), ursolic acid (UA) and 
reference compounds, wortmannin (W) and PD-98059 (PD),  for  48 h in HCT15 (a)  and CO115 (b)  cells, using the 

BrdU incorporation  assay. Values are mean ± SEM  of  at least three independent experiments. * P ≤ 0.05, ** P ≤ 0.01 

and *** P ≤ 0.001 when compared to control. 
 
 
 

manner. The  purpose of the present study was  to  identify 
in  HCT15  and CO115  cells  molecular targets for  Q, L and 
UA related with their antiproliferative and proapoptotic ef- 
fects.  HCT15 and CO115 have activating mutations of KRAS 
and BRAF, respectively. 

Q and L decreased the expression of phospho-ERK in the 
KRAS mutated HCT15 cell line  but not  in the BRAF mutated 
CO115  cell line.  These results suggest that the BRAF muta- 
tion in CO115  cells  overrides any  inhibitory effect of Q and 
L on  phospho-ERK, indicating that  these flavonoids act  on 
KRAS upstream of BRAF (Fig. 8). This was  further confirmed 
by  a decrease in  the expression of KRAS but not  BRAF  in- 
duced by both flavonoids. Our  findings corroborate recent 
reports where quercetin treatment resulted in a reduction 
of  Ras  protein levels in  colon cell  lines expressing onco- 
genic Ras [41,42]. A recent study in skin epidermal cell line, 
showed a different effect of quercetin, which in these cells 
inhibited both Raf and MEK activity [43].  In addition, we 
observed in HCT15 cells  that Q and L decreased phospho- 
ERK levels as efficiently as PD-98059 (PD), a specific inhib- 
itor  of MEK downstream of RAF [44].  Inhibition of prolifer- 
ation and induction of apoptosis by Q and L in HCT15 cells 
does however not  seem to  be  due to  phospho-ERK inhibi- 
tion alone since PD inhibited  phospho-ERK but was  with- 
out  effect on  cell  proliferation and induction of apoptosis. 
This  finding is  in  agreement with other reports [10,45], 

 

which showed that tumor cells  carrying KRAS mutation 
do  not   rely   only   on  MAPK/ERK pathway to  proliferate. 
Since  HCT15 cell  proliferation was  inhibited by  wortman- 
nin  (W), a PI3K inhibitor, it seems that inhibition of prolif- 
eration by Q and L treatment could be through inhibition of 
PI3K dependent pathways. Contrarily to  a previous report 
[46],  we  did  not  detect phospho-Akt in HCT15 cells,  which 
could be explained by the high levels of phospho-PTEN ob- 
served (Fig. 8). It is known that other downstream targets 
of  PI3K  besides Akt  also   contribute to  cell  proliferation 
and apoptosis, such as PKC, which is known to be inhibited 
by Q and L [47–51]. PKC isozymes have been shown to  be 
commonly deregulated in  colon cancer and other natural 
compounds, such as curcumin, have also  shown to  inhibit 
PKC in  CRC cells  [17].  Thus,  inhibition of  proliferation in 
HCT15 cells  by Q and L seems to be due to effects on KRAS, 
affecting not  only  the MAPK/ERK pathway but also  other 
alternative pathways, such as PI3K/PKC pathway. However, 
apoptosis induced by Q and L in HCT15 cells  does not  seem 
to  be  due to  inhibition of  PI3K, since W  did  not   induce 
apoptosis in this cell  line.  Other apoptotic targets of these 
compounds should be  considered. 

Studies have shown that BRAF mutated cell  lines rely 
more on  MAPK/ERK pathway for  proliferation than KRAS 
mutated cell  lines [10,45]. However, our  results show that 
the dependence of CO115  cells  on  MAPK/ERK pathway for 
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Fig.  4.  Effect on apoptosis of different concentrations of quercetin (Q), luteolin (L) and ursolic acid (UA) and reference 
compounds, wortmannin (W) and PD-98059 (PD),  for  48 h in HCT15 (a)  and CO115 (b)  cells, using the TUNEL assay. 

Values are mean ± SEM of at least three independent experiments. *P ≤ 0.05,** P 6 0.01 and *** P ≤ 0.001 when 
compared to control. 

 

 
 

 
 

Fig.  5.  Effects of  treatment with quercetin (Q),  luteolin (L) and ursolic acid (UA)  for  24 h on phospho-ERK 
expression  in HCT15 and CO115 cells, using western blot. β-Actin was used as loading control. (a)  HCT15 cells 
were treated with L 15 µM  (L15), Q 20 µM  (Q20) and UA 4 µM  (UA4) in serum free medium. (b)  CO115 cells were 
treated  with 12 µM L (L12), 15 µM Q (Q15) and 10 µM UA (UA10) in serum free medium. Wortmannin 1 µM (W1) 
and PD-98059 50 µM (PD50) were used as reference inhibitors of PI3K and MEK, respectively, in both cell lines. Values 

are mean ± SEM of at least three independent experiments. * P ≤ 0.05 and *** P ≤ 0.001 when compared to control. 
 
 

proliferation is not  exclusive, since all test compounds in- 
hibit  proliferation  without  affecting phospho-ERK levels. 
CO115  cells,  besides harboring a BRAF mutation, also  pres- 
ent high PI3K activity [52].  In agreement with this, a high 
expression of phospho-Akt was  observed while PTEN was 
not  detectable. Our   results show a significant decrease in 

phospho-Akt expression by  Q, L and UA. These suggest an 
inhibition of PI3K activity, in  addition to  an  inhibition  of 
KRAS (Fig.  8).  Several studies have shown that quercetin 
and analogs are  potent inhibitors of PI3K activity [53,54]. 
However, W although inhibiting phospho-Akt, did  not  in- 
hibit proliferation or  induce apoptosis. The  effect of  the 
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Fig.  6.  Effects of treatment with quercetin (Q), luteolin (L) and ursolic acid (UA) for  24 h on phospho-Akt expression 
and phospho-PTEN levels in HCT15 and CO115 cells, using western blot. β-Actin was used as loading control. (a)  
HCT15 cells were cultured in medium without and containing 2% or 10% serum (FBS) and CO115 cells were cultured 
in serum free medium. (b)  CO115 cells were treated with UA 10 µM (UA10), Q 15 µM (Q15) and L 12 µM (L12) in 
serum free medium. Wortmannin 1 µM (W1) and PD-98059 50 µM (PD50) were used as reference inhibitors of PI3K 
and MEK, respectively. (c)  CO115 cells were cultured in medium without and containing 2% or 10% FBS and HCT15 

cells were cultured in serum free medium. Values are mean ± SEM of at least three independent experiments. *** P ≤ 
0.001 when compared to control. 
 

 
 
natural compounds on  PI3K may,  therefore, only  partially 
explain their antiproliferative and proapoptotic activities 
in  CO115  cells.  The  inhibition of  phospho-Akt and phos- 
pho-ERK by Q and L has  been reported in human hepatoma 
cell  line  (HepG2) and brain tumors [55–57]. 

Regarding UA, our   results show that this compound 
does not affect phospho-ERK expression, being only  effec- 
tive  in inhibiting phospho-Akt in CO115 cells. It seems that 
UA  does  not   affect significantly  KRAS (although it  de- 
creased expression levels in  HCT15  cells) and has  PI3K as 
one  of its  molecular targets. Interestingly, it was  the most 
efficient proliferation inhibitor and inducer of apoptosis in 
HCT15 cells,  which do not  express phospho-Akt. Contrarily 
to  the effects of  the antioxidants Q and L, the antitumor 
properties of  UA  through redox-sensitive pathways are 
most likely   not   the result of  its  reactive oxygen species 
scavenging ability, since it was  previously shown that UA 
is inactive as  free  radical scavenger [32].  Interestingly, all 

test compounds showed to  be  more efficient than the ref- 
erence compounds, PD and W, in  inhibiting cell  prolifera- 
tion   and   inducing  apoptosis.  Their    wider   range   of 
molecular targets is therefore advantageous in the control of 
tumor progression [26]  and the importance of modulat- ing  
several signal transduction pathways associated with 
carcinogenesis is once again reinforced. 

In summary, the antiproliferative and proapoptotic ef- 
fects of Q and L seem to  be,  at least in part, due to  effects on  
KRAS through regulation of both MAPK/ERK and  PI3K 
pathways. The  BRAF mutation overrides the compounds‘ 
inhibition of KRAS on  the MAPK/ERK pathway but not  on 
the PI3K pathway. UA seems to  act  on  PI3K where Q and L 
may also  act,  independently of KRAS mutation. The  re- 
sults of  this study suggest, therefore, the applicability of 
these phytochemicals in dietary strategies and as possible 
adjuvants in  CRC therapy both in  KRAS and BRAF gene 
mutation profiles. 

 

 
 

 
 

Fig.  7.  Effects of treatment with quercetin (Q), luteolin (L) and ursolic acid (UA) for 6 h on KRAS and BRAF expression in 
HCT15 (a)  and CO115 (b)  cells, using western blot. β-Actin was used as loading control. Images and values are 
representative of three independent experiments. 
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Fig.   8.  Schematic representation  of  possible targets  
of  quercetin  (Q), luteolin (L) and ursolic acid (UA) on 
MAPK/ERK  and PI3K/Akt pathways in HCT15 and  
CO115 cell  lines,  which  may  lead  to  inhibition  of   
cell proliferation and induction of apoptosis. 
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Abstract  

Background: Colorectal carcinoma (CRC) is a common cause of cancer-related death. 

Tumors with microsatellite instability (MSI) have been shown to be resistant to 

chemotherapy with 5-fluorouracil (5-FU), the most widely used pharmacological drug 

for CRC treatment. It is therefore essential to find compounds that could contribute to 

treatment efficacy through increases in sensitivity to this drug.  

Aim and Methods: In this study, we used two MSI human CRC derived cell lines, 

CO115 that is wild-type for p53 and HCT15 that harbors a p53 mutation. The sensitivity 

of these cells to 5-FU was evaluated and the effects on apoptosis induction of co-

incubation of the flavonoids, quercetin (Q) or luteolin (L), with 5-FU were performed 

using TUNEL assay. The mechanisms of apoptotis induction of these flavonoids were 

assessed by western blot. 

Results: Our results demonstrate that CO115 is more sensitive to 5-FU than the p53 

mutant HCT15. The two cell lines also responded differently to the induction of 

apoptosis by the flavonoids. Apoptosis induction was higher and dependent on caspase 

activation in CO115 cells but not in HCT15 cells. In HCT15 cells, Q and L had an 

additive effect on apoptosis when combined with 5-FU. Q was the most efficient 

compound in enhancing the apoptotic effect of 5-FU in CO115 cells where a synergistic 

effect was observed. This effect seems to involve the mitochondrial caspase pathway 

since a remarkable increase in the expression of cleaved caspase 9, caspase 3 and PARP 

and a decrease in Bcl-2 expression were observed. 

Conclusion: This study suggests the potential applicability of these phytochemicals, 

especially Q, for enhancement 5-FU efficiency in CRC therapy in resistant MSI p53 

wild-type cells. 

 
Keywords: Quercetin, Luteolin, Colorectal carcinoma, Apoptosis, 5-Fluorouracil 
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Introduction 

 
  Chemotherapy with 5-fluorouracil (5-FU) is the basis for treatment of colorectal 

carcinoma (CRC), which is the third most common form of cancer in developed 

countries [1]. However, significant resistance to this drug has been reported [2]. Drugs 

such as irinotecan and oxaliplatin are used in combination with 5-FU and have 

demonstrated increase treatment efficacy although not in all patients [3-5]. Genetic 

variability is one important factor that regulates the response and toxicity of a drug and 

should be taken in account when a therapy is chosen [5]. The enzyme thymidylate 

synthase (TS) is essential for the synthesis of deoxythymidine-5’-monophosphate, a 

precursor for DNA replication. An inhibition of this enzyme by the active metabolite of 

5-FU (5-fluoro-2 -́deoxyuridine-5´monophosphatate) is the main mechanism of 5-FU 

action, resulting in DNA strand breaks and inhibition of DNA synthesis, induction of 

apoptosis and cell cycle arrest [6]. A constitutive activation of TS contributes to 5-FU 

resistance in some tumors [5]. 

Mutations in mismatch repair (MMR) genes result in the inability of the MMR 

system to correct DNA replication errors leading to the accumulation of mutations and 

giving rise to microsatellite instability (MSI). Tumors presenting MSI occur 

approximately in 15% of patients with sporadic CRC and are generally associated with 

resistance to 5-FU [7-9] . In vitro studies have shown that DNA MMR deficiency may 

be responsible for tumor resistance to 5-FU and clinical evidence is suggestive of little 

or no benefit from 5-FU treatment in MSI patients [7,8]. Previous studies have also 

shown that mutations in the gene P53 contribute to 5-FU resistance in CRC and have 

profound effects on drug responses [10] with reduced induction of apoptosis and 

inhibition of cell cycle [11,12]. In agreement with this, prognosis in patients having an 

MSI tumor with p53 mutation have been shown to be poor compared to the ones with 

wild-type p53 [13].  

