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Abstract

The trend to equilibrium of a quaternary mixture of monatomic gases undergoing a reversible
reaction of bimolecular type is studied in a quite rigorous mathematical picture within the frame-
work of Boltzmann equation extended to chemically reacting mixture of gases. The H-theorem
and entropy inequality allow to prove two main results under the assumption of uniformly
boundedness and equicontinuity of the distribution functions. One of the results establishes
the tendency of a reacting mixture to evolve to an equilibrium state as time becomes large.
The other states that the solution of the Boltzmann equation for chemically reacting mixture
of gases converges in strong L1-sense to its equilibrium solution.
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AMS codes: 76P05; 80A32; 82C40; 35B35
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1 Introduction

A large number of papers in the literature has been devoted to include chemical reaction effects in
gas mixtures modeled by Boltzmann equation (BE), after the first attempts done by Prigogine and
co-workers [37, 38] and afterwards by Present [36], Ross & Mazur [39], Skizgal & Karplus [42], and
Xystris & Dahler [47], among others. These works are mainly directed to perturbation techniques
for the solution of the chemical kinetics BE, with emphasis on the estimation of the non-equilibrium
effects induced by chemical reactions and calculation of reaction rate, equilibrium constants and
other transport quantities.

A different kinetic approach to chemically reactive systems has been addressed in some subse-
quent papers, concerning mathematical methods and related properties. In particular, existence
theory for BE with inelastic collisions has been analyzed in the paper [28], where existence, unique-
ness and positivity of mild solutions for initial data close to the vacuum are proven.

Multi-component reactive flows have been investigated in the work [24] and global existence
and asymptotic stability results, together with decay estimates, have been obtained for the Cauchy
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problem in all space dimensions as well as for the equilibrium state, for a system of macroscopic
equations derived from the kinetic theory.

Theoretical and formal developments for chemically reacting gases can also be found in the paper
[40] for a mixture undergoing bimolecular reactions and in the work [27] for a more general reactive
flow in which the internal structure of the molecules is also taken into account. In these last two pa-
pers, the corresponding chemical collision terms are derived in detail, the macroscopic conservation
laws are explicitly deduced and properties regarding equilibrium and stability are discussed. More-
over, a strict Lyapunov functional is shown to exist, exhibiting a monotonous decreasing behavior
and attaining its minimum at equilibrium.

Some relevant results have been achieved in paper [34], concerning the mathematical aspects of
kinetic equations for the so called simple reacting spheres, proving global existence of renormalized
solutions, for initial conditions of finite total mass, energy and entropy.

Mathematical properties related with the reaction process are discussed in paper [26], where two
kinetic theories for chemical reactions are compared and existence of solutions is proven assuming
that reactive collisions verify the micro-reversibility principle and elastic and reactive scattering
kernels satisfy suitable boundedness conditions which are verified in the case of hard potentials
with cut-off. It is worth to emphasize that the extension to reactive mixtures of the regularity
theory for the nonreactive spatially homogeneous Boltzmann equation for hard potentials with cut-
off developed in [1, 2, 4, 5, 31] and latter completed in [32] to prove global existence results for
initial data with finite mass and energy still remains an open problem. The same happens for the
theory developed for the nonreactive spatially homogeneous Boltzmann equation for soft potentials
without cut-off [45] as well as with cut-off [14].

For what concerns polyatomic reactive mixtures, the modeling of transport properties, derivation
of transport coefficients and investigation of non-equilibrium effects are dealt with in papers [10, 11,
18, 19] among others.

On the other hand, the so called entropy production methods, well known in literature due to
their capability for the computation of bounds for the long time behavior and study of convergence
to equilibrium have been used for the homogeneous version of the Boltzmann equation [3, 15, 44]
but also for the inhomogeneous equation [16, 17, 46]. These methods have also been used as a
fundamental tool within the framework of reacting gases, namely to obtain good a-priori estimates
in the study of the long-time behavior [12, 25], develop robust numerical techniques [21, 33], and
study multi-component transport properties [20, 22, 23].

