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Abstract. One of the purposes of Systems Biology is the quantitative
modeling of biochemical networks. In this effort, the use of dynamical
mathematical models provides for powerful tools in the prediction of the
phenotypical behavior of microorganisms under distinct environmental
conditions or subject to genetic modifications.
The purpose of the present study is to explore a computational environ-
ment where dynamical models are used to support simulation and op-
timization tasks. These will be used to study the effects of two distinct
types of modifications over metabolic models: deleting a few reactions
(knockouts) and changing the values of reaction kinetic parameters. In
the former case, we aim to reach an optimal knockout set, under a defined
objective function. In the latter, the same objective function is used, but
the aim is to optimize the values of certain enzymatic kinetic coefficients.
In both cases, we seek for the best model modifications that might lead to
a desired impact on the concentration of chemical species in a metabolic
pathway. This concept was tested by trying to maximize the production
of dihydroxyacetone phosphate, using Evolutionary Computation ap-
proaches. As a case study, the central carbon metabolism of Escherichia
coli is considered. A dynamical model based on ordinary differential equa-
tions is used to perform the simulations. The results validate the main
features of the approach.

1 Introduction

Systems Biology represents a new approach to research in Biology. It aims to
achieve the understanding of the complex interactions in biological systems under
an integrative approach, where the ultimate goal is to simulate these systems
under different scenarios and perturbations [20]. One of the main purposes of
this work is to provide tools for the dynamical modeling and optimization of
biological processes, under a Metabolic Engineering perspective. Indeed, we aim
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to provide tools to identify optimal or near-optimal sets of genetic changes in
microorganisms under dynamical conditions to achieve a given industrial aim.

Mathematical dynamical models allow to study the interaction of biological
compounds in cells. There are several types of dynamic models [13][2], but the
most common approach is to represent metabolic networks as a system of or-
dinary differential equations (ODEs). One of the major drawbacks with these
types of models is how to reliably estimate model parameters. Another perti-
nent question is how these values can change and the biological meaning of those
modifications. In this work, we face the question of how to evolve a dynamical
model based on predefined goals.

We take a new approach by using dynamical models and Evolutionary Com-
putation to identify a set of knockouts or variations in some kinetic parameters
that will optimize the production of a certain metabolite. Each configuration
is evaluated resorting to a simulation using the dynamical model. This type of
information can help to assess on how to engineer a metabolic network in order
to enhance the production of a given metabolite and can also be used to infer
regulatory data.

It is important to bear in mind that finding a knockout set can be seen as
a change in the model structure and the corresponding problem belongs to the
class of combinatorial optimization. On the other hand, the second task involves
finding the best values for a number of parameters, thus a numerical optimization
task. Thus, although the two tasks are quite different from the point of view of
optimization, a similar and general purpose strategy will be followed in both
cases.

Indeed, to study the described scenarios the concept of dynamical model
evolution is introduced. In our proposal, a model will evolve based on a fitness
function that is defined considering a given industrial aim (e.g. to maximize
the concentration of a given metabolite along the time of the experiment). In
alternative, although this is not shown in this work, the fitness can also be based
on an error function, if some experimental data to fit is available.

An optimization framework was built around this concept, where the major
design concern was the loose coupling between the optimization and the simu-
lation modules. This allows us to optimize any model component independently
of the optimization algorithm and of the simulation method.

The framework was applied in this work to the dynamical model of the central
carbon metabolism of Escherichia coli [2]. This model links the sugar transport
system with the reactions of glycolysis and pentose-phosphate pathway. The
case study was chosen because it includes most of the reactions of the central
carbon metabolism and has been validated experimentally. Moreover, E. coli has
been the organism of choice to test novel Metabolic Engineering tools, given the
simplicity in performing genetic modifications, among other factors.

