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Abstract  

This paper describes the occurrences, the mineralogical assemblages and the environmental relevance 

of the AMD-precipitates from the abandoned mine of Valdarcas, Northern Portugal. At this mining site, 

these precipitates are particularly related with the chemical speciation of iron, which is in according to the 

abundance of mine wastes enriched in pyrrhotite and pyrite. The more relevant supergene mineralogical 

assemblages include the following environmental minerals: soluble metal-salts, mainly sulphates, 

revealing seasonal behaviour, iron-hydroxysulphates and iron-oxyhydroxides, both forming ochre 

precipitates of poorly and well-crystalline minerals. 

Pollution potential of the most highly water soluble salts was analysed in order to evaluate the 

environmental effect of their dissolution by rainfall. Laboratory experiments, carried out with iron and 

aluminium sulphates, demonstrated the facility to release metals, sulphate and acidity upon dissolution. 

Regarding the ochre precipitates, composed by several less soluble iron (III)-minerals, the spatial 

distribution on the nearby aqueous system as well as the proportion of Jarosite, Schwertmannite and 

Goethite in the mixtures gave information about the halo’s contamination promoted by the AMD 

emerging from the waste-dumps. 
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1. Introduction 
 

Acid mine drainage (AMD) that emerges from sulphide-rich waste-dumps, exposed to 

weathering processes, is an important focus of environmental impact world widely. There are 

numerous examples of globally affected mining regions as AMD promotes chemical, physical, 

biological and ecological interactive effects on the ecosystems (Gray, 1998; Elbaz-Poulichet et 

al., 2001; Sainz et al., 2004; Valente and Leal Gomes, 2007).  

Associated complex chain of biotic and abiotic reactions that involve the oxidative 

dissolution of sulphides, generating AMD, has been the subject of extensive literature 

(McKibben and Barnes, 1986; Bhatti et al., 1993; Ritchie, 1994; Evangelou and Zhang, 1995; 

Nordstrom and Southam, 1997; Keith and Vaughan, 2000). Eq. (1) to (3) represent the reactions 

concerning some of the most common sulphide minerals. 

 

Pyrite and Marcasite: FeS2(s)+ 15/4O2(g) + 7/2H2O(l) → Fe(OH)3(s) + 2SO4
2-

(aq) + 4H+
(aq)  (1) 

Pyrrhotite: Fe1-xS(s)+ (9-3x)/4O2(g)+ (5-x)/2H2O(l) → (1-x)Fe(OH)3(s) + SO4
2-

(aq)+ 2H+
(aq)  (2) 

Chalcopyrite: CuFeS2(s) + 15/4O2(g)+ 7/2H2O(l) → Fe(OH)3(s) + SO4
2-

(aq)+ Cu2+
(aq) + 4H+

(aq) (3) 

 

These primordial reactions are often used to demonstrate, in a simplified way, the two main 

results of mineral-water interactions involving sulphides: the generation of an highly 

contaminant effluent (related with the production of acidity, sulphate and metallic dissolution) 

and the development of supergene or newly formed iron-rich minerals (generically represented 

by the ferric-hydroxide Fe(OH)3(s)). These supergene minerals are generically called AMD-

precipitates since they appear in the dependence of AMD upon evaporation, oxidation, 

hydrolysis and neutralization.  

The geochemical and mineralogical evolution of the sulphide-rich wastes can be expressed 

by mild modifications of the primary paragenesis or by profound transformations, which end in 

new mineralogical structures, some of them with complex compositional and textural patterns, 
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such as iron-rich hardpans (Courtin-Nomade et al., 2003; Gilbert et al., 2003; Lottermoser and 

Ashley, 2006; Pérez-López et al., 2007). The AMD-precipitates attest the principal evolutionary 

steps, and, consequently, they reflect stages of momentary stability.  

The iron-oxyhydroxides, which are the final terms of such supergene evolution, are well-

documented AMD-precipitates (Schwertmann et al., 1987; Bigham et al., 1994; Singh et al., 

1999; Bigham and Nordstrom 2000; Kawano and Tomita, 2001; Dold, 2003; Murad and Rojík, 

2003; Valente and Leal Gomes, 2005). They occur as ochre mixtures, conferring strong visual 

impact to the watercourses, which may decide their protagonist role in mining environments. 

However, the evolution of the sulphide-rich wastes is marked by other newly formed minerals 

that may involve intermediary terms, such as clay minerals, hydrated salts, metallic oxides, 

arsenates, carbonates, phosphates and native elements. Often, these minerals come in concert 

with supergene materials that didn’t realized crystalline structure. From these groups, hydrated 

soluble salts, mainly metal-sulphate minerals, have been deserved careful attention. Although 

metastable, and therefore ephemeral, they have strong influence on the superficial 

environments (Dold and Fontboté, 2001; Hammarstrom et al., 2005; Harris et al., 2003). They 

also may give valuable information concerning the primary minerals and the composition of the 

solutions from which they formed as well as about the prevailing equilibrium conditions on 

waste-dumps. 

There are several works that document the role of the soluble sulphates in AMD 

environments (e.g. Cravotta, 1994; Hudson-Edwards et al., 1999; Nordstrom and Alpers, 1999; 

Buckby et al. 2003; Sanchéz et al., 2005), some of them testifying the discovery of new 

minerals (e.g. Jambor and Boyle, 1962). A detailed review that emphasises the relevance of 

metal-sulphates, from a variety of perspectives including paragenetic relations and climate 

control, is provided by Alpers et al. (2000).  

Supergene materials from sulphide mineral oxidation have great relevance in environmental 

mineralogy, concerning their role controlling pollutants in contaminated environments (Cotter-
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Howells et al., 2000; Hochella, 2002; Vaughan et al., 2002). Both, metal soluble-sulphates, 

occurring as efflorescences, and iron (III)-minerals that form ochre precipitates, are key-

examples of environmental minerals in the acceptation given by Valsami-Jones (2000). The 

firsts are worthy of this mention because they are highly soluble hosts of pollutants; their role in 

the release of metals and acidity, upon dissolution by rainfall, is well documented (Buckby et 

al., 2003; Gomes and Favas 2006; Alpers et al., 1994; Frau, 2000). The second group comprises 

less soluble hosts, which are often poorly crystalline phases with large surface areas. 

