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Summary 
 
Cardiovascular disease is the leading cause of mortality in Western countries. For 

the reconstruction of arteries with large caliber currently available synthetic grafts offer a 

reasonable solution and proven clinical efficacy. However, for small sized (<6 mm) grafts these 

materials generally give poor performance, due to anastomotic intimal hyperplasia and surface 

thrombogenicity.  The production of functional blood vessels by tissue engineering techniques 

is already possible, however due to the associated costs and lengthy production, the 

development of new materials appropriated for small diameter blood vessel replacements is 

still required. 

This thesis is a contribute for the improvement of bacterial cellulose for small blood vessel 

replacements. Among the strategies developed over the years to modify materials for vascular 

devices, pre-coating with the tripeptide Arg-Gly-Asp (RGD) improves endothelialization thus 

lowering thrombogenicity. In this work, bifunctional recombinant proteins, with a Cellulose-

Binding Module – CBM, from the cellulosome of Clostridium thermocellum - and cell binding 

sequences - RGD, GRGDY – were successfully cloned and expressed in the bacteria 

Escherichia coli. These RGD-containing cellulose-binding proteins were purified and used to 

coat bacterial cellulose fibres. Bacterial cellulose (BC) secreted by Gluconacetobacter xylinus is 

a material with unique properties and promising biomedical applications. CBMs adsorbs 

specifically and tightly on cellulose. Thus, they are a useful tool to address the fused RGD 

sequence (or other bioactive peptides) to the cellulose surface, in a specific and simple way. 

In this thesis the effects of chimeric proteins containing a CBM fused to adhesion peptides on 

the cell adhesion/biocompatibility properties were studied using mouse embryo fibroblasts 

(3T3) and human microvascular endothelial cells (HMEC) cultures. The results obtained 

demonstrated that the recombinant proteins containing adhesion sequences were able to 

significantly increase the attachment and spreading of fibroblasts and HMECs to BC surfaces, 

specially the RGD sequence. The results also showed that the RGD decreased the ingrowth of 

the HMEC cells through the BC and stimulated the early formation of cordlike structures by 

these endothelial cells. 

The blood compatibility of native and RGD-modified BC was also studied. The clotting times 

(aPTT, PT, FT and PRT) and whole blood clotting results demonstrate the hemocompatibility of  
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BC. A significant amount of plasma protein adsorbed to BC fibres, albumin presenting a higher 

BC affinity than γ-globulin or fibrinogen. According to analysis carried out by intrinsic 

tryptophan fluorescence, the BC adsorbed albumin, fibrinogen and γ-globulin do not undergo 

major conformational modifications. Although the presence of the adhesion peptide on bare-BC 

surface increases the platelet adhesion, when the material was cultured with human 

microvascular endothelial cells a confluent cell layer was readily formed, inhibiting the 

adhesion of platelets.  

Once the recombinant protein contains a bacterial CBM, the biocompatibility of native and 

RGD-CBM treated BC – to analyze whether the presence of the recombinant protein gives rise 

to any immunologic reaction – was investigated through in vivo studies in sheep. The fate of 

long term subcutaneous BC implants - 32 weeks - was analysed. Histological results showed 

that BC trigger a biological response typically observed for high surface-to-volume implants. 

After 1 week of implantation the presence of an inflammatory infiltrate suggests an 

acute/subacute inflammatory reaction that advance to a chronic inflammation confined to the 

implantation site and associated to the proliferation of small blood vessels. The presence of 

giant cells was observed at latter periods (16 and 32 weeks) and a narrow fibrous capsule was 

present surrounding the implant. BC tubes with small diameter (3mm ID) were produced and 

its mechanical properties evaluated.  

Overall, this work reports the successful functionalization of bacterial cellulose scaffolds with a 

CBM fused to adhesion peptides, leading to improved blood compatibility and increasing its 

potential use as blood vessels replacement. 
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Resumo 

As doenças cardiovasculares estão entre as principais causas de morte em países ocidentais. 

Para a reconstrução de artérias de grande calibre, os enxertos sintéticos actualmente 

disponíveis oferecem uma solução razoável e com eficácia clínica comprovada. No entanto, 

como enxertos de pequeno calibre (<6 mm) estes materiais geralmente apresentam  mau 

desempenho, devido a formação de hiperplasia íntima anastomótica e trombogenicidade 

superficial. A produção de vasos sanguíneos funcionais por meio de técnicas de engenharia de 

tecidos já é uma realidade, no entanto, devido aos elevados custos e longo tempo de 

produção, o desenvolvimento de novos materiais adequados para a substituição de vasos 

sanguíneos de pequeno diâmetro é ainda necessário. 

O objectivo geral desta tese foi o melhoramento da matriz de celulose bacteriana (CB) para o 

seu potencial uso como substituto de pequenos vasos sanguíneos. Entre as estratégias 

desenvolvidas ao longo dos anos destinadas à modificação de materiais usados como 

substitutos vasculares, o pré-revestimento com o tripeptídeo Arg-Gly-Asp (RGD) tem melhorado 

a endotelialização, reduzindo assim a trombogenicidade dos biomateriais. Neste trabalho, 

proteínas recombinantes bifuncionais, contendo um módulo de ligação à celulose (Cellulose – 

Binding Module – CBM) – do celulossoma da bactéria Clostridium thermocellum - e 

sequências conhecidas por promover a adesão de células (RGD, GRGDY) foram clonadas e 

expressas com sucesso na bactéria Escherichia coli, sendo posteriormente purificadas e 

usadas no revestimento de fibras de CB. Os CBMs adsorvem fortemente e especificamente à 

celulose, assim apresentam-se como uma ferramenta útil para direccionar de maneira simples 

e específica a sequência RGD (ou outros péptidos bioactivos) às superfícies de celulose. 

Nesta tese, os efeitos sobre a adesão celular/biocompatibilidade das proteínas quiméricas 

produzidas foram estudados usando culturas de fibroblastos de ratinhos (3T3) e células 

microvasculares humanas (HMEC). Os resultados obtidos demonstraram que as proteínas 

bifuncionais foram capazes de aumentar significativamente a adesão e o alongamento de 

fibroblastos e HMECs, além de promover uma distribuição uniforme das células sobre a matriz 

de celulose. A presença do RGD estimulou a formação antecipada de estruturas tipo-capilares 

em HMECs, porém diminuiu a invasão destas células na CB.  

A hemocompatibilidade da CB nativa e RGD-modificada também foi estudada. Os resultados 



Resumo 
 

  x 

mostraram que uma quantidade significativa de proteínas plasmáticas adsorvem às fibras da 

CB, sendo que a albumina apresentou uma maior afinidade pela CB do que a γ-globulina ou 

fibrinogênio e que estas mesmas proteínas quando adsorvidas à celulose parecem não sofrer 

grandes alterações conformacionais. A presença do RGD na superfície da CB não-

endotelializada aumentou a adesão de plaquetas, porém quando este material foi revestido 

com células endoteliais, a adesão de plaquetas foi fortemente inibida.  

Uma vez que a proteína recombinante contém um CBM bacteriano, a biocompatibilidade da 

CB nativa e a tratada com RGD-CBM - para analisar se a presença desta proteína é capaz de 

originar alguma reação imunológica - foi investigada através de estudos in vivo, em ovelhas. Os 

implantes foram avaliados quanto à reação inflamatória, invasão celular e angiogênese. Os 

resultados histológicos mostraram que a CB provoca uma resposta biológica tipicamente 

observada em implantes que apresentam uma grande relação superfície x volume. Uma 

semana após a implantação a presença de um infiltrado inflamatório sugeriu uma reação 

inflamatória aguda/subaguda que progrediu para uma inflamação crónica, porém limitada ao 

local do implante, e associada à proliferação de pequenos vasos sanguíneos. A presença de 

células gigantes foi observada em períodos tardios e uma cápsula fibrosa delgada estava 

presente ao redor do implante. Não houve diferença significativa no grau de inflamação entre a 

CB tratada com RGD-CBM e a nativa. Nesta tese, tubos de CB com pequenos diâmetros foram 

produzidos e suas propriedades mecânicas avaliadas.  

De modo geral, este trabalho relata a funcionalização bem sucedida de matrizes de celulose 

bacteriana através do uso de peptídeos de adesão ligados a um CBM, resultando em uma 

melhor hemocompatibilidade e assim, aumentando seu potencial como substitutos de vasos 

sanguíneos.



Publications 
 

  xi 

Publications 

This thesis is based on the following original articles: 

 

Andrade FK, Pertile RAN, Dourado F, Gama FM. Bacterial Cellulose: Properties, Production and 

Applications. In: Lejeune A, Deprez T, editors. Cellulose: Structure and Properties, Derivatives 

and Industrial Uses: Nova Science Publishers, Inc., 2010. p. 427-458. (Adapted - Chapter 1) 

Andrade FK, Moreira SM, Domingues L, Gama FM. Improving the affinity of fibroblasts for 

bacterial cellulose using carbohydrate-binding modules fused to RGD. J Biomed Mater Res A 

2010 Jan;92A(1):9-17. (Chapter 2). 

Andrade FK, Costa R, Domingues L, Soares R, Gama M. Improving bacterial cellulose for blood 

vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding 

module and an adhesion peptide. Acta Biomater 2010 May 12;6:4034–4041. (Chapter 3). 

Andrade FK, Silva JP, Carvalho M, Castanheira EMS, Soares R, Gama M. Studies on the 

hemocompatibility of Bacterial Cellulose. (Submitted - Chapter 4). 

Andrade FK, Alexandre N, Amorim I, Gartner F, Mauricio AC, Luís AL, Gama M. Studies on the 

Biocompatibility of Bacterial Cellulose. (Work still in progress - Chapter 5). 



Publications 
 

  xii 

 



Tables of contents 
 

  xiii 

Table of contents 

 

Agradecimentos .....................................................................................................................v 

Summary..............................................................................................................................vii 

Resumo ................................................................................................................................ix 

Publications……………………………………………………………………………………………………………xi 

List of Abbreviations..............................................................................................................xv 

List of Figures......................................................................................................................xix 

List of Table.........................................................................................................................xxv 

Aims and thesis outline..........................................................................................................1 

 

CHAPTER 1 – GENERAL INTRODUCTION  

Tissue Engineering of small diameter vascular grafts...............................................................5 

Bacterial cellulose: properties, production and applications ..................................................33 

 

CHAPTER 2 

Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate – binding 
modules fused to RGD .......................................................................................................71 

 

CHAPTER 3 

Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric 
protein containing a cellulose-binding module and an adhesion peptide ................................89 

 

CHAPTER 4 

Studies on the hemocompatibility of bacterial cellulose......................................................111 

 

CHAPTER 5 

Studies on the biocompatibility of bacterial cellulose..........................................................141 

 

CHAPTER 6 

General conclusions and future perspectives.......................................................................167 

 



Tables of contents 
 

  xiv 

 



List of abbreviations 
 

  xv 

List of abbreviations 

ADP Adenosine diphosphate 

AMP Adenosine monophosphate 

aPTT Activated partial thromboplastin time 

ATP Adenosine triphosphate 

BC Bacterial cellulose 

BCA Bicinchoninic acid 

BSA Bovine serum albumin 

CBM Cellulose-binding module 

CBS Calf bovine serum 

CipA Cellulosome integrating protein A 

CryoSEM Cryo-scanning electron microscopy 

DAPI 4',6-diamidino-2-phenylindole 

DMEM Dulbecco’s modified Eagle medium 

DNA Deoxyribonucleic acid  

EC Endothelial Cell 

ECM Extracellular matrix 

ePTFE expanded poly(tetrafluoroethylene)  

FBR  Foreign body reaction  

FBS Foetal bovine serum  

FITC Isothiocyanate 

FT Fibrinogen time 

GPa GigaPascal 

GRGDS Gly-Arg-Gly-Asp-Ser 

GRGDY Gly-Arg-Gly-Asp-Tyr  

HE Haematoxylin – eosin 

HFG Human fibrinogen  

His-tag Polyhistidine-tag 

HMWK High-molecular-weight kininogen  

HSA  Human serum albumin 

HUVEC Human endothelial cell  

 



List of abbreviations 
 

  xvi 

  

ID  Internal diameter 

IG  Human γ-globulin  

IPTG Isopropyl-D-thiogalactopyranoside 

kDa kiloDalton 

LDH  Lactic acid dehydrogenase 

MPa MegaPascal 

MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium) 

MW Molecular weight 

NO Nitric oxide 

PBS Phosphate buffered saline 

PC Protein C  

PCR Polymerase chain reaction 

PET poly(ethylene terephtalate) 

PMN Polymorphonuclear neutrophilic leucocytes  

PMSF Phenylmethylsulfonyl fluoride 

PPP Platelet-poor plasma 

PRP Platelet-rich plasma  

PRT Plasma recalcification time 

PT Prothrombin time  

PU Polyurethane 

REDV  Arg-Glu-Asp-Val 

RGD Arg-Gly-Asp 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM Scanning electron microscopy 

SIS Small intestinal submucosa  

SMCs Smooth muscle cells 

TEMED N,N,N’,N’-Tetramethylenethylenediamine 

TEVs Tissue engineered vessels 

TM Thrombomodulin 

TS Tensile strength 



List of abbreviations 
 

  xvii 

 

VEGF Vascular endothelial growth factor  

vWF Von Willebrand factor  

 XG Xyloglucan 

YIGSR Tyr-Ile- Gly-Ser-Arg 

 

 

 
 
 



List of figures 
 

  xviii 

 



List of figures 
 

  xix 

List of figures 

 

Chapter 1 

Figure 1. The arterial blood vessel (Sarkar et al. 2007 [10]) 

Figure 2. Metabolic and synthetic functions of endothelial cells: secretion of mediators that are able to influence 

cellular function throughout the body. LDL, low-density lipoprotein (Galley and Webster, 2004 [9]). 

Figure 3. Schematic representation of endothelial functions related to procoagulation and anticoagulation. NO, 

nitric oxide; PAF, platelet activating factor; PGI2, prostacyclin; t-PA, tissue plasminogen activator; TXA2, 

thromboxane A2; UK, urokinase; vWF, von Willebrand factor; WPb, Weibel–Palade body; AT III, Antithrombin III. 

Adapted from Michiels, 2003 [15]. 

Figure 4. Mechanisms of clotting factor interactions. Clotting is initiated by either an intrinsic or extrinsic pathway 

with subsequent factor interactions which converge upon a final, common path (Ratner et al., 1996[18]). 

Figure 5. Vascular prostheses. (a) Tissue engineering blood vessel (non-exogenous scaffold) produced by 

L’Heureux and colleagues  [55], (b) Dacron, (c) ePTFE.  

Figure 6. Endothelial cell interact by integrin family of cell-matrix receptors with the wall bound RGD-sequence and 

adhere to the vascular graft. Adapted from Walluscheck et al., 1996 [108]. 

Figure 7. Publications and patents on bacterial cellulose.  

Figure 8. Bacterial cellulose pellicle produced by ATCC 10245 G. xylinus strain in static culture. 

Figure 9. Scanning eletron microscopy of bacterial cellulose. Fibroblasts adhered on bacterial cellulose 

membranes after 24h in culture (Left, 1000x); detail of BC membranes surface (Right, 10.000x). 

 

Chapter 2 

Figure 1. Gluconacetobacter xylinus (ATCC 53582) cultured on liquid Hestrin-Schramm medium after 7 days. The 

medium was inoculated with the culture and added to the 24-well polystyrene plate (1 mL/per well) and 

incubated statically at 30 oC. 

Figure 2. Construction of the gene fusion encoding adhesion peptide and the Linker-CBM. (A) Construction 

containing one copy of the adhesion peptide at the N-terminal of the CBM; (B) Construction containing two copies 

of the adhesion peptide. 

Figure 3. Analysis by SDS-PAGE of recombinant protein expression and nickel column protein purification. 1-



List of figures 
 

  xx 

Molecular weight marker (250 kD, 150 kD, 100 kD, 75 kD, 50 kD, 37 kD, 25 kD, 20 kD); 2-Insoluble fraction; 3-

Soluble fraction; 4- Column filtrate; 5 to 9-Eluted fraction with 300 mM of Imidazole. (A) CBM; (B) RGD–CBM; (C) 

RGD–CBM–RGD; (D) GRGDY–CBM; (E) GRGDY–CBM–GRGDY. 

Figure 4. Fluorescent microscopy showing the binding of recombinant proteins to cell membranes. The arrows 

point with respect to some of the fluorescent cells. (A) RGD–CBM; (B) GRGDY–CBM; (C) CBM. 

Figure 5. Photographs showing the effect of the recombinant proteins on cell (fibroblasts 3T3) attachment to 

polystyrene plate. (A) RGD–CBM, (B) RGD–CBM–RGD, (C) GRGDY–CBM, (D) GRGDY–CBM–GRGDY, (E) CBM, (F) 

Buffer, and (G) Control. The photographs were taken at 1, 5, 24, and 48 h after addition of cells. 