The induction of apoptosis by 5-FU occurs through both the intrinsic and 

extrinsic pathways with activation of caspases [14]. In the intrinsic pathway, Bcl-2 

family proteins modulate mitochondrial membrane permeabilization, which leads to the 

release of cytochrome c and activation of caspase-9 that in turn activates the effector 

caspase-3. Activation of death receptors on the cell membrane (extrinsic pathway), 

which subsequently activates caspase-8 and caspase-3, may also be induced by 5-FU 

[14].  
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The c-Jun N-terminal kinase (JNK) and p38 are two stress-activated protein 

kinases of the family of the mitogen activated protein kinase (MAPK) that have key 

roles in inflammation, in controlling cell proliferation, differentiation and apoptosis, and 

their effects appear to be largely dependent on cell type and/or cellular context [15-18]. 

They are activated by diverse cellular stresses, including UV irradiation, oxidative 

stress, DNA damage, heat and osmotic shock [15]. Several studies in CRC cells show 

the ability of some phytochemicals, such as silibinin, curcumin and flavones to induce 

apoptosis through different signalling pathways [19-21]. Some of these dietary 

phytochemicals to which anticarcinogenic effects have been attributed are involved in 

the modulation of JNK and p38 signalling [22,23]. 

Compounds that alter the expression of apoptotic proteins may, therefore, 

contribute to decrease tumor malignance and chemoresistance [23]. In our previous 

study, we showed that quercetin (Q) and luteolin (L), two flavonoids found in fruits and 

vegetables, have antiproliferative effects in HCT15 and CO115 human CRC cells 

through regulation of KRAS and both MAPK/ERK and PI3K pathways [24]. HCT15 

and CO115 are two cell lines derived from sporadic MSI CRC: HCT15 harbors a P53 

inactivating mutation whereas CO115 is wild-type for this gene [25,26]. In the present 

study, we investigate the ability of Q and L to induce apoptosis in these MSI CRC cell 

lines and their possible therapeutic enhancing effect when used in combination with the 

pharmaceutical drug 5-FU. Our data suggest a therapeutic potential of these 

phytochemicals in combination with 5-FU in CRC, particularly for Q, in the MSI p53 

wild-type background.  

 

Material and methods 

 

Reagents and antibodies 

 Quercetin (Q), z-VAD-fmk (zVAD), staurosporine (STS), 5-Fluorouracil (5-FU) 

and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Luteolin (L) was purchased from 

Extrasynthese (Genay, France). Stock solutions of test compounds were made in 

dimethyl sulfoxide (DMSO) and aliquots were kept at -20ºC. All other reagents and 

chemicals used were of analytical grade. 

 Primary antibodies were purchased to the following sources: anti-cleaved 

caspase-9 and anti-phospho-p38 MAPK (Thr180/Tyr182) to Cell Signaling (Danvers, 



Cristina Xavier 

112 

 

MA, USA); anti-caspase-3 to Calbiochem (San Diego, CA); anti-Bcl-2, anti-Bax, anti-

PARP-1, anti-phospho-JNK, anti-JNK, anti-p38 total and anti-p53 to Santa Cruz 

Biotechnology, Inc. (Santa Cruz, CA, USA) and anti-β-actin to Sigma-Aldrich. 

Secondary antibodies HRP donkey anti-rabbit and sheep anti-mouse were purchased to 

GE Healthcare (Bucks, UK).   

 

Cell lines  

 HCT15 and CO115 human colon carcinoma-derived cell lines were maintained 

at 37ºC in a humidified 5% CO2 atmosphere in RPMI-1640 medium (Sigma-Aldrich) 

supplemented with 10mM HEPES, 0.1mM pyruvate, 1% antibiotic/antimycotic solution 

(Sigma-Aldrich) and 10% fetal bovine serum (FBS; EU standard, Lonza, Verviers, 

Belgium). Cells were seeded onto six (2ml) and twelve (1ml) well plates at a density of 

0.75×105 (HCT15) and 1.0×105 (CO115) cells/ml.  

 

Cell proliferation/viability assay  

 To investigate the effects of 5-FU on cell viability/proliferation in HCT15 and 

CO115 cells, the MTT reduction assay were used as described previously [24]. Cells 

were treated with different concentrations of 5-FU for 46h and then two more hours in 

the presence of MTT (final concentration 0.5 mg/ml). Hydrogen chloride 0.04M in 

isopropanol was then used to dissolve the formazan crystals. The number of viable cells 

in each well was estimated by the cell capacity to reduce MTT using a 

spectrophotometer. Results are presented as mean ± SEM of at least three independent 

experiments. 

 

TUNEL assay  

  TUNEL (TdT mediated dUTP Nick End Labelling) assay was performed to 

estimate the percentage of apoptotic cells in both cell lines treated for 48h with different 

concentrations of 5-FU alone and in combination with Q and L. The concentrations of Q 

and L used induce significant inhibition of cell proliferation without substantial necrotic 

death, as determined by BrdU assay and MTT test in our previous work using the same 

cells and conditions [24]. Both cell lines were also treated with Q and L in combination 

with 20µM z-VAD-fmk (zVAD), a general caspase inhibitor, for 48h, to assess the 

involvement of caspases activation in the apoptotic process induced by the test 
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compounds. Staurosporine (STS) 0.25µM, an apoptotic inducer, was also used as a 

positive control.  

After treatments, cells were collected (both floating and attached cells), fixed 

with 4% paraformaldehyde for 15min at room temperature and attached into a 

polylysine treated slide using a Shandon Cytospin. Cells were then washed in PBS and 

permeabilized with 0.1% Triton X-100 in 0.1% sodium citrate for 2min on ice. TUNEL 

assay was performed using a kit from Roche (Mannheim, Germany), following the 

manufacturer’s instructions. Hoechst was used for nuclei staining. The percentage of 

apoptotic cells was calculated from the ratio between TUNEL positive cells and total 

number of cells, from a count higher than 500 cells per slide under a fluorescent 

microscope. Results are presented as mean ± SEM of at least three independent 

experiments. 

 

Western blot analysis  

 Cells were treated with Q, L, 5-FU and STS alone and co-incubated with Q and 

5-FU for 48h and total cell lysates were prepared to measure the expression of different 

proteins. The cells were washed with PBS and lysed for 15min at 4ºC with ice cold 

RIPA buffer (1% NP-40 in 150mM NaCl, 50mM Tris (pH 7.5), 2mM EDTA), 

supplemented with 20mM NaF, 1mM phenylmethylsulfonyl fluoride (PMSF), 20mM 

Na2V3O4 and protease inhibitor cocktail (Roche, Mannheim, Germany). Protein 

concentration was quantified using a Bio-Rad DC protein assay (Bio-Rad Laboratories, 

Inc., Hercules, CA, USA) and BSA used as a protein standard. To perform western blot 

analysis, 20µg of protein were resolved by SDS-polyacrylamide gel and then 

electroblotted onto a Hybond-P polyvinylidene difluoride membrane (GE Healthcare). 

Membranes were blocked in TPBS (PBS with 0.05% Tween-20) containing 5% (w/v) 

non-fat dry milk or BSA (bovine serum albumin), washed in TPBS and then incubated 

with primary antibody. After washing, membranes were incubated with secondary 

antibody conjugated with IgG horseradish peroxidase and immunoreactive bands were 

detected using the Immobilon solutions (Millipore, Billerica, MA, USA) under a 

chemiluminescence detection system, the Chemi Doc XRS (Bio-Rad Laboratories, 

Inc.). Band area intensity was quantified using the Quantity One software from Bio-

Rad. β-actin was used as loading control. 
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Statistical analysis 

 Statistical analyses were done using t-test, GraphPad Prism 4.0 software (San 

Diego, CA, USA). P-values ≤ 0.05 were considered statistically significant.  

 

Results  

 
Colon cancer cells` sensitivity to 5-FU  

 The effect of 5-FU on cell growth and apoptosis in HCT15 and CO115 cells 

were established by the MTT and TUNEL assays, respectively. As shown in Figure 1a, 

5-FU was more effective in inhibiting cell growth in CO115 than HCT15. The 

concentrations that inhibit cell growth by 50% (IC50) are around 100µM in HCT15 and 

1µM in CO115. The differences in susceptibility of the two cell lines to 5-FU were also 

observed for the induction of apoptosis (Figure 1b). The concentrations of 5-FU that 

inhibited cell proliferation by around 50% and significantly increased apoptosis were 

selected for the next experiments (100µM for HCT15 and 1µM for CO115). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Effect on cell proliferation/viability (a) and apoptosis (b) of different concentrations of 5-
fluorouracil (5-FU), for 48h, in HCT15 and CO115 colon cancer cells, using MTT and TUNEL assay, 
respectively. Results are presented as mean ± SEM of at least 3 independent experiments. * P≤ 0.05, ** 
P≤ 0.01 and *** P≤ 0.001. In A, full line represents quantity of cells in the beginning of the assay (t=0h) 
and values below this after 48h incubation with test compound mean cell toxicity by necrosis; dot line 
represents the concentrations that inhibit cell growth by around 50% (IC50). 
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Combined effect of 5-FU and test compounds on apoptosis  

 The induction of apoptosis in both cell lines treated with Q or L, at 

concentrations that induce significant inhibition of cell proliferation without substantial 

necrotic death, as tested previously [24], and 5-FU (IC50) was monitored by the 

TUNEL assay. As shown in Fig.2, flavonoids induced a high rate of apoptosis in CO115 

cells when compared with HCT15. In HCT15 cells, L or Q in combination with 5-FU 

demonstrated an additive effect in the induction of apoptosis (Figure 2a). In CO115 

cells, L in combination with 5-FU showed an additive effect in apoptosis induction 

while Q demonstrated to synergistically induce apoptotic cell death when combined 

with 5-FU (Figure 2b). In all cases, the effects on apoptosis of co-incubations were 

higher than 5-FU alone or test compound alone.  

 

 

Fig.2. Effect on apoptosis by 5-fluorouracil (FU) 500, 100 and 1µM, quercetin 12µM (Q12) and luteolin 
12µM (L12) alone, as well as the natural compounds co-incubated with FU for 48h, in HCT15 (a) and 
CO115 (b) cells, using TUNEL assay. Results are presented as mean ± SEM of at least 3 independent 
experiments. *** P≤ 0.001, when compared with control; ++ P≤ 0.01, when compared with the respective 
natural compound alone; ## P≤ 0.01 and ### P≤ 0.001, when compared with FU alone; NS, not 
significant differences observed between each other.  
 

Effects on caspases and other molecular markers of apoptosis 

 In order to determine the role of caspase activation on the apoptotic effects of 

the test compounds, the caspase inhibitor zVAD was used and apoptosis measured by 

TUNEL assay. As shown in Figure 3a, apoptosis induced by the test compounds, Q and 

L, and the apoptotic inducer, STS, were not inhibited by zVAD in HCT15 cells. In 

contrast, in CO115 cells apoptosis was totally suppressed when test compounds and 
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STS were co-incubated with zVAD (Figure 3b). In addition, effects on caspase-3, 

caspase-9 and PARP expressions were analysed using western blot. As shown in Figure 

3c, in HCT15 cells, the test compounds, 5-FU and STS did not induce cleaved (active) 

caspase-9, and only STS induced cleavage of caspase-3 (active form) and cleavage 

PARP (inactive form). On the other hand, in CO115 cells cleaved caspase-9 and 

caspase-3 was observed with all test compounds as well as cleavage of PARP and/or a 

remarkable decreased of uncleaved PARP (active form). Interestingly, the expression 

levels of PARP are higher in HCT15 than in CO115. 

 

 

 
Fig.3. Effect of a caspase inhibitor zVAD-FMK (zVAD) 20µM on the apoptosis induction by quercetin 
12µM (Q12), luteolin 12µM (L12) and staurosporine (STS) 0.25µM, for 48h, in HCT15 (a) and CO115 
(b) cells, using TUNEL assay. Results are presented as mean ± SEM of at least 3 independent 
experiments. * P≤ 0.05, *** P≤ 0.001, when compared to control; ++ P≤ 0.01 and +++ P≤ 0.001, when 
compared with the respective compound alone; ## P≤ 0.01 and ### P≤ 0.001, when compared with 
zVAD alone; NS, not significant differences observed between each other. (c) Effects on caspase-9, 
caspase-3 and PARP-1 expressions, for 48h, of Q, L, 5-FU (FU) and STS alone, in HCT15 and CO115 
cells, by western blot. Images are representative of at least 3 independent experiments. 
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To further elucidate the apoptotic effects of the test compounds and 5-FU, the 

expression of p53, Bax and Bcl-2 were also analysed by western blot (Figure 4). It was 

observed that Q, L and 5-FU induce p53 in both cell lines, this effect being more 

remarkable for Q in CO115 cells. Expression of Bcl-2 was notably decreased by all the 

compounds in both cell lines and Bax expression increased only in HCT15 since CO115 

does not express Bax, as also shown by others [27].      

 

Fig.4. Effects on p53, Bax and Bcl-2 expressions, for 48h, of quercetin 12µM (Q12), luteolin 12µM 
(L12), staurosporine (STS) 0.25µM and 5-fluorouracil (FU) 1µM and 100µM, in HCT15 and CO115 
cells, by western blot. Images are representative of at least 3 independent experiments.  
 