Consequently, they reduce the mobility of toxic elements, including metals and metalloids, 

which are retained by adsorption and coprecipitation (Smith et al., 1998; Carlson et al., 2002; 

Hammarstrom et al., 2003; Lottermoser, 2003). The ability to indicate, sometimes in an 

expeditious way, the prevailing conditions in the contaminated environment, in which they are 

stable, gives another sense to the specific mention of environmental minerals. 

This paper documents the supergene environmental minerals generated in the dependence of 

the AMD conditions, at Valdarcas mining site (Northern Portugal). It provides an inventory of 

soluble salts and of less soluble iron-rich minerals identified at the waste-dumps and in the 

nearby aquatic system. Morphologic and composition aspects as well as paragenetic relations 

are presented for typical minerals and assemblages. 

The environmental relevance of both types of AMD-precipitates is shown in two 

perspectives: 1) the pollution potential of typical soluble sulphates, which was demonstrated by 

laboratory dissolution experiments and 2) the ability of ochre precipitates to reveal the AMD 

conditions and therefore to act as mineralogical indicators of AMD. 

 

2. Site description 
 

Valdarcas mine is located in Northern Portugal, in a region where metal mining has large 

and long tradition (Fig. 1). Wolframite and scheelite were exploited for tungsten in a skarn ore 
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deposit, which is rich in sulphides. The most intensive works took place underground, between 

the fifties and eighties, and have left about 310000m3 of processing wastes that have resulted 

mainly from grinding (grain size of about 2mm) and from minor treatment by flotation.  

 

Fig.1. Location of Valdarcas mining site in Northern Portugal and surface map of the 

waste-dumps. 

 

Table 1 lists the minerals, from the ore deposit, that compose the mine wastes. Besides ore 

minerals, gangue comprises three main classes that display contrasting geochemical behaviour 

when exposed to weathering conditions at the waste-dumps. They are by decreasing order of 

abundance: sulphides (promoting acidity) > silicates (slow consumers of acidity) > carbonates 

(fast consumers of acidity). The sulphides are mainly represented by massive pyrrhotite and 

pyrite (about 95% of the sulphide mass) (Valente, 2004). Therefore, the mine wastes consist 

primarily of the most reactive and acid producing sulphide phases (Bhatti et al., 1993; Kwong 

and Lawrence, 1994; Plumlee et al., 1995; Jambor and Blowes, 1998). 

 

Table 1 Most typical minerals from the ore deposit that were also identified at the waste-

dumps (Valente, 2004). 

 

Mine wastes, carrying these minerals, were accumulated in three major impoundments built 

without drainage control, which went far towards the strong physical instability. Mechanisms of 

water erosion, such as sheet, rill and gully erosion, have created impressive marks, like the two 

deep gullies illustrated in Fig. 1. The topographic irregularities are important because they 

control the terrain aspect and terrain slope. These, by their turn, allow the development of 

microclimate conditions that must be considered when studying the occurrences of supergene 

minerals. 
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For decades, AMD has emerged from the waste-dumps exposed to weathering processes. 

Nowadays, marks of environmental impact still persist on the nearby aqueous system, mainly 

due to the discharge of acidic effluents in a small stream (Poço Negro creek), and then in the 

Coura river (Fig. 1 and Fig. 2).  

Rainfall is the principal water supply for mineral-water interactions involving the mine 

wastes at Valdarcas. The region has a temperate climate and is located in the rainiest province 

of Portugal. Monthly precipitation range from 625mm to 1455mm, values corresponding 

respectively to the dry semester (from April to September) and to the wet semester (from 

October to March, with January as the rainiest month). Average annual temperature is 12.5ºC, 

being January also the coldest month (mean 9.4ºC), while in the summer, July and August 

present the highest temperatures (mean 25.7ºC) (www.inag.pt). Measurements at the waste-

dumps for relative humidity gave maximum in winter (80 to 100%) and minimum (<20%) 

between June and August. 

 

3. Methods 
 

Sampling of minerals and water (AMD) took place over about six years of field work 

(between January 2001 and February 2007), dedicated to construct an extensive and diversified 

database capable to assist the AMD modelling efforts at this mining site. Several campaigns 

were carried out, ensuring a minimum of four visits per year in order to represent the climatic 

seasonality.  

 

3.1. Mineral sampling and analysis  

 

For soluble sulphates, sampling fell on the waste-dumps, covering the plain surfaces, the two 

main gullies illustrated in Fig. 1 and other temporal varying terrain irregularities, in such a way 
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to represent different conditions of sun exposure, humidity and topography. Samples were also 

collected along the Poço Negro creek, whenever their presence was detected.  

As far as iron ochre mixtures are concerned, since they are ubiquitous, samples were grabbed 

from fixed locations at the waste-dumps and at the Poço Negro creek streambed, obeying to the 

sampling stations represented in Fig. 2. 

 

Fig. 2. Location of the sampling stations, for ochre precipitates and AMD, at the waste-

dumps and along the main effluent channel (Poço Negro creek).  

 

Samples were stored in closed plastic bags and transported to the laboratory soon after the 

collection, in order to prevent mineralogical changes.  

Mineralogical composition was analysed by x-ray powder diffraction (XRD) with a Philips 

X’pert Pro-MPD difractometer, using Cu-Kα radiation. Sample preparation procedures and the 

appropriated XRD conditions for these kinds of samples, in particular leading with low 

crystallinity, fine grain size, impurity of the assemblages and high hydration states are described 

in Valente (2004). Fig. 3 shows the iterative procedure used to refine samples and to achieve 

mineral identifications. Specifically with respect to the most instable salts, binocular 

microscopy and XRD were performed immediately after arriving to the laboratory, and the 

samples were reanalyzed to evaluate aging effects. 