Figure 6. MTS assays of fibroblast culture on polystyrene plates treated with the recombinant proteins (CBM, 

RGD–CBM, RGD–CBM–RGD, GRGDY–CBM, and GRGDY–CBM–GRGDY). The MTS test was developed at 1, 5, 24, 

and 48 h after addition of cells. 

Figure 7. Analysis by SDS-PAGE of the interaction between the recombinant proteins with the cellulose sheets. 

Line 1, 10, and 11 - Molecular weight marker (250 kD, 150 kD, 100 kD, 75 kD, 50 kD, 37 kD, 25 kD, 20 kD); 

line 2, 3 - RGD–CBM; line 4, 5 - RGD–CBM–RGD; line 6, 7 - GRGDY–CBM; line 8, 9 - GRGDY–CBM–GRGDY; line 

12, 13 - CBM. Lines 3, 5, 7, 9, and 13 represent the proteins after the interaction with BC sheets. 

Figure 8. MTS assays of fibroblast culture treated with the recombinant proteins (CBM, RGD–CBM, RGD–CBM–

RGD, GRGDY–CBM, and GRGDY–CBM–GRGDY) at the bacterial cellulose pellicles. The MTS test was developed at 

2, 24, and 48 h after addition of cells. 

 

Chapter 3 

Figure 1: MTS assays of HMEC-1 culture on BC–H pellicles treated with the recombinant proteins (CBM, RGD–

CBM, RGD–CBM–RGD, GRGDY–CBM and GRGDY–CBM–GRGDY) and buffer. The MTS assay was developed at 2, 

24, 48 hours and 7 days after cells addition. Results are expressed in absorbance values at 490nm. 

Figure 2: MTS assays of HMEC-1 culture on BC–L pellicles treated with the recombinant proteins (CBM, RGD–

CBM, RGD–CBM–RGD, GRGDY–CBM and GRGDY–CBM–GRGDY) and buffer. The MTS assay was developed at 2, 

24, 48 hours and 7 days after cells addition. Results are expressed in absorbance values at 490nm. 

Figure 3: MTS assays of HMEC-1 culture on BC–H pellicles treated with CBM, RGD–CBM and buffer. The MTS 

test was developed at 15, 30, 60, 90 and 120 minutes after addition of cells. Results are expressed in 

absorbance values at 490nm. 

Figure 4: Fluorescence photographs of endothelial cells stained with LIVE/DEAD® Viability/Cytotoxicity Kit for 

mammalian cells. Live cells are stained in green and dead cells are stained in red. BC–L treated with RGD–CBM 



List of figures 
 

  xxi 

(a), CBM (b) and buffer (c). Controls with cells on polystyrene, live (d) and dead (e). Images were acquired using 

objectives 40x (scale 50µm). 

Figure 5: Apoptosis was quantitatively evaluated by the TUNEL assay. The HMEC cells were seeded on the BC–L 

and after 24h of incubation the TUNEL assay was performed. Bars represent the percentage of apoptotic cells 

evaluated by the ratio between TUNEL–stained cells and DAPI–stained nuclei in every culture. Experiments were 

repeated three times with identical results.  

Figure 6: Effect of RGD on the HMEC cell invasion through bacterial cellulose pellicles. Invasion was quantified in 

a double–chamber assay using medium complemented with 20% FBS as a chemoattractant. Bars represent the 

number of invasive cells. 

Figure 7: Images (a), (b) and (c) – optical microscopy photographs showing the effect of the RGD on the assembly 

of endothelial cells into capillary–like structures. BC–L treated with RGD–CBM (a), CBM (b) and buffer (c). Image 

was acquired using objective 20x (scale 200µm). Image (d) – Fluorescent microscopy image showing HMECs 

cells cultured at 14 days on BC–L pellicle treated with RGD–CBM recombinant protein. Nuclei were visualized by 

staining with DAPI (blue) and f–actin with Alexa Fluor 546-phalloidin (red). Image was acquired using objective 

20x (scale 100µm). 

Figure 8: SEM micrographs of bacterial cellulose. BC treated with RGD–CBM (a, b); CBM (c, d) and buffer (e, f). 

The arrows remark cells with elongated morphology. (a), (c) and (e) scale 50µm; (b), (d) and (f) scale 5µm. 

Figure 9: Immunocytochemical analyses using anti–vWF antibody. The results showed that HMEC cells cultured 

after 14 days on BC–L treated with recombinant proteins or buffer stained positively for vWF. (a) RGD–CBM, (b) 

CBM and (c) buffer. Image was acquired using objective 20x (scale 100µm). 

 

Chapter 4 

Figure 1: Plasma protein adsorption onto the bacterial cellulose membrane untreated or treated with the 

recombinant proteins (RGD-CBM or CBM) and controls (ePTFE and polystyrene). (a) Platelet–poor plasma; (b) 

human serum albumin; (c) human γ–globulin and (d) human fibrinogen. 

Figure 2: Comparison of the adsorption isotherms for the binding human serum albumin (HSA), human fibrinogen 

(HFG) and human γ–globulin (IG) on BC. 

Figure 3: Percentage of desorbed proteins on BC at each concentration tested after treatment with 1wt% aqueous 

solution of SDS. Human serum albumin (HSA), human fibrinogen (HFG) and human γ–globulin (IG). 

Figure 4: Steady–state fluorescence emission spectra of (a, b) human serum albumin, (c, d) human fibrinogen 

and (e, f) human γ–globulin adsorbed on BC and in solution. (a, c, e) and (b, d, f)  excitation wavelength of 295 

nm and 270, respectively, collected from 305 to 400 nm. 



List of figures 
 

  xxii 

Figure 5: Comparison of anticoagulation time (aPTT, PT and FT) of BC membranes untreated or treated with the 

recombinant protein (RGD–CBM) and the controls (ePTFE, polystyrene and glass microspheres). The coagulation 

times of PPP non–contacted with the materials (pre–incubation control) were also analysed. 

Figure 6: Clotting kinetic profiles of the absorbance at 405nm as a function of time for PPP incubated with 

polystyrene, BC (hydrated and lyophilized), glass microspheres and ePTFE (a). Citrated PPP (without the addition 

of calcium) serves as a negative control. The data was averaged over five independent experiments. The half-max 

time of each profile (b) was calculated as a measure of the clotting time. 

Figure 7: The effect of BC, ePTFE, polystyrene and glass microspheres on thrombus formation in whole blood at 

0, 5, 15, 25 and 35 min. 

Figure 8: Relative number of platelets adhered on ePTFE and BC membrane untreated or treated with the 

recombinant proteins (RGD–CBM or CBM).  

Figure 9: SEM images of BC membrane and ePTFE surface after contact with PRP for 2 hours. Column II (scale 

bar 5µm) is the magnified images of Column I (scale bar 20µm). 

Figure 10: SEM images of the adhered platelets on endothelialized BC untreated or treated with recombinant 

proteins and ePTFE. The bare BC and ePTFE were used as controls. The captions without “bare” indicate the 

cultured HMEC surface. Column II and IV (scale bar 10µm) is the magnified images of Column I and II (scale bar 

30µm), respectively. 

Figure 11: Densities of adhered platelets on endothelialized BC untreated or treated with recombinant proteins 

and ePTFE. The bare BC and ePTFE were used as controls. 
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Figure 1. Bacterial cellulose produced by G. xylinus (ATCC 53582) grows around the silicon tube, when an air flow 

is injected through the tube. a) Schematic picture of the cultivation system; b) Bacterial cellulose tube. 

Figure 2.MTS assays of fibroblast cultures at the dense or porous side of BC membrane. The MTS assay was 

developed at 2, 72 and 7 days after cell seeding. Results are expressed as absorbance values at 490 nm. 

Figure 3. Fluorescent microscopy images showing fibroblast cultured 7 days on BC pellicle. (a) Dense and (b) 

porous side of RGD–treated BC; (c) Dense and (d) porous side of untreated BC.Nuclei were visualized by staining 

with DAPI (blue) and f–actin with Alexa Fluor 546-phalloidin (red). Actin and nuclei combined images were 

acquired using objectives 10x (scale 200µm); Nuclei images were acquired using objectives 20x (scale 100µm). 

Figure 4. CryoSEM micrographs of bacterial cellulose cultured with fibroblasts after 14 days. (a) Dense and (b) 

porous side of RGD–treated BC; (c) Dense and (d) porous side of untreated BC. Scale 10µm. 
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Figure 5. CryoSEM micrographs of bacterial cellulose tubes. Visualization through a longitudinal cut of (a) Inner 

side (b) outer side. Visualization through a transversal cut of (c) Inner side (d) outer side. Scale 60µm 

(longitudinal images), scale 10µm (transversal images). 

Figure 6. Tensile stress-strain curves of the lengthwise of BC tubes with an inner diameter and wall thickness of 3 

mm and 1 mm, respectively. 

Figure 7. Histomorphology of bacterial cellulose membrane implanted subcutaneously in sheep and surrounding 

tissue reaction. Once there were no significant differences in biological responses by the host, the images 

represent the results for both groups of the post-implantation times analyzed. (a) 1, (b) 2, (c) 4, (d) 8, (e) 16 and 

(f) 32 weeks post-implantation. (a, b, c, d), (e) and (f), 40x, 100x and 400x ampliation, respectively (Hematoxylin - 

eosin staining). The solid arrows indicate the fibrous capsule formation. The dashed arrow on image (f) indicates 

small blood vessels formation. (*) Bacterial cellulose. 
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Aims and thesis outline 
 

Bacterial cellulose (BC) produced by Acetobacter microorganisms, is a glucose polymer with 

unique properties, including high water holding capacity, high crystallinity, an ultrafine fiber 

network, and high tensile strength, thus holding great potential for biomedical applications. The 

aim of this work was the development of a new approach to functionalise BC, through 

recombinant proteins containing adhesion peptides conjugated with a cellulose binding-

module. The use of recombinant proteins containing a CBM domain, exhibiting high affinity 

and specificity for cellulose surfaces, allows the control on the interaction of this material with 

cells. To achieve this aim, bifunctional recombinant proteins with CBM – from the cellulosome 

of Clostridium thermocellum – and cell binding sequences (RGD, GRGDY) were cloned and 

expressed in Escherichia coli. Thereafter, the potential use of these recombinant proteins in 

improving biocompatibiity/blood compatibility was studied. 

Chapter 1 presents a revision of these subjects, namely 1) The role of endothelium and the 

tissue engineering of small diameter vascular grafts; 2) properties and biomedical applications 

of bacterial cellulose. 

Chapter 2 describes the strategies used to produce the bifunctional recombinant proteins 

containing bacterial CBM from C. thermocellum fused to a RGD or GRGDY sequences. In this 

chapter a mouse embryo fibroblasts culture was selected and used in 

adhesion/biocompatibility in vitro assays as animal cells model to test our strategy in modified 

bacterial cellulose. 

Once the general aim of this work is the improvement of BC as scaffold to the production of 

small vascular graft chapter 3 describes the in vitro study of the effect of these chimerics 

proteins in Human microvascular endothelial cell cultured on BC. 

Although BC is promising material for vascular replacements, to our knowledge only very 

recently a first publication was dedicated to evaluate the thrombogenic properties of this 

biomaterial. However, further characterization is necessary, not only to confirm the promising 

hemocompatibility of BC, but also to better understand the BC-blood interaction, through more 

comprehensive characterization. Thus chapter 4 describes a blood compatibility study of BC. 



Aims and thesis outline 
 

  2 

Biocompatibility is one main requirement for any biomedical material. In chapter 5 we 

complete the in vitro biocompatibility study using fibroblast cultures. Also, the fate of long term 

subcutaneous implants in sheep – 32 weeks – was analysed to evaluate the in vivo 

biocompatibility of BC membranes. Once the chimeric protein used in this work contains a 

bacterial CBM the biocompatibility of BC membranes treated with the RGD–CBM protein was 

investigated. Finally we developed preliminaries studies on the mechanical properties of BC 

tubes. 

In the last chapter of this thesis (chapter 6) are presented the general conclusion of this work 

and the future perspectives. 
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Tissue Engineering of small diameter vascular 
grafts 
 

The prevalence of atherosclerotic arterial disease is increasing in an ageing society [1], the 

cardiac and peripheral vascular diseases figuring among the major cause of death in the 

Western world [2]. Vascular grafts are thus required for coronary and peripheral bypass 

surgeries. Autologous grafts remains the most used treatment, saphenous veins and 

mammary arteries being preferably used. However, autologous vessels are not available in over 

10% of the patients as a result of preexisting vascular disease, amputation or previous harvest 

for prior vascular procedures. Moreover, a second surgical procedure is needed to obtain the 

vessel [3, 4].  

The ideal vascular graft must meet a number of requirements: appropriate mechanical 

attributes that mimic the mechanical properties of a native vessel, being capable of 

withstanding long-term hemodynamic stress without material failure, good suturability and easy 

handling during the surgical procedure, appropriate permeability to water, solutes and cells. 

Furthermore, it should exhibit physiological properties such as vasoconstriction/relaxation, 

induce acceptable postimplantation healing not resulting in inflammation, hyperplasia, or 

fibrous capsule formation, leading to the integration of the graft into the body. Finally, a fully 

biocompatible graft should be nonimmunogenic and resistant to both thrombosis and infection 

[3] (TABLE 1).  

Unfortunately, no conduit to date possesses all of these qualities and attributes. Although 

acceptable patency rates are achievable using current commercially available prosthetic 

material, such as polyethylene terephthalate (PET, Dacron) or expanded polytetrafluoroethylene 

(ePTFE), which performs well as large-caliber replacements, small-diameter (less than 6 mm) 

prosthetic conduits have unacceptably poor patency rate. This is the result of low-flow 

conditions within a narrow conduit and compliance mismatch between prosthesis and native 

artery. Intimal hyperplasia and the inherent thrombogenicity of prosthetic materials are further 

major contributing factors [5]. 
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Table 1. Characteristics and desirable features of the ideal vascular graft. 

Biocompatible 
No healing disturbances 
Non-toxic 
Non-allergic 
No induction of malignancies 
Minimally traumatic to blood compounds 
Non-thrombogenic 
Resistant to infection 

Compliant 
Flexible, elastic, without kinking 
Resistant to myointimal hyperplasia 
Vasoactivity 
Appropriate permeability 

Easy processing 
Adequate physical and chemical properties, mechanical 
durability 
Readily available in a variety of sizes and lengths 
No need for special storage or preparation procedures 
Easy to suture 
Sterilisation 

Optional 
Capable of local drug delivery 
Low costs 

(Adapted from Teebken and Haverich, 2002 [6]) 

 

The endothelium 

The whole circulatory system has a common basic structure and consists of three different 

layers (FIGURE 1), from innermost to outermost: first, the tunica intima, constituted exclusively 

of endothelial cells (ECs) which are only one layer thick, supported by a basement membrane 

and delicate collagenous tissue, is the only layer of vascular tissue which comes into contact 

with blood; second, an intermediate muscular layer which is named the tunica media, 

composed of many layers of smooth muscle cells (SMCs) and an outer supporting tissue layer 

called the tunica adventitia. This last layer is composed primarily of loosely woven collagen 

fibers and can also contain small capillaries to provide nutrients to the outer layers of the 

tunica media [7]. Endothelial cells, as the inner lining of blood vessels, are strategically located 

between circulating blood and blood cells and the vascular smooth muscle [8]. Endothelial cell 

structure and functional integrity are important in the maintenance of the vessel wall and 

circulatory function. Furthermore, as a barrier, the endothelium is semi-permeable and 

regulates the transfer of small and large molecules. Endothelial cells are dynamic and have 

both metabolic and synthetic functions. They exert significant autocrine, paracrine and 
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endocrine actions and influence smooth muscle cells, platelets and peripheral leucocytes [9]. 

Endothelial cells have a main role in maintaining a nonthrombogenic blood – tissue interface 

and regulate thrombosis, thrombolysis, platelet adherence, vascular tone and blood flow 

(FIGURE 2). The endothelium is indispensable for body homeostasis; an uncontrolled 

endothelial cell response is involved in many disease processes, including atherosclerosis, 

hypertension, pulmonary hypertension, sepsis and inflammatory syndromes. These diseases 

are related to endothelial injury, dysfunction and activation [9]. 

 

 

Figure 1. The arterial blood vessel (Sarkar et al. 2007 [10]) 

 

Physiological functions of the endothelium: 

Anti-thrombotic functions. Under normal conditions the endothelium maintains an 

equilibrium between the anticoagulant and procoagulant phenotype (FIGURE 3). The 

anticoagulant activity of the endothelium is geared at restricting the generation of thrombin. At 

their surface, ECs are lined with a very fine and fragile layer called the glycocalyx, consisting of 

glycoproteins, glycosaminoglycans and proteoglycans. Globally, the glycocalyx provides an 

anticoagulant layer because of its negative electrical charge that repels circulating platelets and 

that allows the interactions with vitamin K-dependent coagulation factors. Also heparan sulfate 
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and dermatan sulfate, two glycocalyx glycosaminoglycans, potentiate the activity of two 

anticoagulant enzymes, antithrombin III and heparin cofactor II [11]. ECs produce 

thrombomodulin (TM) that is either attached to the membrane or released into the circulation. 