The optimization of knockout sets to enhance the production of metabolites
has been approached before in literature [14][16]. These studies focused in finding
a knockout set using stoichiometric models, performing the simulations using
steady-state approaches such as Flux Balance Analysis [4]. Rather less attention



has been paid to optimizing a knockout set based on dynamical models, using
as a fitness function the concentration of a certain metabolite in a defined time
interval.

Several methods have also been proposed to estimate parameter values based
on experimental data [12]: Wang [19] applied an extra focus in how to use genetic
algorithms to optimize model parameters. In [10], the authors describe the use
of Evolutionary Algorithms (EAs) to reconstruct a metabolic network using
functional Petri Nets. In the work developed by Haunschild [6], the concept of
automatic generation/evolution of multiple metabolic models is introduced to
try to explain some biochemical network phenomena. However, rate equations
are defined by the user and are not evolved themselves. These approaches are
orthogonal to the one presented in this paper, since in our problem context there
is no need of using experimental data to find parameter values.

The rest of this paper is organized as follows: the description of our framework
for dynamical model evolution is given in section 2; in section 3, the case study
is presented; afterwards, in section 4 the results are presented and discussed;
finally, section 5 provides the conclusions and the future work.

2 A framework for dynamical model evolution

This section describes our general framework for dynamical model evolution. As
said before, a dynamical model can evolve based on a given fitness function that
can be defined in a flexible way, i.e. no restrictions are imposed over the definition
of the fitness function (it can be nonlinear, non differentiable, discontinuous,
etc.). It can, for instance, be an error function that takes into account known
experimental data and thus the aim will be to estimate the parameters that
best fit the data. On the other hand, the fitness function can be based on the
concentration of one or several metabolites, along the simulation period. In this
last case, the fitness can be measured by the integral (area under the curve) of
the objective function.

Our framework is divided into two logical parts: model simulation and opti-
mization (Figure 1). The simulation part is based on the numerical integration
of the ODEs of the model, specifying a time interval and considering a fixed
model structure with pre-defined values for the model parameters. A set of ini-
tial values (e.g. representing environmental constraints) can also be defined by
the user for the state variables of the model.

The optimization part allows modifications both in the model structure and
in several types of parameters, including kinetic formulas and corresponding
parameters. The purpose is to reach model configurations that optimize a given
fitness function. A user can impose changes over the model in order to simulate
specific cases. Furthermore, optimization algorithms can be defined to search
over the space of potential solutions, given the type of allowed changes, that can
be summarized in the following:

– Changes in the initial values of the variables (e.g. initial metabolite concen-
trations);



Fig. 1. Framework for dynamical model evolution.

– Changes in the kinetic parameters (e.g. global model parameter or parame-
ters of a specific kinetic expression);

– Changes in the structure of the reaction kinetics (e.g. algebraic expression);
– Changes in the overall model structure (e.g. reaction participant metabo-

lites).

In this paper, the main focus will be on the kinetic parameter variation and
model structure, considering the possible deletion of a number of reactions from
the model.

In our framework, an optimization process is represented by a model, an
optimization algorithm and corresponding parameters, a decoder and an override
model, while a simulation is only characterized by a model and the override
model component. The algorithm and the parameters represent the optimization
method and the variables that will be used during a optimization run.

The model integrates all components that describe the dynamical system (the
ODEs, the kinetic laws and parameters, etc.). For this purpose, a unified model
representation is built, called model mapper, that will answer any queries about
the model components (e.g. about the model structure or parameter values).
This model view is composed by three layers in the following order (Figure 2):
(3) the original model, (2) the decoder and (1) the override model. When a query
is made it is passed along the chain of entities (in the order 1,2,3) until one of
them can answer the query.

Therefore, the decoder and the override model are fractional model repre-
sentations. The decoder gives a partial model view based on a specific encoding.
This layer is used mainly to provide a way to decode the solutions of possible op-
timization algorithms from their internal representations, namely decoding the
genome of an EA. The override model can be used to redefine a set of model
components, thus enabling to set conditions that remain constant throughout
the optimization process.