However, the study of the trend to equilibrium in kinetic theory of chemically reacting gases has
not yet received enough attention for what concerns, in particular, the convergence for large times
of the solution of the chemical kinetics BE towards equilibrium.

The aim of the present paper is to complement the above mentioned study, extending to monatomic
reactive mixtures previous results in this direction obtained by Carleman [4, 5] and Arkeryd [1, 2]
for an inert one-component gas and by Cercignani & Kremer [8, 9] for a relativistic gas.

More in detail, one of the main result of the present paper states a strong L1-convergence for
the solution of the BE towards Maxwellian equilibrium as time becomes large, under the assump-
tion of uniformly boundedness and equicontinuity of the distribution functions for the spatially
homogeneous case. An entropy inequality and H-theorem have a central role in the proposed study.

As a final remark, cartesian notation for tensors is used throughout the paper. Greek indices
denote the constituents of the mixture while Latin indices denote the cartesian coordinates. The
velocity vector of a molecule is denoted by cα while its components by cαi .
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2 Reactive Boltzmann Equations

In a simple reversible bimolecular gas reaction characterized by the chemical law A1+A2 
 A3+A4,
only binary encounters between molecules are taken into account. Two types of collisions are then
considered, namely the elastic and the reactive or inelastic ones.

It is well known that, for an elastic collision of two molecules, say α and β, with pre-collision
velocities (cα, cβ) and post-collision velocities (c′α, c

′
β), the mass, linear momentum and kinetic

energy are preserved. On the other hand, reactive collisions assure conservation of mass and linear
momentum, and conservation of total energy, which reads ε1+m1c

2
1/2+ε2+m2c

2
2/2 = ε3+m3c

2
3/2+

ε4+m4c
2
4/2, where mα (α = 1, . . . , 4) denotes the mass of molecule, (c1, c2) and (c3, c4) the velocities

of the reactants and products of the forward reaction, respectively, and εα is the formation energy
of a molecule of constituent α.

A state of the gaseous mixture in the phase space spanned by the positions x and velocities cα
of the molecules is characterized by the set of one-particle distribution functions fα ≡ f(x, cα, t)
with α = 1, . . . , 4. In the absence of external forces, the distribution function is assumed to satisfy
the following Boltzmann equation

∂fα
∂t

+ cαi
∂fα
∂xi

=

4∑
β=1

∫ (
f ′αf

′
β − fαfβ

)
gβασβαdΩβαdcβ +QRα , α = 1, . . . , 4, (1)

where the first term on the right hand side refers to elastic interactions and the second one to reactive
collisions. The symbols dΩβα and σαβ are an element of solid angle and a differential elastic cross
section, respectively. The models of hard sphere and Maxwell molecules [7] are commonly adopted
in literature for σαβ . The term QRα for the reactants can be expressed by

QR1(2) =

∫ [
f3f4

(
m12

m34

)3

− f1f2

]
σ?12g21dΩdc2(1), (2)

and the one for the products can be obtained from expression (2) by changing the indexes 1, 2 with
3, 4, respectively. Moreover, the quantities σ?12 and σ?34 are differential reactive cross sections for
forward and backward reactions, respectively, which satisfy the micro-reversibility principle, namely,
m2

34 g
2
43 σ

?
34 = m2

12 g
2
21 σ

?
12. The line-of-centers model [29, 30, 35, 43] and the power-law model [41]

for reactive cross sections satisfy this condition and are employed in a rather vast bibliography
on reacting gases. Other main aspects regarding the chemical kinetic properties of the considered
mixture, omitted here for sake of brevity, can be found in Refs. [29, 30, 43].