Because TM binds to the same site on thrombin that would normally bind to fibrinogen, 

platelets or factor V, all of these functions carried out by thrombin are blocked. TM converts 

thrombin from a procoagulant protease into an anticoagulant and slows down the clotting 

process. The thrombin/TM complex plays a role as a cofactor in the activation of the zymogen 

protein C (PC) into activated protein C (APC), which degrades factor V and VIII [12].  

 

  

Figure 2. Metabolic and synthetic functions of endothelial cells: secretion of mediators that are 

able to influence cellular function throughout the body. LDL, low-density lipoprotein (Galley and 

Webster, 2004 [9]). 

 

In vivo, the initiation of coagulation in response to trauma occurs via the exposure of tissue 

factors to blood. Tissue factor is the receptor for factor VII and is procoagulant. It is inhibited by 

tissue factor pathway inhibitor (TFPI), which is synthesized mainly by endothelial cells under 

basal conditions and is bound to the endothelial cell surface. Tissue factor expression leads to 

the activation of factor X, which then combines with factor Va to convert prothrombin to 
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thrombin [13, 14]. 

The anti-thrombotic functions of ECs also include antiplatelet activity. ECs produce substances 

such as prostacyclin I2 (PGI2) and nitric oxide (NO), both synergistically increase cAMP content 

in platelets, hence preventing their aggregation. In addition, endothelium also displays 

ectonucleotidases at its luminal surface. These enzymes hydrolyse ATP and ADP, both potent 

platelet aggregating agents, into AMP and adenosine [15-17]. 

Pro-thrombotic functions. The endothelium normally promotes blood fluidity, unless there 

is an injury. With damage, the normal response is to promote coagulation at the wound site 

while containing the coagulation response and not allowing it to propagate beyond this site. 

At least two mediators released by activated endothelial cells favour platelet activation. The first 

one is the lipid mediator platelet-activating factor (PAF), synthesized by endothelial cells 

stimulated by thrombin, histamine, or cytokines. PAF is a potent platelet activator and can 

promote platelet adhesion to endothelial cells. The second is the von Willebrand factor (vWF) 

synthesised by EC and stored in vesicles (Weibel-Palade bodies) and secreted upon stimulation 

by thrombin. Moreover, vWF binds and stabilizes coagulation factor VIII and is a specific factor 

required for the binding of platelets to exposed extracellular matrix (ECM) components when 

the vessel wall is damaged [15]. 

Tissue factor is a glycosylated intrinsic membrane protein that is expressed on the surface of 

adventitial vascular wall cells and is exposed to flowing blood during vascular injury or 

endothelial denudation. Endothelial cells do not normally express the primary trigger of the 

coagulation system, tissue factor. However, when exposed to thrombin, cytokines, or 

lipopolysaccharides (LPS), endothelial cells synthesize and express tissue factor at their 

surface. Tissue factor, when bound to factor VIIa, is the major activator of the extrinsic pathway 

of coagulation [15, 18]. 

Fibrinolityc activity. During vessel repair a fibrin matrix is formed. The fibrin matrix acts as a 

barrier preventing further blood leakage and provides a structure for new microvessels to 

infiltrate in damaged or activated tissue [7]. The fibrinolytic system is responsible for 

proteolysis and solubilization of the formed clot, allowing its removal. The endothelium 

participates in fibrinolysis by releasing tissue-type plasminogen activator (t-PA) and urokinase, 

allowing the transformation of plasminogen into plasmin, which degrades thrombi by digesting 
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the fibrin network. t-PA is constitutively released while urokinase is only synthesized by 

activated endothelial cells [11]. It must be noted that the natural inhibitor of t-PA, plasminogen 

activator inhibitor type 1 (PAI-1) is also constitutively secreted by endothelial cells. The balance 

of t-PA and PAI-1, which is normally in favor of PAI-1 is also altered by cytokines [19]. 

 

 

 

Figure 3. Schematic representation of endothelial functions related to procoagulation and 

anticoagulation. NO, nitric oxide; PAF, platelet activating factor; PGI2, prostacyclin; t-PA, tissue 

plasminogen activator; TXA2, thromboxane A2; UK, urokinase; vWF, von Willebrand factor; WPb, 

Weibel–Palade body; AT III, Antithrombin III. Adapted from Michiels, 2003 [15]. 
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Host defence and inflammation. Endothelial cells play key roles in host defence and 

inflammation by regulating lymphocyte and leukocyte movement into tissues. At the time of 

inflammation, due to either tissue injury or infection, several processes occur to facilitate the 

infiltration of leukocytes into the tissue. Among these are vasodilatation, increased blood flow 

and release of histamine and inflammatory cytokines. Due to these processes the endothelial 

cells become activated and interactions with leukocytes occur. The different steps in leukocyte 

sequestration into the surrounding tissue are tethering, rolling of the leukocyte along the vessel 

wall, firm adhesion to the endothelial cells, and transmigration though the vascular wall. All 

these sequential steps in the adhesion cascade are mediated through the intricately regulated 

expression of adhesion molecules [20]. 

Regulation of vasomotor tone. The endothelium is a significant contributor to the 

regulation of vasomotor tone, under the influence of physical and chemical factors originating 

from the vascular lumen or the surrounding tissues. ECs produce and release vasodilator 

substances such as NO and prostacyclin, and vasoconstrictor mediators such as endothelin 

and platelet activating factor (PAF). The production of NO by the endothelium is constitutive 

and modulated by different stimuli, whereas the synthesis of other mediators (prostacyclin, 

endothelin and PAF) is inducible [11]. 

Transport functions. The endothelium is an important barrier to the free passage of 

molecules and cells from the blood to the underlying interstitium and cells. Specific 

mechanisms are responsible for the transport of essential circulating blood macromolecules 

across endothelial cells to the subendothelial space, to meet the metabolic needs of the 

surrounding tissue cells. In addition, the junctions between endothelial cells (the so called 

`tight' junctions) act as a selective barrier to the egress of molecules from the circulation [9]. 

Angiogenesis. Vascular endothelial growth factor (VEGF) is an angiogenic factor produced by 

a variety of cells, including endothelial cells, with specific receptors on the endothelium. 

Angiogenesis – the formation of new blood vessels from pre-existing endothelium – is mediated 

by VEGF. VEGF contributes to the inflammatory response through stimulation of the release of 

adhesion molecules, metalloproteinases and NO, via the transcription factor activator protein-1 

(AP-1) [9]. 
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Coagulation cascade 

Initiation of clotting occurs either intrinsically by surface-mediated reactions, or extrinsically 

through factors derived from tissues. The two systems converge upon a final common path, 

which leads to the formation of an insoluble fibrin gel when thrombin acts on fibrinogen. 

Coagulation proceeds through a “cascade” of reactions by which normally inactive factors 

become enzymatically active following surface contact, or after proteolytic cleavage by other 

enzymes. The newly activated enzymes in turn activate other normally inactive precursor 

molecules. Figure 4 presents a scheme of the clotting factor interactions involved in both the 

intrinsic and extrinsic systems and their common path.  

In the intrinsic system, contact activation refers to reactions following adsorption of contact 

factors onto a negatively charged surface. This pathway is initiated when factor XII adsorbs to 

surfaces such as artificial materials, leading to spontaneous cleavage of factor XII into its active 

form factor XIIa. Factor XIIa converts both prekallikrein and factor XI into their active forms, 

kallikrein and factor XIa respectively, with high-molecular-weight kininogen (HMWK) as a 

cofactor. Factor XII, in turn, is a substrate for kallekrein, creating a short reciprocal activation 

loop, which leads to rapid contact activation. A middle phase of intrinsic clotting begins with 

the first calcium-dependent step, the activation of factor IX by factor XIa. Factor IXa 

subsequently activates factor X. Factor VIII is an essential cofactor in the intrinsic activation of 

factor X, and factor VIII first requires modification by an enzyme, such as thrombin, to exert its 

cofactor activity. In the presence of calcium, factors IXa and VIIla form a complex on 

phospholipid surfaces (as expressed on the surface of activated platelets) to activate factor X. 

This process is slow in the absence of appropriate phospholipid surfaces and serves to localise 

the coagulation to the cell surface [18, 21].  

The extrinsic system is initiated by the activation of factor VII after interaction with the tissue 

factor, which is located in the tissue adventitia and comes in contact with blood only after 

vascular injury. When factor VII interacts with tissue factor, in the presence of calcium ions, 

factor VIl is converted to a serine protease (factor VIIa) by minor proteolysis [22]. 

The common path begins when factor X is activated by either factor VIla-tissue factor or by the 

factor IXa—VIlla complex. The cofactor V, like factor VIII, is activated by thrombin to factor Va, 

which together with factor Xa, forms the complex factor Xa-Va that cleaves prothrombin (factor 
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II) to thrombin in the presence of calcium and phospholipids. Next, thrombin acts on fibrinogen 

and small peptides from fibrinogen are released. Then, these fibrin monomers polymerize to 

become a gel. Factor XIII is either trapped within the clot and is activated by thrombin. The 

factor XIIa stabilizes the fibrin polymer network and a insoluble fibrin network is formed [18]. 

 

 

Figure 4. Mechanisms of clotting factor interactions. Clotting is initiated by either an intrinsic or 

extrinsic pathway with subsequent factor interactions which converge upon a final, common path 

(Ratner et al., 1996[18]). 

 

Types of vascular grafts 

Autografts  

Autografts (or autologous graft) are any tissues transplanted from one part of the body to 

another location in the same individual. The use of venous and to some extent arterial 

autografts is well established in peripheral vascular surgery. For the reconstruction of small 
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diameter arteries, as required for lower-extremity bypass and coronary artery bypass grafting 

procedures, an autologous vein graft is typically used (e.g., saphenous vein); in the case of the 

coronary artery, an autologous arterial graft may alternatively be used (i.e., internal thoracic 

artery, gastroepiploic artery, inferior epigastric artery, radial artery) [23, 24]. Although venous 

and arterial autografts currently yield the best results (Table 2), disadvantages include the need 

for multiple surgical procedures, with increased risk and cost to the patient. In addition, vein 

grafts have thin walls that may be damaged when exposed to increased flow and pressure, as 

the ones present in the arterial circulation. Furthermore, suitable vessels are not available in all 

patients due to disease, amputation, or previous vessel harvest [25]. Grafting of tubes derived 

from skin, fascia, pericardium, and dura have been investigated in animal studies and in 

isolated human cases, and the results were not encouraging due to early thrombosis and 

aneurysm formation, although autografts from small intestine have shown some promise [6].  

 

Allografts 

Fresh or cryopreserved allografts (surgical transplantation of tissue between two genetically 

dissimilar individuals of the same species) have also been used in the clinic as coronary artery 

bypass conduits. These grafts are considered superior to artificial protheses and relatively 

resistant to infection, enjoy minimal thromboembolic complications, and do not require 

anticoagulation. Limitations include their reduced availability and durability due to calcification, 

aneurismal dilatation, and rupture. Fresh allografts undergo rapid rejection, while 

cryopreserved allografts have a longer but still limited clinical life [6, 26].  Allografts appear to 

be a useful choice for (1) the individual with a real need for revascularisation and who is 

burdened with a limited life expectancy not exceeding the functional life of the allograft, (2) 

urgent replacement of a major vessel damaged by trauma, [27] in situations where 

immunosuppression is contraindicated as in an infected surgical field, and (3) in patients 

whose immune system is already compromised. The allograft probably should not be used (1) 

simply for the relief of intermittent claudication, (2) in the above mid-calf location, and [27] in 

other anatomic locations where synthetic grafts perform better [26]. 
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Table 2. Methods for blood vessel replacement. 

 Autograft  Allograft Xenograft Prosthesis 

 Vein Artery Different sources Different sources Plastic 

Authors [28-32] [33, 34] [35-38] [39, 40] (Vinion N)[41]; (Teflon)[42]; 
(Dacron)[43, 44]; (seeded 
ePTFE)[45]; (Polyurethane)[46]. 

Examples Great saphenous vein, 
arm veins, popliteal 
vein, superficial femoral 
vein 

Internal and external iliac 
artery, superficial femoral 
artery, internal thoracic 
artery 

Artery, great saphenous vein, 
(Dacron - externally reinforced) 
umbilical vein, cryopreserved vein 
segments 

Bovine carotid/ internal 
thoracic artery 

Knitted crimped sealed Dacron; 
externally 

Reinforced expanded PTFE 

Availability Limited; diameter <1 to 
>6 mm, segment length 
<1m 

Very limited; diameter, <1 
to >8mm segment length 
cm 

Limited/good; diameter 4-6mm, 
segment length <1 m; special 
storage (e.g. cooling, liquid 
nitrogen) 

Good; diameter 4-8mm, 
segment length <40 cm; 
special storage (e.g. cooling, 
liquid nitrogen) 

Very good; diameter 6 to 
>30mm, segment length <1m 

Long-term 
results 

Complete healing, 
degeneration and 
aneurysms are rare, 
intima hyperplasia 

Very good No complete healing, degenerative 
disease; calcifications (Dacron 
reinforcement!); transmission of 
disease 

Degeneration, calcification, 
intima hyperplasia; 
transmission of disease (?) - 
PERV, BSE 

Intimal hyperplasia, thrombosis, 
obstruction, suture aneurysms 

5-year patency ∼75% (great saphenous 
vein); ∼65% (arm veins) 

∼95% ∼60% (umbilical vein) ∼59% (bovine xenografts) ∼40% (PTFE); ∼80% (EC seeded 
PTFE) 

Compliance 
mismatch 

+ + (+) (+) - 

Biocompatibility + + (+) + + 

Handling - (preparation, additional 
wound complications) 

- (preparation, additional 
wound complications) 

(+) (+) + 

Legend: favourable +; less favourable (+); unfavorable - ; PERV = porcine endogenous retro virus; BSE = bovine spongiform encephalitis. Adapted from 
Teebken and Haverich, 2002 [6]. 
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Xenografts 

In contrast to heart valve prostheses, tissue of xenogenic origin for small-diameter vascular 

grafts is rarely used. In 1964, Rosenberg and colleagues developed arteries derived from 

bovine sources. These authors created scaffolds, consisting mainly of collagen, by means of 

enzymatic cellular extraction using a solution of 1% ficin [39]. However, long-term results were 

not encouraging, due to aneurysm formation, infection, and a high incidence of thrombosis. 

The antigenicity has a deleterious effect on subsequent endothelialisation. For these reasons 

use of xenografts cannot be recommended for peripheral vascular reconstruction [6]. 

 

Tissue Engineered Grafts 

The most common tissue engineering approach involves the use of exogenous scaffolds into 

which cells are seeded and cultured. These scaffolds provide structural support and allow cell 

growth, migration, differentiation and cellular ECM production. Ideally, these scaffolds would 

degrade at the same rate as the natural tissue proliferate and synthesize new ECM. Tissue 

engineering scaffolds can be made of either natural or synthetic materials. 

Natural protein scaffolds. Natural protein scaffolds utilize the components of native ECM 

and create fully biological grafts. Natural protein scaffolds can be composed of collagen, 

elastin, fibronectin, or protein hydrogels [47]. Historically, the first adhesive gels were made 

from collagen [48]. Collagen gels have been shown to yield a high percentage of 

circumferentially aligned cells, which closely resembles alignment in natural blood vessels. 

However, these scaffolds do not provide sufficient initial mechanical strength to support normal 

hemodynamic loading [49]. To improve mechanical properties and increase collagen fiber 

alignment, collagen has been cross-linked with elastin providing the vessels with a greater 

elasticity and better mechanical properties [50]. Although the collagen/elastin gels did provide 

better structural characteristics than pure collagen ones, they still could not withstand the 

pressures experienced by small diameter arteries [49]. Another advantage is that both collagen 

and fibrin allow direct cellularization by cell entrapment during the gelation, because this 

occurs under physiological conditions [3]. On the other hand, natural protein scaffolds are 

often difficult and expensive to manufacture [47]. 
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Decellularized tissues. After the removal of the original cellular component through 

sequential protease treatments and detergent extractions, decellularized conduits of natural 

matrix structures from tissues ranging from cadaveral arteries to umbilical veins and small 

intestinal submucosa (SIS) xenografts have been tested for their potential to replace vascular 

matrix and encourage the ingrowth of host cells postimplantation [51]. The use of these 

natural biomaterials has typically required chemical or physical pretreatment aimed at (1) 

preserving the tissue by enhancing the resistance of the material to enzymatic or chemical 

degradation, (2) reducing the immunogenicity of the material, and [27] sterilizing the tissue. 