Scanning electron microscopy (on carbon or gold coated samples), with a LEICA S360 

microscope, combined with an energy dispersive system (SEM-EDS), allowed the study of 

morphological and compositional aspects. In some cases, it helped in the identification of 

complex assemblages and of amorphous materials. 

 

Fig. 3. Iterative protocol for mineral identifications in soluble sulphate assemblages. XRD 

– Powder x-ray diffraction; SEM - Scanning electron microscopy; SE – Secondary electrons.  
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3.2. Characterization of AMD  

 

AMD was characterized through samples collected at the sampling stations indicated in Fig. 

2 (the same stations as for ochre precipitates). This work presents the hydrochemical 

characteristics of samples collected at two sampling stations representing discriminative 

environments: at the waste-dump surface (ValdR) and downstream in the Poço Negro creek 

(V7). The pH range is also provided for the rest of the stations. At V7 water flow is permanent; 

at ValdR water is ephemeral and then sampling was dependent on ponded water availability. A 

complete characterization of the system, including all the sampling stations, is provided in 

Valente and Leal Gomes (2008). 

pH, electric conductivity (EC), redox potential and temperature of the water were measured 

in the field with a multi-parameter meter (Orion, model 1230). The following Orion probes 

were used: combined pH/ATC electrode Triode ref. 91-07W, conductivity cell DuraProbe ref. 

0133030 and a redox combination electrode ORP ref. 96.78. Before use, electrodes were 

calibrated and/or tested for accuracy, according to the manufacturer’s instructions. Direct 

measurements of redox potential were converted relative to the hydrogen electrode (EH), using 

standard voltages from the manufacturer. 

After collection, samples were immediately refrigerated, transported in polyethylene bottles 

kept in the dark and stored at 4ºC until analysis. Laboratory analyses were performed for 

fluoride and chloride by ion chromatography (IC) with suppressed conductivity detection (761 

Compact IC Metrohm). Sulphate was measured by turbidimetry and total acidity by volumetric 

determination (Standard methods for water analysis reference 4500E and 2310B, respectively). 

Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and atomic absorption 

spectroscopy (AAS) were used for metals. IC, ICP–AES and AAS analyses were preceded by 

sample filtration through 0.2μm pore-diameter cellulose ester membrane filters, carried out 
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immediately after arriving to the laboratory. For the analysis of metals, filtration was followed 

by acidification with HNO3 65% suprapur Merck.  

 

3.3. Laboratory dissolution experiments 

 

The dissolution of soluble sulphates was simulated in the laboratory, using air-dried 

materials collected at the waste-dumps. Two typical efflorescences from Valdarcas waste-

dumps were submitted to dissolution in ultra-pure water: samples carrying hydrated iron-

sulphates in the assemblage Melanterite (FeSO4 7H2O) + Rozenite (FeSO4 4H2O) and pure 

samples of the mixed iron and aluminium-sulphate halotrichite (FeAl2(SO4)422H2O). The 

experiments were performed by the following protocol: 

- Temperature and dissolution conditions: room temperature (20ºC) with constant slow 

agitation; 

- Solution: ultra-pure water from Millipore system, with electric conductivity of 0.1 - 0.4 

µS/cm (50 to 100mL of solution, depending on the amount of available sample); 

- Salt concentrations – 0.4; 2.0; 20; and 250 g/L; 

- Duration of experiments – 15 minutes; 

- Control parameters: the acid producing potential was determined from pH continuous 

measurements; the metals Mn, Fe, Al, Cu, Zn, the metalloid As, as well as the anions 

Fluoride, Chloride and Sulphate were analysed in the final solution (using the same 

methods as for AMD analyses). 

 

4. Results and discussion 
 



 10

Table 2 records the supergene materials identified at the waste-dumps and downstream in the 

main effluent channel (Poço Negro creek). Information about abundance and seasonal 

persistence is included. These materials define two main modes of occurrence:  

- Efflorescences (EFL) – products of evaporative processes composed by soluble 

metal salts, appearing monomineralic or as mineral assemblages; 

- Ochre precipitates (OP) – products of oxidation and neutralization comprising 

relatively insoluble iron(III)-bearing minerals, often as mixtures, displaying ochre 

colours. 

As secondary precipitation proceeds, salt efflorescences and ochre precipitates may develop 

encrustation processes. In that case, they lead to thick salt crusts or iron-rich crusts respectively. 

When well-developed, such encrusting products act like supergene cement for primary and 

secondary minerals. Some materials, like lepidocrocite, were observed only inside solid crusts 

(CRUS) while others were detected only as powdered efflorescences (ex: mallardite) or as 

relatively loosely ochre precipitates (amorphous iron sulphate). Minerals, such as melanterite 

and gypsum are typically involved in encrustation processes, and, therefore, it is possible to 

observe the evolutionary process (EFL→CRUS). 

 

Table 2 AMD-precipitates identified at Valdarcas.  

 

The mineral classes can be organized in accordance with abundance, in the following 

manner:  

oxyhydroxides and sulphates > silicates (clay minerals) > carbonates > native element.  

Regarding chemical composition there are species of alkali and alkaline earth metals, transition 

metals and aluminium. Precipitation of calcium occurs mainly as gypsum and calcite. Calcite is 

rarely individualized in macroscopic samples at the waste-dumps, being detected mainly inside 

consolidated crusts. It can also be observed, as efflorescences, over course fragments of waste 
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rock from mining operations that are exposed around the mining site. Gypsum is very abundant 

and omnipresent, even in wet conditions. 