3 H - Theorem

The balance equation for the entropy density of the mixture can be obtained through the multipli-
cation of the Boltzmann equation (1) by ψα=−k ln(bfα/m

3
α), integration over all values of cα and

summation the resulting equation over all values of α. The parameter b is a suitable constant which
converts the argument of the logarithm function into a dimensionless quantity. Hence, it follows

∂

∂t
(%η) +

∂

∂xi
(φi + %ηvi) = ΣE + ΣR, (3)

where %η is the entropy density and φi its flux defined by

%η = −k
4∑

α=1

∫
fα ln

(
bfα
m3
α

)
dcα, φi = −k

4∑
α=1

∫
fαξ

α
i ln

(
bfα
m3
α

)
dcα. (4)
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Moreover, ΣE and ΣR are the entropy production terms due to elastic scattering and chemical
reactions, respectively. They are given by

ΣE = −k
4

4∑
α=1

4∑
β=1

∫
f ′αf

′
β

(
1− fαfβ

f ′αf
′
β

)
ln

(
fαfβ
f ′αf

′
β

)
gβασβαdΩβαdcβdcα, (5)

ΣR = −k
(
m12

m34

)3∫
f3f4

[
1−

(
m34

m12

)3
f1f2
f3f4

]
ln

[(
m34

m12

)3
f1f2
f3f4

]
σ?12g21dΩdc1dc2. (6)

From Eqs. (5-6), one can infer that ΣE and ΣR are sums of nonnegative contributions, since one
has (1 − x) lnx ≤ 0, for any positive x, so that the entropy production of the whole mixture is a
positive semi-definite quantity. Observe that the positivity of the entropy production of the whole
mixture has been obtained as a consequence of the fact that each elastic and reactive collision yields
positive entropy production, since all contributions to the sums in Eqs. (5-6) have the same sign.
Accordingly, all collisions contribute to increase the entropy, and the use of this property will be
important in the sequel.

Let assume that the one-particle distribution function is uniform in the space, and introduce a
generalized H-function which is proportional to the entropy of the system defined in Eq. (4)1,

H = −%η
k

=

4∑
α=1

∫
fα ln

(
bfα
m3
α

)
dcα. (7)

From the above results about the entropy of the mixture, one obtains

dH
dt

=
1

4

4∑
α=1

4∑
β=1

∫ (
f ′αf

′
β − fαfβ

)
ln

(
fαfβ
f ′αf

′
β

)
gβασβαdΩβαdcβdcα (8)

+

(
m12

m34

)3∫ (
f3f4 −

(
m34

m12

)3
f1f2

)
ln

[(
m34

m12

)3
f1f2
f3f4

]
σ?12g21dΩdc1dc2 ,

and
dH
dt

= −1

k

d

dt
(%η) ≤ 0, ∀t ∈ [0,+∞[ , (9)

which assures that the H-function decreases in time. This is a well known result in kinetic theory
of chemically reacting gases [27, 40]. It is also well known that the equilibrium solution of the
Boltzmann equations (1) defines a minimum of the H- function.

The following result has been proven in paper [27], using different arguments.

Lemma 1. Let HE denote the H-function referred to equilibrium Maxwellian distributions f
(0)
α .

Then
H−HE ≥ 0, ∀t ∈ [0,+∞[ . (10)

Proof. Substitution of x = fα/f
(0)
α in the well-known convexity inequality x ln(x) ≥ x− 1 yields

fα

(
ln(fα)− ln(f (0)α )

)
≥ fα − f (0)α

and after some rather simple calculations one obtains

fα ln

(
bfα
m3
α

)
− f (0)α ln

(
bf

(0)
α

m3
α

)
≥
(
fα − f (0)α

)(
1 + ln

(
bf

(0)
α

m3
α

))
. (11)
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Integrating inequality (11) over all velocities cα and summing for all constituents one gets

H−HE ≥
4∑

α=1

∫ (
fα − f (0)α

)(
1 + ln

(
bf

(0)
α

m3
α

))
dcα,

thanks to the definition (7) of the H-function. Since ln
(
bf (0)α /m3

α

)
is a collision invariant, one has

(see e.g. Refs. [13, 27])

H−HE ≥
4∑

α=1

∫ (
fα − f (0)α

)[
1 +Aα +mαBic

α
i + C

(
1

2
mαc

2
α + εα

)]
dcα. (12)