Effects of Q and 5-FU in co-incubation on molecular markers of apoptosis 

To determine the possible causes of the synergistic effect of Q with 5-FU on the 

induction of apoptosis in CO115 cells, the expression of molecular markers was further 

evaluated. Co-incubation of Q and 5-FU synergistically increased the cleavage of 

caspase-3, caspase-9 and PARP and decreased Bcl-2 expression, but had no effect on 

p53 expression (Figure 5).  

 

Effects on JNK and p38 pathways  

 The possible involvement of the JNK and p38 pathways in the induction of 

apoptosis by the test compounds and 5-FU was also evaluated. Our results show no 

effect on phospho-JNK expression by Q, L and 5-FU in neither of the cell lines (Figure 

6a). In HCT15 cells no effect on phospho-p38 expression was observed by the 

flavonoids and 5-FU while in CO115 cells Q and L slightly increased the expression of 

phospho-p38 (Figure 6b). STS, an apoptotic inducer, significantly induced phospho-

JNK expression and decreased the expression of phospho-p38 in both cell lines. 
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Fig.5. Effects on caspase-9, caspase-3, PARP-1, p53 and  Bcl-2 expressions, for 48h, of co-incubation of 
quercetin 12µM (Q12) and 5-fluorouracil 1µM (FU1) in CO115 cells, by western blot. Images are 
representative of at least 3 independent experiments. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. Effect on phospho-JNK and total JNK (a) and phospho-p38 and total P38 (b) expressions, for 48h, 
of quercetin 12µM (Q12), luteolin 12µM (L12), 5-fluorouracil 1µM (FU1) and 100µM (FU100) and 
staurosporine (STS) 0.25µM, in HCT15 and CO115 cells, by western blot. Images are representative of at 
least 3 independent experiments.  
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Discussion 

 

5-Fluorouracil (5-FU) is the pharmacological drug most commonly used in CRC 

chemotherapy, however tumor cell resistance to this drug remains a significant concern. 

Several mechanisms of resistance involving failure to induce apoptosis have been 

reported to reduce the efficacy of 5-FU [6,12], such as MSI and mutant p53 [7,11,12]. 

Thus, new compounds are needed to use in combination with 5-FU to increase 

treatment efficacy. The potential of Q and L, two structurally related natural flavonoids, 

to enhance the apoptosis induction when used in combination with 5-FU on two MSI 

CRC cell lines, as well as their possible mechanisms of action, are presently reported. 

Inhibition of cell proliferation and induction of apoptosis by 5-FU were observed in a 

dose-dependent manner in both cell lines that showed, however, different 

susceptibilities to the drug. As expected, HCT15 cells harboring a p53 mutation were 

more resistant to 5-FU than CO115 cells (wild-type for p53). The anticancer effects of 

flavonoids are widely known, and we previously reported that both Q and L inhibited 

cell proliferation and induced apoptosis on CRC cells [24]. Here, we show that Q and L 

differently affect 5-FU cell death induction in two different genetic background CRC 

cell lines. 

Our data show a significant ability of Q and L to increase 5-FU induced 

apoptosis in both MSI cell lines. Q (in HCT15 cells) and L (in both cell lines) additively 

enhanced apoptosis induced by 5-FU. A remarkable synergistic effect was detected 

when treating CO115 cells with Q and 5-FU. The effect of this combination was even 

more pronounced than that of a 100 times higher concentration of 5-FU when tested 

alone. However, this synergistic enhancement of apoptosis in Q combined with 5-FU 

was only obtained in the p53 wild-type background of CO115 MSI cells. Other natural 

compounds, such as triptolide and rosiglitazone, have also been studied in combination 

with 5-FU and shown to enhance the anticancer effect of this drug in the microsatellite 

stable (MSS) HT-29 CRC cell line [28,29]. In another study, notoginseng and its 

ginsenosides were also shown to enhance the antiproliferative and pro-apoptotic effects 

induced by 5-FU in the MSI p53 wild type HCT116 cell line [30] using, however, high 

concentrations of compounds. 

 In a previous study, we have shown that Q and L induce apoptosis in both 

CO115 and HCT15 cells [24], at the concentrations tested here. The mechanisms of 

apoptosis induction by these flavonoids have, however, not been studied previously in 
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these cells and, as shown here, appear to be cell line dependent. We observed that, in 

CO115 cells, the caspase inhibitor zVAD totally abrogated apoptosis induction by Q 

and L. This was in agreement with the expression of apoptotic-associated markers, such 

as induction of cleavage (activation) of caspase-9 and caspase-3 as well as a decrease in 

Bcl-2 expression. It seems, therefore, that Q and L induce apoptosis via caspase 

dependent pathways in CO115 cells with a contribution of the mitochondrial pathway, 

even in the absence of Bax expression. The test compounds also induced p53 

expression, which indicate that they may induce apoptosis in p53 wild-type CO115 cells 

by modulating p53. The induction of apoptosis by 1µM 5-FU in CO115 cells was low, 

but caspase dependent. Although Q was the compound that more remarkably induced 

p53 expression, the synergism with 5-FU observed for Q in CO115 cells seems not be 

due to a further increase in p53 expression. A remarkable increase in the expression of 

cleaved caspase 9, caspase 3 and PARP as well as a decrease in Bcl-2 expression were 

observed when Q and 5-FU were combined, as compared with compounds alone. In 

addition, since Q and L inhibit the PI3K/Akt pathway in CO115 cells [24] and Akt is 

involved in the suppression of apoptosis contributing to the resistance of CRC cells to 

chemotherapy [31-33], the effect observed here may also have a contribution of an 

inhibition of Akt. 

On the other hand, in HCT15 cells zVAD did not inhibit apoptosis induced by 

any of the compounds or the reference inducer STS. The lack of caspase-dependent 

apoptosis was corroborated by the absence of cleaved caspase-9 and caspase-3 when 

these cells were incubated with Q and L, as well as with 5-FU. Low levels of cleavage 

of caspase 3 and PARP were, however, observed when these cells were treated with 

STS. It seems, therefore, that in HCT15 the test compounds did not induce apoptosis 

through caspase activation although they decreased Bcl-2 and increased Bax expression. 

Q, L and 5-FU also induced p53 expression in these cells. However, since HCT15 

harbors a P53 inactivating mutation, alteration in the expression of this protein is not 

expected to be of functional significance for apoptosis in these cells. In a previous study 

[24], we showed that the Q and L in HCT15 have an inhibitory effect on MAPK/ERK 

pathway. Since this pathway is also associated with an inhibition of apoptosis and drug 

resistance [34,35], this effect may also contribute to the enhancement of apoptosis of Q 

and L with 5-FU. 

Regarding the two stress-activated protein kinases, none of the flavonoids 

induced the JNK pathway in neither of the cell lines; they seem, however, to induce the 
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p38 pathway in CO115 cells. 5-FU also did not alter JNK or p38 expressions in neither 

of the cell lines.  The induction of apoptosis by Q and L in combination with 5-FU 

could, therefore, also have a contribution of an induction of p38 pathway in CO115 

cells. The lack effect of 5-FU on JNK pathway was also observed by others in HT-29 

cells [36], and effects of 5-FU on p38 stimulation have been reported in KM12C CRC 

cells [37]. On the other hand, our results show that STS induces phosphorylation of 

JNK and decreases p38 expression in both cells. The activation of JNK pathway by STS 

associated with an induction of apoptosis has only been reported in breast cancer cells 

[38] and the effect of this compound on these two stress activated kinases in CRC is not 

well established. The effect of 5-FU and the two flavonoids on these MAP kinase 

pathways seems to be largely dependent on cell type and treatment conditions.  

In conclusion, this study shows the potential applicability of Q and L in the 

enhancement of the apoptotic effects of 5-FU in MSI CRC cells. CRC MSI patients 

would gain from customized treatment modalities based on p53 status in order to 

enhance therapeutic efficacy. Although, the data provided here cannot be generalized to 

all CRC MSI cases, it suggests that treatment strategies, in particular with Q, may 

benefit selectively p53 wild-type MSI patients.  
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Abstract  

 

  Colorectal carcinoma (CRC) is a common cause of cancer-related death. 

Microsatellite instability (MSI) tumors with P53 mutation and thymidylate synthase 

(TS) activation have been shown to be resistant to chemotherapy with 5-fluorouracil (5-

FU), the most widely used pharmacological drug for CRC treatment. Here we tested 

effects of ursolic acid (UA), a natural triterpenoid, on cell death mechanisms in two 

MSI human CRC derived cell lines, one with mutant p53 and TS activation (HCT15) 

and the other wild-type for these two genes (CO115). In this study, we demonstrated 

that UA synergistically enhances apoptosis induced by 5-FU in HCT15 cells. This effect 

was associated with an activation of JNK by UA. A production of ROS levels by UA 

also showed to contribute to apoptosis induction. The increased apoptosis induced by 

UA in HCT15 and CO115 cell lines does, however, not explain all the cell death 

observed, which suggests the involvement of other types of cell death independent of 

caspases. The involvement of UA in the autophagic process was investigated. UA 

demonstrated to induce LC3 accumulation, an effect suppressed by inhibition of JNK. 

In conclusion, this study emphasises the potential of UA for enhancement apoptosis 

induced by 5-FU and suggest a role for UA on autophagy related cell death. 

Importantly, UA had a more pronounced effect on induction of cell death than 5-FU.  

 

 

 

Keywords: Ursolic acid, Colorectal carcinoma, Apoptosis, LC3, JNK, 5-Fluorouracil  
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Introduction 

 

 Colorectal carcinoma (CRC) is the second cause of death for cancer worldwide 

and 5-fluorouracil (5-FU) is the main chemotherapeutic agent used in the treatment of 

this disease.1 However, significant resistance to 5-FU has been reported, and drugs such 

as irinotecan and oxaliplatin are used in combination with 5-FU to increase treatment 

efficacy.2, 3 The enzyme thymidylate synthase (TS), essential for the synthesis of a 

precursor (deoxythymidine-5’-monophosphate) for DNA replication, is inhibited by the 

active metabolite of 5-FU (5-fluoro-2 -́deoxyuridine-5´monophosphatate) resulting in 

the induction of cell cycle arrest.1, 4 Resistance to 5-FU has associated with TS 

activation.1, 4 In addition, cells that harbour P53 mutations when exposed to 5-FU have 

also showed reduced apoptosis.5, 6 Tumors presenting microsatellite instability (MSI) 

status, which accounts for 15% of sporadic CRC, have demonstrated in vitro resistance 

to 5-FU,7-9 suggesting, little or no benefit from 5-FU treatment in MSI patients, 

although clinical evidences are not always consistent.9 These patients would clearly gain 

from new treatment modalities with enhanced efficacy.      

Apoptotic cell death is a fundamental cellular process that plays an important 

role during development and tissue homeostasis, that also has profound effects on 

cancer growth and progression.10 Apoptosis is one form of regulated cell death, also 

called programmed cell death. The apoptotic pathway is mediated by death receptors on 

the cell membrane (extrinsic pathway) or by the mitochondrial pathway (intrinsic 

pathway) and involves the activation of caspases.10, 11 Death by necrosis occurs when 

the cellular contents are released in an uncontrolled manner into the cell´s environment, 

due to a rapid and drastic induction of death. Necrosis is often associated with an 

inflammatory response.10 Other alternative cell death mechanisms have been proposed. 

Autophagy, or called type II cell death or autophagic cell death, although considered a 

mechanism of survival, has also been demonstrated to assume a role in cell death, 

especially when apoptosis is not functional.10, 11 Some natural products have 

demonstrated the ability to modulated apoptosis and autophagy through different 

signalling pathways in CRC, thereby contributing to reduce cell growth and increase 

cell death.12, 13  

The c-Jun N-terminal kinase (JNK), a stress-activated protein kinase of the 

family of the mitogen activated protein kinase (MAPK), has been implicated in many 

cellular events including apoptosis signalling.14, 15 JNK is activated by diverse cellular 
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stresses, such as UV irradiation, DNA damage, heat and osmotic shock and oxidative 

stress, and its function has been shown to be dependent on cell type and stimulus.15 JNK 

has been shown to induce apoptosis through TNF-α and via modulation of proapoptotic 

Bcl-2 family proteins.14 More recently, JNK was found to be a mediator of autophagy, 

contributing for autophagic cell death in some types of cancer cells.16-20 Studies have 

shown that an activation of JNK can mediate Beclin-1 expression18, regulate damage-

regulated autophagy modulator (DRAM),17, 21 as well as, mediate p53 

phosphorylation,16 leading to autophagic cell death.   

Ursolic acid (UA) is a naturally occurring triterpenoid that is found in fruits and 

medicinal herbs.22 Several biological properties have been attributed to UA including 

anti-inflammatory and anticancer activities.22 In our previous study23 we demonstrated 

that UA has anticancer activity through effects on PI3K pathway, in two human 

derived-colorectal cancer cell lines, HCT15 and CO115. These are MSI CRC cell lines. 

HCT15 harbors additionally a P53 inactivating mutation and a TS activating mutation 

while CO115 is wild-type for these two genes.24, 25 Our data shows that UA induces cell 

death through apoptosis and other death mechanisms that seem to involve autophagy, 

being more efficient than 5-FU in inducing cell death. A therapeutic potential for UA in 

combination with 5-FU on the induction of cell death, in cells with a apoptosis resistant 

profile, was demonstrated.  

