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Abstract 

 

The endocannabinoid system has been implicated in the regulation of several physiological 

functions. The widespread distribution of the endocannabinoid system in the central nervous 

system (CNS) accounts for many effects attributed to cannabinoids. Importantly, cannabinoids 

have been shown to modulate mood, cognition and memory. There is growing evidence 

suggesting that cannabinoids can interact with the noradrenergic system. Noradrenergic 

transmission in the CNS has also been implicated in the regulation of mood, cognition and 

memory. In the present work, the hypothesis that cannabinoids can impact noradrenergic 

transmission in the limbic system was examined. Firstly, localization of the cannabinoid receptor 

type 1 (CB1r) was performed in the nucleus accumbens (Acb) and in the nucleus of the solitary 

tract (NTS), using immunohistochemical techniques, to clarify the anatomical substrates 

underlying potential interactions. It was shown that CB1r is present in noradrenergic neurons of 

the NTS. In addition, CB1r was found in the Acb but rarely in noradrenergic terminals. 

Furthermore, the effects of cannabinoid administration on adrenergic receptor (AR) expression in 

the Acb were studied. Western blot analysis of accumbal tissue revealed that exogenous 

administration of the synthetic cannabinoid WIN 55,212-2 decreases α2A- and β1-AR 

expression. Finally, the importance of norepinephrine (NE) in cannabinoid-induced behaviors was 

tested. Using the place conditioning paradigm and the elevated zero maze (EZM), the effects of 

cannabinoids on aversion and anxiety, respectively, were tested following depletion or blockade of 

noradrenergic transmission in the Acb or in the bed nucleus of the stria terminalis (BNST). Using 

an immunotoxin approach, NE depletion restricted to the Acb, but not BNST, blocked the 

expression of aversion to WIN 55,212-2. Depletion of NE had no effect on WIN 55,212-2-induced 

anxiety. Moreover, the fact that blockade of β1-AR in the Acb prevents WIN 55,212-2-induced 

aversion suggests that noradrenergic transmission via β1-AR is critical for eliciting this behavior. 

In conclusion, the present work provides new evidence supporting the idea that cannabinoids can 

impact noradrenergic transmission in the limbic system. In addition, cannabinoid-induced 

aversion is dependent on intact noradrenergic transmission in the Acb. Taken together, the 

studies provide herein clarify the anatomical and neurochemical substrates for cannabinoid 

actions in the CNS. 
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Resumo 

 

O sistema endocanabinóide tem sido implicado na regulação de várias funções fisiológicas. A 

dispersa distribuição do sistema endocanabinóide no sistema nervoso central (SNC) explica os 

muitos efeitos atribuídos aos canabinóides. De realçar que tem sido demonstrado que os 

canabinóides modelam o humor, cognição e memória. Existe uma crescente evidência sugerindo 

uma interacção entre o sistema endocanabinóide e o sistema noradrenérgico. Por seu lado, 

transmissão noradrenérgica no SNC tem sido implicada na regulação do humor, cognição e 

memória. No presente trabalho, a hipótese de que os canabinóides podem afectar a transmissão 

noradrenérgica no sistema límbico foi examinada. Inicialmente, a localização do receptor dos 

canabinóides tipo 1 (CB1r) no núcleo accumbens (Acb) e no núcleo do tracto solitário (NTS) foi 

efectuada utilizando técnicas de imunohistoquímica, de forma a clarificar os substratos 

anatómicos subjacente a potenciais interacções. Foi demonstrado que CB1r está presente em 

neurónios noradrenérgicos do NTS. Para além disso, CB1r foi encontrado no Acb mas raramente 

em terminais noradrenérgicos. Adicionalmente, os efeitos da administração de canabinóides na 

expressão de receptores adrenérgicos no Acb foram estudados. Análise por western blot de 

tecido do Acb revelou que administração exógenea do canabinóide sintético WIN 55,212-2 

diminui a expressão dos receptores adrenérgicos α2A e β1. Finalmente, a importância da 

noradrenalina (NA) nos comportamentos induzidos pelos canabinóides foi testada. Utilizando o 

paradigma de “place conditioning” e o teste “elevated zero maze” (EZM), os efeitos dos 

canabinóides na aversão e anxiedade foram testados após depleção ou bloqueio da transmissão 

noradrenérgica no Acb ou no núcleo da estria terminalis (BNST). Utilizando uma imunotoxina, a 

depleção restrita de NA no Acb, mas não no BNST, bloqueou a aversão ao WIN 55,212-2. 

Enquanto que depleção de NA não teve nenhum efeito na anxiedade provocada por WIN 55,212-

2. Mais, o facto de o bloqueio do receptor adrenérgico β1 no Acb prevenir a aversão induzida 

por WIN 55,212-2 sugere que a transmissão noradrenérgica via este receptor é fundamental 

para a expressão deste comportamento. Em conclusão, o presente trabalho fornece nova 

evidência suportando a ideia de que os canabinóides podem afectar a transmissão 

noradrenérgica no sistema límbico. Mais, a aversão induzida por canabinóides é dependente da 

transmissão noradrenérgica no Acb. Em conjunto, os estudos apresentados neste trabalho 

esclarecem os substratos anatómicos e neuroquímicos das acções dos canabinóides no SNC. 
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1. INTRODUCTION 
 

1.1 The endocannabinoid system 

 

Marijuana (Cannabis sativa) has been used medicinally and recreationally for thousands of years 

(Crippa et al., 2010). Descriptions of its effects include ability to alter perception and judgment, 

increase euphoria and appetite, decrease nausea and impairment of motor coordination. Since 

the identification of its main psychoactive component, (−)-trans-Δ9-tetrahydrocannabinol (∆9-

THC) (Gaoni & Mechoulam, 1964), numerous related compounds have been synthesized or 

isolated, and together they form a class of drugs called the cannabinoids. 

The endocannabinoid system is constituted by its endogenous ligands, enzymes for synthesis 

and degradation and its receptors (Figure 1). The endocannabinoid system is widely distributed 

in the brain tissue of several vertebrates. The discovery of the cannabinoid receptors, type 1 

(CB1r) in 1990 (Matsuda et al., 1990) and type 2 (CB2r) in 1993 (Munro et al., 1993), together 

with the identification of the endogenous ligands, anandamide (Devane et al., 1992) and 2-

arachidonoylglycerol (2-AG) (Mechoulam et al., 1995; Sugiura et al., 1995), led to an increased 

interest in this system. 

 

 

1.1.1 The synthesis and degradation of endocannabinoids 

 

The first endocannabinoid to be identified was N-arachidonoylethanolamide (anandamide) in 

isolates derived from the pig brain (Devane et al., 1992). Three years later, a second 

endocannabinoid (2-AG) was identified by two independent laboratories (Mechoulam et al., 1995; 

Sugiura et al., 1995). Despite their similar chemical structures, anandamide and 2-AG possess 

distinct biosynthesis pathways. The existence of different enzymatic routes for their synthesis 

suggests that, under certain circumstances, these two endocannabinoids might operate 

independently of each other (Stella & Piomelli, 2001). In addition, anandamide and 2-AG show 

different binding efficacies to both CB1r and CB2r as 2-AG has been shown to have higher affinity 

than anandamide (Kano et al., 2009). In fact, 2-AG acts as a full agonist while anandamide is 

seen as a partial agonist (Burkey et al., 1997). Interestingly, both ligands show higher affinity to 

CB1r than CB2r. Nonetheless, the production of both endocannabinoids seems to be dependent 

on cell activation and increases in intracellular Ca2+ (Piomelli, 2003). 
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Biosynthesis of anandamide 

Anandamide can be synthesized from enzymatic condensation of free arachidonic acid and 

ethanolamine by the enzyme fatty acid amide hydrolase (FAAH) (Deutsch & Chin, 1993). 

However, this pathway does not seem to be the main route for anandamide synthesis as it 

requires very high concentrations of arachidonic acid and ethanolamine (Devane & Axelrod, 

1994; Kruszka & Gross, 1994; Ueda et al., 1995; Sugiura et al., 1996). In fact, FAAH is seen as 

the main enzyme responsible for hydrolysis of anandamide (Deutsch & Chin, 1993; Piomelli, 

2003; Gulyas et al., 2004). At least one other pathway for the synthesis of anandamide is known 

and it is thought to be the main source of anandamide. This pathway is composed of two 

enzymatic reactions (Cadas et al., 1997), the transfer of an arachidonate group from 

phospholipids to phosphatidylethanolamine (PE) by the enzyme N-acyltransferase (NAT), yielding 

the formation of N-arachidonoyl phosphatidylethanolamine. Secondly, N-arachidonoyl 

phosphatidylethanolamine is hydrolyzed to anandamide and phosphatidic acid by N-

acylphosphatidylethanolamine-hydrolizing phospholipase D (NAPE-PLD). NAT is Ca2+-dependent 

and it is thought to be the rate-limiting step in the anandamide production (Cadas et al., 1996). 

Ca2+ also stimulates NAPE-PLD along with Mg2+ (Okamoto et al., 2004).  