The right-hand-side of inequality (12) vanishes due to the ansatz that the equilibrium Maxwellians

f
(0)
α have the same local macroscopic properties as the solution fα of Eq. (1), that is∫

fαdcα =

∫
f (0)α dcα, (13)

4∑
α=1

∫
mαc

α
i fαdcα =

4∑
α=1

∫
mαc

α
i f

(0)
α dcα, (14)

4∑
α=1

∫ (
1

2
mαc

2
α + εα

)
fαdcα =

4∑
α=1

∫ (
1

2
mαc

2
α + εα

)
f (0)α dcα. (15)

Finally, one gets H ≥ HE , and the proof is complete.

4 Trend to equilibrium

The next result, Theorem 1, shows that the Boltzmann equation (1) describes a reacting mixture
which evolves towards an equilibrium state, reached for very large times. The required conditions
for the distribution functions fα expressed in the statement of Theorem 1, namely the uniform
boundedness and equicontinuity in t, are rather standard hypothesis when the long-time behavior
is analized (see e.g. Refs. [4, 5, 6, 8]).

Theorem 1. Assuming that H is a continuously differentiable function, H ∈ C1([0; +∞[), and that
every fα is uniformly bounded and equicontinuous in t, then

lim
t→+∞

H(t) = HE .

Proof: Taking into account the decreasing behavior of H, see inequality (9), and the lower bound of
H stated in Lemma 1, the Lagrange’s theorem assures the existence of tn ∈ ]n, n+ 1[ , such that

dH
dt

(tn) =
H(n+ 1)−H(n)

(n+ 1)− n
. (16)

Therefore

lim
n→∞

tn = +∞ and lim
n→∞

d

dt
H(tn) = `− ` = 0,

where ` = lim
t→∞

H(t), whose existence results from the boundedness and decreasing behavior of H.
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Furthermore, the Ascoli-Arzelás theorem assures the existence of a convergent subsequence of

f (α)n
def
= fα(tn),

which will be still denoted by f
(α)
n , such that lim

n→∞
f (α)n = f∞α . Moreover, the convergence is uniform

in cα in any compact set S ⊂ R3.
The proof proceeds by showing that the identities

f ′∞α f ′∞β = f∞α f∞β , for all α, β ∈ {1, . . . , 4}, (17)

f∞3 f∞4 =

(
m34

m12

)3
f∞1 f∞2 , (18)

hold. Otherwise, one can find a compact set of positive measure in R3, say C, and constants N ≥ 0
and Mαβ ≥ 0 for some α, β ∈ {1, . . . , 4}, such that∣∣f ′∞α f ′∞β − f∞α f∞β

∣∣ ≥Mαβ , ∀cα, cβ , c′α, c′β ∈ C.∣∣∣∣∣f∞3 f∞4 −
(
m34

m12

)3
f∞1 f∞2

∣∣∣∣∣ ≥ N, ∀c1, c2, c3, c4 ∈ C,

where
N > 0 or Mαβ > 0. (19)

Due to the uniform convergence of f
(α)
n to f∞α , for n0 large enough and n ≥ n0 one has∣∣∣f ′ (α)n f ′ (β)n − f (α)n f (β)n

∣∣∣ ≥ Mαβ

2
, ∀cα, cβ , c′α, c′β ∈ C. (20)∣∣∣∣∣f (3)n f (4)n −

(
m34

m12

)3
f (1)n f2)n

∣∣∣∣∣ ≥ N

2
, ∀c1, c2, c3, c4 ∈ C. (21)

Moreover, since f (α) is bounded, say by a positive constant Fα, one obtains∣∣∣∣∣ ln
(
f
(α)
n f