 

Material and methods 

 

Reagents and antibodies 

 Ursolic acid (UA), z-VAD-fmk (zVAD), staurosporine (STS), 5-Fluorouracil (5-

FU), SP600125 (SP), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) and N-Acetyl-L-cysteine (NAC) were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). All the compounds were resuspended in dimethyl sulfoxide (DMSO). 

 Primary antibodies were purchased to the following sources: anti-phospho-JNK, 

anti-JNK, anti-p53 and anti-MAPLC3 to Santa Cruz Biotechnology, Inc. (Santa Cruz, 

CA, USA); anti-phospho-mTOR and anti-mTOR to Cell Signaling (Danvers, MA, 

USA); and anti-β-actin to Sigma-Aldrich. Secondary antibodies HRP donkey anti-rabbit 

and sheep anti-mouse were purchased to GE Healthcare (Bucks, UK).  
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Cell lines  

 HCT15 and CO115human colon carcinoma-derived cell lines were maintained at 

37ºC in a humidified 5% CO2 atmosphere in RPMI-1640 medium (Sigma-Aldrich) 

supplemented with 10mM HEPES, 0.1mM pyruvate, 1% antibiotic/antimycotic solution 

(Sigma-Aldrich) and 10% fetal bovine serum (FBS; EU standard, Lonza, Verviers, 

Belgium). Cells were seeded onto six (2ml) and twelve (1ml) well plates at a density of 

0.75×105 (HCT15) and 1.0×105 (CO115) cells/ml.  

 

Apoptosis analysis by TUNEL assay  

  TUNEL (TdT mediated dUTP Nick End Labelling) assay was performed to 

estimate the percentage of apoptotic cells. After different treatments for 48h, cells were 

collected (both floating and attached cells), fixed with 4% paraformaldehyde for 15min 

at room temperature and attached into a polylysine treated slide using a Shandon 

Cytospin. Then, cells were washed in PBS and permeabilized with 0.1% Triton X-100 

in 0.1% sodium citrate for 2min on ice. TUNEL assay was performed using a kit from 

Roche (Mannheim, Germany), following the manufacturer’s instructions. Cells were 

incubated with Hoechst for nuclei staining. The percentage of apoptotic cells was 

calculated from the ratio between TUNEL positive cells and total number of cells 

(nuclei staining with Hoechst), from a count higher than 500 cells per slide under a 

fluorescent microscope. Results are presented as mean ± SEM of at least three 

independent experiments. 

 

Cell death analysis by PI staining  

After different treatments, cells were collected (both floating and attached cells) 

and washed in ice cold PBS containing 5% (v/v) FBS. Then, cells were resuspended in 

the previous ice cold buffer and propidium iodide (PI) solution added to a final 

concentration of 0.5 mg/ml. Cells were maintained on ice, protected from light, until 

microscope observation. Twenty microliters of the stained suspension were placed on 

clean microscope slides and overlaid carefully with coverslips. Immediately, cells were 

visualized on a fluorescent microscope and photos taken from different fields. The 

percentage of death cells (PI positive) was calculated from the ratio between PI positive 

cells and total number of cells (visualized under phase contrast), from a count higher 

than 500 cells per slide. Results are presented as mean ± SEM of at least three 

independent experiments. 
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Western blot analysis  

 Cells were subjected to different combinations for 48h, and total cell lysates 

were prepared to measure protein expressions. The cells were washed with PBS 1X and 

lysed for 15min at 4ºC with ice cold RIPA buffer (1% NP-40 in 150mM NaCl, 50mM 

Tris (pH 7.5), 2mM EDTA), supplemented with 20mM NaF, 1mM 

phenylmethylsulfonyl fluoride (PMSF), 20mM Na2V3O4 and protease inhibitor cocktail 

(Roche, Mannheim, Germany). Protein concentration was quantified using a Bio-Rad 

DC protein assay (Bio-Rad Laboratories, Inc., Hercules, CA, USA) and BSA used as a 

protein standard. To perform western blot analysis, 20µg of protein were resolved by 

SDS-polyacrylamide gel and then electroblotted to a Hybond-P polyvinylidene 

difluoride membrane (GE Healthcare). Membranes were blocked in TPBS (PBS with 

0.05% Tween-20) containing 5% (w/v) non-fat dry milk or BSA (bovine serum 

albumin), washed in TPBS and then incubated with primary antibody. After washing, 

membranes were incubated with secondary antibody conjugated with IgG horseradish 

peroxidase and immunoreactive bands were detected using the Immobilon solutions 

(Millipore, Billerica, MA, USA) under a chemiluminescence detection system, the 

Chemi Doc XRS (Bio-Rad Laboratories, Inc.). Band area intensity was quantified using 

the Quantity One software from Bio-Rad. β-actin was used as loading control. 

 

Statistical analysis 

 Statistical analyses were done using t-test, using GraphPad Prism 4.0 software 

(San Diego, CA, USA). P-values ≤ 0.05 were considered statistically significant. All 

results are presented as mean ± SEM of at least 3 independent experiments. Images are 

representative of three independent experiments.  

 

Results  

 

UA synergistically enhances apoptosis induced by 5-FU in HCT15 

The cell lines HCT15 and CO115 were found to have different susceptibilities to 

UA in a previous work.23 For this study, we choose a concentration of UA (based in 

MTT and BrdU assays) 23 and 5-FU (Xavier et al., unpublished data) that decreased cell 

growth by about 50% after 48h of incubation. In HCT15 cells, UA at 4µM and 5-FU at 

100µM were used, while in CO115 UA at 10µM and 5-FU at 1µM were used. The 
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induction of apoptosis in the cells treated with UA and/or 5-FU was monitored by the 

TUNEL assay (Fig. 1A). A synergistic effect was observed when UA is combined with 

5-FU in HCT15 cells, with an increase of about 6 times when compared with 5-FU 

alone. This synergistic effect was not observed for CO115 cells.  

 To study the involvement of caspase activation in UA-induced apoptosis, cells 

treated with UA were incubated with 0.250µM z-VAD-fmk (z-VAD), a general caspase 

inhibitor, for 48h (Fig. 1B). We observed that zVAD significantly inhibited apoptosis 

induced by UA and staurosporine (STS), a classical inductor of caspases used here as a 

control, in CO115 cells. Contrarily, no effect on apoptosis induced by UA and STS was 

observed for zVAD in HCT15 cells, suggesting a mechanism independent of caspase 

pathways in this resistant cell line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Effect on apoptosis of 5-fluorouracil 100µM (FU100) and 1µM (FU1) co-incubated with 
ursolic acid 4µM (UA4) and 10µM (UA10), as well as, these compounds alone (A) and effect of a 
caspase inhibitor zVAD-FMK (zVAD) 20µM on the apoptosis induction by UA and staurosporine (STS) 
0.25µM (B), in HCT15 and CO115, for 48h, using TUNEL assay. * P≤ 0.05 and *** P≤ 0.001, when 
compared with control; ++ P≤ 0.01 and +++ P≤ 0.001, when compared with UA alone; ## P≤ 0.01 and 
### P≤ 0.001, when compared with FU (A) or zVAD (B) alone; NS, not significant differences observed 
between each other. 
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Induction of apoptosis by UA is dependent on JNK activation in HCT15 

 Numerous evidences show that JNK contributes to apoptosis induced by various 

stresses.14 Thus, the involvement of this kinase in the UA-induced apoptosis was 

evaluated. Firstly, using western blot analysis, we observed that UA induces phospho-

JNK expression in both cell lines, with a remarkable effect in HCT15 (Figure 2A). An 

increase of phospho-JNK expression was also observed for STS in both cell lines, and 

no effect was detected for 5-FU.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 – Effect on phospho-JNK and total JNK expressions, for 48h, of ursolic acid 4µM (UA4) and 
10µM (UA10), 5-fluorouracil 1µM (FU1) and 100µM (FU100) and staurosporine (STS) 0.25 µM, in 
HCT15 and CO115 cells, by western blot. Effect of SP600125 (SP), a JNK inhibitor at 20µM, on the 
apoptosis induced by UA and STS, for 48h, in HCT15 and CO115 cells, using TUNEL assay. * P≤ 0.05, 
** P≤ 0.01 and *** P≤ 0.001, when compared to control; + P≤ 0.05 and ++ P≤ 0.01, when compared with 
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the respective compound alone; # P≤ 0.05, when compared with SP alone (A). Effect on cell death of 
FU100 and UA4 co-incubated with SP, for 48h in HCT15 cells, using PI staining. ++ P≤ 0.01 and +++ P≤ 
0.001, when compared with the control and with the co-incubation FU+UA+SP; ** P≤ 0.01, *** P≤ 
0.001, when compared with UA alone; θ P≤ 0.05 and θθ P≤ 0.01, when compared with SP alone; ### P≤ 
0.001, when compared with FU alone (B). NS, not significant differences observed between each other. 
 
 

To assess whether apoptosis induction was due to an activation of the JNK, 

TUNEL assay was performed in the presence of 25µM SP600125 (SP), a JNK inhibitor 

(Figure 3A). It was observed that SP totally inhibited apoptosis induced by UA in 

HCT15 cells and no effect was observed in CO115 cells. SP also inhibited the apoptosis 

induced by STS in both cell lines. Thus, it seems that the UA induction of apoptosis in 

HCT15 cells is dependent on JNK pathway.  

In a further experiment, it was tested whether the activation of JNK by UA was 

the responsible for the synergistic effect of UA combined with 5-FU in HCT15 cells. 

We observed that SP did not inhibit the apoptosis induced by 5-FU, and, again, an 

inhibition of UA-induced apoptosis was observed in the presence of SP (Figure 2B). A 

total abrogation the synergistic effect on apoptosis of the combination of UA with 5-FU 

was observed in the presence of SP. These results suggest a dependence on JNK 

activation for UA-induced apoptosis in HCT15 cells, which seems to be the responsible 

of the synergistic effect with 5-FU. 

 

Oxidative stress induced by UA contributes to apoptosis induction in HCT15 

The role of oxidative stress on apoptosis induced by UA was tested using a 

common antioxidant N-acetylcysteine (NAC). When NAC was used in combination 

with UA for 48h, the induction of apoptosis was partially inhibited in HCT15 cells, but 

not in CO115 cells (Figure 3). This result suggests an implication of oxidative stress as 

a contributor for UA-induced apoptosis in HCT15.  

 

UA induces cell death in colon cancer cells 

  The apoptosis induced by UA in HCT15 and CO115 cells at 48h, although 

significantly, only represents around 4% and 10% of total cell number, respectively, 

which does not correspond to the extensive morphological changes observed. Therefore, 

cell death was subsequently measured using PI staining, at 2h and 48h. As shown in 

Figure 4, UA did not increase remarkably cell death after 2h of incubation, suggesting 

there is no acute necrotic effect induced by UA. However, after 48h, UA induced cell 



Chapter V                                                                          Combined effects of quercetin, luteolin and ursolic acid with 5-Fluorouracil 

135 

 

death to around 50% of cells, in both cell lines, as shown by the increase number of PI 

positive cells. On the other hand, 5-FU did not induce significant cell death in either of 

the cell lines after 48h. Cell death induced by the combined treatment of UA with 5-FU 

seems, therefore, to be due to UA. Therefore, UA induces cell death in HCT15 and 

CO115 cells, by mechanisms other than apoptosis or necrosis.  

 
 
 

 

 

 

 

 

 

 

Figure 3 – Effect of N-Acetyl-L-cysteine (NAC) at 5mM, on the apoptosis induced by ursolic acid 4µM 
(UA4) and 10µM (UA10) in HCT15 and CO115 cells respectively, for 48h using TUNEL assay. ** P≤ 
0.01 and *** P≤ 0.001, when compared to control; ## P≤ 0.01 and ### P≤ 0.001, when compared with 
NAC alone; ++ P≤ 0.01, when compared with the respective compound alone; NS, not significant 
differences observed between each other.  

 

 
Figure 4 – Effect on cell death of 5-fluorouracil 100µM (FU100) and 1µM (FU1) co-incubated with 
ursolic acid 4µM (UA4) and 10µM (UA10), as well as these compounds alone, for 2h and 48h, in HCT15 
and CO115 cells, using PI staining. * P≤ 0.05, ** P≤ 0.01 and *** P≤ 0.001, when compared with 
control; ## P≤ 0.01 when compared with FU alone; NS, not significant differences observed between 
each other. 
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JNK is also implicated in other mechanisms of UA-induced cell death in HCT15  

 Previously, we demonstrated that JNK pathway was implicated in apoptosis 

induced by UA in HCT15 cells. Then, we tested whether this pathway was involved in 

total cell death, indicated by PI staining. As shown in Figure 5, SP partially inhibited 

the cell death induced by UA in HCT15 cells, as well as, the cell death induced by the 

combination of UA with 5-FU. No significant effect of SP on cell death induced by UA 

and UA combined with 5-FU was observed in CO115 cells. This data suggest that JNK 

activation by UA not only induces apoptosis, but also other forms of cell death seem to 

be partially dependent on this pathway in HCT15 cells. Contrarily, JNK seems not be 

involved in UA-induced cell death in CO115 cells.  