Multiple crosslinking techniques have been explored in an attempt to find the ideal procedure 

to stabilize the collagen-based structure of the tissue while maintaining its mechanical integrity 

and natural compliance. Decellularized tissues have the advantage of being entirely composed 

of natural ECM, providing mechanical, chemical and biological advantages over synthetic 

materials, and thus holding tremendous potential for use in tissue engineering therapies [3]. 

The decellularization of vascular tissue has the benefit of retaining the structure and 

composition of a native vessel; however, decellularization can adversely impact the tissue, 

resulting in reduced ultimate tensile strength and compliance. Significant shrinkage is typically 

observed in decellularized vessels, presumably as a result of proteoglycans being removed 

from the tissues by the detergent treatment. Decellularized xenografts undergo aneurysm 

formation, infection, and thrombosis. In addition, their residual antigenicity can impair 

subsequent reendothelialization. Another decellularized tissue that has been used for tissue 

engineering with good deal of success is the matrix derived from small intestinal submucosa 

(SIS). In addition to the typical ECM components, this scaffold was found to contain a number 

of growth factors that enhance neovascularization and infiltration of host cells upon 

implantation [51], promoting site-specific remodeling and regeneration by host [3]. 

Biodegradable synthetic scaffolds. Synthetic scaffolds serve as temporary structures 

subsequently replaced by native tissue as they are gradually removed from the implant site 

through biodegradation [52]. It can be created from a variety of polymers such as polyesters, 

polyanhydrides, and polyphosphazenes [52]. The most common aim of the use of synthetic 

polymers as scaffold in tissue engineering is to support tissue growth and remodeling. 

However, the chemicals and reactions necessary to synthesize these polymer scaffolds are 

often incompatible with cell survival and cells cannot be directly entrapped during scaffold 
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formation. Instead, cells must be seeded into the completed scaffolds, posing difficulties in 

achieving uniform cell distribution and attachment. The scaffold degradation rate must be 

appropriate to the regrowth of the new tissue, in order to maintain the graft structure and 

mechanical properties, and to avoid failure [3]. Polyglycolic acid (PGA) is most commonly used 

as tissue engineering scaffold but is resorbed rapidly. Attempting to improve the mechanical 

properties and further regulate cell phenotype via interactions with the polymer, numerous 

other polymers have been copolymerized with PGA, such as poly-L-lactic acid [3]. Although 

synthetic scaffolds provide initial mechanical strength and structure, compliance mismatch 

with native vessels has proven difficult to overcome, which can lead to thrombosis formation 

and failure of the graft [53]. The compliance of vascular grafts once the scaffold has resorbed 

is the result of cell generated ECM [54]. However, it has been shown that ECM production is 

inhibited in cells that are in contact with synthetic polymers [50]. This finding has led many 

researchers to investigate alternatives to synthetic polymer scaffolds. 

Non-exogenous scaffolds. Researchers are developing alternative approaches that avoid 

the use of exogenous scaffolds. In 1998, L’Heureux and colleagues [55] reported a completely 

biologic vessel generated from human umbilical cord-derived SMCs and ECs, as well as human 

dermal fibroblasts (FIGURE 5a). Briefly, human SMCs and fibroblasts were grown on culture 

plates in the presence of elevated ascorbic acid (to induce significant collagen synthesis) to 

form a sheet with associated extracellular matrix. After sufficient time, the sheet was rolled 

over a mandrel to form a vascular wall media derived mainly from SMCs. In the same manner, 

a sheet of skin fibroblast was grown and wrapped around the media to produce the adventitial 

layer. After maturation, these two layers fused into a single cohesive layer. Then, the tubular 

support was removed and endothelial cells were seeded in the lumen. The resulting construct 

showed well-defined multilayer organization in addition to abundant ECM deposition; SMCs 

demonstrated a reversion to the contractile phenotype by reexpressing desmin (a marker lost 

under culture condition). The endothelium expressed von Willebrand factor, incorporated 

acetylated-LDL, produced prostacyclin, and inhibited platelet adhesion in vitro, thus exhibiting 

properties similar to the ones performed by the endothelium of native arteries. These 

engineered vessels meet the fundamental requirements for grafting: high burst strength 

(>2000 mm Hg), good surgical handling, suturability, and a functional endothelium. However, 

although these tissue-engineered blood vessels are more compliant than ePTFE grafts, they are 

apparently much less compliant than the small-caliber vessels they are designed to replace, 
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which could potentially lead to complications related to the issue of compliance mismatch, 

which often leads to anastomotic intimal hyperplasia. In spite of this, short-term grafting 

experiments in canine model were extremely promising. 

In another study from the same group, human tissue engineered vessels (TEVs) were 

xenografted in immunosuppressed canine model for short term and in immunosuppressed rat 

and primate models for long-term evaluations [53]. The TEVs were antithrombogenic and 

mechanically stable though 8 months in vivo. It should be noted that in this study, the 

fabrication process of TEVs differed from the previous study conducted by the same group [55] 

in the exclusion of the SMC layer, whose early senescence is associated with decreased burst 

pressures in human models [56]. However, the presence of a smooth muscle-specific α-actin-

positive cell population within the TEV suggests the regeneration of vascular media. Moreover, 

the long time to produce these TEVs (approximately 28 weeks) would limit the application of 

these vessels in urgent clinical settings. More recently, this group published another study [57] 

comparing the mechanical properties of completely human TEVs to human saphenous vein 

and mammary artery. The results demonstrated that the sheet-based tissue engineering 

approach can consistently produce vessels with mechanical properties similar or superior to 

those of native vein. 

Campbell and co-workers use a method whereby a mandril of foreign material is surgically 

implanted in the peritoneal cavity of the recipient to induce the growth of tubular tissues [58, 

59]. This technique has demonstrated high mechanical strength and good mid-term patency in 

animal models; because they are grown inside the subject’s own body, there is no tissue 

rejection. However it remains to be seen whether this approach can be repeated in humans. 

One approach to creating multilayered constructs more rapidly involves the use of rapid 

prototyping approaches, including bioprinting. Norotte and colleagues developed a rapid 

prototyping bioprinting method for scaffold-free small diameter vascular reconstruction. 

Bioprinting was used to arrange macrofilamentous, sausage-like cell aggregates and acellular 

agarose rods into tubular vessel-like constructs [60]. 

Synthetic substitutes 

Limited long term success and availability of allografts, which were the first valid vascular 

replacements, led to the development of synthetic substitutes in the 2nd half of the past century. 
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Numerous attempts were made using silver, glass, rubber, and so on as grafting materials. A 

majority of these experiments failed due to early thrombosis, foreign body reaction, or rejection 

[6]. In 1951, Voorhees and co-workers [27] found that plastic tubes were accepted by the 

organism as a blood conduit if they had a porous wall and were biocompatible. Materials such 

as polyester and polypropylene fulfilled these criteria, and artificial conduits were developed as 

woven or knitted tubes in various forms and sizes.  

Dacron and ePTFE. For more than 50 years, Dacron (polyethylene terephthalate) and PTFE 

(polytetrafluoroethylene) have been used as synthetic vascular prostheses. Both of these 

molecules are highly crystalline and hydrophobic [5]. Dacron is a thermoplastic polymer resin 

of the polyester family and is used in synthetic fibers of round cross-section (FIGURE 5b). 

These fibers are fashioned into multifilament yarns, which can be woven (over-and-under 

pattern) or knitted (looped fashion) into textile vascular graft fabrics and tubes. A crimping 

technique (an undulating surface) is sometimes used to increase distensibility and kink-

resistance [5]. ePTFE is an expanded polymer which is manufactured by a heating, stretching, 

and extruding process resulting in a nontextile porous tube composed of irregular-shaped solid 

membranes (“nodes”) (FIGURE 5c). The molecule is relatively biostable, i.e. less prone to 

deterioration in biological environments than Dacron [61, 62], and the graft surface is 

electronegative, which minimizes its reaction with blood components. It is characterized by a 

node-fibril structure, and its average porosity is described by the internodal distance, which is 

usually 30 to 90 μm. However, the actual available ingrowth spaces between fibrils are much 

smaller than the internodal distance [5]. In small diameter applications, these two synthetic 

grafts are highly susceptible to clotting and failure due to a lack of a confluent non-

thrombogenic endothelial monolayer. Upon implantation, the luminal surface of the synthetic 

graft is coated with plasma proteins, and eventually a platelet-fibrin aggregate (pseudointima). 

This is then covered with an endothelial layer, but only in a 10-15 mm zone from the 

anastomosis. The pseudointima that is not endotheliazed can be subjected to SMC migration 

and proliferation leading to intimal hyperplasia, or trigger clot formation and thrombosis. 

Fibrous hyperplasia caused by an over active physiological repair response at the anastomic 

site also often leads to failure of the grafts. 

Polyurethanes. Polyurethane (PU) is a copolymer that consists of three different monomer 

types: a diisocyanate hard domain, a chain extender, and a diol soft domain. At physiologic 
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temperatures, the soft domains provide flexibility, whereas the hard domains impart strength. 

The most common medical grade polyurethanes are based on soft domains made from 

polyester, polyether, or polycarbonate [63]. Although PU grafts possess many 

interesting features, e.g. the presence of a surface that is conducive for seeding, excellent 

healing, good surgical handling and low suture bleeding, polyurethane grafts have had variable 

clinically results with a tendency to hydrolytic biodegradation causing aneurysm formation [5]. 

The latest generation of polycarbonate-based PU is hydrolytically and oxidatively stable, and 

promoted faster luminal endothelialization and less neointimal formation as small-calibre 

vascular prostheses [64]. 

 

 

Figure 5. Vascular prostheses. (a) Tissue engineering blood vessel (non-exogenous scaffold) 

produced by L’Heureux and colleagues [55], (b) Dacron, (c) ePTFE.  

 

Reducing thrombogenicity of vascular grafts 

Attempting to produce new biocompatible materials with good performance as vascular 

conduit, many researchers improved the features of existing synthetic grafts e.g. with regard to 

surface properties like hydrophilicity and presence of chemical groups, or alternatively by 
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covalent attachment of bioactive substances, or even the incorporation of autologous vessel 

wall cells into the vascular graft, where various biological functions of the native vessel are 

mimicked. 

Surface properties modification 

This strategy aims the modification of the surface properties of commonly used materials, to 

minimize reactions at the blood-material/tissue-material interface, avoiding modification of the 

bulk characteristics. This policy is likely to facilitate introduction of the modified vascular grafts 

to the market, as less problems with regulatory agencies and acceptance by surgeons are 

expected. 

A film of plasma proteins is immediately deposited on the surface of the vascular graft after the 

contact with blood, making the foreign material attractive for either platelet adhesion and 

subsequent platelet aggregation and /or promotion of endothelial cell growth [65-67]. The 

implant surface qualities are usually described in the categories of texture (roughness), charge 

(or electrostatic potential) and chemistry. These factors all influence the sequence of protein 

adsorption and the subsequent platelet adhesion/thrombus formation. Although the 

mechanism of occlusion and disfunction of artificial prostheses is multifactorial, all the studies 

performed suggest that fibrinogen and platelet deposition play a predominant role [67, 68]. 

The surface electrical charge of vascular graft influences the adhesion of platelets to the graft.  

It is known that both the blood vessel wall and platelets have electronegative surface charge, 

which causes their mutual repulsion. Sawyer and colleagues demonstrated that injury to the 

vessel wall results in the exposition of positively charged material [69]. Although PTFE has a 

weak negative charge, after implantation a fibrinous layer is formed enhancing the presence of 

negative charges, contributing to antithrombogenicity and also to antibacterial properties, as 

those bacteria that are associated with graft infection have electronegative surface properties 

[70]. A common clinical practice is the coating of PTFE with carbon to increase its 

electronegativity [71]. 

Although electronegativity on the graft surface is a prerequisite, this alone will not ensure an 

antithrombogenic surface, additional surface properties being also critical in determining the 

platelet reaction. The surface hydrophilicity may confer thromboresistance but that is not to say 

that all hydrophilic surfaces are thromboresistant [72]. The thrombogenicity of hydrophilic 
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surfaces has been previously investigated, with variable results. Hydrophilic coatings have been 

shown to diminish the thrombogenicity of polyurethane catheters [73]. Furthermore, an in vitro 

study demonstrated that hydrophilic surfaces bound less fibrinogen and fewer platelets than 

did either nonhydrophilic or heparin-coated catheters [74]. However, other studies showed no 

correlation between hydrophilicity and thromboresistance [75, 76].  

Surface properties may be altered by plasma-treatment techniques. Chu and colleagues [77], 

modified poly( -lactic acid) (PLLA) with ammonia plasma technique to improve the adhesion of 

Human endothelial cell (HUVEC) and of rabbit microvascular endothelial cell (RbMVEC). Tseng 

and Edelman [78] applied amide and amine plasma (butylamine) to ePTFE grafts surfaces 

using radio frequency glow discharge. The Plasma modified ePTFE vascular grafts showed 

increased surface hydrophilicity and enhanced the endothelial cell lining under constant and 

pulsatile flow conditions. 

Another approach consists on surface-binding chemical groups. O-Carboxymethylchitosan 

(OCMCS) was covalently immobilized onto ePTFE vascular graft using a photosensitive hetero-

bifunctional crosslinking reagent, 4-azidobenzoic acid. The OCMCS-modified PTFE 

demonstrated good blood-compatibility with reduced fibrinogen adsorption and inhibition of 

platelet adhesion and activation [79]. Phaneuf and co-workers applied mild hydrolyzation 

treatment of Dacron with NaOH, which created carboxyl groups at the surface, without 

significantly decreasing the tensile strength and the sample weight. The introduced groups 

serve as ‘anchor sites’ for covalent attachment of plasma albumin to the surface, thus creating 

a surface with improved biocompatibility [80]. 

In some other approaches, functional groups were introduced on the surface of the material to 

immobilize specific proteins. In this way, Chandy et al. [81] modified ePTFE and Dacron with 

argon plasma and then coated the materials with collagen IV and laminin, subsequently 

immobilizing bioactive molecules like PGE1, heparin or phosphatidyl choline via the 

carbodiimide functionalities. The results showed that these biomolecules, immobilized on 

vascular prostheses, significantly reduced the fibrinogen adsorption and the deposition and 

spreading of platelets, demonstrating superior biocompatibility. Also PTFE was modified using 

ammonia plasma or alkylamine plasma to covalently bind collagen, fibronectin or a mixture of 

both proteins, which improved adhesion of endothelial cells to the surface [82, 83]. 
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Coatings 

Porous textile synthetic graft, such as Dacron, are also pervious, sealing being necessary at the 

time of implantation. Two sealing techniques are known: preclotting of the prosthesis with the 

patient's own plasma, blood, serum or fibrin glue at the time of implantation, or impregnation 

of the prosthesis with a bioresorbable substance prior to implantation. Once resorbed, the gap-

filling matrices, whether cruoric or proteinic, left in place the porous synthetic structure, which 

could then be infiltrated by the cicatricial reaction. The preclotting technique consists in 

making the textile structure of the prosthesis impervious by impregnating it with an adhesive 

thrombotic matrix. The use of preclotting is as old as textile prostheses [84, 85].  

The first sealing molecules used in 1961 were collagen [86], crosslinked or not, and heat-

denatured gelatin [87]. Albumin was introduced later on [87]. 

Collagen. Collagens are the most abundant and ubiquitous proteins in the body of the 

vertebrates, showing great similitude in all mammals. The collagen molecule is constructed of 

three helical polypeptide chains that revolve around each other to form a triple helix. Collagen 

molecules line up by the thousands in regular sequences aligned with their longitudinal axis, 

thus forming a collagen fibril and these fibrils conglomerate to form a fiber. To be used as a 

biomaterial, collagen must first be extracted and purified, generally in an acid environment and 

salt precipitation. It can be prepared in solid form by drying or as a sol (liquid colloidal solution) 

through dispersion in an acid solution. Collagen is a good choice as impregnant matrix once it 

is naturally found in connective tissues and has chemotactic properties.  [84, 88]. 

Collagen is advantageous as a sealant since it also improves cell adhesion and migration onto 

the surface of the prosthesis, thus leading to a better integration with the host tissues [89].  

Gelatins. Gelatin is derived from collagen by thermal or chemical processes, applied to 

destroy the organized structure of water insoluble colllagen, to generate a multitude of small 

hydrosoluble molecules, the gelatin. The production of gelatin requires first the extraction of 

noncollagenous compounds from the ground tissue, commonly bone or skin, then the 

transition from collagen to gelatin, and finally the conditioning of gelatin in a dried, solid form. 