(β)
n

f
′ (α)
n f

′ (β)
n

)∣∣∣∣∣ =

∣∣∣∣∣ ln
(

1 +
f
(α)
n f

(β)
n − f ′ (α)n f

′ (β)
n

f
′ (α)
n f

′ (β)
n

)∣∣∣∣∣
≥ ln

(
1 +

∣∣∣∣∣f (α)n f
(β)
n − f ′ (α)n f

′ (β)
n

f
′ (α)
n f

′ (β)
n

∣∣∣∣∣
)
≥ ln

(
1 +

Mαβ

2F 2
α

)
, (22)

∣∣∣∣∣ln
[(

m34

m12

)3
f
(1)
n f

(2)
n

f
(3)
n f

(4)
n

]∣∣∣∣∣ ≥ ln

(
1 +

N

2F3F4

)
. (23)

Now from equations (20-23) it follows

∣∣∣f ′ (α)n f ′ (β)n − f (α)n f (β)n

∣∣∣ ∣∣∣∣∣ ln
(
f
(α)
n f

(β)
n

f
′ (α)
n f

′ (β)
n

)∣∣∣∣∣ > Mαβ

2
ln

(
1 +

Mαβ

2F 2
α

)
, (24)

∣∣∣∣∣f (3)n f (4)n −
(
m34

m12

)3
f (1)n f2)n

∣∣∣∣∣
∣∣∣∣∣ln
[(

m34

m12

)3
f
(1)
n f

(2)
n

f
(3)
n f

(4)
n

]∣∣∣∣∣ > N

2
ln

(
1 +

N

2F3F4

)
. (25)
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Therefore, for n ≥ n0, one obtains

− d

dt
H(tn) >

1

4

4∑
α=1

4∑
β=1

Mαβ

2
ln

(
1 +

Mαβ

2F 2
α

)∫
C×C

gβασβαdΩβαdcβdcα

+
N

2
ln

(
1 +

N

2F3F4

)∫
C×C

σ?12g21dΩdc1dc2. (26)

In fact, it is enough to multiply inequalities (25) and (24) by gβασβαdΩβαdcβdcα and σ?12g21dΩdc1dc2,
respectively, then integrate over all velocities and, finally, take the sum of the latter resulting in-
equality together with the former one, previously summed over all constituents α and β.

Now, from the positivity of the measure of the compact set C and inequality (26), in view of
(19), there exists a positive constant, say A, such that

− d

dt
H(tn) > A > 0. (27)

This last conclusion is absurd, since lim
n→∞

d

dt
H(tn) = 0. Therefore Eqs. (17) and (18) hold.

Consequently, the H-function has a critical point for fα = f∞α , as it can be seen from the
expression (8) for its time derivative. Finally, the convexity of the H-functional on the manifold
defined by the conservation of moments (13-15) implies that this critical point corresponds to the

minimum of H, attained for fα = f
(0)
α . Therefore f∞α = f

(0)
α , so that

lim
n→∞

f (α)n = f (0)α and lim
t→+∞

H(t) = HE . (28)

This completes the proof of Theorem 1.

From the proof of the previous Theorem 1 it results, in particular, that lim
t→+∞

fα(t) = f (0)α (t) and

the next Theorem shows that this convergence is strong in the L1-norm.

Theorem 2. Under the assumptions of Theorem 1, fα converges in strong L1-sense to f (0)α .

Proof: The idea is to use a rather sophisticated convexity inequality. In fact, it is not difficult to
check the existence of a constant C > 0 such that

x lnx+ 1− x ≥ C|x− 1| G
(
|x− 1|

)
, for all x > 0, (29)

where G is the function defined by

G
(
|x− 1|

)
=

{
|x− 1| if 0 ≤ |x− 1| ≤ 1,
1 if |x− 1| > 1.