 

Figure 5 – Effect on cell death of 5-fluorouracil 100µM (FU100) and 1µM (FU1) co-incubated with 
ursolic acid 4µM (UA4) and 10µM (UA10) and SP600125 20µM (SP20), as well as, these compounds 
alone, for 48h in HCT15 and CO115 cells, using PI staining. ++ P≤ 0.01 and +++ P≤ 0.001, when 
compared with the control and with the co-incubation FU+UA+SP; *** P≤ 0.001, when compared with 
UA alone; θθθ P≤ 0.001, when compared with SP alone; ## P≤ 0.01 and ### P≤ 0.001, when compared 
with FU alone. NS, not significant differences observed between each other.  
 

 

UA induces LC3 accumulation: involvement of JNK, mTOR and p53  

It was observed that the percentage of apoptosis induced by UA, in both HCT15 

and CO115 cells after 48h, does not explain all the cell death observed, suggesting an 

involvement of other types of cell death independent of caspase. Therefore, we 

investigated the possible role of UA on autophagy and in some regulators of autophagy, 

such as p53 and mTOR, as well as, the involvement of JNK, using immunoblotting 

analysis. One of the hallmarks of autophagy is the conversion of cytosolic LC3-I into 
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autophagosome-associated LC3-II, the amount of which reflects the abundance of 

autophagosomes. Our results showed that UA induces an accumulation of LC3-II 

expression levels in both cell lines, which was reduced in the presence of SP with a 

more remarkable effect in HCT15 cells (Figure 6A). In contrast, no effect on LC3-II 

expression was detected in cells treated with 5-FU or SP alone. The accumulation of 

LC3 observed in cells treated with UA and 5-FU seems to be due to UA, and this effect 

was inhibited in the presence of SP. The effect was more noticeable in HCT15 cells. 

These results suggest that UA interferes with autophagy, in both cell lines, and that JNK 

may be involved.  

The autophagic process is modulated by a number of molecules such as p53 and 

mTOR.26 The possible effect of UA on the levels of these regulators was also evaluated. 

UA decreased p53 levels in both cell lines, as well as, the p53 induced by 5-FU, 

suggesting a regulatory effect of UA on this protein. In addition, UA decreased 

phospho-mTOR levels in both cell lines, indicating a possible effect in this protein. 

These effects of p53 and mTOR are compatible with an induction of autophagy by UA. 

 
 

 
Figure 6 – Effect on the expression of LC3, p53, phospho-mTOR, total mTOR, phospho-JNK, and total 
JNK of ursolic acid (UA), 5-fluorouracil (FU) and SP600125 (SP) in HCT15 and CO115 cells, for 48h 
using western blot.  
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Discussion 

 

The modulation of cell death, which includes apoptosis and autophagy, has 

demonstrated to be an important strategy in the fight against cancer. Defects in 

apoptosis play a central role in tumorigenesis and confer resistance to anticancer 

therapies.27 5-Flurouracil (5-FU) is the most commonly used pharmacological drug in 

CRC chemotherapy, however, several mechanisms of resistance have been reported to 

reduce its efficacy.4, 5 CRC cells with defects in Bcl-2 family proteins and/or loss of p53 

function have demonstrated to fail to respond to 5-FU treatment.5, 6 Combinations of 

therapeutic agents with different modes of action have been suggested to increase 

treatment efficacy. 

In a previous work23, we demonstrated that UA, a naturally occurring 

triterpenoid, induces apoptosis in two human CRC cells (HCT15 and CO115). In the 

present study, the combined effect of UA with 5-FU on total cell death and in death by 

apoptosis were evaluated. UA showed to significantly induce total cell death and to a 

smaller extent death by apoptosis, in both cell lines, being more efficient than 5-FU 

alone. Furthermore, UA showed to induce apoptosis via caspase-independent pathway 

in HCT15 cells, contrarily to observed for CO115 cells. When UA and 5-FU were used 

in combination, UA synergistically enhanced apoptosis induced by 5-FU in HCT15 

cells. Because this effect was observed in the MSI cells that harbour a p53 mutation and 

a TS activation, suggest a relevant effect of UA in combination with 5-FU in a cell type 

resistant to apoptosis and 5-FU treatment.1, 5, 8, 9, 28  

The JNK MAP kinase has been implicated in many cellular events including 

apoptosis 29-33 and autophagy.16-20 In our study, we found that UA activates JNK in both 

cell lines, with a remarkable effect in HCT15 cells, whereas no effect on JNK induction 

was observed for 5-FU. In addition, through the use of the JNK inhibitor SP600125, 

JNK activation by UA showed to be involved in the apoptosis and total cell death 

induction in HCT15 but not in CO115 cells. The synergistic effect on apoptosis induced 

by the combination of UA with 5-FU in HCT15 cells was also shown to be dependent 

on JNK activation. Furthermore, the combination of UA with 5-FU was demonstrated to 

be partially dependent on JNK in HCT15 but not in CO115 cells. Therefore, both 

apoptosis and total cell death induced by UA alone or UA plus 5-FU in the resistant 

HCT15 cells demonstrated to be JNK-dependent, possible in response to oxidative 

stress produced by UA in these cells. Contrarily, this was not observed for apoptosis or 
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cell death induced by UA in CO115 cells, where a caspase-involvement was detected. 

The importance of JNK activation as one contributor mechanism to induce cell death in 

CRC is demonstrated by the drug atorvastatin. Atorvastatin, one of the 

chemotherapeutic drugs used in CRC, showed to induce apoptosis involving JNK 

activation.34 This drug has a synergistic interaction with celecoxib, a selective 

cyclooxyhenase-2 inhibitor, in killing human CRC cancer cells.34  

Nevertheless, apoptosis induced by UA comprises only a small percentage of 

death induction in both cell lines. PI results at 2 hours suggest that there was no necrotic 

cell death involved, indicating other types of cell death induced by UA. Autophagy, also 

called type II cell death or autophagic cell death is activated under stress conditions, 

such as nutrient and/or growth factor deprivation. This process represents a mechanism 

of survival but it may assume a cell death function when apoptosis is deregulated.10, 35 

Our results showed that UA induces accumulation of LC3-II in both cell lines, which is 

inhibited in the presence of SP (more remarkable in HCT15), suggesting UA’s 

modulation of autophagy and a role for JNK also in this process. On the other hand, in 

our study, 5-FU seems not to affect the autophagic process because there were no 

changes in LC3-II. An accumulation of LC3-II, however, was recently found not be a 

certain indicative of autophagic induction.36 LC3-II, a marker of autophagosomes, may 

increase when autophagic flux is activated, but it can also be accumulated when a 

blockage occurs downstream of autophagosomes formation.36 Thus, our results indicate 

a role of UA in autophagy in both cell lines, an effect reported here for the first time, 

and suggest the autophagic cell death as a possible way of UA-induced cell death. 

The proteins p53 and mTOR have been shown to be important regulators of the 

autophagic process.26, 37 The cytosolic p53, both mutant and wild-type form, has been 

demonstrated to inhibit autophagy.38, 39 On the other hand, an inhibition of mTOR is 

associated with an induction of autophagy.26, 37 Our results showed that UA decreases 

mTOR, as well as, both wild-type and mutant p53 (in CO115 and HCT15 cells, 

respectively), corroborating a possible effect of UA on the induction of autophagy. 

Recent studies demonstrated the ability of an inhibitor of autophagy, 3-methyladenine, 

to enhance apoptosis induced by 5-FU in CRC cells40, 41. Thus, the effect of UA on 

autophagy should be further explored and the possibility that UA inhibits autophagy 

thereby increasing cell death should also be taken into consideration. 

In conclusion, this study found that UA induces apoptosis, as well as, total cell 

death more efficiently than 5-FU alone. In addition, it suggests the potential 
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applicability of UA in the enhancement of the apoptotic effect of 5-FU in the resistant 

CRC cell line, where an activation of JNK seems to be responsible for this synergistic 

effect with a contribution of ROS. A role in the modulation of autophagy by UA and the 

role for JNK in this process were also found in both cell lines. The effect of UA on 

autophagy needs, however, to be better clarified in the future.  
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The natural triterpenoid ursolic acid inhibits 

autophagy and induces lysosomal membrane 

permeabilization in breast and colon cancer cells 
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Abstract  

 

Autophagy is the lysosomal recycling of intracellular constituents that offers a 

survival mechanism to the cells under metabolic stresses. In cancer cells, autophagy has 

demonstrated a dual role through promotion of cell survival or induction of tumor 

suppression. Ursolic acid (UA), a natural triterpenoid, has various anticancer activities 

in autophagic-associated signalling pathways. However, its role in autophagy is still 

unknown.  

In the present study, we characterized the effect of UA in the autophagic 

process, in MCF-7 and HCT15, breast and colon cancer cells, respectively. An 

accumulation of autophagosomal structures in both cell types without colocalization 

with LAMP-2 was observed, indicating that UA inhibits autophagy at the maturation 

step. This effect was further confirmed by the increased levels of p62 and by the LC3 

turnover, using a luciferase-based real-time assay, showing UA-blockage of the 

autophagic flux. UA was also able to inhibit rapamycin-induced autophagy. These 

events were simultaneous with no effect on apoptosis induction, decreased cell survival 

and morphological changes, indicating an involvement of autophagy in UA induced cell 

death. Additionally, an effect of UA on lysosomal membrane permeabilization was 

observed, suggesting that UA destabilizes lysosomes probably also inducing lysosomal 

cell death pathway. Moreover, p38 and JNK MAP kinases seem not mediate UA-

inhibition of autophagy in MCF-7 cells.  

In conclusion, UA blocks autophagy at the maturation step probably through 

effect on lysosomes, suggesting this natural triterpenoid as a novel compound to be 

exploited in cancer therapy. 

 

 

Keywords: Ursolic acid, colorectal and breast cancer cells, autophagy, LC3, lysosomes, signalling 
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Introduction 

 

Macroautophagy (hereafter referred to as autophagy) is a lysosomal degradation 

pathway which, under basal conditions, maintains the metabolism of the cells providing 

them with nutrients by removing damage organelles.1 Autophagy can be rapidly 

increased in response to numerous conditions of extracellular and/or intracellular 

stresses, such as nutrient and/or growth factor deprivation, hypoxia, hormones and DNA 

damage.2 During autophagy initiation, organelles and parts of the cytoplasm are 

engulfed and double-membrane vacuoles, the autophagosomes, are formed. The 

autophagosomes fuse with lysosomes, forming the autolysosomes, where the cargoes 

are degraded by lysosomal hydrolases and recycled back to the cytoplasm (maturation 

step).2 Autophagy has, therefore, been considered a survival mechanism when it is 

moderately activated, however, it can be implicated in autophagic cell death, when it is 

impaired3, 4 or when it is massively activated.5 

The autophagic process is commonly altered in cancer, at the levels of induction, 

regulation and lysosomal degradation. The reduced levels of oxygen and nutrients, 

genetic alterations in cancer-associated genes that modulate autophagy, and alterations 

of lysosomal activity and trafficking, were shown to influence the autophagic flow.5 

However, also in cancer cells, autophagy has been demonstrated to possess a dual role.2, 

6 Autophagy may contribute to tumor promotion providing the cells with a selective 

advantage for survival, but it can also function as a tumor suppression mechanism.6 

Lysosomes are cytoplasmatic organelles that control cell death at several levels.7, 

8 These organelles take part of the autophagic cell death, since the fusion between 

autophagosomes and lysosomes and the lysosomal degradative capacity are crucial for 

the completion of the autophagic process.5 Additionally, an induction of lysosomal 

membrane permeabilization (LMP) causes the release of lysosomal hydrolases, such as 

cathepsin proteases and other hydrolases, from the lysosomal lumen to the cytosol, 

triggering apoptosis through activation of mitochondrial and mitochondrial-independent 

cell death pathway.7-10 A massive LMP, i.e., a complete disruption of lysosomes can 

also result in necrotic death.8, 9 Compounds that directly target lysosomes by inducing 

LMP have recently been shown to be effective in killing cancer cells, especially 

apoptosis resistant cancer cells.9, 10  

Ursolic acid (UA) is a natural triterpenoid found in some traditional medicinal 

herbs and in fruits, such as apples, blueberries, cranberries and guava.11 A variety of 
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biological properties, such as anti-inflammatory, hepatoprotective and anticarcinogenic, 

combined with low toxicity, have been demonstrated for UA.11 In breast cancer cells, 

UA has been reported to induce apoptosis by downregulating bcl-2 expression12 and to 

suppress invasion by inhibiting phosphorylation of c-Jun NH-terminal kinase (JNK), 

Akt and mammalian target rapamycin (mTOR).13 In colon cancer cells, UA showed 

anticancer effects by decreasing the level of phospho-Akt14, bcl-2 expression, caspase 

cleavage and by inhibiting MAP kinases.15, 16 The signalling pathways PI3K/Akt/mTOR 

and MAP Kinases have also been demonstrated to be implicated in the regulation of the 

autophagic process, in response to different intra- or extracellular stimuli.1, 17  

In the present study, we attempted to identify and characterize the role of UA in 

the autophagic process, in colon and breast cancer cells, and its possible effect on 

lysosomes.     