 

Biosynthesis of 2-arachidonoylglycerol 

Several pathways have been described for the synthesis of 2-A. At present, the main pathway for 

the synthesis of 2-AG involves the enzymes phospholipase C (PLC) and diacylglycerol lipase 

(DAGL). First, membrane phospholipids containing arachidonic acid, like phosphatidylinositol, are 

hydrolyzed to diacylglycerol by PLC. Subsequently, diacylglycerol is hydrolyzed to 2-AG by DAGL.  

Other pathways for production of 2-AG include sequential reactions by phospholipase A1 (PLA1) 

and lysoPI-specific PLC (Ueda et al., 1993; Sugiura et al., 1995), conversion from 2-arachidonoyl 

lysophosphatidic acid to 2-AG by phosphatase (Nakane et al., 2002) and formation from 2-

arachidonoyl phosphatidic acid through 1-acyl-2-arachidonoylglycerol (Bisogno et al., 1999; 

Carrier et al., 2004).  

 

Degradation of endocannabinoids 

Anandamide and 2-AG possess distinct degradation pathways. Anandamide is hydrolyzed by 

FAAH. FAAH is located predominantly postsynaptic and juxtaposed to axon terminals containing 
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CB1r (Egertova et al., 2003; Gulyas et al., 2004). On the other hand, 2-AG is hydrolyzed by 

monoacylglycerol lipase (MAGL) (Dinh et al., 2002; Dinh et al., 2004) which is believed to be 

present mostly in axon terminals (Dinh et al., 2002). 

 

 

1.1.2 The cannabinoid receptors 

 

CB1r and CB2r are the two major cannabinoid receptors. Despite the fact both are G-protein 

coupled receptors (GPCR), mainly coupled to Gi (inhibitory) protein, they share only 44% amino 

acid sequence identity (Munro et al., 1993) and show a very distinct distribution. CB1r is highly 

expressed in the central nervous system (CNS); however, its distribution is not homogeneous, 

with highest densities observed in the cerebral cortex, hippocampus, basal ganglia and 

cerebellum (Herkenham et al., 1990; Herkenham et al., 1991). CB2r is found mainly in immune 

cells (Munro et al., 1993; Galiegue et al., 1995). However, in the last years, CB2r has been 

identified in the CNS albeit in lower levels than CB1r (Gong et al., 2006; Onaivi, 2006). 

Interestingly, in the CNS, CB2r is reported to be distributed in neuronal somata and dendrites, 

but not in axon terminals like CB1r. 

 

CB1r 

CB1r was first cloned in 1990 by Matsuda and colleagues (Matsuda et al., 1990). CB1r is known 

to be primarily coupled to the Gi family of G proteins. As a result, activation of CB1r mediates 

inhibition of adenylyl cyclase leading to a decrease of intracellular cAMP (Howlett et al., 1986; 

Pertwee, 1997; Demuth & Molleman, 2006). However, coupling of CB1r to Gs and Gq proteins 

has been suggested (Glass & Felder, 1997; Maneuf & Brotchie, 1997; Lauckner et al., 2005). In 

addition to its effects on adenylyl cyclase activity, activation of CB1r activates A-type (Hampson et 

al., 1995) and inwardly rectifying K+ channels (Mackie et al., 1995), inhibits N- and P/Q-type Ca2+ 

channels (Twitchell et al., 1997) and D- and M-type K+ channels (Mu et al., 1999; Schweitzer, 

2000). CB1r activation has also been shown to activate focal adhesion kinase (FAK) (Derkinderen 

et al., 1996), mitogen-activated protein kinase (Bouaboula et al., 1995) and extracellular signal-

regulated kinase (ERK) (Derkinderen et al., 2003). 

 

CB2r 
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CB2r was identified in 1993 (Munro et al., 1993) in macrophages. Since its identification, CB2r 

was seen as the peripheral target for cannabinoids, with actions mainly in the immune system. 

As a regulator of the peripheral immune system it was expected that CB2r could also be a 

modulator of the central immune system and, in fact, CB2r was later identified in microglia 

(Nunez et al., 2004; Ashton et al., 2006). Additionally, CB2r has also been identified in neurons 

of the cerebellum and hippocampus (Gong et al., 2006; Onaivi, 2006). 

CB2r are GPCR, coupled to Gi proteins. Contrary to CB1r that is able to signal through Gs, CB2r 

is unable to couple to Gs (Glass & Felder, 1997; Maneuf & Brotchie, 1997). In addition, CB2r are 

also unable to regulate ion channels (Felder et al., 1995). 

 

Endocannabinoid role in synaptic system 

As mentioned earlier, CB1r is located mainly to axon terminals and presynaptic sites. This 

localization is consistent with the findings that cannabinoids mediate suppression of 

neurotransmitter release by retrograde signaling (Llano et al., 1991; Pitler & Alger, 1992; Wilson 

& Nicoll, 2001), a phenomenon known as depolarization-induced suppression of inhibition (DSI) 

or excitation (DSE), placing the endocannabinoid system as a synaptic modulatory system. In this 

signaling pathway, postsynaptic cells are depolarized leading to an increase in endocannabinoid 

production. Endocannabinoids, mainly 2-AG, are released to act on presynaptic receptors. 

Activation of presynaptic receptors will decrease the likelihood of release of glutamate or GABA 

from the terminal (Wilson & Nicoll, 2002; Piomelli, 2003). Because DSI is absent in CB1r 

knockout mice, CB1r is seen as the presynaptic target of endocannabinoids (Varma et al., 2001; 

Wilson et al., 2001). In addition to this fast, “on demand” mechanism to modulate synaptic 

transmission, endocannabinoids have also been implicated in synaptic plasticity, namely, by 

affecting long-term depression (LTD) and long-term potentiation (LTP) (Sullivan, 2000). 

Modulation of LTD/LTP by endocannabinoids requires, as in DSI/DSE, the release of 

endocannabinoids by the postsynaptic cell in response to a Ca2+ rise and/or activation of group I 

metabotropic glutamate receptors (mGluR-I) on the postsynaptic cell, to act on presynaptic CB1r 

(Chevaleyre et al., 2006). The difference between DSI/DSE and LTD/LPT resides in the amount, 

nature and duration of endocannabinoid release.  

Cannabinoids are also able to induce long lasting changes in neuronal morphology. After chronic 

treatment with CB1r agonists, changes in dendritic morphology were observed in areas like 

prefrontal cortex (PFC), nucleus accumbens (Acb) and hippocampus (Kolb et al., 2006; 
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Figure 1. The endocannabinoid system. The enzymes for 2-AG biosynthesis, PLC and DAGL seem to be 

mostly localized in postsynaptic neurons. MAGL, responsible for inactivation of 2-AG is localized in 

presynaptic neurons, while FAAH, for degradation of anandamide, is localized in postsynaptic neurons. The 

localization of anandamide biosynthetic enzymes NAT and NAPE-PLD is not yet known, but thought to be 

postsynaptic. CB1r is found mainly presynaptic in accordance with the retrograde signaling hypothesis 

proposed for the endocannabinoid system. Lastly, the not yet identified endocannabinoid membrane 

transporter (EMT) seems to facilitate both endocannabinoid release and re-uptake, and might be localized on 

both pre- and postsynaptic neurons. With permission from Di Marzo et al., 2004 

Tagliaferro et al., 2006). In summary, cannabinoids can have a long-term impact in the CNS, but 

the functional implications of such actions are still unclear. 

 

 

1.1.3 The endocannabinoid system as a potential therapeutic target 

 

Due to its wide distribution, the endocannabinoid system has a great range of potential 

therapeutic applications. From management of nausea and vomiting to neuroprotection or 
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antitumoral activity (Köfalvi, 2008), several are the fields where cannabinoid modulation could 

display therapeutic actions. However, with the systemic use of cannabinoid agonists/antagonists, 

some side effects have been reported which can preclude the use of such agents in a more 

broad number of patients. For instance, the synthetic ∆9-THC, dronabinol, is indicated to 

stimulate appetite in patients with AIDS suffering from anorexia with weight lost. Dronabinol is 

also indicated to treat nausea and vomiting associated with cancer chemotherapy in patients who 

have failed to respond adequately to conventional antiemetic treatments. Yet, the side effects of 

dronabinol, especially on the nervous system where it can exacerbate underlying mental illness 

such as mania, depression or schizophrenia (Food and Drug Administration, 2004), may be 

limiting the number of patients that could benefit from the drug. Additionally, the CB1r 

antagonist, rimonabant, was in clinical trials for the treatment of obesity, diabetes mellitus and 

cardiometabolic risk factors (Steinberg & Cannon, 2007). However, due to reservations about its 

safety, especially in patients with history of psychiatric disorders, clinical trials were suspended 

and the drug has been removed from the market (Sanofi-Aventis, 2008).   