In more detail, a model is composed by the following elements:



Fig. 2. Framework layers for dynamical model evolution.

– A set of parameters. Each parameter is denoted by a name and has a nu-
merical value.

– A set of variables. A variable is defined by an upper and a lower limit, an
initial value and an ODE, that is represented by a sum of terms, where each
term has a multiplicative coefficient and a function.

– A set of functions. A function can be any mathematical entity that receives
as its parameters the current time and a model representation, returning
a numerical result. Functions can also have a local parameter space that
overrides the model global parameter scope.

Regarding the optimization layer, several algorithms can be employed, pro-
viding they are able to deal with the type of fitness functions described be-
fore. Given the complexity of the underlying problems, the available options are
meta-heuristics that range from Multistart Local Search to Simulated Anneal-
ing, contemplating also several evolutionary approches, such as EAs, Genetic
Programming or Differential Evolution (DE). In this work, EAs will be used to
perform combinatorial optimization and a DE will perform the numerical opti-
mization task. The specific features of these algorithms will be presented in the
next section.

Besides running the simulation and optimization of dynamical models, the
framework also allows to input models using the Systems Biology Markup Lan-
guage (SBML) [7] format (a standard in these kind of models). The results of
a simulation or optimization process can also be saved in a text file. A number
of visualization tools are also available to allow the user to perform a graphical
analysis over the outputs.



Regarding its implementation, the software for the proposed framework was
developed using the Java programming language and the following additional
libraries: a library for EAs developed by the authors, CVODE [3] using JNI that
solves systems of ODEs, JFreeChart [9] that displays graphical simulation results
and LibSBML [1] that parses SBML encoded files.

3 Case Study

3.1 Dynamical model of the central carbon metabolism of E. coli

In this paper, a case study on the dynamical model of glycolysis and the pentose-
phoshate pathway in Escherichia coli[2] was used. One of the main ambitions in
Metabolic Engineering is the re-engineering of biological pathways with the aid
of mathematical models. The model was delineated and corroborated based in
metabolite concentration measurements obtained at transient conditions. This
model allows to explore this network as supplier of precursors. For example,
dihydroxyacetone phosphate (DHAP) can be produced and used in the lipid
synthesis pathway. The maximization of the production of this compound was
used as case study since it has several industrial applications, including synthetic
chemistry using the enzymatic Aldol Syntheses[5][18].

The model of the central carbon metabolism of Escherichia coli consists of
mass balance equations for extra-cellular glucose and for intracellular metabo-
lites. The mass balances take the following form:

dCi

dt
=

∑

j

vijrj − µCi (1)

Where Ci represents the concentration of metabolite i, µ is the specific growth
rate and vij is the stoichiometric coefficient for this metabolite in reaction j, the
rate of which is rj .

3.2 Optimization tasks and algorithms

In this section, the optimization tasks and techniques employed are described.
Two distinct scenarios were studied in this work, both using the model afore-
mentioned. In the first, the problem at hand consists in determining the optimal
knockout set that maximizes the production of a given metabolite (in this case
DHAP) along a given time interval (in this case is was set to [0, 20] seconds).
Therefore, the fitness function consists on the numerical integration of the target
metabolite’s concentration. The integration of the ODE is performed using the
method provided by CVODE (that is suitable for both stiff and non-stiff ODE
problems) with a step size of 0.1. In the simulations, the initial values for the
model variables (i.e. initial concentrations) were set to the values supplied by
[2].

In both cases, since the algorithms are stochastic, the optimization process
was run for 30 times and the results are the means, presented within a 95%
confidence interval.



In the first task, an EA with a set-based representation was used [16], where
an individual encodes a subset of the full set of reactions in the model. To eval-
uate each solution, a simulation is run where the model is changed by removing
all reactions encoded in the individual’s genome. The fitness function is therefore
calculated using this modified model.