Compared to collagen, the more widespread use of gelatin as an impregnation matrix can be 

accounted for by its easier production, lower cost, and low thrombogenicity. It replaces 

collagen in situations where mechanical properties are secondary [84]. 
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Several collagen and gelatin impregnated vascular grafts are nowadays available, some of 

which have shown to be clinically well tolerated for medium-diameter grafts (5–6 mm) [90]. 

However, in most of the collagen- and gelatin-coated vascular grafts, glutaraldehyde or 

formaldehyde is used to crosslink the protein matrix. These crosslinking agents, which are 

incorporated into the coating, are released during degradation and may evoke cytotoxic 

reactions [91]. Alternatively, non-toxic carbodiimide can be used to crosslink gelatin in vascular 

grafts [92]. 

Albumin. Albumin, synthesized by the liver, is the main plasma protein. Its molecular weight 

is approximately 69,000 daltons. Albumin can be coagulated and denatured by heat. It can be 

separated from other plasmatic proteins by either electrophoresis or globulin precipitation in a 

27% sodium sulfate solution. Easy production and a low thrombogenicity account for its use in 

impregnating vascular prostheses [84]. 

The impregnation has advantage over the preclotting of vascular grafts, once impregnated 

prostheses are impervious straightaway at the time of implantation, not depending upon the 

patient’s hematologic characteristics (eg. patients under general heparin therapy) and 

so wards off the risk of preclotting. A reduction in prostheses handling, thanks to 

suppression of the preclotting stage, may contribute to a decrease in the risk of intraoperative 

bacterial contamination. On the other hand, some authors have mentioned handling 

difficulties, which they ascribe to a lack of pliancy in impregnated prostheses [84].  

Since crosslinked proteins started to be used to fill the pores of vascular grafts, pre-clotting of 

the grafts became superfluous. Besides this elementary function, other biological activities 

have been added to sealants to make them even more useful. The most frequently used 

additives are anticoagulants and growth factors. More recently, incorporation of antibiotics in 

sealants has been proposed. 

 

Seeding the surface with endothelial cells 

The significant difference in patency between prosthetic and autologous vein grafts could 

partially be attributed to the presence of viable endothelial cells (ECs) on the luminal surface of 

autologous veins. These cells are known to prevent thrombosis and intimal hyperplasia actively 
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and serve as an anticoagulant surface [93]. ECs are therefore interesting as coverage of 

prosthetic grafts. This is the key rationale behind utilizing autologous ECs to make a 

hemocompatible artificial polymeric surface that will perform the major functions of an intact 

healthy endothelium that would normally be found in the blood vessel. This will then provide an 

anticoagulant and antithrombogenic surface to the circulating blood constituents. 

In humans, the natural endothelialization of prosthetic grafts is restricted to a short region 

around the anastomosis area. Experimental evidence indicated that lack of a confluent EC 

lining on the surface of prosthetic graft contributes to their failure by thrombosis formation. A 

cellular engineering approach has been used to overcome this problem by covering in vitro the 

lumen of the graft with ECs, the process known as seeding [94].  

There are two types of seeding procedure: one-stage cell seeding, where the endothelial cells 

of the patient are extracted and immediately used to cover the grafts in the timeframe of the 

surgical procedure. And the two-stage cell seeding, where after the extraction of the EC from 

the patient the cells are expanded in vitro to obtain a great number of cells to be seeded on the 

graft (a process known as sodding) before the transplantation. Sodding is needed because 

many cells are lost from the graft lumen after the pulsatile flow has been restored. The main 

disadvantage regarding clinical use is that it cannot be used in the emergency situation 

because of the prolonged cell culture time and the significant chances of failure due to 

infection of the cells and the inability of the cells to proliferate effectively. In addition, there is 

the extra cost of a cell culture technician and the need for a cell culture laboratory [94]. 

The lack of retention of cells can be partly overcome by sodding, but other techniques, 

involving engineering the lumen to improve cell attachment and retention or stimulate self-

endothelialization of the graft have been developed. 

 

Improvement of endothelial cell seeding procedures 

Numerous research groups have examined whether modifications of the lumen of the 

prosthetic graft surface can either stimulate self-endothelialization or improve the attachment 

and retention of preseeded cells when exposed to arterial flow. 

The interaction of ECs with the biomaterial surface has been improved by using different 
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techniques. One approach consist on promoting non-specific interaction of the cells with the 

material via hydrogen bonding, electrostatic, polar or ionic interactions between the cell 

membrane and functional chemical groups on the polymers (without any extracellular matrix 

proteins or their functional parts). In contrast to integrin-mediated cell adhesion, this type of 

interactions cannot ensure the transmission of adequate signals from extracellular 

environments into cells and survival of anchorage-dependent cells. If the cells are not able to 

synthesize and deposit their own ECM molecules in a relatively short time (usually in 24 to 48h 

after seeding), or they do not have some of these molecules attached on cell membrane, they 

undergo apoptosis [95]. 

Functional receptor-mediated and signal-transmitting cell adhesion on a conventional 

biomaterial is mediated by ECM molecules, such as fibronectin, vitronectin, collagen or laminin 

[95]. Fibronectin coatings have shown to be the most successful for improving endothelial cell 

retention. Increased cell attachment is typically seen when fibronectin is used in combination 

with another protein or ligand [96]. The tripeptide Arg-Gly-Asp (RGD), an amino acid sequence 

found in many adhesive plasma and extracellular matrix protein, has been used to enhance 

cell adherence [97-103] (FIGURE 6). Other peptide sequences found to enhance endothelial 

cell adhesion include YIGSR (Tyr-Ile- Gly-Ser-Arg) [104], derived from laminin and REDV (Arg-

Glu-Asp-Val), which is present in a domain of fibronectin and binds endothelial cells selectively, 

without binding fibroblast, smooth muscle cells, or platelets [105, 106]. The success of this 

approach has been limited, due to coatings being washed off with high flow rates [94, 107] 

and, in some cases, poor specificity between the ligand or protein and the cell allows for 

undesirable platelet adhesion [90]. 

 

Figure 6. Endothelial cell interact by integrin family of cell-matrix receptors with the wall bound 

RGD-sequence and adhere to the vascular graft. Adapted from Walluscheck et al., 1996 [108]. 
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Adherent cells are strongly influenced by the mechanical aspects of biomaterials and many 

studies indicate that micro- and nano-scale mechanical stresses generated by cell-matrix 

adhesion have significant effects on cellular phenotypic behaviour [109]. Thus, physical 

methods attempting to the modification of the surface topography of vascular graft have been 

developed. Gray and colleagues showed that endothelial cells preferentially accumulate on 

stiffer regions of a poly(dimethylsiloxane) (PDMS) substrate, suggesting that material stiffness 

may be used to promote preferential endothelial cell adhesion [110]. Goodman and co-workers 

created a polyurethane scaffold micro-patterned to mimic the natural sub-endothelial 

extracellular matrix topography [109]. Endothelial cells seeded on these surfaces were found to 

more closely resemble those attached to the native extracellular matrix, suggesting that 

mechanical cues from textured surfaces can alter cellular phenotype. Bettinger and co-workers 

developed a rounded surface topography that was able to promote the alignment and 

elongation of endothelial cells; this effect was speculated to be a result of the ability of filopodia 

to sense changes in surface topography [111]. Finally, Daxini and co-workers created a pattern 

of microchannels with a defined geometry in order to create regions of lowered shear stress to 

improve the retention of endothelial cells on polyurethane surfaces [112] 

Another method used to enhance endothelial cell attachment to a polymer scaffold is the 

process of flow conditioning by which cells are exposed in vitro to flow-induced shear stress 

post-seeding procedure [113-116]. Results obtained by some groups showed that this enabled 

enhanced retention of ECs with strengths adequate to withstand physiological shear stresses. 

Additionally, it has been shown that shear stress influences the phenotype of endothelial cells, 

including the ability to adhere to a surface, and may be used to control vascular cell 

differentiation [117]. The various surface modifications undertaken to promote spontaneous 

and seeded endothelialization are summarized in Table 3. 

 

Cell source 

Autologous cells are preferred for prosthetic graft seeding since problems with immunological 

rejection can be avoided. The veins used in humans are saphenous and external jugular veins. 

Forearm veins and arteries have also been used, but in less extent [118]. However, despite 

strong evidence that in vitro EC lining improves the patency of small-diameter vascular 
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prostheses, a major disadvantage of this studies is that a limited number of ECs can be 

extracted from veins. It takes a 4- to 5- week delay between cell harvest and graft implantation, 

growth and infection problems can occur, and the costs of cell culture are substantial. 

Furthermore, seeded cells have been cultured under all sorts of growth factors, inducing the 

risk of unwanted growth after implantation. To avoid these problems, a search for other cell 

types and for other EC sources has been started [93]. 

An alternative source for ECs are cells from the microvessels present in human fat tissue; this 

source provide large number of cells that can be readily available at the time of surgery. Over 

the years several sources of fat tissue have been used to obtain ECs, with subcutaneous and 

mainly the omental fat being the most studied tissues. Cells extracted from omentum have 

been characterized as mesothelial cells by some authors while others still regard these as 

endothelial cells. However, both these types of cell have similar functional properties including 

the release of anticoagulant substances [119]. One disadvantage of extract ECs from fat is that 

some contaminating cells could be also extracted during the process while cells extracted from 

vein are pure ECs [94]. 

In the recent few years, stem cell has become a major cell source for tissue engineering. The 

merit of utilizing stem cell as a seeding cell source is that those cells are able to self renew and 

differentiate into mature cells in the proper conditions. Generally there are two types of stem 

cells based on their origin, the embryonic and adult stem cells. Embryonic stem cells are able 

to produce all types of cells, while adult stem cells are normally limited to certain lineages. The 

advantage of choosing the adult instead embryotic stem cells is that the first one can be 

obtained from patients themselves, which can avoid the immuno-rejection and ethical 

problems. In addition, adult stem cells are normally limited to certain lineages, which do not 

have tumorgenic capacity [49]. 

Adult stems cells are isolated from bone marrow or circulating blood. It is expected that bone 

marrow cells can differentiate into cells such as fibroblasts, ECs, and SMCs [94]. Endothelial 

progenitors cells (EPCs) are one type of the adult stem cells that have the capacity to 

proliferate, migrate and differentiate into mature ECs. EPCs are mainly located in bone marrow 

and could be mobilized into peripheral blood by certain growth factors, such as granulocyte 

macrophage colony stimulating factor (GM-CSF) or VEGF. EPCs could be also isolated from 

umbilical cord blood [49].  
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Table 3. Summary of surface modification to enhance endothelialization (in chronological order). 

Graft  Modified Additive  Study Type  Outcome  Reference 

PTFE  P15 peptide  in vitro  ↑endothelialisation; ↓IH [120] 

PTFE   Anti-CD34 
antibodies 

animal model Rapid endothelialisation; ↑IH [121] 

PTFE  Vascular 
Endothelial, GF  

animal model  ↑endothelialisation; ↑IH [122] 

Poly(ether) 
urethane 
(Tecothane) 

Cholesterol in vitro  ↑endothelialisation and resistance 
to shear stress; ↑endothelial 
precursor cell adherence 

[123] 

PTFE  Poly(amino acid) 
urethane  

animal model  ↑endothelialisation [124] 

Fibrin   Endothelial cell GF in vitro  ↑vEC proliferation; ↓early platelet 
adhesion; ↓late thrombus; 
↑patency 

[125] 

Polyurethaneurea   YIGSRa in vitro  ↑endothelialisation; ↑transmural 
cell migration; ↑hydroxyproline 
productionb 

[126] 

PTFE   Tumorigenic human 
squamous cell line 

animal model Confluent endothelialisation by 5 
weeks 

[127] 

Dacron, PTFE, 
polypropylene, 
silicone, 
polyurethane 

Titanium in vitro  ↑vEC adhesion; no increase in 
inflammation 

[128] 

Dacron Collagen film in vitro  Confluent endothelialisation [129] 

Dacron Collagen  animal model Largely endothelialised and 
thrombus free at 3 weeks 

[130] 

Collagen  Heparin  in vitro  ↑basic fibroblast growth factor 
(bFGF) binding and release 

[131] 

Polyurethane  bFGF/Heparin  animal model  ↑endothelialisation, 
neovascularisation 

[132] 

PTFE  Nitrogen, oxygen 
(↑hydrophilicity) 

in vitro  ↑endothelialisation, ↑plasma 
protein adsorption 

[133] 

PTFE  RGD cell adhesion 
peptide  

in vitro  ↑immediate vEC adhesion; no long 
term advantage compared with 
fibronectin coating 

[134] 

Dacron   Carbon in vitro  vEC proliferation [135] 

Polyurethanes 
and silicones  

Extracellular matrix; 
fibronectin; 
gluteraldehyde 
preserved matrix 
(GPM) 

in vitro  GPM provides optimal vEC 
proliferation 

[136] 

PTFE  Fibronectin  animal model  ↑endothelialisation (both 
spontaneous and seeded) 

[137] 

a Endothelial cell adhesive peptide sequence; b Mark of collagen synthesis; GF (growth factor); 

vEC (vasculae endothelial cells); IH (intimal hyperplasia). Sarkar et al., 2006 [71]. 
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The advantage of using this source of cells is that they can be easily obtained from peripheral 

blood of adults by venopuncture rather than by an operation. A disadvantage is that ex vivo 

expansion, takes on average 2 weeks. Besides, the drawbacks of in vitro culture are risk of 

infection, change of phenotype, the need for culture facility, and limitations for emergency 

situation [93]. 
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Bacterial Cellulose: Properties, Production and 
Applications 
 

Adapted from: Andrade FK, Pertile RAN, Dourado, F, Gama FM. Bacterial Cellulose: Properties, Production and 

Applications. In: Lejeune A, Deprez T, editors. Cellulose: Structure and Properties, Derivatives and Industrial Uses: 

Nova Science Publishers, Inc., 2010. p. 427-458. 

 

 

Bacterial cellulose (BC) is produced by bacterial strains from the genera Acetobacter, 

Agrobacterium, Pseudomonas, Rhizobium and Sarcina, the last one being the only genus of 

Gram-positive bacteria in this field [138]. Interestingly, only a few bacterial species, 

taxonomically related to this genus, extracellularly secrete the synthesized cellulose as fibers.  

While the first studies on BC were geared towards elucidating the cellulose biosynthetic 

pathway, BC has quickly developed into a field of study of its own, as observed by the growing 

number of patents and publications worldwide (Figure 7). Special attention was given to strains 

from Gluconacetobacter xylinus (=Acetobacter xylinum), first described by Brown in 1886 

[139]. While the secreted cellulose is identical to the one produced by plants, regarding the 

molecular structure, it is chemically pure, i.e. not mixed with non-cellulosic polysaccharides 

[138, 140-143]. Its unique properties account for its extraordinary physico-chemical and 

mechanical behaviour, resulting in characteristics that are quite promising for modern 

medicine and biomedical research [142, 144-148]. 

 

1. Biosynthesis, Structure and Properties 

The classical medium to culture G. xylinus and maximize the growth and cellulose production 

was described by Hestrin and Schramm. The pH of the medium is 6 and the optimum growth 

temperature is 30 oC, though the bacteria grow well over a temperature range of 25 to 30oC. 

The static culture leads to the production of a cellulose pellicle holding bacterial cells floating 

on the surface medium. In a culture medium aerated by shaking, bacteria grow faster, but less 
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cellulose, presented as ball-shaped particles, is produced. When G. xylinus is cultured on solid 

medium, the colonies have a dry, wrinkled appearance [149, 150]. 

The ultrastructure of the cellulose synthesis apparatus is best understood in G. xylinus. The 

cellulose synthase is considered the most important enzyme in the bacterial cellulose 

biosynthesis.  

 

Figure 7. Publications and patents on bacterial cellulose.  

 

The cellulose synthase operon codes protein complexes aligned along the long axis of the cell. 

Cellulose synthesizing complexes are present in the surface of the bacteria, next to the cell 

membrane pores where the cellulose fibrils are extruded through, associating with other fibrils 

and making up the ribbon of crystalline cellulose [138, 143]. Each bacterium synthesizes a 

cellulosic ribbon with a width ranging from 40 to 60 nm, parallel to the longitudinal axis of the 

bacterial cell. The ribbon of cellulose is composed of microfibrils with around 1.5 nm 

thickness, secreted through extrusion sites in the outer membrane of the bacterium. Then, the 

microfibrils aggregate into 3 to 4 nm microfibrils via crystallization of adjacent glucan chains 

and finally, together, form the larger cellulosic ribbon [149]. 
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Several studies were developed to clarify the physiologic role of cellulose. As the cellulose 

matrix is less dense than water, it has been proposed to allow maintaining the bacterial cells in 

an oxygen-rich environment. Additionally, it allows protecting the bacteria from ultraviolet light, 

competing microorganisms and heavy-metal ions, while retaining the moisture and allowing 

nutrient supply by diffusion [142, 148, 150, 151]. 