 

 

1.2 The noradrenergic system  

 

The noradrenergic system, together with the serotoninergic, cholinergic and dopaminergic 

systems, is typically viewed as a neuromodulatory system. In contrast to glutamatergic or 

GABAergic neurons that have a widespread distribution, neuromodulatory neurons are confined 

to specific nuclei in the brain. Nevertheless, neuromodulatory neurons have widespread 

projections (Sara, 2009). The noradrenergic system, in particular, has the cell bodies grouped in 

nuclei in the brainstem, namely the locus coeruleus (LC) and the nucleus of the solitary tract 

(NTS) (Foote et al., 1983; Weinshenker & Schroeder, 2007; Itoi & Sugimoto, 2010). While the LC 

is a homogenous nucleus in which most cells are noradrenergic (Foote et al., 1983), the NTS 

contains several neurotransmitters (Barraco et al., 1992). The noradrenergic neurons of the NTS 

are distributed throughout the caudal NTS (subpostremal and commissural NTS) (Barraco et al., 

1992). The LC, located within the dorsal wall of the rostral pons, in the lateral floor of the fourth 

ventricle, is the largest noradrenergic nucleus in the brain (Foote et al., 1983) and is the sole 

source of norepinephrine (NE) in the forebrain (Sara, 2009). The LC is seen as the “arousal” 

center, important for regulation of sleep and vigilance, and activation of the LC is important for 

http://en.wikipedia.org/wiki/Pons
http://en.wikipedia.org/wiki/Fourth_ventricle
http://en.wikipedia.org/wiki/Fourth_ventricle
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selective attention (Southwick et al., 1999; Sara, 2009). On the other hand, the NTS works as 

relay station for sensory signals arising from the viscera. The NTS integrates visceral information 

with other regulatory information coming from the brainstem, diencephalon and forebrain 

(Barraco et al., 1992; Itoi & Sugimoto, 2010). The NTS is known to send efferents to autonomic 

centers in the brainstem but also to send ascending efferents to higher levels of the neuroaxis 

(Barraco et al., 1992).  

NE can interact with three families of adrenergic receptors (ARs): α1, α2 and β(1-3) receptors. 

α1 receptors are coupled to Gq proteins, hence activating phospholipase C and phosphotidyl 

inositol intracellular pathway, resulting in activation of protein kinase C and release of 

intracellular calcium (Duman & Nestler, 1995). α2-ARs, found pre- and postsynaptically 

(MacDonald et al., 1997), are coupled to Gi proteins which can lead to a decrease in intracellular 

cAMP (Duman & Nestler, 1995). Presynaptic localized α2-ARs work as autoreceptors, since 

activation of these receptors will decrease intracellular cAMP and Ca2+, inhibiting the release of 

neurotransmitters. β-ARs are coupled to Gs proteins, activating adenylyl cyclase and increasing 

intracellular cAMP (Duman & Nestler, 1995).  

 

 

1.2.1 The noradrenergic system and mental health 

 

Abnormalities of the noradrenergic system have been implied in some of the features of 

psychiatric disorders, such as schizophrenia, anxiety, depression and posttraumatic stress 

disorder (PTSD) (Friedman et al., 1999; Southwick et al., 1999; Nutt, 2002; Nutt, 2006; Itoi & 

Sugimoto, 2010). Several studies have revealed alterations in the levels of adrenergic receptor 

expression in depressed suicide victims. α2-AR density was found to be increased in brains of 

depressed suicide victims (Meana et al., 1992; De Paermentier et al., 1997; Callado et al., 

1998), while β1-AR density was reported to be decreased (De Paermentier et al., 1990). These 

changes were not found throughout the brain suggesting that specific areas of the brain may be 

involved in the pathophysiology of the mood disorders. Moreover, pharmacological depletion of 

monoamines (e.g. reserpine) produces depressive-like behaviors in animal models, suggesting a 

role for monoamines (including NE) in pathophysiology of depression. Additionally, most 

antidepressants drugs in the market act by increasing the levels of synaptic monoamines. Hence, 

low levels of NE seem to account to the expression of depressive symptoms. It has been reported 
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an up-regulation of the rate-limiting enzyme in the synthesis of NE, tyrosine hydroxylase (TH) in 

the LC of depressed patients, which can be seen as a response to the low levels of NE observed 

in depression (Zhu et al., 1999). 

 

 

1.3 The nucleus accumbens and mental health 

1.3.1 The limbic system 

 

The limbic system is often synonymous of emotional brain. Initially, the limbic system was 

defined anatomically and included the cingulated cortex, the hippocampus, the thalamus, and 

the hypothalamus (MACLEAN, 1954). Later, this definition was questioned and it was suggested 

that the limbic system would not be defined only by anatomical localization to the limbic lobe and 

its connections but through functional connections which influence in emotional behavior 

(LeDoux, 1996; Berridge, 2003; Franks, 2006). Thus, areas like the amygdala, PFC and Acb are 

now recognized to be part of the limbic system (Berridge, 2003).  

The study of the limbic system as the system controlling emotions is of great interest. More than 

understanding how the human brain processes emotions, it allows us to understand how the 

brain is disrupted in the disease processes such as in the case of mood disorders. While most 

research in the depression field has focused on hippocampus and PFC, great interesting on 

several subcortical structures such as the Acb, amygdala and hypothalamus, implicated in 

reward, fear and motivation, is emerging (Nestler & Carlezon, 2006). The role of the 

hippocampus in memory and spatial learning along with the PFC functions in working memory, 

attention and impulse control are consistent with some cognitive deficits seen in patients with 

depression and other mood disorders. Nonetheless, these areas do not seem to account for the 

diversity of symptoms found in these patients (Nestler & Carlezon, 2006).  

 

 

1.3.2 The nucleus accumbens 

 

Although the Acb is mostly seen as part of the reward/pleasure system, it was not initially 

considered part of the traditional limbic circuit (Berridge, 2003). Its role in emotion regulation is, 

however, indisputably striking. Due to its connectivity with the amygdala, the hippocampus, PFC 



11 
 

and the ventral tegmental area (VTA), the Acb has been proposed to work as the „„limbic-motor 

interface‟‟ (Mogenson et al., 1980; Bonelli et al., 2006; Meredith et al., 2008) (Figure 2). 

Glutamatergic amygdalar projections transmit information about affective/emotional memory 

while glutamatergic afferents from the hippocampus and PFC convey contextual features from 

the environment. In addition, the Acb receives dopaminergic afferents from VTA which encode for 

the reward properties of behavior. As a “limbic-motor interface” Acb is positioned to modulate 

behavior and, in fact, Acb activity has been found to be disrupted in animal models of depression 

(Newton et al., 2002; Shirayama & Chaki, 2006).  

Anatomically, the Acb is part of the ventral striatum and is composed of a central “core” 

subregion and a peripheral and medially situated “shell” subregion. The core subregion works as 

a modulator of generic motor responses, while the shell seems to integrate emotional and 

motivational valences into a motor response (Maldonado-Irizarry & Kelley, 1994). The Acb is 

constituted by GABAergic medium spiny neurons (90%) and cholinergic interneurons (10%) 

(Meredith, 1999). Connectivity between the two subregions has been described (van Dongen et 

al., 2005; van Dongen et al., 2008) suggesting that, although the two subregions seem to have 

different roles in behavior, they have the ability to modulate each other. 

 

  

 

 

Figure 2. The neural circuitry of mood. The figure shows a highly simplified summary of a series of neural 
circuits in the brain that are believed to contribute to the regulation of mood. Amy, amygdale; DR, dorsal raphe; 
HP, hippocampus; Hypo, hypothalamus; LC, locus coeruleus; NAc, nucleus accumbens; NE, norepinephrine; 
PFC, prefrontal cortex; VTA, ventral tegmental area. With permission from Nestler & Carlezon, 2006. 
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1.4 The interplay between the endocannabinoid and noradrenergic systems 

 

Manipulation of the cannabinoid system exerts effects on mood and cognition that have some 

similarities with manipulations of the noradrenergic system. Briefly, increasing cannabinoid tone 

has been shown to improve mood like increasing noradrenergic tone with antidepressants. 