Concerning iron sulphates, the inventory includes mainly simple hydrated salts with ferrous 

iron. Rozenite and melanterite are the more common soluble iron minerals, occurring as 

efflorescences. Trivalent iron was only found in relatively insoluble oxyhydroxides (ex: 

goethite) and hydroxysulphates (ex: jarosite). 

Aluminium forms a variety of soluble sulphates, including alunogen, rostite-khademite and 

halotrichite. Zinc and manganese have also mineralogical expression, although rare, by means 

of the heptahydrates gunningite and mallardite, respectively. There are also amorphous 

materials composed by silica, iron-oxyhydroxides and iron phosphates. 

 

4.1. Efforescences of soluble sulphates  

 

Efflorescent mineralogy is formed in dry conditions by precipitation as AMD become more 

concentrated by evaporation. Efflorescences comprising the soluble sulphates are often complex 

mixtures, concerning mineralogy and morphology. 

 

4.1.1. Mineralogy and morphology  

 

Efflorescences were more often observed in complex miscellaneous assemblages and rarely 

as single phases. Fig. 4 to Fig. 6 show XRD patterns for some common or representative 

identified assemblages. 

Gypsum is the most abundant mineral that occurs as efflorescences. It is an exception since it 

grows frequently as monomineralic rosettes or as spherical concretions, often cemented by 

jarosite (Fig. 7 a, b)). However, at the same time, gypsum was detected in the major saline 

polymineralic aggregates.  
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Fig. 4. XRD pattern from a complex assemblage including the abundant iron sulphates 

(rozenite and melanterite) and the more rare zinc (gunningite) and alkaline earth metals 

(starkeyite and gypsum) sulphates. Pattern peaks from ICDD. 

 

Fig. 5. XRD patterns of efflorescences carrying several Al-sulphates. Pattern peaks from 

ICDD 

 

Fig. 6. XRD pattern from a complex assemblage including iron (melanterite and siderotil), 

manganese (mallardite) and aluminium sulphates (tamarugite). Pattern peaks from ICDD. 

 

Rozenite is also a very abundant mineral at Valdarcas (Fig. 7 c, d)). It occurs frequently in 

association with melanterite and or gypsum. In fact, Rozenite+Melanterite is one of the most 

well represented assemblages, developing botryoidal or reticulated aggregation (Fig. 7 e)).  

 

 

Fig. 7. Field images of representative sulphate efflorescences. 

a) Fragile white rosettes of gypsum; b) Gypsum rosettes cemented by jarosite; c) Rozenite in 

plaques on desiccation fractures network; d) Powdered efflorescences of 

Rozenite+Gypsum+Sulphur; e) General aspect of the efflorescences including rozenite and 

melanterite with minor oxyhydroxides; f) Detail of melanterite (green globules) and of its 

weathering products rozenite (white) and oxyhydroxides (brown); g) Microenvironment of salt 

precipitation controlled by humidity conditions comprising rozenite+melanterite+Al-sulphates. 

 

Individually, rozenite appears as white rosette or as whitish silky powder, while melanterite 

forms green or blue-green globules (Fig. 7 f)) with humid-touch. Encrustations, characterized by 
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roughness, were observed during prolonged dry periods. The variety of colour shades, observed 

in the field images, is due to the impurity of the aggregates and it is consistent with the 

mineralogical evolution of these salts. It is known from literature that melanterite weathers by 

dehydration and oxidation to form rozenite (white) and oxyhydroxides (yellow-ochre) 

(Nordstrom and Alpers, 1999; Chou et al., 2002; Jerz and Rimstidt, 2003). Such assemblages as 

well as the relationship with aluminium sulphates were confirmed by observations around the 

small channel illustrated in Fig. 7 g)). It represents a microenvironment controlled by 

topographic irregularity and by the emergence of acidic effluent. The slow flow of AMD allows 

the sequential precipitation of several soluble minerals. Melanterite and Al-sulphates (such as 

alunogen and khademite) prefer the interior sheltered portion of the channel, with higher 

humidity, whereas rozenite was identified at the most sunlight exposed and consequently driest 

areas. 

Al-sulphates were rarely found without melanterite, forming intergrowths that make 

nearly impossible to isolate single phases. This is confirmed by SEM study (Fig. 8). In these 

assemblages, foliated crystals of Al-sulphates form radiated aggregates that grow over 

melanterite, which by its turn presents well developed prismatic crystals. Halotrichite was found 

with typical acicular habit and can be seen as an exception because it forms pure concretions. 

This mineral is more abundant at the skarn pits resulted from open pit mining, where it grows as 

white masses, in coexistence with amorphous spherical iron-sulphate. 

 

Fig. 8. Morphology of typical intergrowth between melanterite and Al-sulphates 

(probably alunogen e khademite). SEM (SE) images and respective EDS spectra for 

representative samples. 

 

Although rare, siderotil was detected in assemblages carrying melanterite and aluminium 

sulphates (Fig. 6). When compared with the more common Rozenite+Melanterite assemblage, 

the Melanterite+Siderotil showed a much intense blue colour, which may be reflecting the 



 14

incorporation of cooper by melanterite, like it was demonstrated by Jambor and Traill (1963). 

At Valdarcas it wasn’t detected the coexistence of the three minerals melanterite, siderotil and 

rozenite, which is consistent with the results of the cited authors that demonstrated the 

preferential evolution of cooper-bearing melanterite by dehydration to siderotil, in spite of 

rozenite under the same conditions.  

 

The assemblage Rozenite+Gypsum+Sulphur was found to form well-crystallized aggregates. 

They occur as very fine grained yellow-coloured powders, often fairly thick (1-2cm), 

characterized by softness and by intense sulphur odour. SEM study has revealed that native 

sulphur occurs with euhedral crystals dispersed over the sulphate efflorescences.  

 

4.1.2. Distribution, seasonal behaviour and paragenesis 

 

Soluble sulphates were abundantly observed at the waste-dumps and rarely along the Poço 

Negro creek. Here, gypsum and rozenite were the only identified soluble salts. They occur at the 

margins of the creek, episodically, during evaporative periods. Fig. 9 shows the distribution of 

the sulphate-mineral assemblages over the waste-dumps surface, for winter and summer 

conditions. 