As Gluconacetobacter microorganisms are mandatory aerobes, under static conditions, BC is 

synthesized at the air/liquid interface of the culture medium [138, 142]. Other relevant 

aspects for the BC production are the carbon and nitrogen sources and concentration, the pH 

and temperature, and the surface area of the fermentation system. All these aspects affect the 

cellulose production as well as the membrane properties, in static or agitated cell culture. Also, 

differences in the bacterial strains play an important role in the microstructure and production 

rate. Figure 8 shows a membrane produced by ATCC 10245 G. xylinus strain [138, 142, 152-

156]. 

Besides macroscopic morphological differences, BC produced in static and agitated cultures 

differs also at various structural levels. While the fibril network remains the same, there are 

some differences in the structure of the crystals and molecular chains. The crystallinity and 

cellulose I alpha content, as well as the degree of polymerization, is lower in agitated than in 

static culture [157]. 

As referred above, the bacterial and vegetable celluloses have the same molecular structure, 

both being built up of β(1→4)–linked D-glucose units. The degree of polymerization is however 

rather different, about 13000-14000 for plants and 2000-6000 for bacterial cellulose. Both 

celluloses are highly crystalline; differing in the arrangement of glucosyl units within the unit 

cells of the crystallites, and several studies suggests that these celluloses are synthesized by 

enzymatic complexes that differ at the molecular level. Also, this bacterial polysaccharide is 

secreted free of lignin, pectin, hemicelluloses and other biogenic compounds, which are 

associated with plant cellulose [138, 142, 158]. 
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Figure 8. Bacterial cellulose pellicle produced by ATCC 10245 G. xylinus strain in static culture. 

 

Morphology. The gelatinous BC membrane formed in static culture is characterized by a 3D 

ultrafine fibrous network structure, containing about 99% water. The randomly assembled 

ribbon-shaped fibrils are less than 100nm wide and composed of elementary nanofibrils, 

aggregated in bundles with lateral size of 7-8nm. The crystallinity degree of BC is in the range 

of 60-90% [159-163]. Crystallographically, BC is a Cellulose I, with 60% Iα /40% Iβ [148, 163]. 

The crystallographic molecular arrangement may influence the physical properties, as the 

allomorphs have different crystal packing, molecular conformation, and hydrogen bonding 

[159, 163]. In 2006, Sanchavanakit characterized BC pellicles obtained after 48 hours culture: 

the surface area of the air-dried BC films was 12.6 m2/g, with a pore size distribution ranging 

from 45 to 600 Å. The pore diameter of the air-dried film was inferior to 0.1 µm; however, 

when the air-dried pellicle was swollen with water, at 30 oC, the apparent pore diameter raised 

to 0.2-1.0µm [164]. Due to its high crystallinity and small fiber diameter, BC possess excellent 

mechanical strength and high surface area when compared to plant derived cellulose [165] 

and the application and biological function of celluloses are based on its distinct fiber 

morphology [159].  

Mechanical properties. Both the micro and macrostructure of BC are influenced by the 

growing culture environment and the treatment after synthesis. According to Iguchi, a BC 

pellicle obtained after 7 days of culture and air-dried at 20 oC and low pressure, presents a 

Young’s modulus of 16.9 GPa, tensile strength of 256 MPa and elongation of 1.7% [148]. 
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However, when a pellicle was dried through the heat-press method described by Iguchi [166] 

and an excess of pressure (490 – 1960 kPa) was applied, the tensile strength as well as 

elongation tend to decrease, while the Young modulus remains constant. According to 

Sanchavanakit (2006), a BC dried film (from a 48h grown culture) with a thickness of 0.12 

mm presents a tensile strength and break strain of 5.21 MPa and 3.75%, whereas for the wet 

films the values are 1.56 MPa and 8.0%, respectively [164]. The high Young’s modulus and 

tensile strength of BC films seems to result from its high crystallinity, high planar orientation of 

ribbons pressed into a sheet, ultrafine structure, and the complex network of the ribbons 

[167]. 

Water holding capacity. BC is highly hydrophilic, holding over 100 times its weight in 

water. Klemm and colleagues showed that the “never dried” BC has water retention values 

(WR) in the range of 1000%, drastically decreasing after air-drying to values that can be 

compared with those of plant cellulose, 106% and 60%, respectively. The method of drying has 

been shown to affect the BC porosity, freeze-drying (WR of 629%) being reported as the most 

effective method to preserve the porous structure [142]. 

 

Medical Applications 

The biocompatible nature of cellulose-based materials, such as oxidized cellulose, regenerated 

cellulose hydrogels, sponge cellulose and bacterial cellulose, has allowed comprehensive 

research targeted at medical applications [168-172]. Representative examples BC-based 

scaffolds for tissue engineering include vascular grafts, cartilage, neural regeneration and 

wound dressings. Table 4 describes the biomedical application of BC and some results 

obtained. 

The interaction between cells and BC has been investigated by several research groups. In 

1993, BC was described as a substrate for mammalian cell culture by Watanabe and 

colleagues [146]. Adhesion to BC was observed using anchorage-dependent cell lines (L929 

mouse fibroblasts, Detroit 551, HEL, mouse 3T3 Swiss, SV40/Balb 3T3, CHO, Human J-111 

and Human epidermal Keratinocytes). Modification of the BC surface, to improve the 

interaction with cells, involved the introduction of electrical charge and adhesive proteins, such 

as collagen type I, collagen type IV, fibrin, fibronectin or laminin [146]. 



Chapter 1  

  38 

Table 4. Summary of biomedical applications of bacterial cellulose. 

Biomedical 
Applications 

Study Outcome  References 

Cartilage repair  1. In vitro study – BC as scaffolds for 
chondrocytes culture; 
2. Reconstruction and rehabilitation 
of the nasal framework in rabbits. 

1. Growth, cell migration and ingrowth; 
expression of collagen by the cells; 
2. Good integration. 

[147, 173, 
174] 

Vascular grafts  1. In vitro studies were developed to 
improve BC as scaffold to tissue 
engeneering of vascular grafts; 
2. In vivo studies with stents coated 
with BC (rabbit model); 
3. In vivo studies of BC as 
microvessel endoprosthesis (rats 
and pig models) 
 

1.Many of the strategies used (e.g. 
increasing the porosity, improving the 
mechanical properties, 
functionalization with adhesion 
peptides, etc.) improved the adhesion, 
migration and proliferation of smooth 
muscle cells or endothelial cell to BC; 
2. BC accelerated re-endotelialization 
of the area covered by the stent, acting 
as a barrier to the migration of muscle 
cells; 
3. good incorporation in the host tissue 
without any rejection reaction. 
 

[142, 152, 
162, 163, 
175-178] 

Wound 
dressing 

1. Corneal healing (rabbits); 
2. Skin healing (swine); 
3. Dural substitute exposed to intact 
and damaged brain of dogs; 
4. Human patients with chronic 
venous insufficiency and lower-leg 
ulceration; 
5. Repair of chronic lower extremity 
ulcers in humans; 
6. Rabbit’s laryngotracheal region. 

1. Improved healing; 
2. Good performance in healing and 
adhesion to the wound; 
3.Good acceptance of the graft;  
4. BC dressings create a protective, 
hypoxic, moist environment and 
improved healing. ↓patients pain; 
5. ↓of time for epithelization and the 
time for wound closure over standard 
care; 
6. No inflammatory signs. 

[179-189] 

Dental implants 1. Periondontal disease treatment, 
dental implants and guided bone 
regeneration; 
2. Biocompatibility evaluation with 
implantation of BC (Gengiflex®) in rat 
subcutaneous connective tissue; 
3. BC (Gengiflex®) was used for 
guided tissue regeneration of bone 
defects in rabbits. 

1. Provide a good alternative for guided 
tissue regeneration; ↑regeneration of 
the lesions; 
2. BC behaved as a stranger material 
to the host tissue in comparision to 
Milipore and Teflon membranes; 
3. PTFE presented better results than 
Gengiflex®. 

[190-196] 

Nerve 
regeneration  

1. Micronerve reconstruction of rat 
sciatic nerve using BC tubes 
(BASYC®); 
2. BC tubes (BASYC®) were used as 
drug depot of neuroregenerative 
substances; 
3. BC sheets to envelop peripheral 
nerve lesions (dogs); 
4. Facial nerves repair (rats) with BC 
sheets (Biofill®). 

1. ↑regeneration of the functional 
nerve; the reappearance of 
acetylcholine as the transmitter of 
nerve impulses to the executive organ 
was observed; 
2. Improved healing; 
3. A moderate fibrous reaction and 
realignment and axonal growth through 
the injury were observed. 
4. Improve guidance of the nerve 
fibers, allowing the concentration of 
neurotrophic factors, which 
consequently promoted the nerve 
regeneration. 

[142, 197, 
198] 
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The interaction of BC films with human transformed skin keratinocytes and human normal skin 

fibroblasts was evaluated [164]. The results demonstrated that BC supports the proliferation of 

both cell types, with no signs of toxicity; the keratinocytes exhibited normal cell proliferation, 

spreading and also maintained the normal phenotype, while for the fibroblast culture the 

pattern of cell distribution and stability on BC film was poorer. Moreover, the migration of 

keratinocytes on a BC film was comparable to that of a polystyrene plate. Pértile and 

colleagues, in 2007, found a similar behavior when studying the interaction between BC 

pellicles and skin fibroblasts. Figure 9 shows a detail of the BC network with fibroblast cells 

adhered on BC membranes [199]. 

 

 

Figure 9. Scanning eletron microscopy of bacterial cellulose. Fibroblasts adhered on bacterial 

cellulose membranes after 24h in culture (Left, 1000x); detail of BC membranes surface (Right, 

10.000x). 

 

In an in vivo biocompatibility study, BC was subcutaneously implanted in mice, for a period of 

up to 12 weeks [140]. BC was shown to integrate well into the host tissue, with cells infiltrating 

the BC network and no signs of chronic inflammatory reaction or capsule formation. The 

formation of new blood vessels around and inside the implants was also observed, evidencing 

the good biocompatibility of the biomaterial.  

 

BC as vascular grafts. In 2006, Backdhal and colleagues evaluated BC as a novel 

biomaterial for the tissue engineered blood vessels [162]. The BC was compared to similar 

structures of porcine carotid artery (PCA) and expanded-polytetraflourethylene (ePTFE). The 
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mechanical properties of the BC rings were comparable to those of PCA, although PCA 

significantly exceeded BC in both stress and strain at break and Young’s modulus. The authors 

also studied the interaction between BC and smooth muscle cells (SMCs), the compact and 

porous side of the BC pellicle being separately analyzed. The results showed that, although the 

attachment and proliferation of SMCs cultured on the compact and porous sides were similar, 

differences in the morphology were observed. Furthermore, a maximum ingrowth distance on 

the porous side of 20µm and 40µm was observed after 1 and 2 weeks, respectively, the more 

compact side allowing an ingrowth of up to 1-5µm depth. The results revealed that the cells 

could push the nanofibrils aside, while migrating into the cellulose nanofibril network. In 2008, 

the same research group developed a novel method to prepare three dimensional nanofibril 

network tubes from BC with controlled microporosity, by placing paraffin wax and starch 

particles of various sizes in a growing culture of G. xylinus [175]. SMCs migrate into this more 

porous cellulose to a greater depth than in the native BC pellicle. The SMCs produced collagen 

fibers both in the surface cell layer and further into the scaffolds made with paraffin. However, 

a mechanical evaluation of the SMC-seeded scaffold was not performed. 

The effectiveness of angioplasty using conventional stents was compared to bacterial cellulose 

coated stents, in a rabbit model, by Negrão et al. [176]. The authors showed that BC coated 

stents do not present adverse events in the angioplastic procedures. Indeed, BC accelerated 

re-endotelialization of the area covered by the stent, acting as a barrier to the migration of 

muscle cells, thus representing a promising strategy for the prevention and treatment of 

restenosis in endovascular procedures. 

Bodin et al. analyzed the growth of endothelial cells (ECs) in the lumen of BC tubes obtained 

by culturing the bacteria under different concentrations of oxygen [152]. All tubes had a denser 

inner side and a more porous outer side. The cross section observation revealed layered tube 

walls, the number of layers and the yield of cellulose increasing with the oxygen pressure. The 

cells were able to growth in the tubes, forming a confluent layer after 7 days. The same group 

developed a novel method to graft the RGD cell adhesion peptide on the cellulose, to enhance 

cell adhesion [163]. The cellulose was modified with xyloglucan and xyloglucan bearing the 

GRGDS (Gly-Arg-Gly-Asp-Ser) peptide. The results revealed that the nanocellulose material was 

homogeneously modified; also, cell adhesion studies confirmed a faster adhesion of 

endothelial cells on the xyloglucan-GRGDS-modified cellulose. 
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Klemm et al. investigated the application of patented BC tubes (BASYC® - BActerialSYnthesized 

Cellulose) as microvessel endoprosthesis for end-to-end anastomosis procedure, using the 

carotid artery of a white rat [142]. In this study, four weeks after implantation, the carotid 

artery-BASYC complex was wrapped up with connective tissue and the BC tube was completely 

incorporated in the body without any rejection reaction. Putra et al. described a simple 

technique that allows to obtaining a tubular – BC gel with desired length, inner diameter and 

thickness, along with an oriented fibril structure [177]. This technique requires a shorter 

cultivation time, as compared to the methodology described by Klemm et al.[142]. Over a 

period of 12 weeks, implanted BC grafts in the carotid artery of pigs showed good in situ tissue 

regeneration without signs of thrombosis, inflammation or fibrotic capsule formation around 

the implants. The luminal wall of the newly formed tissue showed complete endothelialisation, 

with a confluent endothelial layer [178]. 

 

Improving the Bacterial Cellulose Properties for Biomedical Applications 

Biocompatibility is one of the main requirements for any biomedical material. It can be defined 

as the ability to remain in contact with living tissue without causing any toxic or allergic side 

effects, simultaneously performing its function [145]. In this context, BC has been modified to 

further enhance its’ biocompatibility. Depending on the envisaged biomedical application, 

improved cellulose integration with the host tissue, increased degradation in vivo or modified 

mechanical properties, to mimic the tissue to be replaced, are required. Chemical surface 

modifications, incorporation of bioactive molecules, modification of the porosity and 

crystallinity, design of 3D structures and nanocomposites, are examples of viable methods to 

make BC an ideal material for reparative tissue engineering. 

The attachment of cells to biomedical materials can be improved by using adhesion molecules, 

present in the extracellular matrix substances, such as fibronectin, vitronectin, or laminin. The 

amino acid sequence Arg-Gly-Asp (RGD) has long been recognized for its cellular adhesion 

function. Bodin et al. described a novel method to activate the bacterial cellulose surface with 

the RGD peptide, to enhance cell adhesion [163]. The adsorption of modified xyloglucan 

(GRGDS-xyloglucan) increased the BC wettability, which might explain the decreased or even 

negligible amount of adsorbed protein. Modification with xyloglucan (XG) did not alter the BC 
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morphology. The water contact angle was lower on BC modified with XG (29 ± 4.8) and XG-

GRGDS (32 ± 5.8), when compared to unmodified material (44 ± 5.3). Whitney et al. also used 

xyloglucan to modify BC, in this case incorporating the polyssaccharide in the G. xylinus culture 

medium. These authors verified that XG binds to cellulose, altering its cristallinitty [200].  

In order to improve cell adhesion to BC, Watanabe and co-workers developed several methods 

of chemical modification, aiming the introduction of electrical charge to the BC membrane 

[146]. In this context, membranes of trimethyl ammonium betahydroxypropyl-BC (TMAHP – 

BC), diethyl aminoethyl-BC (DEAE – BC), aminoethyl-BC (AE – BC) and carboxymethyl-BC (CM 

– BC) were produced. Also, the TMAHP – BC was covered with adhesive proteins (collagen 

type I, collagen type IV, fibrin, fibronectin or laminin). The new bacterial cellulose substrates 

favored the adhesion of cells, as compared to the unmodified BC. 

Phosphorylation and sulfation of BC matrices were explored by Svensson et al. as a means to 

add surface charges, mimicking the glucosaminoglycans of cartilage tissue in vivo [147]. The 

materials were analyzed for mechanical properties, microstructure and cell–material 

interactions, in order to assess the potential of this matrix as a scaffold for cartilage tissue 

engineering. The compressive modulus of the phosphorylated samples increased with the 

reaction time and was higher than the compressive modulus of native BC. This result was 

probably due to the more compact structure of the 3D network in the phosphorylated BC. An 

even more compact network structure was found in sulfated BC, which showed an higher 

resistance to compressive forces when compared to phosphorylated and native BC. Sulfated – 

BC had significantly lower Young’s modulus than the unmodified BC, resulting in a reduction of 

the mechanical integrity. The lower strength of sulfated-BC may be due to the prevention of 

hydrogen bonding between the cellulose chains by the covalently bonded sulfate groups, chain 

scission by acid hydrolysis, or a combination of both.  