Moreover, overactivation of the cannabinoid system can cause mania (Henquet et al., 2006), a 

side effect that has been reported by patients using antidepressants (Peet, 1994; Bond et al., 

2008; Tondo et al., 2010). Taken together, the effects of cannabinoid and noradrenergic 

manipulation on CNS suggest that the two systems may interact or share some signaling 

pathways. Consistent with this, a study performed with human subjects revealed that 

administration of the β-AR blocker, propranolol, before consumption of marijuana prevented the 

cardiovascular effects of marijuana and prevented the learning impairment produced by 

marijuana (Sulkowski et al., 1977). In line with this, early anatomical studies using 

radioautography, have identified moderate CB1r binding and CB1r mRNA in the principal 

noradrenergic nuclei, the LC and NTS (Herkenham et al., 1991; Mailleux & Vanderhaeghen, 

1992; Matsuda et al., 1993; Derbenev et al., 2004; Jelsing et al., 2008). Characterization of 

CB1r distribution in the LC showed that CB1r is localized to somato-dendritic profiles as well as 

to axon terminals and neurochemical characterization of LC neurons showed that some of the 

CB1r-positive neurons are noradrenergic (Scavone et al., 2010). The existence of CB1r in the LC 

and NTS prompts the hypothesis that cannabinoids may modulate noradrenergic activity. In fact, 

administration of cannabinoid-like agents has been shown to increase Fos expression in LC 

noradrenergic (LC-NE) neurons (Patel & Hillard, 2003; Oropeza et al., 2005) and in NTS neurons 

(Jelsing et al., 2009). Moreover, cannabinoid-like agents are also able to modulate LC and NTS 

firing (Himmi et al., 1996; Himmi et al., 1998; Mendiguren & Pineda, 2004; Mendiguren & 

Pineda, 2006; Muntoni et al., 2006) suggesting that CB1r in the LC and NTS are functional. The 

anatomical and functional studies reveal a potential mechanism by which cannabinoids exert 

their effects on mood and cognition. The ability of cannabinoids to modulate LC and NTS activity 

can impact noradrenergic transmission in critical regions for regulation of mood and cognition. In 

fact, cannabinoids have been shown to increase NE release in the PFC (Oropeza et al., 2005). 
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1.5 Aims of the study 

 

Drugs targeting the endocannabinoid system are being explored to ameliorate, or even treat, 

several pathological processes. However, some safety issues persist, namely psychiatric side 

effects, demanding a better understanding of the mechanisms of these side effects. There is 

evidence suggesting that the endocannabinoid system can modulate noradrenergic transmission 

in the brain. As the noradrenergic system play a role in some symptoms of several psychiatric 

disorders, identifying how, where and when the endocannabinoid system is modulating the 

noradrenergic system becomes very pertinent. The clinical applications of such knowledge can 

be, at least, applied in two distinct perspectives. On one hand, it may allow us to understand and 

prevent some side effects of modulators of the endocannabinoid system and, on the other hand, 

to use modulators of the endocannabinoid system to revert impairments/disruption of the 

noradrenergic system. 

 

In summary, this thesis aims to: 

• Characterize the localization of CB1r in the Acb with respect to noradrenergic afferents 

• Understand the implications of cannabinoid administration in adrenergic receptor 

expression in the Acb  

• Investigate the role of NE in cannabinoid-induced behaviors 
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Abstract 

 

The cannabinoid system is known to interact with a variety of neuromodulators in the central 

nervous system and impacts diverse behaviors. Previous studies have demonstrated that limbic 

norepinephrine is a critical determinant in the behavioral expression of cannabinoid-induced 

aversion.  The present study was carried out to define the adrenergic receptor subtype involved in 

mediating cannabinoid-induced behavioral responses. An acute microinjection of the beta-

adrenergic blocker, betaxolol, directly into the nucleus accumbens was able to prevent WIN 

55,212-2-induced aversion as measured in a place conditioned paradigm. These results suggest 

that noradrenergic transmission in the nucleus accumbens is important for cannabinoid-induced 

aversion and that beta-adrenergic antagonists may be effective in counteracting unwanted side 

effects of cannabinoid-based agents.  

 

Keywords: Cannabinoids, adrenergic receptors, place conditioning 
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Introduction 

 

Previous studies have shown an anatomical and functional interaction between the cannabinoid 

and noradrenergic systems in the brain. The cannabinoid receptor type 1 (CB1r) has been found 

in noradrenergic neurons and terminals in brain regions such as the prefrontal cortex (PFC) 

(Oropeza et al., 2007), nucleus accumbens (Acb) (Carvalho et al., 2010a), locus coeruleus (LC) 

(Scavone et al., 2010) and the nucleus of the solitary tract (NTS) (Carvalho et al., 2010a). Moreover, 

administration CB1r agonist WIN 55,212-2 (3.0mg/kg) has been shown to increase 

norepinephrine (NE) release in the PFC as well as to increase c-fos expression in the LC (Oropeza 

et al., 2005; Page et al., 2007). Cannabinoids are known to dose-dependently affect several 

behaviors. While low doses usually induced reward and have anxiolytic effects, high doses 

(namely WIN 55,212-2 at the dose of 3.0mg/kg) usually induce aversive and anxiety-like 

behaviors (Degroot, 2008; Murray & Bevins, 2010). In line with this, in a previous study, we have 

investigated the contribution of NE to cannabinoid-induced aversion and anxiety (Carvalho et al., 

2010b). It was shown that NE in the Acb is critical for cannabinoid-induced aversion but not 

anxiety. Although the study showed an important role for NE in the aversion induced by a 

cannabinoid agent, it did not provide the adrenergic receptor (AR) subtype involved. The present 

study was designed to investigate the role of the β1-AR in cannabinoid-induced aversion and 

whether blockade of β1-AR after conditioning and prior to testing is sufficient to abolish this WIN 

55,212-2-induced behavior. Animals were conditioned to the CB1r agonist, WIN 55,212-2, using 

a place conditioning paradigm and an intra-cerebral microinjection of a β1-AR blocker, betaxolol, 

was given prior to testing the animals. 
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Methods 

 

Subjects 

Twelve male Sprague-Dawley rats (Harlan Laboratories, Indianapolis, IN) weighing 220-250g 

were housed separately in a controlled environment (12-hour light schedule, temperature at 

20°C). Food and water were provided ad libitum. The care and use of animals were approved by 

the Institutional Animal Care and Use Committee of Thomas Jefferson University and were 

conducted in accordance with the NIH Guide for the care and use of laboratory animals. All 

efforts were made to minimize animal suffering and reduce the number of animals used. 

 

Cannulae Implantation and Intracerebral Microinjections 

Rats were anesthetized with an intraperitoneal (i.p.) injection of a saline solution containing a 

cocktail of Ketamine HCl (100mg/kg; Phoenix Pharmaceutical, Inc. St. Joseph, MO) and Xyla-

Ject (2mg/kg; Phoenix Pharmaceutical, Inc.) and subsequently placed in a stereotaxic surgical 

frame (Stoelting Corp., Wood Dale, IL). The anesthesia was maintained by administration of 

isoflurane (Webster Veterinary Supply, Inc., Sterling, MA) through a nose cone. Bilateral cannulae 

(22 gauge, 8 mm long, from PlasticOne) were implanted into the Acb (AP: 1.5mm rostral to 

bregma, ML: +/- 0.9mm , DV: -6.4mm), according to Rat Brain Atlas of Paxinos and Watson 

(Paxinos, G. and Watson, C., 1997) coordinates. Cannulae were affixed to the skull using acrylic 

cement and double stylets were placed in the cannulae to prevent blockage. Animals were given 

a week to recover from surgery before behavioral testing. For intracerebral microinjections, the 

obturators were removed and 28 gauge injector cannulae were lowered to the final site (1 mm 

past the guide). Infusions of 0.5 μL per side were made using a Hamilton syringe. 
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Drug preparation and administration 

WIN 55,212-2 (Sigma-Aldrich, St. Louis, MO) was dissolved in 5% dimethyl sulfoxide 

(DMSO)(Fisher Scientific, Fair Lawn, NJ) in saline and injected i.p. (3.0mg/kg) in a volume of 

1ml/kg body weight. Vehicle injections consisted of 5% DMSO in saline. Betaxolol (Sigma-Aldrich) 

was dissolved in saline (1nmol/0.5μl); betaxolol or saline were microinjected in a volume of 0.5 

μl per side (as previously described (Aston-Jones et al., 1999)).  

 

Place conditioning 

An unbiased place conditioning procedure was used, so that the side of the apparatus used to 

conditioned animals was counterbalanced in all the groups. The paradigm consisted of three 

phases: pre-test, conditioning and test. On pre-test day (day 1), animals were placed in the 

apparatus and allowed to freely explore both sides of the apparatus for 20 min. The time spent in 

each side was recorded by an investigator. During the conditioning phase (days 2–6), the rats 

were injected twice daily. In the morning, animals were injected with vehicle and confined to one 

side of the apparatus for 45 min. In the afternoon, animals were injected with WIN 55,212-2 

(3.0mg/kg) and confined to the opposite side for 45 min. On the test day (day 7), animals 

received a microinjection of betaxolol in the Acb five minutes before being place in the apparatus 

and allowed to explored both sides for 20 min. Control animals received a microinjection of saline 

in the Acb. The time spent in each side was measured by an investigator. No WIN 55,212-2 or 

vehicle injection was given to the animals on the test day. 

 

Verification of cannula placement  

At the conclusion of testing, animals were anesthetized with isoflurane (Isoflurane, USP, Webster 

Veterinary, Sterling, MA) and decapitated. Brains were removed and placed in 10% buffered 
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formalin (Fisher Scientific) for about two hours and then immersed in O.C.T. Embedding 

Compound (Electron Microscopy Sciences, Hatfield, PA) and frozen in dry ice. Coronal sections of 

the forebrain (35um) were cut using a Microm HM550 cryostat (Richard-Allan Scientific, 

Kalamazoo, MI) and every other section was collected on slide. Slides were allowed to dry and 

then stained with neutral red. Slides were visualizes using a Leica DMRBE microscope (Wetzlar, 

Germany), and images were acquired using SPOT Advanced software (Diagnostics Instruments, 

Inc., Sterling Heights, MI). Figures were then assembled and adjusted for brightness and contrast 

in Adobe Photoshop CS2.  