 

Fig. 9. Cartographic distribution of the most typical sulphate-minerals in extreme seasonal 

conditions. a) summer; b) winter. 

 

During summer, efflorescent blooms of gypsum and rozenite were observed as thick 

accumulations that cover great extensions of the exposed surfaces. Occasionally, during the 

most prolonged dry periods, native sulphur joints to this assemblage. The way the well-

developed sulphur crystals appear over sulphates suggests that sulphur belongs to a latest stage 
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of slow deposition relative to sulphate minerals. Melanterite and Al-sulphates were only 

observed in narrow sheltered areas, in the presence of remnant effluent. 

In winter, gypsum rosettes grow even on the most exposed vertical slopes of the waste-

dumps in accordance with the relative low solubility of this sulphate. Highest mineralogical 

diversity was observed during fairly long-lasting evaporation periods (one or two weeks) that 

succeed intensive rainfall periods (often in February). In these conditions, melanterite was the 

first Fe-sulphate to be identified, followed by the Al-sulphates. If evaporation conditions were 

persistent, it was possible to observe the assemblage Rozenite+Melanterite (major rozenite), at 

the most sunny exposed conditions. These field observations, combined with the morphologic 

features, indicate that Al-sulphates precipitate after melanterite. Fig. 8 shows Al-sulphates over 

melanterite crystals, suggesting that the latest deposition of aluminium may be the result of iron 

depletion in the solution. 

Interpretation of the occurrences and distribution justify summarizing the following remarks: 

- There are microenvironments for mineral precipitation, related with topographic 

irregularities that have allowed a variety of exposure conditions to the climate 

elements; for instance, erosion has created cavernous shelters, even at the most 

vertical and climate exposed slopes, that ensure the persistence of the most soluble 

salts (melanterite and Al-sulphates) during winter (protecting them from dissolution) 

and during summer (protecting them from desiccation).  

- Melanterite occurs preferably near the most acidic seepages, indicating the proximity 

to its paragenetic precursors (mainly pyrrhotite); table 3 shows the composition of the 

effluent at ValdR, which represents the most acidic AMD, from which this salt 

precipitates; 

- At the most acidic seepages, melanterite precedes the Al-sulphates; this sequence 

suggests that the latest deposition of the aluminium minerals is controlled by high 

Al:Fe ratios, resulting from iron depletion in the solution; this is in accordance with 
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the paragenetic sequence observed by Jerz and Rimstidt (2003) in an abandoned mine 

located in Blue Ridge province in south-western Virginia;  

- Eq. 4 and Eq. 5 describe two possible pathways for the precipitation of Al-sulphates 

from the chemical evolution of the sulphate and fluoro-complexes that may exist in 

solutions like AMD at ValdR (Table 3): 

Alunogen: 2AlSO4
+

(aq) + SO4
2-

(aq) + 17H2O(l) ↔ Al2(SO4)317H2O(s)  (4) 

Khademite: AlF2+
(aq) + SO4

2-
(aq) + 5H2O(l) ↔ Al(SO4)F5H2O(s)  (5) 

- Rozenite grows as efflorescent blooms, formed directly by evaporation of diluted 

AMD solutions, or than it results from melanterite dehydration at the most acidic 

seepages.  

- The assemblage Rozenite+Gypsum+Sulphur is only stable at the summer driest 

conditions; 

- Gypsum was observed in the entire range of temperature and humidity.  

 

4.1.3. AMD and pollution potential 

 

Table 3 presents the composition of the AMD at two selected sites, represented in Fig. 2. 

ValdR is located at the waste-dumps and coincides with the furthermost soluble salt diversity. 

V7 is located at the main effluent channel, approximately 500 m downstream from the base of 

the waste-dumps.  

ValdR presents the lowest pH values and the higher levels of the generality of pollutants, 

except sodium and potassium. These properties are in accordance with the nature of the mineral-

water interactions that prevails here. In fact, ValdR represents the result of slow water 

percolation in the interior of the waste-dumps. This allows the dissolution of silica and other 

chemical species, which are solubilised even from more stable minerals such as the silicates. 

Therefore, the contact with the parent sulphides explains the highly acidic effluent that is also 
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very rich in sulphate and metals. The exceptions noted for sodium and potassium may be related 

with the strong precipitation of jarosite, which retains efficiently these elements. 

 

Table 3 Composition of AMD at two different selected sites.  

 

On the other hand, V7 represents more oxidized conditions and also the effect of dilution and 

other natural attenuation processes that occur as the creek flows away from the waste-dumps. 

This is well noted for metals and arsenic, given that levels are fairly lower at V7. In that 

condition, the chemical potential to precipitate metal soluble salts is quite lower, and, 

consequently, gypsum and rozenite are the only evanescent sulphates, rarely observed. Along 

the creek, the physical-chemical conditions impose the oxidation of iron and the precipitation of 

the iron(III)-bearing minerals presented in Table 2. Consequently, pollutants are being removed 

upstream by these minerals, as they retain iron, by incorporating it in their structure, and other 

metals and arsenic, by adsorption.  

The ability of the identified soluble salts to produce acidic and metal-rich solutions was 

demonstrated through the experimental dissolution of selected typical samples. Fig. 10 shows 

the evolution of pH during the dissolution of halotrichite and of mixed Melanterite+Rozenite 

samples at the same conditions (concentration: 20g /L; 20ºC). 

 

Fig. 10. pH evolution during experimental dissolution of selected samples carrying 

Melanterite+Rozenite and Halotrichite, for a salt concentration of 20g/L. 