(30)

Now, inserting x = fα/f
(0)
α in inequality (29), one gets

fα

(
ln(fα)− ln(f (0)α )

)
≥ fα − f (0)α + C

∣∣∣fα − f (0)α

∣∣∣ G(∣∣∣∣∣ fαf (0)α

− 1

∣∣∣∣∣
)
,

and after some rearrangements, it results

fα ln

(
bfα
m3
α

)
−f (0)α ln

(
bf

(0)
α

m3
α

)
≥
(
fα−f (0)α

)(
1 + ln

(
bf

(0)
α

m3
α

))
+ C

∣∣∣fα − f (0)α

∣∣∣G(∣∣∣∣∣ fαf (0)α

− 1

∣∣∣∣∣
)
. (31)
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From the definition (7) of the H-function one obtains by integrating the inequality (31) over all
velocities cα and summing for all constituents

H(t)−HE ≥
4∑

α=1

∫
C
∣∣∣fα − f (0)α

∣∣∣G(∣∣∣∣∣ fαf (0)α

− 1

∣∣∣∣∣
)
dcα.

Above it has used the constraints (13-15) and the fact that ln(bf
(0)
α /m3

α) defines a collisional invari-
ant. Now, by introducing the sets

D1
α =

{
cα ∈ R3 :

∣∣∣fα − f (0)α

∣∣∣ ≤ f (0)α

}
and D2

α =
{
cα ∈ R3 :

∣∣∣fα − f (0)α

∣∣∣ > f (0)α

}
and taking into account the definition (30) of the function G, one obtains

H(t)−HE ≥
4∑

α=1

∫
D1

α

C

f
(0)
α

∣∣∣fα − f (0)α

∣∣∣2dcα +

4∑
α=1

∫
D2

α

C
∣∣∣fα − f (0)α

∣∣∣ dcα ≥ 0. (32)

Since lim
t→+∞

H(t) = HE , the passage to the limit for t→ +∞ in the inequality (32) gives

lim
t→+∞

[
4∑

α=1

∫
D1

α

C

f
(0)
α

∣∣∣fα − f (0)α

∣∣∣2dcα +

4∑
α=1

∫
D2

α

C
∣∣∣fα − f (0)α

∣∣∣ dcα] = 0. (33)

This last limit condition can be verified if and only if

lim
t→+∞

∫
D1

α

1

f
(0)
α

∣∣∣fα − f (0)α

∣∣∣2 dcα = 0 and lim
t→+∞

∫
D2

α

∣∣∣fα − f (0)α

∣∣∣ dcα = 0, (34)

since all contributions to the sums in Eq. (33) have the same non-negative sign. Now, recalling the
Cauchy-Schwarz inequality, one can write

∫
D1

α

∣∣∣fα − f (0)α

∣∣∣ dcα =

∫
D1

α

√
f
(0)
α

∣∣∣fα − f (0)α

∣∣∣√
f
(0)
α

dcα ≤

(∫
D1

α

f (0)α dcα

)1
2
(∫

D1
α

∣∣∣fα − f (0)α

∣∣∣2
f
(0)
α

dcα

)1
2

. (35)

By combining inequality (35) with condition (34)1, it follows

lim
t→∞

∫
D1

α

∣∣∣fα − f (0)α

∣∣∣ dcα = 0. (36)

Finally, since

∫
D1

α

∣∣∣fα − f (0)α

∣∣∣ dcα+

∫
D2

α

∣∣∣fα − f (0)α

∣∣∣ dcα =

∫ ∣∣∣fα − f (0)α

∣∣∣ dcα, conditions (34)2 and (36)

imply that

lim
t→∞

∫ ∣∣∣fα − f (0)α

∣∣∣ dcα = 0,

which means that fα converges strongly to f (0)α in the L1-sense. The proof is then complete.

5 Conclusions

The problem of the trend to equilibrium in kinetic theory arises in many researches involving chem-
ically reacting systems, as those related to numerical simulations and modeling. In fact, due to the
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last developments of computer technologies, more accurate descriptions are possible and very often
the knowledge of the behavior of reacting systems is needed when processes for large times are ana-
lyzed. The mathematical research related to this problem may improve the understanding and the
physical description of the involved phenomena. In this line, the present work can be regarded as an
extension to kinetic theory of chemically reacting gases of the results for one-component inert gases
due to Carleman in the works [4, 5], and which will be useful to validate numerical implementations
and model approaches.
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