 

Statistical analysis 

Statistical analysis was performed using SPSS 16.0 Graduate Student Version. Behavioral data 

were analyzed using a repeated measures multivariate analysis of variance with “time of testing” 

as the within-subject factor and “treatment” as the between-subject factor. Post-hoc analyses 

included paired and independent t-tests. Significance was set at p < 0.05. 
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Results 

  

Verification of cannula placement 

Coronal sections from the forebrain (ranging from plates 20-22 of the rat brain atlas of Paxinos 

and Watson (Paxinos, G. and Watson, C., 1997)) were visualized using light microscopy for 

accuracy of cannulae placement. Of the twelve subjects, eleven exhibited cannulae placements 

that were restricted to the Acb. Specifically, these did not significantly encroach on surrounding 

areas (e.g. PFC, BNST, lateral septum, dorsal striatum, ventral pallidum). Figure 1a shows a 

photomicrograph of a representative cannula placement. For simplicity, Fig. 1b shows a 

schematic representation of all cannulae placements for the eleven animals included in the 

behavioral analysis (plate 13 of the brain atlas (Paxinos, G. and Watson, C., 1997)). All 

placements are within the medial Acb, most of which are located in the shell subregion, others 

are located in the core subregion or border region.  

 

Intra-accumbal injection of betaxolol prevents WIN 55,212-2-induced aversion 

The place conditioning paradigm was used to assess the aversive effects of WIN 55,212-2 at the 

dose of 3.0mg/kg (Carvalho et al., 2010b). All animals were conditioned to WIN 55,212-2 during 

the conditioning phase. Animals were assigned to two groups: animals that received betaxolol 

(n=6) or saline (n=5) prior to the test. Repeated measures analysis revealed that the there was 

an overall effect of time of testing (F(1,9)=10.79, p=0.009), suggesting that the conditioning 

phase affected the performance of the animals on the test day (Figure 2). The analysis also 

showed an interaction between the treatment and time (F(1,9)=6.043, p=0.036). Further 

analysis showed that animals that were given saline prior to the test spent significantly less time 

in the side paired with WIN 55,212-2 in the test day when compared to the pre-test (paired t-test, 
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t(4)=4.635, p=0.01), showing that WIN 55,212-2 induced aversion. On the contrary, the time 

spent in the side paired with WIN 55,212-2 in the test day did not differ from the pre-test in the 

animals that were given betaxolol (paired t-test, t(5)=0.551, p>0.05), suggesting that betaxolol 

injection prevents WIN 55,212-2-induced aversion. Moreover, the animals given saline spent less 

time spent in the side paired with WIN 55,212-2 in the test day than the animals that were given 

betaxolol (independent t-test, t(9)=-2.671, p=0.026). This suggests that β1-ARs in the Acb are 

important for the development of aversion to WIN 55,212-2. 
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Discussion 

 

In this study, blockade of β1-ARs in the Acb prior to testing abolished aversion to systemic WIN 

55,212-2 administration, using a place conditioning paradigm. We have previously shown that 

WIN 55,2121-2-induced aversion was abrogated by depletion of accumbal NE (Carvalho et al., 

2010b). In this previous study, depletion of accumbal NE was achieved using an immunotoxin 

approach, allowing us to deplete NE specifically in the Acb.  Thus, animals lacked accumbal NE 

during the entire conditioning protocol. The present study adds to these previous results by 

identifying the β1-AR as a target involved in NE signaling. Moreover, we have shown that an 

acute injection of betoxolol in the Acb prior to testing was sufficient to inhibit the expression of 

aversion. However, this study has not explored whether the effect of betaxolol is long-lasting.  

The β1-AR is a G-protein coupled receptor that stimulates Gs, and whose activation can increase 

glutamate-mediated excitation of medium spiny neurons (MSN) in the Acb (Kombian et al., 

2006). It is hypothesized that activation of MSN can trigger the development of aversive 

responses while inactivation of MSN can trigger reward responses (Carlezon & Thomas, 2009). 

Accordingly, inactivation of β1-AR by betaxolol may inhibit Acb activation by WIN 55,212-2, 

preventing the expression of aversion. 

In recent years, cannabinoid based agents have been explored as potential new therapeutics for 

several disorders, from pain to neurodegenerative diseases and psychiatric disorders (Kano et al., 

2009; Crippa et al., 2010). However, due to the wide distribution of the endocannabinoid system 

(Piomelli, 2003), unwanted effects may occur after manipulation of this system. For this reason, 

it is important to understand targets of the cannabinoid system and their functional 

consequences. Our previous and present studies identify the noradrenergic system, specifically 

limbic NE, as a critical player in the expression of cannabinoid-induced aversion. The ability to 
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block the expression of aversion with an acute microinjection of betaxolol after conditioning can 

be seen as a potential tool to reduce unwanted effects following administration of systemic 

cannabinoid agents. 
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Figures 

 

Figure 1. a) Photomicrograph of the Acb showing the placement of the cannula (arrows). b) 

Schematic diagram of a coronal section through the rostral forebrain adapted from the rat brain 

atlas (Paxinos, G. and Watson, C., 1997) showing sites of bilateral cannulae placements into the 

Acb.  Dots represent the tip of the cannulae. Scale bar, 25 µm. 
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Figure 2. Effect of betaxolol on the development of WIN 55,212-2-induced place aversion. 

Animals that received a vehicle injection in the Acb prior to testing developed place aversion to 

WIN 55,212-2 (* p<0.01 compared to saline in pre-test day), as seen by decreased time spent in 

the drug-paired chamber. Conversely, microinjection of betaxolol prevented the development of 

aversion (+ p<0.05 compared to saline in test day). 
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3. DISCUSSION 

 

 

The present work aimed to clarify a potential interaction between the endocannabinoid and 

noradrenergic system in the brain and its implications in behavior. First, an anatomical 

characterization of the CB1r in the Acb and NTS was performed. Subsequently, it was shown that 

the systemic CB1r agonist, WIN 55,212-2, affected the expression of adrenergic receptors in the 

Acb. Finally, the importance of limbic NE to cannabinoid-induced aversion and anxiety was 

assessed. 

 

 

3.1 Anatomical characterization of the endocannabinoid system 

 

The endocannabinoid system can be targeted through its receptors (CB1r and CB2r), its 

endogenous ligands (anandamide, 2-AG) and its anabolic and catabolic enzymes (DAGL, FAAH, 

MAGL, among others). In addition, there is evidence for the existence of an endocannabinoid 

membrane transporter (EMT) (Piomelli, 2003; De Petrocellis et al., 2004) but, since it has not 

been cloned yet, its precise localization cannot be determined. Since endocannabinoids are 

derived from cell membrane-derived lipids precursors, it is possible that any cell type has the 

ability to produce endocannabinoids. Thus, it is important to identify which cells have the 

enzymatic machinery to produce endocannabinoids. However, it must be taken into account that 

the synthetic pathways of endocannabinoids are complex and not yet fully understood which 

makes of the interpretation of any anatomical data a difficult task. Nevertheless, some studies 

have looked at the localization of three enzymes, NAPE-PLD, DAGL and PLCβ1. PLCβ1 mRNA 

has been detected by in situ hibridization in the whole rat brain, with higher expression in the 

olfactory bulb, cortex, caudate-putamen, piriform cortex, lateral septum and hippocampal 

formation (Watanabe et al., 1998). Two isoforms of DAGL have been described (α and β); both 

are expressed in neurons with an interesting localization to axonal profiles during development 

and to somato-dendritic profiles in adults (Bisogno et al., 2003). Higher expression of DAGL 

mRNA was reported in the olfactory bulb, cortex, caudate-putamen, thalamus and Purkinje cells 

of the cerebellum (Yoshida et al., 2006; Uchigashima et al., 2007). NAPE-PLD was quantified by 

western blot and RT-PCR in several brain regions; these studies identified the presence of NAPE-
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PLD in higher amounts in the olfactory bulb, brainstem, cerebellum, frontal cortex, basal ganglia, 

hippocampus, hypothalamus, occipital cortex and thalamus (Morishita et al., 2005).  

In contrast, the catabolic pathway is simpler and better conclusions can be withdrawn from 

localization studies. FAAH is known to be the main enzyme involved in degradation of 

anandamide, while MAGL seems to be the main enzyme in the degradation pathway of 2-AG 

(Dinh et al., 2002b; Piomelli, 2003; Dinh et al., 2004). Interestingly, FAAH seems to be more 

abundant post-synaptically while MGL is found mainly pre-synaptically (Gulyas et al., 2004). This 

way, FAAH is often found juxtaposed to CB1r-containing terminals whereas MAGL may co-exist in 

CB1r-containing terminals. The regional distribution of these two enzymes has been described 

with FAAH mRNA being more abundant in the cortex, hippocampus and cerebellum (Thomas et 

al., 1997). MAGL mRNA expression has been reported to be high in the cortex, hippocampus, 

cerebellum and thalamus and moderate in the Acb, islands of Calleja and pontine nuclei (Dinh et 

al., 2002a). From these localization studies, two findings are worth noting. First, FAAH and MAGL 

show a very striking subcellular distribution, with FAAH being more abundant and almost 

exclusively found in somato-dendritic profiles while MAGL is found at axon terminals, thus 

suggesting that the two endocannabinoids, anandamide and 2-AG, may have different 

physiological roles. Second, the fact that the distribution of these enzymes is not always 

consistent with the distribution of CB1r (see below) suggests that endocannabinoids produced by 

neighbor cells can diffuse to receptors on other cells. Future studies providing better 

characterization of the neurochemical properties of the expressing neurons together with the 

clarification of whether there are different isoforms of these enzymes that could help predict their 

localization will be very insightful to the function of the endocannabinoid system.  