It should be mentioned that the representation used in the EA employs a
variable-sized genome, therefore allowing the competition of knockout sets with
distinct cardinalities within the same population. Within this EA, the following
reproduction operators are used to breed new individuals [16]:

– Grow mutation: consists in the introduction of a number of new elements
into the set, whose values are randomly generated within the available range,
avoiding duplicates;

– Shrink mutation: a number of randomly selected elements are removed from
the set;

– Random mutation: replaces an element of the set by another, randomly
generated in the allowed range; and,

– Modified Uniform crossover: it is inspired on the traditional uniform crossover
operator and works as follows: the genes that are present in both parent sets
are kept in both offspring; the genes that are present in only one of the
parents are sent to one of the offspring, selected randomly with equal prob-
abilities.

The following steps present the general structure of the EA:

1. Generate a population of NP individuals. Each individual represents a po-
tential solution to the problem, initially created randomly.

2. For each individual in the population, evaluate its fitness by running the
correspondent model simulation and computing the fitness function. If the
stopping criteria is met, the algorithm stops and returns the best solution
found.

3. Selection: First the set of E best individuals is copied to the next generation
(elitism). Afterwards, a pool of NP/2 individuals (parents) is created using
a roulette wheel scheme.

4. Reproduction: The set of available reproduction operators (crossover and
mutation) are applied to the selected pool of parents, in order to generate the
offspring (NP/2 new individuals are created that are inserted into the new
generation). All reproduction operators available have the same probability
of being chosen to breed each new individual.

5. The new population is completed by selecting NP/2 − E individuals from
the original population (a substitution rate of 50% is adopted). Return to
step 2.

The EA was ran for 500 iterations with a population of 100 individuals. An
elitism value of E = 1 is used.

In the second scenario, a similar approach was taken, but instead of finding
a knockout set, the purpose is to modify the value of one of the kinetic parame-
ters of each reaction, in this case the vmax. The vmax parameter represents the



maximum enzyme reaction rate under the conditions of the experiment. This
value can be changed in a wet lab by changing the level of expression of certain
enzymes in the re-engineered microbial strains.

In this second scenario, a DE algorithm was employed. The individuals en-
code the level of change for the vmax parameter of each reaction, when compared
to the base value present in the original model. The level of change can vary be-
tween 0 and 2; a value of 1 means the parameter remains unchanged.

In this work, a variant of the DE algorithm called DE/rand/1 was considered
that uses a binomial crossover [17]. In this case, the following scheme is followed,
in every generation, for each individual i in the population:
1. Randomly select 3 individuals r1, r2, r3 distinct from i;
2. Generate a trial vector based on: t = r1 + F · (r2 − r3);
3. Incorporate coordinates of this vector with probability CR;
4. Evaluate the candidate and use it in the new generation if it is at least as

good as the current individual.

The DE was ran for 500 iterations with a population of 20 individuals. The
F parameter was set to 0.5 and CR to 0.6.

4 Results

4.1 Gene deletion scenario

In Table 1 we show the results for the gene deletion task. The mean and confi-
dence interval of the fitness function value (DHAP production) obtained for the
best solution in each run is shown, as well as the mean number of knockouts.
On the other hand, Figure 3 shows the histogram of the reaction knockouts, i.e.
the number of times a given reaction is knocked-out in the best solution for the
30 runs.

Table 1. Results for the gene deletion task.

Total Number Of Runs 30
Mean of fitness function (mM.s) 36.268 ± 2.8E-14

Mean Number Of Knockouts 15.2 ± 3.6
Confidence Level 95%

4.2 Kinetic parameter optimization

In Table 2 the results obtained for the vmax parameter optimization scenario
are shown. Figure 4 shows the boxplot concerning the level of change in the
vmax parameter for a number of reactions. To better compare with the previous
experiment, this set is composed of the reactions that were most frequently the
target of a knockout.