 

Results  

 

UA induces cancer cell death  

UA 8µM significantly decreased cell viability over time, in both MCF-7 and 

HCT15 cells, (Fig. 1A) with no significant effect on the survival of HBL-100 

nontumorigenic breast-derived epithelial cells (data not shown). Additionally, no 

remarkable apoptosis (no more than 3% apoptosis of total cell number) induced by UA 

were observed over time, in both cell lines (Fig. 1B). Nevertheless, from 24 hours of 

UA treatment, cells were rounding up and detaching with increased effect over time, 

suggesting occurrence of cell death (Fig. 1C).  

 

UA induces an accumulation of autophagosomes 

 To investigate the effect of UA on autophagy, we performed a LC3 puncta 

formation assay in MCF-7-eGFP-LC3 cells. In these cells that were treated with 

different concentrations of UA (5, 8, 10µM) for 24 hours, a significant increase of 

eGFP-LC3 translocation from a diffuse distribution to a puncta cytoplasmatic 

accumulation of LC3-II, the lipidated autophagosome-associated form of eGFPLC3, 

was observed (Fig. 2A,B). The accumulation of autophagosomes was confirmed by a 

remarkable accumulation of LC3-II expression levels, assessed by immunoblotting (Fig. 

2C). In contrast, LC3 accumulation was not observed for oleanolic acid (OA) treatment, 
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a triterpenoid acid structurally related with UA, and wortmannin (W), a classical 

inhibitor of PI3K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 1 – Effect of ursolic acid (UA) over time on (A) MTT reduction, (B) apoptosis using TUNEL 
assay and (C) cell morphology, in HCT15 and MCF-7 cells treated with DMSO (control, CT) or UA 
8µM. In A, full line represents the concentrations that inhibited cell growth by around 50%.* P≤ 0.05, ** 
P≤ 0.01 and *** P≤ 0.001, when compared to control. 
 
 
UA blocks the fusion step in the autophagic process  

 LC3 accumulation, although an indicative of effects on autophagy, does not 

distinguish between induction or inhibition of autophagic flux.18 Thus, to characterize 

the autophagic process, an immunofluorescence assay was performed on MCF-7 cells 

expressing the tandem fluorescent construct mRFP-GFP-LC3 in association with an 

antibody against the lysosomal-associated membrane protein 2 (LAMP-2). The tandem-

tagged proteins GFP and mRFP have different sensitivities to the lysosomal pH 
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environment, GFP fluorescence signal decreasing after fusion between autophagosomes 

and lysosomes while mRFP signal remains unchanged (red fluorescence).19 In MCF-7 

cells, treatment with UA 8µM induces an accumulation of autophagosomal structures 

over time represented by the very large yellow dots (red plus green signal). 

Interestingly, these structures were not colocalized with LAMP-2, suggesting that no 

fusion events between lysosomes and autophagosomes take place and therefore, an 

impaired autophagosomal turnover (Fig. 3A). The same results were observed for 

HCT15 cells stained with LC3 and LAMP-2 antibodies (data not shown). Furthermore, 

MCF-7 cells were treated with 3-MA, an inhibitor of the initial steps of the autophagic 

process, and rapamycin, an inducer of autophagy, and these compounds were combined 

with UA during 24 hours. As expected, cells incubated with rapamycin alone presented 

purple colour (red plus LAMP-2 signal), whereas cells incubated with 3-MA alone had 

no LC3 accumulation (Fig. 3B). In cells incubated with 3-MA plus UA, yellow dots 

were not observed, which indicates that LC3 accumulation induced by UA is autophagy 

specific. On the other hand, cells incubated with rapamycin plus UA showed LC3 

accumulation, demonstrating that UA really blocks the autophagic process at the 

maturation step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2 – (A) Effect of different concentrations of ursolic acid (UA) 5µM (UA5), 8µM (UA8) and 
10µM (UA10), oleonolic acid 15µM (OA15) and wortmannin 2.5µM (W2.5) on LC3 translocation in 
MCF-7 cells, at 24 hours. The numbers of cells with more than five GFP-LC3 puncta were considered 
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positive for LC3 translocation. (B) Representative images of UA and control. * P≤ 0.05 and ** P≤ 0.01, 
when compared to control. (C) Effect of UA8, OA15 and W2.5 on LC3-II expression levels measured by 
western blot at 24 hours.  
 

Additionally, the effect of UA on p62 expression was assessed to confirm the 

inhibition of autophagy. The protein p62 incorporates into autophagosomes through 

direct binding to LC3 being required for the formation and degradation of intracellular 

protein aggregates.20 This protein has been shown to be efficiently degraded by 

autophagy, even more specifically than LC3, being, therefore, a reliable marker to 

monitor the autophagic flux.18, 20 Our results showed an accumulation of p62 expression 

levels over time, in MCF-7 and HCT15 cell lines, confirming that UA blocks autophagy 

(Fig. 3C). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 3 – (A) Representative images of different time incubations (12, 24 and 48 hours) with ursolic 
acid (UA) 8µM and (B) 24 hours of incubation with UA 8µM, rapamycin 100nM and 3-Metyladenine (3-
MA) 10mM, in MCF-7 cells expressing mRFP-GFP-LC3 stained for anti-LAMP-2 (C) Effect of UA 8µM 
on p62 expression levels over time, in MCF-7 and HCT15 cells, using western blot.  
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UA inhibits autophagy flux and blocks the rapamycin-induction effect   

A study in LC3 turnover using a luciferase-based real-time assay was then 

performed to corroborate the UA-inhibition of autophagy flux.21 The cell kinetic assay 

was carried out for 20 hours with 2 hours intervals between measurements. In this 

assay, the ratio between the levels of RLucLC3wt (LC3 that is targeted for autophagy-

dependent degradation) and RLucLC3G120A (mutated LC3 that is degraded at a much 

lower rate than RLucLC3wt) reflects the autophagic flux, where a decrease of the ratio 

corresponds to an induction of the autophagic flux. As observed in Fig. 4A, UA 8µM 

started gradually to inhibit the autophagic flux from 8 hours. In contrast, rapamycin-

induced autophagy was blocked from 8 hours when the cells were co-incubated with 

UA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 – Effect of ursolic acid (UA) 8µM, rapamycin (RAPA) 20nM, concamycin A (ConA) 2nM and 
KU 2µM on autophagic flux in MCF-7 cells stably expressing RLuc-LC3wt or RLuc-LC3G120A. (A) 
Luciferase activity measured with 2 hours intervals during 20 hours and the ratio of the two cell lines 
were expressed as percentages of the corresponding ratio in untreated cells at T0. (B) Luciferase activity 
measured after 12 hours treatment. * P≤ 0.05, ** P≤ 0.01 and *** P≤ 0.001, when compared to control; 
## P≤ 0.01 and ### P≤ 0.001, when compared with UA alone; θθθ P≤ 0.001, when compared to RAPA 
alone; δδ P≤ 0.01 and δδδ P≤ 0.001, when compared to KU alone. 
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Moreover, two inhibitors of autophagy, ConA (an inhibitor of V-ATPase and 

therefore of the lysosomal function, but with a minimal impact on autophagic flux21) 

and KU (an inhibitor of autophagy; unpublished observations) were also used. We 

observed that KU inhibited autophagy, as well as, inhibited the effect of rapamycin and 

its effect was further increased in presence of UA. ConA also showed to block the effect 

of rapamycin.  

Furthermore, the RLucLC3wt/RLucLC3G120A was also measured at 12 hours.  

A significant inhibition of autophagy was observed for UA and KU while rapamycin 

showed a significant stimulatory effect (Fig. 4B). The inhibition of rapamycin-induced 

autophagy by UA was confirmed. Additionally, a cooperative effect between UA and 

KU in the inhibition of the autophagic flux was detected, suggesting different 

mechanisms of action for these two compounds. Overall, we validated our results that 

UA blocks autophagic flux and it is able to block the rapamycin-induction effect. 

 

UA induces lysosome membrane permeabilization (LMP)    

 By immunocytofluorescence experiments, an induction of perinuclear clustering 

of LAMP-2 positive compartments was observed (Fig. 3). In addition, a decrease of 

acidic compartments, such as lysosomes, was visualized using acridine orange (data not 

shown). These results suggested that UA could interfere with lysosome integrity or 

functionality. Thus, effect on lysosomal membrane stability by UA was hypothesized. 

We observed that UA significantly decreased the total lysosomal hydrolases activities of 

cathepsins and NAG, indicating a possible impact on lysosomal biogenesis and/or a 

direct destabilizing effect on lysosomal membranes (Fig. 5A). Interestingly, UA 

significantly increased the release of cathepsins and NAG to the cytosol (Fig. 5B), 

which demonstrates an LMP induction. ConA and TNF were used as positive controls 

in the induction of LMP. 
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Figure 5 – Effect of ursolic acid (UA) 8µM, concamycin A (ConA) 2nM and TNF 10ng/ml on the release 
of (A) total and (B) cytoplasmatic cysteine cathepsin and β-N-acetyl-glucosaminidase (NAG) in MCF-7 
cells at 24 hours. Lactate dehydrogenase (LDH) activity of the cytosol was used as an internal standard. * 
P≤ 0.05; ** P≤ 0.01 and *** P≤ 0.001, when compared to control. 
 

Involvement of p38 and JNK signalling on UA-inhibits autophagy  

 In a previous study, we observed an activation of JNK pathway in HCT15 cells 

by UA, which seemed to play a role in autophagy in those cells (unpublished 

observations). Therefore, the involvement of p38 and JNK signalling on UA-inhibited 

autophagy in MCF-7 cells was tested, using the luciferase-based real-time assay. For 

that, SP600125 (SP), an inhibitor of JNK and other kinases, 22 a peptide that specifically 

inhibits JNK and SB203580 (SB), a specific inhibitor of p38, were used. Our results 

showed that both SP and SB inhibited the autophagic flux in MCF-7 cells and that this 

effect increased in the presence of UA, demonstrating that these inhibitors and UA may 

act through different mechanisms (Fig. 6). In contrast, the peptide alone had no effect 

on autophagic flux and when it was combined with UA, an inhibition of autophagy was 

observed to UA values, suggesting an inhibition of autophagy only mediated by UA. It 

seems that p38 interferes with the autophagic flux contrarily to JNK and neither JNK 

nor p38 mediated UA-effect on autophagic flow in MCF-7 cells, although JNK seems to 

have a role at least in some colon cancer cells (unpublished observations). 
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Figure 6 – Effect of ursolic acid (UA) 8µM, SP600125 (SP) 20µM, SB203580 (SB) 20µM and C-Jun N-
terminal kinase peptide inhibitor 1 (Pept) 2µM on autophagic flux in MCF-7 cells stably expressing 
RLuc-LC3wt or RLuc-LC3G120A. Luciferase activity was measured with 2 hours intervals during 20 
hours and the ratio of the two cell lines were expressed as percentages of the corresponding ratio in 
untreated cells at T0. 
 

Discussion 

 

The modulation of autophagy, as well as, effects on lysosome functions have 

been shown to trigger cancer cell death and suggested as therapeutic target to be 

addressed by new anticancer drugs.5, 9 In the present study, we demonstrate that the 

natural triterpenoid ursolic acid (UA) is an inhibitor of autophagy through effects on 

lysosomes. This effect on autophagy induces death in colon and breast cancer cells 

without significant effects on nontumorogenic cells.  

Our results show that UA induced accumulation of lipidated LC3-II to the 

autophagosomal membrane. These events were simultaneous with decreased cell 

survival and morphological changes in the cells, although without effect on apoptosis 

induction, suggesting the involvement of autophagy in cell death. Since an 

accumulation of autophagic structures is not always correlated with an induction of 

autophagy,18 several approaches were used to identify and characterize the effect of UA 

on autophagic flux.  

Effects on the autophagic process may occur at several levels: at the initiation 

step, in the control of autophagosome formation; at the maturation step, involving the 
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fusion between autophagosomes and lysosomes; or at the degradation process.1, 5 Our 

data showed that UA inhibits autophagy at the maturation step since no fusion events 

between autophagosomes and lysosomes were detected, which results in an 

accumulation of autophagosomal structures, an observation consistent with an 

accumulation of LC3-II. The absence of colocalization between autophagosomes and 

lysosomes was evident at 24 hour UA incubations in both breast MCF-7 and colon 

HCT15 cancer cells. The UA-inhibitory effect on autophagy was corroborated by an 

increase in p62 levels from 24 hours in both cell lines. Furthermore, the luciferase-based 

real-time assay that measured the LC3 turnover by following the kinetics of the 

autophagic flux over time 21, showed that UA exerts a gradual inhibition of autophagy 

from 8 hours. Interestingly, UA also efficiently blocked the effect of rapamycin-induced 

autophagy. A cooperative effect between UA and KU in inhibiting autophagy was also 

observed, indicating that these two inhibitors may act through different mechanisms. 

These effects were further supported by the same assay at 12 hours.  