 

As it was observed by Frau (2000) during pure melanterite dissolution, a low and stable pH 

value was promptly established for both experienced samples. However, halotrichite shown 

higher acidic potential, with pH dropping from 5.7 to 3.2 in the first 2 minutes. These results are 

reflecting the reactions described by Eq. 6 to 9, which display the acid generation through the 
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release of hydrogen ions from hydrous sulphates, like it was observed in several AMD 

environments (ex: Cravotta, 1994; Jambor et al., 2000).  

 

FeAl2(SO4)422H2O(s)+ O2(aq) ↔ 4Fe(OH)3(s) + 8Al(OH)3(s) + 54H2O(l) + 16SO4
2-

(aq) + 32H+
(aq) (6) 

FeSO4nH2O(s) ↔ Fe2+
(aq)+ SO42-

(aq) + nH2O(l)  (n=4 for rozenite; n=7 for melanterite) (7) 

4Fe2+
(aq)+ 4H+

(aq) + O2(aq) → 4Fe3+
(aq) + 2H2O(l)       (8) 

Fe3+
(aq) + 3H2O(l) ↔ Fe(OH)3(s) + 3H+

(aq)         (9) 

 

Hydrolysis of trivalent ions, such as aluminium from halotrichite, provides more significant 

acidity to the solution. In the case of Melanterite+Rozenite, oxidation of ferrous iron and 

subsequent hydrolysis and precipitation of ferric iron explain the observed pH fall. Fig. 11 

presents the behaviour observed for the more common assemblage (Melanterite+Rozenite). 

 

Fig. 11. Results of experimental dissolution of Melanterite+Rozenite. a) pH behaviour for 

different salt concentrations; b) Correlation between pH and salt concentration; c) Chemical 

composition of the remnant solution upon dissolution (for the tested concentration of 20g/L). 

 

The relation between salt concentration and the resultant solution pH was analysed for 15 

minutes (Fig. 11 a)). The best fit between these parameters (Fig. 11 b)) is very close to the 

equation obtained by Frau (2000) with pure melanterite, which demonstrates the reproducibility 

of the process for salt efflorescences carrying both hydrated sulphates. 

Chemical analysis of the resultant solution reveals that, as expected, upon dissolution, iron 

and sulphate are the dominant constituents (Fig. 11 c)). However, other toxic elements are also 

released, providing indication that melanterite and rozenite are incorporating metals and arsenic 

via adsorption or coprecipitation. 

These experiments demonstrate the role of the efflorescent mineralogy as transient storage of 

sulphate, acidity and metals. In that way, as the climatic seasonal cycles control the mineral 
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stability, they have influence over the AMD properties and, therefore, they control its 

environmental impact. 

In the event of rainfall, especially after prolonged dry periods, these highly soluble sulphates 

will dissolve and affect the properties of the receiving aquatic system. The environmental 

relevance of the rinse-out effect of efflorescent mineralogy in AMD systems is well documented 

(e.g. Nordstrom and Alpers, 1999). According to Frau (2000), the longer the dry period, the 

more intense the environmental impact during the subsequent wet period.  

Fig. 10 and Fig. 11 show that iron and aluminium sulphates can be dissolved 

instantaneously, releasing pollutants into the water. Nevertheless, in field conditions, the 

relation between salts dissolution and aquatic contamination may be somewhat disguised by 

other factors such as dilution caused by rainfall. Consequently, a small rainy event may be of 

major concern, while that a strong and prolonged will assure dilution and therefore minimize the 

environmental risk. 

 

4.2. Iron-rich ochre precipitates 

 

Ochre precipitates of iron (III)-bearing minerals can be found at the waste-dumps and along 

the effluent channel. Fig. 12 exemplifies representative occurrences as: 

- flocculated materials on the water-air interface (Fig. 12 a, b)),  

- streambed coatings, that progress to encrusting as precipitation proceeds (Fig. 12 c)), 

- iron-cements inside solid crusts (Fig. 12 d, e)).  

Encrusting develops as secondary minerals are accumulated, in such a way that the most 

indurate crusts represent an advanced stage of ochre precipitation. They occur typically at the 

waste-dumps, and, convert over time to iron-rich hardpans, herein defined accordingly with 

Lottermoser and Ashley (2006). In such hardpans, the iron (III)-bearing minerals are the typical 

cements, acting as strong binding agents for mine wastes. Others, less solid or even loosely, 
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modes of occurrence, are broadly distributed since they can be observed in the entire system, 

including at the confluence in the Coura River. 

 

Fig. 12. Field images of representative occurrences of ochre precipitates. a) water-floating 

brittle films displaying iridescence; b) Thick layers of orange sludge in the water-air interface; 

c) Encrusted coatings on the surfaces of the effluent channels; d, e) ochre-cements inside iron-

rich hardpans. 

 

4.2.1. Mineralogy and morphology 

 

Jarosite, schwertmannite and goethite are the main components of generally impure ochre 

precipitates. Ferrihydrite and lepidocrocite are rare and have restricted occurrences. The first 

was only observed in incipient and very fragile crusts that were collected after long lasting rainy 

periods. The second was identified inside very solid masses, in association with other supergene 

materials like sulphur and goethite, composing the cement of the most iron-rich hardpans. 

From the more common minerals, the hydroxysulphate jarosite is the most crystalline. It is 

often identified as pure coatings at the most acidic seepages, where it gives a yellow colour to 

the exposed surfaces. It also forms mixtures with other minerals, principally schwertmannite, 

encrusting the effluent channels. Schwertmannite occurs mainly as brittle iridescent thin films 

and as light orange sludge. Both types of occurrences are fragile and consequently easily broken 

and dispersed in the water flow. During summer, in small remnant seeps and in slow flowing 

water, it is possible to observe several millimetres layers of bright orange sludge composed by 

pure schwertmannite. In those conditions its identification is rather simple because, although 

poorly crystalline, it has an unconfoundable diffraction pattern. Morphological features, 

observed in SEM-SE (Fig. 13), are diagnostic, especially valuable when schwertmannite occurs 

in complex mixtures. Fig. 13 c) shows tubular aggregates with typical specular and foam habits. 
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These morphological aspects suggest that crystal growth take place as foam structures from thin 

and continuous iron rich films . 