Fig. 3. Knockout frequency graph: only the reactions that have a frequency of at least
10 are shown.

Table 2. Results for the kinetic parameter optimization task.

Total Number Of Runs 30
Mean of fitness function (mM.s) 77.011 ± 3.88

Confidence Level 95%

Fig. 4. Level of change for the vmax parameter in a selected set of reactions (selected
from the set of reactions that were frequently knocked out in the previous experiment).



4.3 Discussion

Regarding the first task, it is interesting to note that none of the main reactions
that lead to the production of DHAP (PTS, PGI, PFK and ALDO) are knocked
out in any of the best solutions for each run. The reactions that may impact
negatively in the production of DHAP, even if not directly, have a higher chance
of being knocked out as it can be seen in Figure 3. This result validates the
proposed approach.

However, it is important to mention that the obtained knockout sets are not
likely to produce viable mutants due to the fact that there are no restrictions
regarding the set of possible reactions to inactivate. The reaction set composed
by G6PDH, TIS, G3PDH and R5PI is always deleted in all the best individuals,
thus inhibiting metabolic pathways like nucleotide and glycerol synthesis and
thus suppressing biomass formation.

During the vmax parameter optimization, the best solutions lead to an in-
creased production of DHAP. This is explained by the fact that, when tuning
the vmax parameter for each reaction, we are allowing the reactions to have a
reduced activity (if the reduction factor is 0 the reaction can even be knocked
out as before) or an increased activity (the vmax value can be doubled). This
provides much more flexibility and leads to higher values of the fitness function.
Also, in contrast with the previous scenario, the mutants are more likely to be
viable because most of the metabolic pathways are not completely inactivated.

The vmax values obtained in the best solutions typically show an inactivation
of the reactions unnecessary to the production of DHAP, resembling the knock-
out sets produced in the first scenario, as it is obvious comparing the results
of Figure 4 and Figure 3. The vmax parameter value for the PGM reaction is
the only one that increases its base level value. This is due to the fact that it
is the only parameter that lies in the denominator of the kinetic expression. All
other parameters under optimization are being multiplied by the numerator of
the reaction rate laws.

The optimization results for the studied scenarios emphasize the complex
interactions involved, even in this very simple model. The methods presented
merely serve as a proof of concept, since most of the solutions are likely to be
biologically non-viable. Those limitations of the approach are mainly due to
the nature of the models (the used model is known to be incomplete) and the
constraints imposed over the solutions in these experiments.

If a more complete model is used and the constraints are biologically correct,
the proposed framework can be used to reach biologically meaningful results.
For example, is this case, to use this approach in a real metabolic engineering
approach, some of the reactions would have to be constrained not to be a target
for deletion and the limits over the vmax parameters would have to be carefully
imposed.



5 Conclusions and further work

In recent years, several methods have been developed in silico with the purpose
of identifying and characterizing microrganisms’ metabolic functioning. So far,
research has been mostly confined to explore parameter estimation problems,
based on fitting experimental data. On the other hand, Metabolic Engineering
related approaches are based in steady state models. This study focus on study-
ing novel ways of exploring dynamical models to optimize model modifications
(e.g. model structure or parameter values) in different settings using as objective
function the maximization of the production of a given metabolite of industrial
interest.

The modular architecture of the proposed framework allows to replace any
component of the dynamical model. For instance, when the rate law of a reaction
has an unknown mathematical expression for a given model it can be replaced
by a model built based on experimental data (e.g. a trained neural network).

In future work, the main issues to be tackled are the validation of this frame-
work with other real-world case studies and also to make the computational tools
available to the research community by integrating them in a proper platform
with appropriate graphical user interfaces.

Regarding the optimization layer, a number of other algorithms have to be
integrated in the framework, namely Genetic Programming [11] and Artificial
Immune Systems [8] should be considered. The use of multi-objective optimiza-
tion algorithms [15] in the optimization layer is also a promising route.
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