In addition to the absence of fusion events, the induction of perinuclear 

clustering of lysosomes were indications that UA could affect lysosomal integrity. Thus, 

UA´s effects on lysosomal membrane permeabilization (LMP) were measured in MCF-

7 cells. Our results show that, at 24 hours, UA induced the release of the lysosomal 

hydrolases cathepsins and N-acetyl-β-glucosaminidase to the cytosol, as well as, 

decreased their total activities. These data indicate a role of UA in lysosome 

destabilization and in disruption of the integrity of lysosomal membranes. The induction 

of LMP is, however, not a rapid and a strong effect since a decrease of cell viability and 

morphological changes in the cells were only detected from 24 hours, with a gradual 

effect over time. The release of lysosomal contents, especially cathepsins, to the cytosol 

is considered an important step for lysosomal death pathway activation,7 suggesting 

that, besides its role on autophagy, UA can also be involved in the activation of this 

pathway without classical apoptosis induction. 

Recently, changes in the intracellular lipid composition were reported to have 

pronounced effects on vesicular fusion efficiency, thus affecting autophagy.23 The 

reduced levels of lipids, in particular cholesterol, in both autophagosomes and 

lysosomes, were associated with lower fusogenic capability and reduced rates of 

autophagy.23 In fact, previous studies demonstrated that UA may have a role in lipid 

metabolism by stimulating lipolysis in primary-culture adipocytes,24 as well as, 

increasing sphingomyelinase activity during initiation and progression of colon cancer 
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that lead to aberrant crypt foci inhibition.25 Therefore, UA, a lipophylic molecule, may 

induce LMP due to effects on lysosomal membrane composition, causing inhibition of 

the maturation step in the autophagic process.  

Several cell signalling pathways modulate autophagy at the initiation and 

maturation of autophagosomes.1 Recently also the stress kinases, JNK and p38, were 

found to play a role in the control of autophagy. 1, 17, 26, 27 An activation of JNK in 

cancer cells showed to be involved in the induction of autophagic cell death through 

mediation of Beclin 1 expression28 and/or activation of the protein Atg7.27 In contrast, a 

p38 activation was associated with an inhibition of autophagy in colorectal cancer 

cells29 and an inhibitory effect at the maturation step was found.26 UA has recently been 

reported to inhibit JNK in colon16 and breast13 cancer cells. Our previous observations 

showed that UA induced activation of JNK in HCT15 cells with a possible involvement 

of this stress MAP Kinase in autophagy. Here, results demonstrated that neither JNK 

nor p38 pathways seem to be involved in the inhibition of autophagy induced by UA in 

MCF-7 cells. 

Additionally, although UA demonstrated to modulate PI3K/Akt pathway 

through inhibition of phospho-Akt,13, 14 the classical inhibitor of PI3K class I, 

wortmannin,30 was not able to induce LC3 accumulation, suggesting that UA inhibits 

autophagy independently of effects on this pathway. Interestingly, oleanolic acid, a 

compound with a similar chemical structure of UA for which similar biological 

properties have been reported,11 did not show effect on autophagy. UA and oleanolic 

acid differ in the position of one methyl group on their E ring, which could contribute to 

this difference. 

In conclusion, the data presented here shows the ability of ursolic acid to block 

the autophagic process at the maturation step due to effects on lysosomal membrane 

stability in breast and colon cancer cells. This effect on the autophagic maturation 

probably triggers death in cancer cells, which seems to be independent of JNK and p38 

pathways in MCF-7 cells. Hence, ursolic acid shows potential as a lysosome-

destabilizing drug or as an autophagic inhibitor that could be used in combination 

therapy in order to increase treatment efficacy. 
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Material and Methods 

 

Chemicals  

 Ursolic acid (UA), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT), rapamycin (RAPA), 3-Methyladenine (3-MA), concanamycin A 

(ConA), wortmannin (W), etoposide and oleonolic acid (OA) were purchased from 

Sigma-Aldrich. C-Jun N-terminal kinase peptide inhibitor 1 (Pept) was purchased from 

Enzo Life Science. All the compounds were resuspended in dimethyl sulfoxide 

(DMSO).   

  

Cell culture  

 HCT15 human colorectal carcinoma and MCF-7 human breast carcinoma cell 

lines were grown in RPMI-1640 (Gibco, 61870) supplemented with 6% fetal calf 

serum, penicillin and streptomycin and maintained at 37ºC in a humidified 5% CO2 

atmosphere. When plating for luciferase reported assays, RPMI-1640 without phenol 

red (Gibco, 11835) was used. The MCF-7-eGFP-LC3 cell line is a single cell clone of 

MCF-7 cells expressing a fusion protein consisting of enhanced green fluorescence 

protein (eGFP) and rat microtubule-associated protein light chain 3  (LC3).  MCF-7-

mRFP-GFP-LC3 are MCF-7 cells stably expressing the tandem fluorescent construct 

consisting in two fluorescent proteins, GFP and monomeric ref fluorescent protein 

(mRFP), tagged with LC3 (construct kindly provided by Dr T. Yoshimori19). MCF-7 

cells stably expressing Renilla-luciferase (RLuc) tagged with LC3 wild type or with a 

C-terminal glycine mutant of LC3 that is defective in ubiquitin-like conjugation with 

phosphatidylethanolamine (GFP-LC3G120A31) were used to monitor autophagy 

capacity.21 

 

Cell viability, Apoptosis and Morphological analysis  

 MTT reduction assay was used as described previously.14 Briefly, MCF-7 and 

HCT15 cells were treated with UA 8µM for 22, 46 and 70 hours and then two more 

hours in the presence of MTT at final concentration 0.5 mg/ml. Hydrogen chloride 

0.04M in isopropanol was then used to dissolve the formazan crystals. The viable cells 

in each well were estimated by the cell capacity to reduce MTT using a 

spectrophotometer.  



Cristina Xavier 

160 

 

To estimate the percentage of apoptotic cells, TUNEL (TdT mediated dUTP 

Nick End Labelling) assay was performed. After incubation of HCT15 and MCF-7 cell 

lines with UA 8µM for 24, 48 and 72 hours, cells were collected (both floating and 

attached cells), fixed with 4% paraformaldehyde for 15 minutes at room temperature 

and attached into a polylysine treated slide using a Shandon Cytospin. Then, cells were 

washed in PBS and permeabilized with 0.1% Triton X-100 in 0.1% sodium citrate for 

2min on ice. TUNEL assay was performed using a kit from Roche (Mannheim, 

Germany), following the manufacturer’s instructions. Cells were incubated with 

Hoechst for nuclei staining. The percentage of apoptotic cells was calculated from the 

ratio between TUNEL positive cells and total number of from a count higher than 500 

cells per slide under a fluorescent microscope.  

The morphology of the cells incubated with UA 8µM during 24 hours and 48 

hours was observed and images were taken using Olympus fluorescence microscope.  

 

LC3 puncta formation assay  

MCF-7-eGFP-LC3 cells were incubated with different concentrations of UA 

(5µM, 8µM and 10µM), 15µM OA and 2.5µM W for 24 hours. Autophagosomes were 

detected in the cells fixed in 3,7% formaldehyde for 10 minutes at room temperature, by 

counting the percentage of cells with more than five eGFP-LC3 positive dots (a 

minimum of 100 cells/sample) applying Olympus fluorescence microscope.  

 

Immunofluorescence  

MCF-7-mRFP-GFP-LC3 cells on coverslides were treated with UA 8µM at 

different hours (12, 24 and 48 hours) and/or with rapamycin 100nM and/or 3-MA 

10mM for 24 hours. Then cells were fixed using ice-cold methanol for 2 minutes or 

3,7% formaldehyde for 10 minutes at room temperature. Cells were stained with 

followed primary antibodies at 4ºC, overnight: mouse anti-human LC3 (Nanotools), 

mouse anti-human LAMP-2 (clone H4B4 Developmental Studies Hybridoma Bank, 

University of Iowa) and p62 (Enzo Life Science). After washing, samples were 

incubated with the appropriated Alexa Fluor-488 and Alexa Fluor-647-coupled 

secondary antibodies (Invitrogen). Confocal images were taken using a Zeiss Axiovert 

100 M Confocal Laser Scanning Microscope equipped with LSM 510 system (Carl 

zeiss MicroImaging).  
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Immunoblotting  

MCF-7 and HCT15 cells after treatment with UA 8µM at different hours were 

extracted in SDS-lysis buffer. Extracts (20µg protein) were separated on SDS-PAGE 

and transferred to nitrocellulose membranes. Protein concentration was quantified using 

a BCA Protein assay kit (Bio-Rad Laboratories). The primary antibodies used were: p62 

(Enzo Life Science) and LC3 (Nanotools), followed by appropriated peroxidase-

conjugated secondary antibodies from DAKO (Glostrup, Denmark). Anti-β-actin (from 

Sigma-Aldrich) was used as loading control. 

 

Reporter assays 

 For luciferase-based real-time assay21 in living cells, MCF-7 cells stably 

expressing RLucLC3wt and RLuc-LC3G120A were plated in the uneven and even 

numbered columns of white 96 wells dishes (Nunc, 136101) respectively at 

8x104cells/ml. The following day, 60µl medium containing 50nM EnduRenTM 

(Promega) were added to the cells and incubated for 2 hours. The luminescence was 

measured (Enspire 2300 Multilabel reader, Perkin Elmer) after 2 hours corresponding to 

time zero (To) define as 100%. The readout was obtained by calculating the ratio in 

luminescence between RLucLC3wt and RLucLC3G120A, which gives the autophagic 

flux. Thereafter, the compounds dissolved in EnduRenTM containing medium were 

added in the volume of 30µl and luminescence measurements were performed in 

intervals of 2 hours during 20 hours.  

 For the reporter assay21 at 12 hours, MCF-7 cells expressing RLuc-LC3wt and 

RLuc-LC3G120A were used and Renilla-luciferase detected using the reagents in the 

Dual-Luciferase® Reporter assay System (Promega), according to the manufacturer’s 

instructions. Briefly, after 12 hours of incubation with compounds, cells were lysed in 

40µl /well of 1x lysis buffer and subjected to a single freeze/thaw cycle. Renilla-

Luciferase was further measured in white half area 96-well plates (Costar, 3694) by 

adding 80µl of lysate and Stop&Glo® Reagent to 6µl of sample. 

  

Cathepsin and NAG activities   

The cysteine cathepsin (zFR-AFC, Enzyme System Products) and N-acetyl-β-

glucosaminidase (NAG) activities of MCF-7 cells treated with UA 8µM, ConA 2nM 

and TNF 10ng/ml were measured after 24 hours.32 Briefly, the cytosolic fraction was 

extracted with 20µg/ml digitonin and the total cellular fraction with 200µg/ml digitonin. 
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The rate of the appropriate substrate hydrolysis Vmax was measured over 20 minutes at 

30 ºC on a SpectraMax Gemini fluorometer (Molecular Devices, Sunnyvale). Lactate 

dehydrogenase (LDH) activity of the cytosol, determined by a cytotoxicity detection kit 

(Roche), was used as an internal standard. 

 

Statistical analysis 

 All values represent the mean ration ± SEM of at least three independent 

experiments. Statistical analyses were done using a two-tailed unpaired t-test in 

GraphPad Prism 4.0 software. P-values ≤ 0.05 were considered statistically significant. 

Images are representative of at least three independent experiments.   
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1. General Discussion and Conclusions 

 

 In recent years, natural products have received great attention for cancer research 

owing to their various health benefits, associated with low of toxicity and side effects. 

Colorectal cancer (CRC), a common cause of cancer-related death, has been increasing 

over time and the main reason for its high incidence has been associated to diet. The 

work developed in the scope of this thesis contributed to support the importance of 

dietary constituents in certain genetic profiles of CRC and to increase the value of 

potential dietary natural compounds as anticancer agents.  

In the first part of this work (chapter II and III), the possible anticarcinogenic 

effects of Salvia sp. and Hypericum sp. water extracts, prepared as a tea, which is one of 

the most common forms of human consumption of these plants, and the main phenolic 

compounds rosmarinic acid and chlorogenic acid present in these extracts, were 

evaluated in CRC cell lines. These medicinal plants are popular for different reasons 

and they have been experimentally investigated and their benefits confirmed. 

Nevertheless, their anticarcinogenic effects in CRC have never been explored. The 

second part of the work (chapter IV, V and VI) focused on two phenolic compounds 

(quercetin and luteolin), which are active compounds present in the extracts tested 

above, as well as, the triterpenoid ursolic acid that is present in sage extracts. Although 

the anticancer effects, especially of the phenolic compounds, have been widely studied, 

their effects on particularly CRC mutation patterns and their possible combination with 

5-fluorouracil (5-FU) is not known. The chemotherapeutic agent 5-FU is currently the 

most widely used drug, however some resistances have been arising, and thus 

combinatory drugs have been developed to improve CRC treatment. Therapies targeting 

pathways involved in CRC carcinogenesis have increased benefits when in combination 

with this traditional chemotherapeutic agent, overcoming current limitations of the 

agent.      

Due to the high frequency of mutations in components of the PI3K/Akt and 

MAP Kinases pathways present in CRC humans the focus of this study was on these 

relevant molecular targets. Therefore, the experiments were performed using different 

CRC cell lines: HCT15 harbors a KRAS mutation and CO115 harbors a BRAF 

mutation and overexpresses Akt. Moreover, the effects of compounds on molecular 

targets of apoptotic and non-apoptotic pathways of cell death were studied. The 

antiproliferative and proapoptotic effects were evaluated using different in vitro tests, 
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such as MTT, BrdU and TUNEL assays. To assess the possible effects on different 

molecular targets western blot were performed.  