 

Fig. 13. SEM-SE images showing morfological characteristics of the iron(III)-minerals 

that compose the ochre precipitates. a) sample with jarosite (JT) and schwertmannite (Sch) 

colected at V4; b) sample composed of poorly crystalline goethite collected at V7; c) typical 

habits of schwermannite and EDS spectrum of spherical schwertmannite. 

 

Goethite is generally poorly to moderately crystalline and presents spherical habit (Fig. 

13b)). The most powdered aggregates are often enriched with sulphate. It occurs at the waste-

dumps, but it is more abundant along the creek, where it forms light orange mixtures with 

schwertmannite. Pure goethite is more common at higher distances from waste-dumps, where it 

appears as orange to brown precipitates coating the rock surfaces.  

The evidence of crystallinity, expressed by difractometer analysis, decreases in the following 

order: Jarosite-Goethite-Schwertmannite.  

 

 

4.2.2. Environmental relevance of ochre-precipitates distribution  

 

The distribution of the ochre precipitates, encrusting streambeds (Fig. 14), deserves the 

following comments: 

- at the waste-dumps (ValdR, V1, V2 and V6) prevails jarosite; its content decreases 

along the creek as the distance relative to the waste-dumps increases, until it disappears 

at V7. 

- At V7 occur the goethite-richer precipitates. 
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- Along the creek, between V3 and V9, the mixtures are composed by variable 

proportions of schwertmannite and goethite with minor jarosite; 

- As distance to the waste-dumps increase there is a progressive importance of goethite 

relatively to schwertmannite. 

- In the longest rainy periods the precipitates formed at the waste-dumps appear 

enriched in low crystallinity materials. 

The distribution reported in Fig. 14 agrees with the paragenetic relations described by 

Bigham et al. (1996) for jarosite, schwertmannite and goethite. It is known that jarosite forms 

under more acidic conditions then the others (Baron and Palmer, 1996; Swayze at al., 2000), 

which explains its predominance at ValdR. Here, persistence of jarosite is insured by the 

constant supply of acidic effluent from the interior of the waste-dumps and also resulting from 

the dissolution of the soluble sulphates that were abundantly observed at this site.  

Downstream, between V3 and V9, the effect of dilution induces an increase in the pH values, 

which promotes the instability of jarosite relatively to the oxyhydroxides. Eq. (10) give the 

transformation reaction, which produce protons. Nevertheless, dilution remains the prevailing 

factor, inducing pH to rise  

 

KFe3(SO4)2(OH)6(s)+ 3H2O(l) ↔ 3Fe(OH)3(s) + K+
(aq) + 2SO4

2-
(aq) + 3H+

(aq)         (10) 

 

In those less acidic conditions, jarosite can be replaced by schwertmannite. The same occurs 

at the waste-dumps (V1, V2 and V6) during the rainiest periods, which suggests the influence of 

seasonal variations in the minerals distribution. 

At the upper section of the Poço Negro creek, the low crystallinity and the schwertmannite-

rich compositions may be revealing an incipient stage in the paragenetic sequence. On the other 

hand, goethite represents a more advanced stage, since it forms at higher pH values and as a 

transformation product of less crystalline phases. In fact, it is known that over time 
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schwertmannite may convert to goethite (Bigham et al., 1996; Bigham and Nordstrom, 2000). 

This will explain the downstream enrichment in goethite and its predominance at the more 

distant sampling site (V7).  

 

Fig. 14. XRD analysis and description of representative samples from the encrusted 

streambeds. JT – Jarosite; GO – Goethite; Sch – Schwertmannite; Qz – Quartz; PI – Pyrite. 

The pH range was extracted from Valente (2004) and Valente and Leal Gomes (2008). 

 

These results indicate that XRD data on the ochre mixtures may give valuable information 

regarding the environmental conditions related with AMD. In that way, abundance of jarosite 

outside the waste-dumps may indicate a recent event of acidic contamination, which is, in 

general, due to erosion processes taken place at the waste-dumps. This was observed after 

episodic instability, promoted by strong rainfall events or by anthropogenic activities, such as 

the illegal practice of sports on the waste-dumps. In those conditions, the spreading of the 

jarosite halo is a response to higher contents of acidity and sulphate in the effluent, which is 

promoted by the chemical reactivation of sulphide-rich wastes. Progressively, dilution 

attenuates this effect and schwertmannite gains importance in the ochre mixtures. In fact, the 

presence of low crystallinity materials, such as the floating films of schwertmannite, marks the 

incipient effect of natural attenuation processes. Long lasting stability periods promote further 

evolution to goethite. As a result of the repetition of these processes, the channel is coated with 

encrusted layers that present alternated colour and composition.  

 

5. Conclusion 
 

The environmental minerals associated with AMD at Valdarcas occur as salt efflorescences 

or as ochre mixtures, both typically iron-dominant. The abundance, rather than the variety, of 
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iron minerals is a consequence of the primordial composition of the mine wastes, since 

pyrrhotite and pyrite are the most abundant parent sulphides, leading to the generation of highly 

iron-rich solutions.  

Regarding efflorescences, the majority are composed by gypsum and by the simple hydrated 

ferrous sulphates, rozenite and melanterite. Lesser amounts of Al-sulphates were also frequently 

detected. Salts of other transition metals were more rarely observed, which reflects the chemical 

potential of the iron-rich AMD from which they precipitate. The principal modes of occurrence, 

the composition of the mineral assemblages, as well as the geometry of the intergrowths, 

suggest that the distribution and paragenesis of soluble salts are controlled by the following 

main factors: 

- climatic seasonal variation – determines the evaporation conditions and the water 

availability; consequently controls the succession of precipitation-dissolution cycles and the 

transformations allied to hydration and neutralization. 