Measurement of endocannabinoid tissue content has also been used to map areas rich in 

endocannabinoids. However, contradicting and inconsistent results have been reported using 

both purification from tissue and consequent quantification by liquid or gas chromatography 

coupled with mass spectrometry and in vivo microdialysis. This is probably due to the limitations 

and caveats of each technique but also due to the fact that endocannabinoids are thought to be 

produced “on demand” and low levels of endocannabinoids are expected at basal levels. The 

process of extraction and purification of endocannabinoids from tissue is delicate and is one 

cause for variability in endocannabinoid quantification between studies (Buczynski & Parsons, 

2010). In addition, increases in endocannabinoid content post-mortem have been reported in rat, 

mouse, sheep, cow and pig brain tissue (Schmid et al., 1995; Kempe et al., 1996), indicating 
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that time between sacrifice and sample processment is a critical determinant of endocannabinoid 

content. It is not known whether euthanasia itself alter brain endocannabinoid content. The use 

of in vivo microdialysis circumvents the effects of post-mortem time on the levels of 

endocannabinoids and the need to extract and purify endocannabinoids from tissue. However, 

the aqueous environment within the dialysis probe minimizes diffusion of lipophilic 

endocannabinoids, resulting in very low collection efficiencies and subsequent low 

endocannabinoids concentrations. These low concentrations of endocannabinoids may not reflect 

the real physiological importance one would attribute to such low levels (Buczynski & Parsons, 

2010). Moreover, these quantification techniques do not allow for the identification of the 

producing and target cells. 

To date, localization of CB1r has been the main tool to map the endocannabinoid system in the 

CNS. Localization of CB1r using antibodies, radioactive ligands or oligonucleotide probes has 

provided great insights into the functions of the system. It is worth noting that receptor density 

may not correlate with receptor activity as measured by cannabinoid-stimulated 

[35S]GTPγS binding (Breivogel et al., 1997; Childers & Breivogel, 1998). This suggests that the 

amount of cannabinoid activity in a brain region cannot be predicted solely based on relative 

receptor density. The first studies focusing on the distribution of CB1r used an autoradiographic 

approach with the radiolabeled potent agonist CP 55,940 (Herkenham et al., 1990; Herkenham 

et al., 1991). High levels of binding were detected in the globus pallidus, substantia nigra, 

caudate-putamen, olfactory bulb, cerebellum and hippocampus. Moderate levels were found in 

the cortex, Acb, caudal NTS and LC (Herkenham et al., 1991). The use of antibodies allowed the 

identification of the subcellular localization of CB1r, which was found mainly, but not exclusively, 

in axon terminals (Freund et al., 2003). The identification of regions with high levels of CB1r has 

also helped to understand the role of the endocannabinoid system. For instance, localization of 

CB1r in the hippocampus and cortex underscores the effects of cannabinoids in memory and 

cognition. Similarly, the presence of CB1r in the basal ganglia reflects the effects of cannabinoids 

on movement. However, to fully understand how cannabinoids affect behavior it is relevant to 

identify the neurochemical properties of the target cells. For example, many studies have 

localized CB1r to glutamatergic and GABAergic neurons where CB1r activation was shown to 

induce DSE and DSI (Hajos et al., 2000; Manzoni & Bockaert, 2001; Robbe et al., 2001; 

Piomelli, 2003). 
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3.1.1 Anatomical localization of CB1r with respect to noradrenergic system in the 

limbic circuitry 

 

With respect to the noradrenergic system, binding radioautographic studies have shown the 

existence of moderate density of CB1r protein and mRNA in the LC and NTS (Herkenham et al., 

1991; Mailleux & Vanderhaeghen, 1992; Matsuda et al., 1993; Derbenev et al., 2004; Jelsing et 

al., 2008). Some studies have shown, by dual immunohistochemistry with DBH or tyrosine 

hydroxylase (TH), that some of the CB1r-positive neurons in the LC (Scavone et al., 2006; 

Scavone et al., 2010) and NTS (Chapter 2.1) are noradrenergic. Interestingly, the PFC and the 

Acb, two brain regions involved in some of the symptoms of psychiatric disorders which receive 

noradrenergic afferents from the LC and NTS respectively, show a very different pattern of CB1r 

distribution with respect to noradrenergic terminals. In the PFC, CB1r can be found in 

noradrenergic terminals (approximately 30% of CB1r-positive fibers were noradrenergic) (Oropeza 

et al., 2007) while in the Acb the percentage of co-localization of CB1r and DBH is very low 

(Chapter 2.1). This may reflect different modulation of NE by endocannabinoids in these two 

regions. In line with this, the impact of systemic WIN 55,212-2 administration in the adrenergic 

receptors expression in the PFC and Acb is different (Chapter 2.1, see discussion below).  

Interestingly, CB1r shows an interesting topography distribution in the Acb. The heterogeneous 

distribution of CB1r throughout the Acb may reflect different abilities of the cannabinoid system 

to modulate behavior in the Acb. It is proposed that the Acb subregions (shell and core) can be 

further subdivided with respect to function (Zahm, 1999). For instance, anatomical and 

behavioral studies support a rostro-caudal gradient for appetitive versus aversive behaviors 

(Reynolds & Berridge, 2001; Reynolds & Berridge, 2002; Reynolds & Berridge, 2003). In line 

with this, the possibility exists that cannabinoids, due to the heterogeneous distribution of CB1r, 

can have a bigger impact on certain behaviors over others.  
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3.2 Effects of cannabinoids on noradrenergic transmission 

3.2.1 The effects on LC activity 

 

Several studies have reported an effect of cannabinoids on LC activity. Namely, cannabinoids 

have been shown to increase LC spontaneous firing (Mendiguren & Pineda, 2004; Mendiguren & 

Pineda, 2006; Muntoni et al., 2006). Patel and Hillard show increased Fos labeling in 

noradrenergic neurons in the LC following systemic injection of CP55940 and WIN 55,212-2 

(Patel & Hillard, 2003). In this study, it is also shown that both CB1r agonists increase Fos 

expression in dopaminergic neurons. However, this activation of dopaminergic neurons by 

cannabinoid agonists is blocked by an α1-AR antagonist and by an α2-AR agonist, suggesting 

that CP55940 and WIN 55,212-2 may be activating dopaminergic neurons by acting on LC-NE 

neurons. On another study, Oropeza and colleagues (2005) have shown that systemic WIN 

55,212-2 (at 15 and 3mg/kg) induces Fos expression in noradrenergic neurons of the LC. This 

effect was blocked in the presence of the CB1r antagonist SR 141716A, suggesting an effect 

mediated by CB1r.  

Recordings from LC-NE neurons in anaesthetized rats have shown that systemic and central 

administration of cannabinoids, dose-dependently, increases the firing rate of the LC (Mendiguren 

& Pineda, 2006; Muntoni et al., 2006). This effect was blocked by administration of the CB1r 

antagonist SR141716A. Interestingly, administration of SR141716A alone caused a significant 

reduction of LC spontaneous firing, suggesting that LC is under the control of an endogenous 

cannabinoid tone. This hypothesis is further supported by evidence showing that URB597, a 

selective inhibitor of FAAH (the enzyme responsible for degradation of anandamide) is able to 

enhance the spontaneous firing rate of LC-NE neurons (Gobbi et al., 2005). 

Cannabinoids have also been shown to inhibit KCL-evoked excitation of the LC (Mendiguren & 

Pineda, 2007), indicating that cannabinoids may have a protective role in the LC by preventing 

overactivation of this nucleus. Overactivation of the LC has been proposed to alter behavioral 

flexibility and disable focused or selective attention (Aston-Jones et al., 1999b; Usher et al., 

1999; Aston-Jones, 2002). On the other hand, the phasic firing of the LC is important for a good 

performance on tasks that require focused attention. Thus, an excess in inhibition by 

cannabinoids may lead to a decrease of the phasic activation of the LC which could result in an 

overall disruption of attention in both animals and humans (Jentsch et al., 1997; Solowij et al., 

2002; Arguello & Jentsch, 2004). 
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3.2.2 The effects on NTS activity  

 

There is also compelling evidence for the action of cannabinoids in the NTS. However, the 

cannabinoid effects on NTS activity appear to be more complex than in the LC.  In the NTS not all 

neurons are sensitive to ∆9-THC or other cannabinoids analogs (Himmi et al., 1996; Himmi et 

al., 1998). About 50% of the neurons of the NTS are responsive to cannabinoids analogs, a 

response apparently mediated by CB1r. Interestingly, some NTS neurons have their activity 

increased after cannabinoid treatment, while others display decreased neuronal activity. 