It is known that BC properties such as the mechanical strength and permeability can be 

changed by post production (ex situ) treatments [201]. As an example, treatment with sodium 

hydroxide is widely used to clean the cellulose membranes, after fermentation, for biomedical 

applications. George et al. analyzed the effect of various alkali treatment methods for BC 

cleaning, such as potassium hydroxide, sodium carbonate and potassium carbonate. 

According to these authors, any of these chemicals is milder than the sodium hydroxide, better 

preserving the BC integrity, and improving the tensile strength of the membranes [202]. 
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Backdhal et al. developed a method to produce a highly porous BC [175]. The authors added 

paraffin wax and starch particles of various sizes to the growing culture of G. xylinus. Bacterial 

cellulose scaffolds with different porosities and interconnectivity were prepared through this 

approach. The partially fused paraffin particles were incorporated throughout the scaffold, 

while starch particles were found only in the outermost area of the resulting scaffold. This 

methodology allows the modulation of the porosity, thickness and interconnectivity of tubular 

BC scaffolds, by varying the porogen size and fermentation conditions. In addition, the 

porogens can be successfully removed from the BC network. 

As G. xylinus has been reported to move along cellulose rails while secreting BC, Urakiet al. 

attempted to expand the utilization of BC and developed novel functional biomaterials, through 

the transformation of BC into a honeycomb-patterned material [203]. Fabrication of such 

patterned BC structure was possible by controlling the bacterial movement using an agarose 

film scaffold with honeycomb-patterned grooves, in a humid CO2 atmosphere. The results 

suggest that the obtained honeycomb-patterned network is a continuous porous film, built up 

with highly oriented and Iα cellulose microfibrils. 

Aiming at the production of a in vivo degradable polysaccharide, while exhibiting both chitin- 

and cellulose-like properties, attempts were made to incorporate N-acetylglucosamine (GlcNac) 

residues into bacterial cellulose. Ogawa characterized the enzymatic susceptibility of BC 

containing N-acetylglucosamine (N-AcGBC) residues for cellulase, lysozyme and chitinase 

hydrolysis [204]. The results showed that N-AcGBC posses high susceptibility for lysozyme 

(proportional to the GlcNac content) and cellulase but only slight susceptibility for chitinase. 

The random distribution of GlcNAc residues on N-AcGBC is responsible for the higher lysozyme 

reactivity. This approach was also studied by Shirai, who described a G. xylinus strain adapted 

to a medium containing GlcNAc, that was used to prepare a novel cellulosic polysaccharide 

containing residual GlcNAc[205]. The resulting polysaccharide was lysozyme-susceptible. The 

amino sugar content in the pellicles was measured after cultivation of the bacteria in the 

presence of various ammonium salts. Ammonium chloride seems to be the best additive to 

enhance GlcNAc incorporation, under rotatory and aerobic conditions. The acceleration of 

GlcNAc incorporation in the presence of ammonium salts seems to be due to the shift of the 

aminotransferase equilibrium in the presence of a high concentration of ammonium ion. The 

production of similar polysaccharides was obtained by incubation of G. xylinus in a modified 
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Hestrin – Schramm medium containing lysozyme-susceptible phosphoryl chitin (P-chitin) and 

D-glucose [206]. Analysis of the culture medium by HPLC showed that the P-chitin is 

depolymerized to monomeric and oligomeric residues, during the incubation, and these were 

utilized as a carbon source by the bacteria. Furthermore, monomeric GlcNAc 6-phosphate was 

also found to enhance the incorporation of GlcNAc residues into the polysaccharide. Also, 

Ciechanska obtained a modified bacterial cellulose by adding chitosan to the culture medium 

during the bacterial growth [207]. By FTIR analysis, glucosamine and N-acetylglucosamine 

units were shown to have been incorporated into the cellulose chain, providing a material with 

good mechanical properties in the wet state, high moisture-keeping properties, release of 

oligosaccharides under lysozyme action, and bacteriostatic activity. 

Lee and colleagues investigated the flexibility of the BC synthesis apparatus of a G. xylinus 

strain in incorporating different monomers present in culture medium [208]. The bacteria 

incorporated 2-amino-2-deoxy-D-glucose (glucosamine) and 2-acetamido-2-deoxy-D-glucose (N-

acetylglucosamine), but not 3-O-methyl-D-glucose or 2-deoxy-D-glucose into the exopolymer. 

The average molar percentage of glucosamine and N-acetylglucosamine in the exopolymers 

amounted to about 18%. The authors suggested that the cellulose synthase and other enzymes 

involved in the cellulose synthesis have broad specificity. Preliminary analysis of the fibers 

(cellulose and the new copolymers) by environmental scanning electron microscopy suggested 

similar gross morphology (e.g. diameter and surface smoothness). 

Kobayashi et al. produced a cellulose-chitin hybrid polysaccharide by enzymatic 

polymerization, using a chitinase and a cellulase from Trichoderma viride [209]. The molecular 

weight values of the cellulose-chitin hybrid polysaccharides reached 4030 and 2840, which 

correspond to 22 and 16 saccharide units, respectively. These MW are rather low compared 

with naturally occurring chitin and cellulose. The produced cellulose-chitin hybrid 

polysaccharide did not exhibit a crystalline structure and was hydrolyzed in vitro by lysozyme. 

Also, Phisalaphong and Jatupaiboon obtained a nanostructured BC-chitosan composite, by 

supplementing the BC culture medium with low-molecular-weight chitosan [210]. Films with a 

denser fibril structure, smaller pore diameter and higher surface area than the native BC were 

obtained; however no significant influence in the crystallinity and anti-microbial activity were 

observed. 
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Another type of BC modification was described in 2008 by Berti et al. [211]. This group 

produced membranes of BC-PHA by mixing BC olygomers with polyhydroxyalkanoates 

produced by Ralstonia eutropha and Chromobacterium violacium, obtaining membranes with 

different surface properties and porosities. 

 

BC Nanocomposites used in Medicine. According to Ajayanet al., nanocomposites can be 

described as solid structures with nanometer-scale dimensional repeat distances between the 

different structural phases [212]. These materials typically consist of two or more 

inorganic/organic phases in some combinatorial form. At least one of the phases or features 

must be in the nanosize scale. In general, nanocomposite materials demonstrate new and/or 

improved mechanical, electrical, optical, electrochemical, catalytic or structural properties. 

Polyvinyl alcohol (PVA) is a hydrophilic biocompatible polymer with characteristics suitable for 

biomedical applications. Combined with BC fibres, it has been used to develop biocompatible 

nanocomposites [213-215]. The PVA–BC nanocomposite is highly anisotropic and its 

properties make it comparable to heart valve tissue. According to the authors, PVA–BC 

nanocomposite with specific composition and processing parameters can be obtained to create 

a custom-designed biomaterial mimetizing the mechanical properties of the tissue to be 

replaced. 

A composite named CollagenBC was developed by Wiegand, by adding collagen type I to the 

culture medium of BC fermentation, for the treatment of chronic wounds [216]. This 

composite induces an in vitro reduction of protease activity, interleukin concentration and 

reactive oxygen species, relevant features to support the healing process in chronic wounds. 

This composite combines the ability of collagen to alter the milieu parameters in chronic 

wounds, with the excellent BC physical properties. Following the same approach, Zhou and 

colleagues used a culture medium containing sodium alginate (NaAlg) for the production of 

BC, obtaining a cellulose with lower cristallinity and a smaller crystallite size [217]. Also, 

Phisalophong developed a BC-alginate blend exhibiting improved water absorption capacity and 

water vapor transmission rate combined with a smaller pore size, although the tensile strength 

and elongation at break of the film decreased [218]. 
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BC is composed of dense microfibrils forming a material with relatively small pore sizes, the 

pure BC lacking a suitable pore structure essential for tissue engineering scaffolds. In contrast, 

the hydroxyapatite/BC (Hap/BC) nanocomposite scaffolds combine good mechanical 

properties with an open pore structure, suitable candidates for tissue engineering applications. 

With the purpose of evaluating the potential of porous Hap/BC nanocomposite as a bone 

tissue engineering scaffold, Fang et al. performed in vitro assays [219, 220] were the 

proliferation and osteoblastic differentiation of stromal cells derived from human bone marrow 

(hBMSC) on Hap/BC nanocomposite was investigated. The results showed that the 

nanocomposites performed better than pure BC, regarding cell adhesion, due to the improved 

pore sizes and presence of the inorganic component. In addition, the authors demonstrated 

that the nanocomposites stimulate cell proliferation while enhancing osteoblastic differentiation 

of hBMSC, without osteogenic reagents. Other authors have also synthesized and 

characterized BC-hydroxyapatite scaffolds, for bone regeneration [221-223]. Shi and 

colleagues used an alkaline treatment to optimize the biomimetic mineralization of BC pellicles 

[172]. Calcium-deficient carbonate hydroxyapatite/BC (CaDHCAp/BC) nanocomposites were 

synthesized in a 3D network of BC nanofibers. The alkaline treatment improved the 

mineralization efficiency, making the CaDHCAp/BC a potential biomaterial for bone tissue 

engineering. 

BC is a very attractive material for wound dressings, providing a moist environment for wound 

regeneration, resulting in a better healing. However, bacterial cellulose itself has no 

antimicrobial activity to prevent wound infection. To achieve antimicrobial activity, Maneerung 

et al. impregnated BC with silver nanoparticles, by immersing the BC pellicles in a silver nitrate 

solution [224]. Sodium borohydride was then used to reduce the absorbed silver ion (Ag+), 

inside the BC network, to metallic silver nanoparticles. The size and size distribution of the 

nanoparticles were effectively controlled by adjusting the molar ratio of NaBH4:AgNO3. Under 

optimal conditions, well dispersed and regular spherical silver nanoparticles were obtained. 

The freeze-dried silver nanoparticle-impregnated bacterial cellulose exhibited a strong 

antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus 

(Gram-positive), bacteria commonly found on contaminated wounds. 

Another composite material was recently reported by Charpentier and colleagues: polyester 

modified with UV/ozone and plasma treatments, bearing improved hydrophilic character, was 
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coated with BC to produce a new hybrid material that presents potential use in vascular 

prosthetic devices [225]. 

Haigler et al. added carboxymethylated cellulose (CMC) to the G. xylinus culture medium and 

analyzed the properties of the altered BC produced [226]. The results revealed that an 

alteration of the ribbon assembly occurs in the presence of CMC, often inducing synthesis of 

separate, intertwining bundles of microfibrils. Similarly, Tajima incorporated water-soluble 

polymers such as CMC and methyl cellulose in BC, by incubating G. xylinus in a medium 

containing these polymers [227]. Increased BC production and composites with controllable 

degradability and mechanical strength were obtained. Also Sakairiet al. produced CMC-BC 

composites by adding CMC to the culture medium [228]. The obtained material had ion 

exchange ability, with enhanced specific adsorption affinity for lead and uranyl ions, as 

compared to the original CMC and BC. Using the same approach, Whitney and colleagues 

[229] added mannan-based polysaccharides to the culture medium, and observed the 

formation of networks with distinct architecture and modification of other molecular features, 

such as reduction of crystallinity. A range of different cellulose-associated networks could be 

formed, depending of the levels of glucomannan and galactomannans added.  

Many other studies enlarge the repertoire of different bacterial cellulose composites with 

potential biomedical application. Different processes were developed to produce BC 

nanocomposites filled with silica particles, yielding improved elastic modulus and strength, as 

compared to native BC [230]. Serafica et al. produced BC in a rotating disk bioreactor. Several 

kinds of solid particles (silica gel, iron, aluminum, glass beads, etc) were added to the 

medium, during gel formation, being trapped to form new classes of composite materials 

[231]. Other works report the production of BC – nanocomposites, for example BC/starch 

[232], BC reinforced with cellulose acetate butyrate [233], BC/glucoronoxylan blends [234], 

BC/poly dimethylacrilamide and BC/gelatin [235, 236]. 

 

Carbohydrate – Binding Module (CBM) 

Carbohydrates are the most abundant biomolecules on Earth and are implicated in 

intercellular recognition, bacterial and virus infection, metabolism, structural support, energy 

storage, targeting, attachment, etc. To perform such roles, several carbohydrate-active 
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(CAZymes) proteins have acquired noncatalytic modules that interact very specifically with 

mono, oligo, and polysaccharides. In general, these carbohydrate-binding modules (CBM) are 

autonomous folding without enzymatic activity that brings the catalytic domain in close 

proximity to the substrate, insuring a prolonged contact and increasing the effective 

concentration of the enzyme on the target [237, 238]. 

CAZy (CarbohydrateActive enZyme, http://www.cazy.org/) is a database of glycoside 

hydrolases (GHs), glycosyltransferases (GTs), polysaccharide lyases (PLs), carbohydrate 

esterases (CEs) and CBMs. These protein groups are further subdivided into a number of 

families within the groups. In the CAZy database, a CBM is currently defined as a contiguous 

amino acid sequence within a carbohydrate-active enzyme with a discrete fold having 

carbohydrate-binding activity. Few works described the occurrence of isolated CBMs, as a 

single protein [239-241] and CBMs that integrate the cellulosomal scaffoldin proteins [242-

244]. The requirement of CBMs existing as modules within larger enzymes sets this class of 

carbohydrate-binding protein apart from other non-catalytic sugar binding proteins such as 

lectins and sugar transport proteins. 

CBMs may be found in any domain of life and are present in a large variety of enzymes, with 

different functions and substrate affinities that recognize polysaccharides such as crystalline 

cellulose, non-crystalline cellulose, chitin, β-1,3-glucans and β-1,3-1,4-mixed linkage glucans, 

xylan, mannan, galactan and starch [238]. They have been classified based on amino acid 

similarity into 59 primary structure-based families in the CAZy database. Structures for 44 of 

the 59 families have been reported and, from its analysis, it is clear that while CBMs vary 

widely in their carbohydrate specificities, common folds are observed in proteins with different 

specificities and belonging to different taxonomic groups. CBMs contain from 30 to about 200 

amino acids and exist as a single, double, or triple domain and are located at C- or N-terminal, 

and in a less extent, centrally positioned within the polypeptide chain of proteins. The primary 

functions of CBMs in CAZyme [237, 238, 245] are described in table 5. 

Once the CBMs are independent folding units (allowing it to be expressed in chimeric proteins) 

and its binding specificities can be controlled using Genetic Engineering technology and in 

general the attachment matrices for these domains are abundant and inexpensive [245],  
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Table 5. Functions of CBMs in CAZyme 

Proximity effect  CBMs promote the association of the enzyme with the substrate, insuring a 

prolonged contact, and thereby increasing their effective concentration. 

Targeting effect Fine specificity for polysaccharide substructures. 

Nonhydrolytic substrate disruption Leading to an increase in substrate access and more susceptibility to 

enzymatic hydrolysis. 

Avidity effect  Increases the avidity of the CAZyme for the substrate. 

 

different applications of CBMs have been described: the improvement of fibers in textile and 

paper industry [246-250];  surface-exposed CBMs can be an efficient means of whole-cell 

immobilization [251-254]; the recombinant DNA technology allows the production of chimeric 

proteins containing foreign CBM. Many protein have been expressed fused to CBMs, 

establishing CBMs as high-capacity purification tags for the isolation of biologically active target 

from biotechnological products at relatively low cost [250]; Several studies have shown the 

potential of CBMs for modifying the characteristics of several enzymes through the addition or 

substitution of a CBM in order to improve the enzyme stability or hydrolytic activity [255]; 

Other studies involved actual modification of the CBM moiety to match a set of defined 

reaction conditions, for example, replacing some amino acid in different positions, its possible 

to obtain a definite pH dependency [256]; Another field for CBM application is bioremediation 

where, for example, an enzyme capable to degrade or chelate harmful substances to the 

environment could be expressed with a CBM that enable the anchorage of the enzyme in a 

support, such as reactors with immobilized enzyme for the detoxification of hazardous 

organophosphates, heavy metals, etc [257-259]; Finally, CBMs have been used as analytical 

tools in research and diagnostics, such as probes for protein-carbohydrate interaction and 

microarrays [238, 245]. 

Cellulose-binding module from the Clostridium thermocellum. The initial event in the 

cellulose degradation process is the binding of the cellulolytic enzyme(s) or the entire 

microorganism to the cellulose substrate. This binding is mediated by a separate module that 

binds to cellulose, a cellulose-binding module (CBM). CBMs appear to play a multiple role in 

cellulolysis. They often comprise a distinct domain of a free enzyme, linked to one or more 

catalytic domains (not necessarily cellulases). In some cases, they occur in a discrete subunit, 
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together with additional non-catalytic domains, which serve to integrate the catalytic subunits 

into a multifunctional enzyme complex, the cellulosome [260, 261]. Besides targeting cells to 

cellulose substrate, CBM mediate the non-hydrolytic disruption of cellulose fibers [262]. 