Firstly, the potential effect of water extracts of S. fruticosa (SF) and S. 

officinalis (SO) was evaluated (chapter II ). These sages showed to significantly inhibit 

cell proliferation and induce apoptosis (50µg/ml). Different effects were found for the 

two CRC cell lines. The results revealed that those effects may be associated, at least in 

part, with the inhibition of MAPK/ERK pathway through effects upstream of BRAF. 

The presence of the BRAF mutation showed to act as a barrier for the antiproliferative 

effect of these sages. The main phenolic compound present in the sages, rosmarinic 

acid, did, however, not show the same effects, even at higher concentrations (100µM), 

presenting only proapoptotic effects. Thus, other active compounds present in the 

extracts at lower concentrations, or the mixture between them, may be responsible for 

the antiproliferative effects of SF and SO. 

Subsequently, the anticarcinogenic activities of three Hypericum water extracts 

sp., Hypericum androsaemum (HA), Hypericum perforatum (HP) and Hypericum 

undulatum (HU), were investigated in the same CRC cell lines (chapter III ). The study 

demonstrated that HA efficiently inhibits cell proliferation and induces apoptosis in 

both genetic backgrounds. These effects seem to be related to suppression of the mutant 

BRAF and PI3K/Akt pathway (at 65µg/ml). Interestingly, this extract only interferes 

with mutant BRAF without affecting wild type BRAF, suggesting a more specific effect 

of this extract on CRC. Moreover, HA also increased p38 and JNK activation, which 

may explain the extracts’ proapoptotic effects. In order to find the active compound of 

HA plant, the main phenolic compound present in HA, chlorogenic acid, was tested. 

This compound did, however, not show any of the observed effects, even at very higher 

concentrations. On the other hand, the study demonstrated that HU and HP species are 

different from HA, since no effects on CRC cells viability, at reasonable concentrations, 

were detected. The results demonstrated new beneficial effects of Hypericum 

androsaemum and, more significantly, it showed to be a source of compounds that 

specifically act in BRAF mutation, frequently found in CRC tumors.     

All these observations showed the ability of these medicinal plants in decreasing 

CRC progression by affecting the expression of important molecular targets of 

proliferation and apoptosis. In addition, they suggest them as sources of potential 

anticarcinogenic compounds. Sage extracts are very rich in several derivates of luteolin, 

whereas Hypericum extract possess quercetin and a variety of glycosides in its 
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composition. Since these conjugated glycosides have been shown to be converted into 

their active aglycones quercetin (Q) and luteolin (L) in the intestine, we decided to 

study the aglycones as the most important players in the cell. In addition, we also 

studied a triterpenoid, ursolic acid (UA), which is also present in sage water extracts.    

In chapter IV, the antiproliferative and proapoptotic effects of Q, L and UA 

were evaluated and the possible involvement of PI3K/Akt and MAPK signalling 

pathways on their mechanism of action were analysed. All the compounds showed 

significant inhibition of cell proliferation and induction of apoptosis in CRC cell lines. 

The effects of Q (around 20µM) and L (around 15µM) seem to be due, at least in part, 

to effects on KRAS through regulation of both MAPK/ERK and PI3K pathways. 

However, the presence of a BRAF mutation prevents these compounds from having 

effect on the MAPK/ERK pathway. On the other hand, UA (10µM) seems to be 

efficient in suppressing PI3K, at concentration below the other compounds. In addition, 

these natural compounds demonstrated to be even more efficient in inhibiting the 

pathways than the reference inhibitors commonly used to study the involvement of 

PI3K/Akt and MAPK/ERK pathways.     

Taken together, sage extracts inhibit MAPK/ERK pathway through suppression 

of KRAS probably due to derivates of luteolin, since this compound alone showed the 

same effects. However, L additionally demonstrated to decrease PI3K/Akt pathway, 

thereby affecting other molecular targets. An effect on PI3K was also observed for UA. 

Regarding HA, the inhibition of PI3K/Akt pathway could probably be due to the 

presence of Q, one constituent of this extract that showed the same effect. Surprisingly, 

HA also suppresses mutant BRAF, effect that was not found for Q, which instead acts 

on KRAS, or for the main phenolic compound chlorogenic acid. To look for the active 

compound responsible to the effect on mutant BRAF should be considered in future 

experiments. These recent findings highlight the impact of compounds that specifically 

act on mutant BRAF like HA water extract. It must also be taken in account that 

possible applications of the flavonoids Q and L as inhibitors of MAPK/ERK pathway 

seem to be restricted to tumors without BRAF mutation. Effects of extracts are not due 

to main phenolic compounds present and may result from other classes of compounds 

and/or for synergism between constituents.      

In chapter V, the effects of Q, L and UA in combination with 5-FU were tested, 

in order to find agents that could overcome 5-FU-resistance and improve treatment 

efficacy. One mechanism of action of this chemotherapeutic 5-FU is apoptosis 
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induction, which was the focus of this work. The results showed that Q and L (both at 

12µM) efficiently enhance apoptosis induced by 5-FU and a synergistic effect was 

observed for Q in the p53 wild-type cell line. Q seems to increase the effect of 5-FU 

through induction of the mitochondrial pathway because an increased on cleaved 

caspase 3, caspase 9 and PARP and a decrease in Bcl-2 expression were detected when 

Q in co-incubated with 5-FU in the CO115 p53 wild type cell line. This suggest the 

possible applicability of this flavonoid in combination with 5-FU to improve cell death 

dependent on p53. UA (4µM) was also tested in combination with 5-FU and a 

synergistic enhancement of apoptosis was observed in the HCT15 mutant p53 cells. In 

this case, UA did not induce caspase activity, but was able to induce JNK activation, 

where the inhibitor of the JNK, SP600125, almost completely abrogated UA-induced 

apoptosis. These results suggest that UA induces apoptosis through JNK pathway when 

p53 is not functional, being the possible reason for the synergistic effect with 5-FU. 

Moreover, UA-induced cell death (other than by apoptosis) also seems to be partially 

dependent on JNK. Interestingly, this triterpenoid demonstrated to be more efficient in 

inducing cell death than 5-FU alone, suggesting UA as a potential chemotherapeutic 

candidate against CRC. Since apoptosis induced by UA did not explain all the cell death 

observed, effects on autophagy, another type of cell death, were elucidated. UA induced 

accumulation of LC3, an effect inhibited by SP, indicating an involvement of this 

compound in autophagy and a role of JNK in this process, in HCT15 cells.  

  Finally (chapter VI), a characterization of the role of UA in autophagy was 

made. Agents that have a role in the autophagic process have been appearing and seem 

promising as anticancer agents. An accumulation of LC3, as demonstrated in the 

previous study, may be an indication of both induction or inhibition of the autophagic 

process. The expression of p62, as well as, immunohistochemistry stained with 

autofagosomes and lysosomes markers were further analyzed. This study found that UA 

inhibits autophagy in HCT15 cells over time. Moreover, this inhibition appears to be at 

the maturation step since no fusion event between lysosomes and autophagosomes was 

observed. Taking advantage of some currently new techniques, MCF-7 breast cancer 

cell line was used to confirm the inhibitory effect of UA on autophagy process at the 

maturation step. Interestingly, UA also showed to revert the effect of rapamycin, a 

classical inducer of autophagy, and to cooperate with another inhibitor of autophagy, 

increasing its effect. Moreover, neither JNK nor p38 pathways seem to be involved in 

the inhibition of autophagy induced by UA in MCF-7 cells, contrarily to what was 
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previously observed for HCT15 cells. The role of JNK in autophagy seems be dual 

depending on the cell type. In order to understand more deeply how UA inhibits the 

maturations step, effects on lysosomal integrity was tested. The results showed that UA 

increased the release of the lysosomal hydrolases to the cytosol and decreased their total 

activities, suggesting an induction of lysosomal membrane permeabilization, as well as, 

a possible impact on lysosomal biogenesis and/or a direct destabilizing effect on 

lysosomal membranes. The effect of UA on the destabilization of lysosomes structure 

helps to explain the lack of fusion between them and autophagosomes. Taken together, 

this work found a new effect for UA in the inhibition of autophagy, which is probably 

due to effects on lysosome integrity.  

In general, this work uses a new methodological approach by using CRC cell 

lines that harbor different mutations and characterizes mechanisms of action of extracts 

and individual compounds of medicinal plants of the genus Salvia and Hypericum, on 

particular molecular targets comparativelly. The sage water extracts demonstrated 

capacity to inhibit MAPK/ERK upstream of BRAF, while Hypericum androsaemum 

acted specifically on mutated BRAF, effects that explain, at least in part, the 

antiproliferative and proapoptotic effects of these plants. In addition, these effects were 

not due to the most representative antioxidant compounds present in the extracts 

(rosmarinic acid and chlorogenic acid, respectively), suggesting the effects are 

independent of reactive oxygen species (ROS)-mediated signaling. Concerning the 

isolated compounds, Q, L and UA, it was shown, for the first time, in this work the 

impact of their effects on molecular targets on different genetic patters in CRC and their 

possible use in combination with the chemotherapeutic drug 5-FU. Q and L 

demonstrated to act on KRAS, affecting both MAPK/ERK and PI3K/Akt pathways, 

although the effect on MAPK/ERK inhibition is no longer observed in the presence of 

BRAF mutation. The combination of Q with 5-FU showed a synergistic induction of 

apoptosis probably through via mitochondrial pathway in the p53 wild-type background 

of CO115. Finally, UA demonstrated to inhibit PI3K pathway and to synergistically 

enhance apoptosis induced by 5-FU via JNK. For the first time, UA was found to inhibit 

autophagy at the maturation step of autophagosomes lysosomes fusion, possibly by 

affecting the lysosomal membrane, contributing to cell death.   

 In conclusion, the plant extracts and the isolated natural compounds used in this 

thesis demonstrated to be promising agents against CRC in different molecular targets 

by decreasing proliferation and in sensitizing cancer cells to death apoptosis. This study 
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contributes to add Salvia fruticosa, Salvia officinalis, and Hypericum androsaemum to 

the list of plants with potential anticarcinogenic effects. Moreover, the isolated 

compounds quercetin and luteolin demonstrated to be effective on a variety of 

molecular targets and to be promising agents in combination with 5-FU. During this 

work, UA was the most promissory compound since it was able to target the lysosomes 

at lower concentrations inhibiting the autophagic process and thus leading CRC and 

breast cancer cells to death. More research is needed, however, to safely add these 

dietary natural compounds as therapeutic tool against cancer and especially we should 

be aware that in vivo studies are needed to confirm our data.  

 

2. Future Perspectives 

 

The studies enclosed in this thesis were carried out to find potential 

anticarcinogenic effects of Salvia and Hypericum species and, if possible, to identify 

active principles, characterizing the mechanism of action. In spite of the advances 

obtained in this work, there are still many questions unanswered.  

Presently, we found that Salvia fruticosa, Salvia officinalis and Hypericum 

androsaemum possess anticarcinogenic in CRC. In an attempt to find which compounds 

are responsible the effects observed, we tested the main phenolic compounds present in 

the water extracts. However, neither of the compounds, rosmarinic acid and chlorogenic 

acid, respectively, showed the ability to suppress KRAS or BRAF, the active principle 

of these extracts being still unknown. Since the Hypericum water extract was only 

effective in inhibiting mutant BRAF without affecting the wild-type BRAF, to find in 

the plant the possible responsible for this effect constitute a good challenge. As future 

work, a screening of compounds present in the Hypericum water extract should be 

performed. Although phenolic compounds have been demonstrated to have a wide range 

of effects against several cancer cell types, other classes of compounds present in these 

extracts must be taken into account.  

The isolated compounds quercetin and luteolin showed to inhibit MAPK/ERK 

and PI3K/Akt pathways through inhibition of KRAS. However, more studies should be 

performed in order to clarify how these compounds interact and decrease the expression 

of this protein. Both flavonoids also demonstrated to enhance apoptosis induced by 5-

FU and, moreover, a synergistic effect was observed with quercetin in the p53 wild type 
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cells. Nevertheless, to confirm and validate these results, studies in vivo should be 

carried out. 

The triterpenoid ursolic acid induced cell death at small concentrations and had 

effect on lysosome integrity, which leads to a blockage of the maturation step during the 

autophagic process. According to some recent studies, UA affects the metabolism of 

lipids, which could explain the observed effects on lysosomal membrane. It would be 

interesting to explore more in detail the interference of UA with lysosomes and cell 

membranes in general.  

Finally, since an ideal anticancer agent should be toxic to malignant cells with 

minimum toxicity towards normal cells, it is important to evaluate the effects of these 

plant water extracts and isolated compounds in cells considered “normal”. In fact, UA 

was tested in HBL-100 nontumorogenic breast-derived epithelial cells and no 

significant effect on its survival, at the concentration used, was observed. The same 

should be investigated for quercetin and luteolin. Moreover, to further reveal the impact 

of the applicability of these natural compounds in CRC therapy, effects in animal 

models are essential.     
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