Moreover, both WIN 55,212-2 and the antagonist rimonabant were able to increase Fos 

expression in the NTS, albeit apparently in different set of neurons (Jelsing et al., 2009). In a 

different study, analyzing the cardiovascular regulation by the NTS, a subset of NTS neurons with 

baroreceptive properties was found to increase discharge after application of anandamide and 

the endocannabinoid uptake inhibitor AM404 (Seagard et al., 2005), similarly to conditions in 

which there is increase in blood pressure. The different responses to cannabinoid analogs 

observed in the NTS may be due to the fact that the NTS is a very heterogenous nucleus 

containing a large variety of neurotransmitters and neuropeptides. Catecholaminergic, 

serotoninergic, dopaminergic, GABAergic and cholinergic neurons can be found within the same 

subregions of the NTS (Barraco et al., 1992). Since most studies fail to identify the 

neurochemical properties of the neuronal population analyzed it is hard to speculate about the 

meaning of these findings. In any case, the different studies reveal that cannabinoids can 

strongly influence activity of NTS neurons. With respect to NTS-NE neurons, this thesis shows 

that noradrenergic neurons in the NTS are positive for CB1r (Chapter 2.1), providing anatomical 

evidence for a potential action of cannabinoids in noradrenergic neurons. In addition, some ∆9-

THC-sensitive neurons were depressed when clonidine, a α2-AR agonist, was co-administered, 

suggesting that these neurons are likely noradrenergic (Himmi et al., 1996). 

 

 

3.2.3 The effects of cannabinoids on NE release in target regions 

 

Several studies have reported that systemic and local administration of cannabinoid analogs 

alters the release of NE in specific areas of the brain. Systemic administration of WIN 55,212-2 

or ∆9-THC has been shown to increase the release of NE in the PFC and in the Acb (Jentsch et 
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al., 1997; Oropeza et al., 2005; Page et al., 2007). Jentsch and colleagues showed an increase 

in NE turnover in the PFC and Acb of rats after systemic injection of ∆9-THC. They also show 

that ∆9-THC also increased dopamine turnover but only in the PFC; no effects were observed on 

serotonin turnover. Oropeza and colleagues (Oropeza et al., 2005) report an increase of NE 

release in the PFC with concomitant Fos activation in noradrenergic neurons of the LC; 

importantly, these effects were blocked by the CB1r antagonist SR 141716A. In another study, 

repeated administration of WIN 55,212-2 increased the release of NE in PFC with increased TH 

expression in the LC (Page et al., 2007). Consistent with this, an increased activity rate of TH in 

rats given ∆9-THC and WIN 55,212-2 has been reported, resulting in increased levels of NE in 

the LC, hippocampus, cortex, hypothalamus and cerebellum (Moranta et al., 2004). In addition, 

decreased synthesis of serotonin and dopamine were observed upon ∆9-THC and WIN 55,212-2 

administration. In line with the NE increased release in the PFC and in the Acb, another study 

has reported alterations in the expression of ARs, as well as in the NE transporter (NET) (Reyes et 

al., 2009). Reyes and colleagues have shown that acute administration of WIN 55,212-2 

decreases NET expression in the PFC, which in addition to LC activation (Oropeza et al., 2005) 

and increased TH activity  in the LC (Moranta et al., 2004; Page et al., 2007) may account for 

the increased release of NE. Furthermore, repeated systemic administration of WIN 55,212-2 

was shown to decrease the levels of β1-AR in the PFC.  

On the contrary, abstinence from WIN 55,212-2 induced an upregulation of β1-AR which can be 

seen as a rebound effect probably due to returning of NE to basal levels after abstinence. No 

changes were observed in α2A-AR levels. In the Acb, we have shown that β1-AR expression was 

decreased with acute or repeated administration of WIN 55,212-2 (Chapter 2.1). Additionally, 

α2A-AR was decreased but only after repeated administration; this effect persisted with 

abstinence from WIN 55,212-2 (Chapter 2.1). The lower levels of β1-AR may represent an 

adapting mechanism to the rise in extracellular NE in the Acb after WIN 55,212-2 treatment. The 

decreased in α2A-AR expression only after repeated exposure to WIN 55,212-2 may reflect a 

secondary mechanism to increase NE release. Activation of α2A-AR is known to decrease cAMP 

production in the axon terminal, decreasing the release of vesicular NE (Wozniak et al., 2000).  

Interestingly, some reports have also shown that the CB1r antagonist, SR141716A is capable of 

increasing NE release in the PFC (Tzavara et al., 2003) and in the hypothalamus (Tzavara et al., 

2001), and the administration of SR141716A is accompanied with antidepressant effects in the 

forced swim test. However, in another study, SR141716A alone did not trigger an effect in the 
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levels of NE compared to vehicle treated animals; however, in this study, it was observed that 

SR141716A blocked the effects of WIN 55,212-2-induced NE release (Oropeza et al., 2005). 

These contradictory effects can be explained in part by the different doses used in these studies. 

In the latter, SR141716A was used at 0.2mg/kg while in the former study the doses applied 

ranged from 1mg/kg to 10mg/kg. The findings from CB1r antagonism can also reflect the 

existence of a basal tone of endocannabinoids in these regions. 

 

In line with the known effects of cannabinoids on NE transmission, this thesis investigated the 

importance of NE to cannabinoid-induced behavior (Chapters 2.2 and 2.3).  

 

 

3.3 Contribution of norepinephrine to cannabinoid-induced behaviors  

3.3.1 Limbic norepinephrine and behavior 

 

Many studies have revealed an important role for NE in mental function and dysfunction. While, 

for many decades, the LC-NE system was seen as the main NE source of the CNS and was 

implicated in attention, memory and behavior, increased interest in the NTS is now evident. 

Several studies have reported the existence of direct ascending projections from the NTS to areas 

such as the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala 

(Ricardo & Koh, 1978; Reyes & Van Bockstaele, 2006) or Acb (Delfs et al., 1998). In fact, NTS 

ascending projections have been shown to impact behavior (Aston-Jones et al., 1999a; Delfs et 

al., 2000). Pharmacological studies have provided great input about the functional implications of 

NE. In fact, blockade of β-ARs is known to impair memory, decrease anxiety and increase 

depressive symptoms (Gottschalk et al., 1974; Sternberg et al., 1986; Patten, 1990). These 

effects of NE modulation can be understood as region specific or, due to the highly intricate 

neurocircuitries of the limbic system, it is possible that NE has a more general, regulatory 

function. Region specific studies have shown that NE by acting in regions like the hippocampus, 

PFC, amygdala or BNST is important for memory, aversion and anxiety (Delfs et al., 2000; Aston-

Jones, 2002; Tully & Bolshakov, 2010).  
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3.3.2 Place conditioning and aversion 

 

Cannabinoid agents have been shown to produce both preference and aversion in the place 

conditioning paradigm. Many variables can account for such different behavior. This issue was 

recently revised by Murray and Bevins (Murray & Bevins, 2010). The most consistent factor to 

affect test outcome seems to be the dose of the cannabinoid agent used. Low doses have 

tendency to induce preference while high doses have tendency to induce aversion. In addition, 

the number of pairings and duration of sessions are also important variables that can influence 

test outcome. In the studies of the present thesis, it is shown that WIN 55,212-2 induces 

conditioned place aversion. Place conditioning is a classical conditioning paradigm in which 

animals learn to associate the effects of a drug (or other discrete treatment) with particular 

environmental (contextual) cues. Place conditioning can identify both conditioned place 

preference (CPP) and conditioned place aversion (CPA), and thus it can be used to study both 

rewarding and aversive drug effects (Bardo & Bevins, 2000; Carlezon, 2003). Conditioning 

involves an animal receiving repeated access to the drug in one context and receiving the control 

drug in another context. The outcome of the place conditioning is based in the assumption that 

animals have a tendency to approach and remain in contact with environments in which they 

have experienced rewarding drug effects, and they have a tendency to avoid environments in 

which they have experienced aversive drug effects. This requires that the animals are able to 

distinguish between the two environments; the power of the place conditioning assay is 

maximized when the animals do not have an a priori preference for either environment. A priori 

preferences can often be detected by a pretest, in which animals have access to the entire place 

conditioning apparatus. An apparatus is considered “unbiased” when there is no evident initial 

preference for one of the environments.    