- topography and erosion – diversify the microclimate conditions that behave as 

thermodynamic microenvironments for precipitation at the waste-dumps. 

- composition of AMD, mainly acidity and the activity of sulphate and metals – variations 

in composition, especially concerning the relation between iron and other metals, control the 

element fractionation, by diversifying the equilibrium conditions. 

- hydrologic configuration of the superficial drainage – controls the fluxes of percolation, 

as well as the existence of seepages and ponded water, that by its turn influences the chemical 

composition and the oxidation conditions of AMD. 

Laboratory experiments with efflorescences carrying iron and aluminium sulphates have 

demonstrated the ability to produce acidic, metal and sulphate rich solutions. In that way, these 

experiments close simulate the influence that these type of environmental minerals exercise over 

the quality of the nearby aquatic system. Such influence is especially important during rainfall 

events, after dry periods, since dissolution may promote peaks of acidic contamination, related 

with AMD emanating from the waste-dumps. 
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Ochre precipitates were the other relevant environmental minerals identified at Valdarcas. 

They refer to iron (III)-bearing minerals that include jarosite, schwertmannite and goethite and 

more rarely ferrihydrite and lepidocrocite. These minerals occur with variable proportions in the 

ochre mixtures that are disseminated in the waste-dumps and downstream, in the riverine 

system. The relative mineral proportions, in concert with the crystallinity of the mixtures, is 

rather variable downstream and over time, accordingly with the AMD conditions. For instance, 

the detection of well crystalline precipitates, enriched in jarosite, at lower sections of the creek, 

indicates the occurrence of recent contaminant events, generally related with erosion processes 

at the waste-dumps. 

During the year of 2007, engineering rehabilitation works were conducted at the waste-

dumps, in order to homogenize de surface and to implement measures for erosion control. In the 

beginning of 2008 the waste-dumps, which have been covered with soil, were also seeded and 

planted with autochthon vegetation. Future impact of this rehabilitation project should be, from 

now on, subject to monitoring. For that purpose, mineralogical composition and spatial 

distribution of ochre precipitates along the Poço Negro creek can be proposed as expeditious 

mineralogical indicators, which enhance the relevance of these AMD-precipitates as 

environmental minerals.  
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Fig.1. Location of Valdarcas mining site in Northern Portugal and surface map of the 

waste-dumps. 

Fig. 2. Location of the sampling stations, for ochre precipitates and AMD, at the waste-

dumps and along the main effluent channel (Poço Negro creek).  

Fig. 3. Iterative protocol for mineral identifications in soluble sulphate assemblages. XRD 

– Powder x-ray diffraction; SEM - Scanning electron microscopy; SE – Secondary electrons.  

Fig. 4. XRD pattern from a complex assemblage including the abundant iron sulphates 

(rozenite and melanterite) and the more rare zinc (gunningite) and alkaline earth metals 

(starkeyite and gypsum) sulphates. Pattern peaks from ICDD. 

Fig. 5. XRD patterns of efflorescences carrying several Al-sulphates. Pattern peaks from 

ICDD. Powder x-ray diffraction; SEM - Scanning electron microscopy; SE – Secondary 

electrons.  

Fig. 6. XRD pattern from a complex assemblage including iron (melanterite and siderotil), 

manganese (mallardite) and aluminium sulphates (tamarugite). Pattern peaks from ICDD. 

Fig. 7. Field images of representative sulphate efflorescences. a) Fragile white rosettes of 

gypsum; b) Gypsum rosettes cemented by jarosite; c) Rozenite in plaques on desiccation 

fractures network; d) Powdered efflorescences of Rozenite+Gypsum+Sulphur; e) General 

aspect of the efflorescences including rozenite and melanterite with minor oxyhydroxides; f) 

Detail of melanterite (green globules) and of its weathering products rozenite (white) and 

oxyhydroxides (brown); g) Microenvironment of salt precipitation controlled by humidity 

conditions comprising rozenite+melanterite+Al-sulphates. 

Fig. 8. Morphology of typical intergrowth between melanterite and Al-sulphates (probably 

alunogen e khademite). SEM (SE) images and respective EDS spectra for representative 

samples. 

Fig. 9. Cartographic distribution of the most typical sulphate-minerals in extreme seasonal 

conditions. a) summer; b) winter. 
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Fig. 10. pH evolution during experimental dissolution of selected samples carrying 

Melanterite+Rozenite and Halotrichite, for a salt concentration of 20g/L. 

Fig. 11. Results of experimental dissolution of Melanterite+Rozenite. a) pH behaviour for 

different salt concentrations; b) Correlation between pH and salt concentration; c) Chemical 

composition of the remnant solution upon dissolution (for the tested concentration of 20g/L). 

Fig. 12. Field images of representative occurrences of ochre precipitates. a) water-floating 

brittle films displaying iridescence; b) Thick layers of orange sludge in the water-air interface; 

c) Encrusted coatings on the surfaces of the effluent channels; d, e) ochre-cements inside iron-

rich hardpans. 

Fig. 13. SEM-SE images showing morfological characteristics of the iron(III)-minerals 

that compose the ochre precipitates. a) sample with jarosite and schwertmannite colected at 

V4; b) sample composed of poorly crystalline goethite collected at V7; c) typical habits of 

schwermannite and EDS spectrum of spherical schwertmannite. 

Fig. 14. XRD patterns and description of the ochre precipitates from the encrusted 

effluent channels. JT – Jarosite; GO – Goethite; Sch – Schwertmannite; Qz – Quartz; PI – 

Pyrite. The pH range at each sampling site was extracted from Valente (2004) and Valente and 

Leal Gomes (2008). 
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Table legends  

Table 1 Most typical minerals from the ore deposit that were also identified at the waste-dumps 

(Valente, 2004). 

Table 2 AMD-precipitates identified at Valdarcas.  

Table 3 Composition of AMD at two different selected sites.  

 

 

 