Place conditioning is useful in probing neural circuits involved in reward and aversion. For 

example, microinjection of amphetamine into the Acb produces CPP, whereas microinjection of 

amphetamine into the area postrema produces a conditioned taste aversion (CTA) (Carr & White, 

1983; Carr & White, 1986). Other studies have shown that microinjection of μ opioids into the 

VTA produces CPP, whereas microinjection of k opioids into the VTA, Acb, medial PFC or lateral 

hypothalamus produces CPA (Shippenberg & Elmer, 1998). Hence, place conditioning studies 

allow parsing out the neural circuits involved in drug reward and aversion and perceiving that 

drugs can induce reward and aversion depending on the region and receptor subtypes being 
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activated. Accordingly, in the studies provided herein (Chapters 2.2 and 2.3) we were able to 

partially dissect the neural circuitry involved in cannabinoid-induced aversion. Monoaminergic 

transmission in several limbic structures (e.g. amygdala, PFC, BNST and Acb) has been reported 

to be important for the expression of aversive behaviors (Aston-Jones et al., 1999a; Delfs et al., 

2000; Ventura et al., 2007; Kerfoot et al., 2008). In Chapter 2.2, the hypothesis that NE in the 

Acb and BNST is critical for WIN 55,212-2 aversion was investigated. Both the Acb and BNST 

receive direct noradrenergic projections from the NTS (Delfs et al., 1998; Forray et al., 2000; 

Forray & Gysling, 2004). Activation of the NTS has been shown to occur when CTA acquisition 

and expression occur (Sakai & Yamamoto, 1997; Swank, 2000). Although these studies showed 

no neurochemical characterization of the activated neurons, since the highest neuronal activation 

was seen in the caudal and intermediate NTS, the possibility exists that some of the activated 

neurons are noradrenergic. The localization of CB1r to noradrenergic neurons in the NTS 

(Chapter 2.1) and the ability of WIN 55,212-2 to induced NTS activation (Jelsing et al., 2009) 

underlie the hypothesis that WIN 55,212-2 induces aversion by increasing NE release in target 

regions. Our results show that NE in the Acb is critical for WIN 55,212-2-induced aversion, as 

decreasing NE signaling in the Acb, either by immunotoxin depletion of noradrenergic fibers 

(Chapter 2.2) and by blockade of β1-ARs (Chapter 2.3), impaired its expression. In addition, it is 

known that blockade of β1-AR reduces the excitability of accumbal neurons which may signal 

aversion (Kombian et al., 2006; Carlezon & Thomas, 2009).  

Noradrenergic transmission in the BNST has been implicated in the signaling of negative affective 

effects (aversion) of opiate withdrawal (Delfs et al., 2000; Cecchi et al., 2007) and visceral pain 

(Deyama et al., 2009; Minami, 2009). However, our results seem to suggest that NE in the BNST 

is not critical for WIN 55,212-2-induced aversion (Chapter 2.2). While technical limitations should 

be taken into consideration, as the noradrenergic depletion achieved may have not been 

sufficient to remove all norepinephrine basal tone, the possibility that NE in BNST is not require 

for the expression of WIN 55,212-2 aversion is also plausible. Indeed, NE in the BNST may only 

be necessary for the expression of cannabinoid withdrawal-induced negative effects, as it 

happens in the case of opiate withdrawal (Delfs et al., 2000; Cecchi et al., 2007).  
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3.3.3 Elevated zero maze and anxiety 

 

In the studies provide herein, the effects of WIN 55,212-2 on anxiety levels were measured in the 

elevated zero maze (EZM). The EZM is a modification of the well established elevated plus maze 

(EPM). EZM´s design comprises an elevated annular platform with two opposite enclosed 

quadrants and two open, removing any ambiguity in interpretation of time spent on the central 

square of the traditional design and allowing uninterrupted exploration. The EZM is a reliable and 

sensitive model of anxiety-like behavior in rodents (Shepherd et al., 1994). The test is based on 

the natural conflict of rodents to explore a novel environment and their innate aversion to open, 

elevated and brightly lit spaces. As a consequence of the aversive properties of the open arms, 

subjects spend a greater amount of time on the closed arms and the proportion of total 

exploration in the open arms provides a measure of anxiety, such that increases in percent time 

spent on the open arms is considered to be indicative of anxiolytic drug action ((Handley & 

Mithani, 1984; Pellow & File, 1986). Conversely, decreases in percent time spent on open arms 

reflect an anxiogenic effect of the drug.  

Cannabinoids have been shown to trigger anxiolytic and anxiogenic effects. The contradictory 

results of cannabinoid agents may be due to some of the following variables: prior drug use, dose 

used, basal anxiety levels and regional endocannabinoid basal tone (Degroot, 2008). Generally, 

the anxiogenic properties of cannabinoid agents occur more frequently in drug-naïve subjects and 

in novel/stressful environments (Haller et al., 2004; Viveros et al., 2005; Degroot, 2008). This 

suggests that basal endocannabinoid tone is important to the response to exogenous 

cannabinoids. In fact, anxiety provoking stimuli have been shown to increase endocannabinoid 

levels in the brain (Marsicano et al., 2002). In this scenario, endocannabinoids are thought to 

work as a coping mechanism, important to decrease anxiety levels. While in physiological 

situations this increase in endocannabinoids may be restrict to specific brain regions, such as the 

amygdala (Marsicano et al., 2002), in cases where exogenous cannabinoids are administered, 

the different pattern of cannabinoid receptor activation may exert an anxiogenic effect. In the 

present work, it is shown that WIN 55,212-2 induces an anxiety-like behavior as measured in the 

EZM. It is also shown that decreasing NE signaling in the Acb and BNST did not affect the 

anxiogenic effect of WIN 55,212-2 (Chapter 2.2 and Chapter 2.3). In fact, decreased NE tone in 

the Acb was able to reverse WIN 55,212-2-induced aversion, but it was not sufficient to block 

WIN 55,212-2-induced anxiety. These results suggest that WIN 55,212-2-induced anxiety is not 



92 
 

mediated by NE input to the Acb. These findings are not surprising as the Acb has not been 

implicated in the development of anxiety-like behaviors. On the other hand, the results obtained 

from NE depletion from the BNST are quite fascinating. The BNST is seen as an important 

nucleus for the expression of anxiety (Davis, 1998; Walker et al., 2003; Davis, 2006) and is one 

of the richest areas in NE in the CNS (Forray & Gysling, 2004). Although NE in the BNST has 

been shown to mediate anxiety to certain stressors, it does not mediate anxiety in response to all 

types of stressors (Cecchi et al., 2002). This way, it has been proposed that NE effects on anxiety 

are stimuli-specific. NE is also known to be important to drug withdrawal-induced anxiety (Smith 

& Aston-Jones, 2008). However, in our studies WIN 55,212-2 withdrawal was not induced and 

that could explain why NE depletion did not affect WIN 55,212-2-induced anxiety. Moreover, other 

neurotransmitters have also been implicated in signaling anxiety in the BNTS, such as CRF 

(Smith & Aston-Jones, 2008). In line with this, there is the possibility that WIN 55,212-2-induced 

anxiety is mediated by other neurotransmitters. Taken all together, the results suggest that WIN 

55,212-2-induced anxiety is independent of noradrenergic transmission. 
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4. CONCLUSIONS 

 

 

In conclusion, the studies provided in the present thesis show an interaction between the 

endocannabinoid and noradrenergic systems. This interaction is functional and has behavioral 

implications. Using anatomical, biochemical and behavioral tests it was shown that 

endocannabinoids can modulate noradrenergic transmission and that noradrenergic transmission 

is important for cannabinoid-induced aversion.  

 

Briefly, the results in the present thesis show that: 

 

1. CB1r are present in the Acb and in the NTS. Localization of CB1r to noradrenergic profiles in 

the Acb is sparse but abundant in the NTS. 

 

2. The synthetic cannabinoid WIN 55,212-2 is able to alter adrenergic receptors expression in 

the Acb. 

 

3. WIN 55,212-2 induces aversion, and this behavioral effect is dependent on noradrenergic 

transmission in the Acb. 

 

4. Noradrenergic transmission is not critical for WIN 55,212-2-induced anxiety. 
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5. FUTURE PERSPECTIVES 

 

 

The present work has shown that the endocannabinoid and noradrenergic systems interact. The 

interactions were explored mainly in the limbic system. Ultimately, the present work adds to the 

literature and opens new possibilities in the understanding of cannabinoid-induced central effects 

and new ways to modulate the noradrenergic system. However, several questions arise from the 

present work and should be addressed.   

 

Future studies should examine: 

 

1. The functional implications of the topographic distribution of CB1r and NE in the Acb. The Acb 

is known to mediate both aversion and reward. It would be interesting to analyze whether 

norepinephrine is also critical for cannabinoid-induced reward.  

 

2. The mechanism by which cannabinoids activate noradrenergic neurons in the NTS. The 

existence of CB1r in noradrenergic neurons suggests that this activation can be by direct 

activation of these receptors. In addition, CB1r was also localized to non-noradrenergic neurons 

which could also modulate the activation of noradrenergic neurons. Moreover, the possibility 

exists that afferents of the NTS are under control of cannabinoids. 

 

3. The ability of exogenous cannabinoid to modulate noradrenergic transmission in pathologic 

situations. WIN 55,212-2 administration induced changes in the expression of adrenergic 

receptors. It would be of great interest to examine whether these effects are present in a situation 

of disease. 
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