A cellulose-binding module family-III from the cellulosomal-scaffolding protein A of the bacteria 

Clostridium thermocellum (an anaerobic thermophilic bacterium that excretes large amounts of 

cellulolytic enzymes of particularly high specific activity) [263] was used to modified structures 

based on bacterial cellulose in the works developed in this thesis. The enzymatic degradation 

of cellulose by C. thermocellum is mediated by a cellulosome, that consist of discrete multi-

functional, multi-enzyme complexe, wherein all the enzymic factors leading to cellulose 

degradation are physically attached to a central scaffold component (CipA – Cellulosome 

integrating protein) [242]. The CipA contains cohesin modules, normally in multiple copies, for 

incorporation of the catalytic domains, including β-(1→4)-endoglucanases, cellobiohydrolases, 

hemicellulases and other cellulosomal components. The scaffolding also frequently includes a 

carbohydrate-binding module (i.e., a cellulose-binding module), through which the complex 

usually recognizes and binds to the substrate [264, 265]. Family-Ill CBMs comprise -150 

amino acid residues. Currently have 285 members, one with chitin binding ability; the 

structure of six of these CBM3 is known. They have been identified in many different bacterial 

enzymes, and in the non-hydrolytic proteins CbpA [243], CipA [266], CipB [267] and CipC 

[244] which are responsible for the structural organization of the cellulosomes present in 

Clostridium cellulovorans (CbpA), Clostridium thermocellum (CipAand CipB from strains ATCC 

27405 and YS, respectively), and Clostridium cellulolyticum (CipC), respectively. 

The crystal structure of a family-III cellulose-binding module (CBM3) from the cellulosomal 

scaffoldin subunit of Clostridium thermocellum was determined by Tormo and collegues[268]. 

According to this work the proteic structure forms a nine-stranded β-sandwich with a jelly roll 

topology and contains a Ca2+ binding site. Conserved, surface-exposed residues map into two 

defined surfaces located on opposite sides of the molecule. On the face that is proposed to 

bind to crystalline cellulose there is a planar linear strip of aromatic residues (His57, Tyr67 

and Trp118) and two polar side chains of aspartic acid (Asp56) and arginine (Arg112). The 

other conserved residues are contained in a shallow groove, the function of which is currently 

unknown, and which has not been observed previously in other families of CBMs [268]. 
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Improving the affinity of fibroblasts for bacterial 
cellulose using carbohydrate – binding modules 
fused to RGD 
 

  

Adapted from: Journal of Biomedical Materials Research: Part A 2010; 92A (1): 9-17. 

 

Abstract 

The attachment of cells to biomedical materials can be improved by using adhesion 

sequences, such as Arg-Gly-Asp (RGD), found in several extracellular matrix proteins. In this 

work, bifunctional recombinant proteins, with a Cellulose-Binding Module – CBM, from the 

cellulosome of Clostridium thermocellum - and cell binding sequences - RGD, GRGDY - were 

cloned and expressed in E. coli. These RGD-containing cellulose binding proteins were purified 

and used to coat bacterial cellulose fibres. Its effect on the cell adhesion/biocompatibility 

properties was tested using a mouse embryo fibroblasts culture. 

Bacterial cellulose (BC) secreted by Gluconacetobacter xylinus (=Acetobacter xylinum) is a 

material with unique properties and promising biomedical applications. CBMs adsorbs 

specifically and tightly on cellulose. Thus, they are a useful tool to address the fused RGD 

sequence (or other bioactive peptides) to the cellulose surface, in a specific and simple way. 

Indeed, fibroblasts exhibit improved ability to interact with bacterial cellulose sheets coated 

with RGD – CBM proteins, as compared with cellulose treated with the CBM, i.e., without the 

adhesion peptide. The effect of the several fusion proteins produced was analysed. 
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Introduction 

The fundamental premise of tissue engineering is to develop tissue substitutes to restore or 

improve the function of diseased or damaged human tissues. Many biomaterials have been 

studied as scaffolds, in which the cells can be seeded, cultured and then, implanted to induce 

and direct the growth of new, healthy tissue. 

The primary function of a scaffold is tissue conduction and, therefore, it must allow cell 

attachment, migration onto or within the scaffold, cell proliferation and cell differentiation. It 

must also provide an environment where the cells conserve their phenotype [1]. The 

successful development of tissue engineering scaffolds requires proper substrates for cell 

survival and differentiation. The attachment of cells to the biomedical materials can be 

improved by using adhesion molecules. These molecules, present in the extracellular matrix 

proteins, regulate the adhesion, migration and growth of cells, by binding to integrin receptors 

located on the outer cellular membranes [2, 3]. The tripeptide motif RGD was identified 23 

years ago by Pierschbacher and Rouslahti as the minimal essential cell adhesion peptide 

sequence in fibronectin [4]. Since than, cell adhesive RGD sites were identified in many other 

extracellular matrix (ECM) proteins, including vitronectin, fibrinogen, von Willebrand factor, 

collagen, laminin, osteopontin, tenascin and bone sialoprotein as well as in membrane 

proteins, in viral and bacterial proteins, and in snake venoms (neurotoxins and disintegrins) 

[5]. The RGD sequence is by far the most effective and most often employed peptide sequence 

used to stimulate cell adhesion on synthetic surfaces, due to its widespread distribution and 

use throughout the organism, its ability to address more than one cell adhesion receptor, and 

its biological impact on cell anchoring, behaviour and survival [6]. Incorporation of biomimetic 

adhesion sites can be used to promote cell adhesion and migration on or within bioactive 

materials. The selection of which type of cells adhere to a material and their spatial distribution 

can also be controlled through the selection of the adhesion sites that are incorporated into the 

bioactive material [7]. 

In the present study, we analyzed the adhesion of mouse embryo fibroblasts on bacterial 

cellulose (BC). BC is secreted by Gluconacetobacter xylinus (=Acetobacter xylinum). It is a 

material with unique properties, including high water holding capacity, high crystallinity, a 
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ultrafine fiber network, and high tensile strength [8]. Although chemically identical to plant 

cellulose, it has a unique fibrillar nanostructure, which determines its extraordinary physical 

and mechanical properties, characteristics which are quite promising for modern medicine and 

biomedical research [9]. For example, membranes of bacterial cellulose were used as an 

artificial skin for temporary covering of wounds and bacterial cellulose tubes were produced as 

substitution material for blood vessels. BC was also successfully used in periodontal 

treatments and applied as replacement for dura mater (a membrane that surrounds brain 

tissue) [8, 9]. 

A method for producing chimeric proteins, RGD-CBM containing a cellulose-binding module 

(CBM), was developed. CBMs are discrete protein modules found in a large number of 

carbohydrolases and a few nonhydrolytic proteins [10]. A cellulose–binding domain family III 

from the cellulosomal-scaffolding protein A of the bacteria Clostridium thermocellum, was used 

in the present work [11]. The main goal was the functionalization of bacterial cellulose aiming 

its utilization as scaffold in tissue engineering. There are several methodologies to bind 

adhesion molecules to the biomaterials. However, the use of a CBM, as proposed in this work, 

is a simple way to direct bioactive peptides to the cellulose surface, avoiding the use of 

complex peptide chemical grafting. Furthermore, the adsorption of this CBM to BC is specific 

and very stable. Indeed, the removal of CBM from cellulose can be achieved only using 

denaturant agents [10]. Thus, the coating of BC with recombinant proteins is stable enough for 

its practical application in the designed of biomaterials. 

The genes encoding these CBM-containing chimeric proteins were cloned, and the proteins 

expressed and purified. Polystyrene surfaces and bacterial cellulose sheets where “coated” 

with these RGD-containing proteins, and then used in adhesion/biocompatibility tests, using a 

mouse embryo fibroblasts culture. Fibroblasts were selected as model animal cells to test our 

strategy of bacterial cellulose modification, while the polystyrene plate was used as a model 

surface to test the recognition of the RGDs sequences by the integrins on cells membrane. 
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Materials and methods 

Production of bacterial cellulose 

Gluconacetobacter xylinus (ATCC 53582) purchased from the American Type Culture 

Collection was grown in Hestrin-Schramm medium, pH 5.0. The medium was inoculated with 

the culture, added to the 24-well polystyrene plate (1 mL/per well) and incubated statically at 

30 oC, for 7 days. BC pellicles were purified by 4% SDS treatment at 70 oC, for 12 h followed by 

4% NaOH at 70 oC, for 90 min. Samples were autoclaved and stored in PBS pH 7.4, at 4ºC, 

prior to use (FIGURE 1). 

 

 

Figure 1. Gluconacetobacter xylinus (ATCC 53582) cultured on liquid Hestrin-Schramm medium 

after 7 days. The medium was inoculated with the culture and added to the 24-well polystyrene 

plate (1 mL/per well) and incubated statically at 30 oC. 

 

Construction of a gene fusion encoding the adhesion peptide and a CBM 

The pET21a vector (Novagen) with the CBM from C. thermocellum and a N-terminal linker 

cloned in the NheI and XhoI restriction sites was used as template for amplification of the 

fused genes. The nucleotide sequence of each peptide was determined and the sequences 

optimized for E. coli expression. Peptides were then amplified by PCR with the enzyme Vent 

DNA polymerase (New England Biolabs) using primers presented in Table 1. Primers included 

NheI and XhoI restriction sites, which are shown in bold. PCRs were performed as follows: 

preheating at 95 ºC for 2 min, 40 cycles at 95 ºC for 45 s, 53 ºC for 45 s and 72 ºC for 45s, 

followed by an elongation at 72 ºC for 10 min. The DNA recombinant coding sequences were 

cloned in pET21a using E. coli XL1 Blue (Strategene) as cloning strain. Clones containing the 
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recombinant genes were identified by restriction enzyme analysis. Amplified fragments were 

sequenced to ensure that no mutations had occurred in the PCRs.  

The recombinant derivates were then digested with NheI and XhoI and the excised products 

were cloned into the expression vector pET21a (Novagen), previously digested with the same  

Table 1. PCR primers with the restriction sites NheI (GCTAGC) and XhoI (CTCGAG) used for 

cloning the gene fusions encoding the adhesion peptide with CBM. 

Recombinant protein name Primers 
RGD/CBM Fwd: 5´- CTA GCT AGC AGA GGT GAT ACA CCG ACC AAG GGA G - 3´ 

Rev: 5´- CAC CTC GAG TTC TTT ACC CCA TAC AAG AAC - 3´ 
GRGDY/CBM Fwd: 5´- CTA GCT AGC GGT AGA GGT GAT TAT ACA CCG ACC AAG GGA G - 3´ 

Rev: 5´- CAC CTC GAG TTC TTT ACC CCA TAC AAG AAC - 3´ 
RGD/CBM/RGD Fwd: 5´- CTA GCT AGC AGA GGT GAT ACA CCG ACC AAG GGA G - 3´ 

Rev: 5´- CAC CTC GAG ATC ACC TCT CGG TTC TTC AGG TTC TGT ACC GCC CGG 
CGG CGT TCC TTC TTT ACC CCA TAC AAG AAC - 3´ 

GRGDY/CBM/GRGDY Fwd: 5´- CTA GCT AGC GGT AGA GGT GAT TAT ACA CCG ACC AAG GGA G - 3´ 
Rev: 5´- CAC CTC GAG ATA ATC ACC TCT ACC CGG TTC TTC AGG TTC TGT ACC GCC 

CGG CGG CGT TCC TTC TTT ACC CCA TAC AAG AAC - 3´ 

 

restriction enzymes. This vector carries a T7lac promoter and includes a C-terminal His6-tag in 

the recombinant proteins to facilitate purification. The sequence encoding the adhesion peptide 

(RGD or GRGDY) was annealed with the CBM at the N- terminal, through the N-terminal linker 

from the CBM containing 40 amino acids. In order to introduce another adhesion sequence at 

the C-terminal of the CBM, a linker containing 12 amino acids was inserted between the C-

terminal of the CBM and the new adhesion sequence (TABLE 1, FIGURE 2).  

 

 

Figure 2. Construction of the gene fusion encoding adhesion peptide and the Linker-CBM. (A) 

Construction containing one copy of the adhesion peptide at the N-terminal of the CBM; (B) 

Construction containing two copies of the adhesion peptide. 
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Production and purification of recombinant proteins 

High-level expression studies and protein production were carried out in E. coli BL21 (DE3) 

cells grown at 37 oC in LB medium supplemented with ampicillin at 100µg/ml. Cultures were 

induced at OD595 = 0.5 with IPTG (1mM). Five hours after induction the cells were separated 

from the culture medium by centrifugation at 13,000g. Then, cell pellet was ressuspended 

with buffer A (20mM Tris, 20mM NaCl 5mM CaCl2 pH 7.4 and phenylmethylsulfonylfluoride 

(PMSF) 0.1mM) and lysed by sonication. Imidazole was added to a final concentration of 

40mM and the pH was adjusted to 7.4. The cell free extract (soluble fraction) was then, 

collected by centrifugation at 15,000g for 30 minutes, at 4 ºC and the His6 – tagged 

recombinant proteins purified by immobilized metal ion affinity chromatography, using a 5mL 

nickel His–Trap column (GE Healthcare). Following purification, the proteins were dialyzed 

against buffer A and stored at -20 ºC, prior to use. Samples from purification’s different steps 

and pure protein were analysed by SDS – PAGE using a 12% (W/V) acrylamide gel, Coomassie 

stained. 

 

Interaction of recombinant proteins with the cells 

In order to demonstrate the interaction of the recombinant RGD with cell membrane, the 

recombinant proteins were chemically conjugated with isothiocyanate (FITC). The fluorescent 

proteins were added to the wells of 96-well polystyrene plates and the fibroblasts were added 

in 200µl of DMEM medium with/without serum. The plates were incubated for 1 hour at 37 

oC, in atmosphere of 5% CO2 and 95% humidified air. The cells were observed through 

fluorescence microscopy. 

 

Effect of the recombinant proteins on the adhesion and spreading of fibroblasts 

The mitochondrial activity of the cultured cells was determined using a colorimetric assay, 

which is related to cell viability. The MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay was performed as follows: the 

purified recombinant proteins were added to the wells of the 96-well polystyrene plates 

(0.05mg of protein/per well), and left adsorbing to the plate at 4ºC, overnight. Unbound 
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protein was washed out with PBS. In a second test, the adhesion proteins were added to the 

wells of 24-well polystyrene plates (0.25mg of protein/per well), coated with bacterial cellulose 

sheets. As referred above, the BC sheets were produced in similar 24-well polystyrene plates, 

such that they tightly fit in the wells, completely covering the bottom surface. The plates were 

incubated overnight at 4 ºC. Unbound protein was removed and analyzed by SDS – PAGE, 

then the bacterial cellulose sheets were washed with PBS. The fibroblasts 3T3 were seeded on 

the polystyrene plate at a density of 4 x 104 cells/per well, in DMEM medium without serum. 

One hour after the addition of the cells, the wells were washed with PBS and DMEM with 

serum (10%) was added. The MTS assay and microscope observations of the attached and 

spreading 3T3 fibroblasts was carried out at 1h, 5h, 24h and 48h after the addition of the 

cells. In the assay with BC, the fibroblasts 3T3 were seeded at a density of 12 x 104 cells/per 

well, in DMEM medium without serum. The plates were incubated at 37 oC, in atmosphere of 

5% CO2 and 95% humidified air. Two hours after the addition of the cells, the wells were 

washed with PBS and DMEM with serum (10%) was added. The MTS assay and microscope 

observations of the attachment and spreading of 3T3 fibroblasts were carried out at 2h, 24h 

and 48h after the addition of the cells. The results were obtained from at least 3 different 

assays, each one with samples in triplicates. 

 

Results 

Production and purification of recombinant proteins 

The gene fragment encoding RGD–CBM was subcloned into the high-expression vector pET 

21a, a plasmid vector containing the T7 promoter and a histidine tag sequence. Four different 

constructs were made, through the fusion of different peptides with a family 3 CBM from the 

Clostridium thermocellum cellulosome. It has been found, by other authors, that the 

aminoacids flanking the RGD sequence may affect the affinity of the integrin binding. This 

interaction may also depend on the peptide exposure, and therefore different constructs were 

analyzed in this work. Two constructs were made by fusing the RGD or GRGDY sequences at 

the N – terminal of the linker – CBM. In the other two recombinant constructs a C – terminal 

linker was designed and an additional RGD or GRGDY sequence was inserted (FIGURE 2). As 

shown in Figure 3, all the four recombinant fusion proteins (CBM, RGD–CBM, RGD–CBM–



Chapter 2 
 

  79 

RGD, GRGDY–CBM and GRGDY–CBM–GRGDY) were expressed by E. Coli in the soluble 

fraction. It can also be observed from Figure 3 that the recombinant proteins were isolated to 

high purity and concentration.  

 

 

Figure 3. Analysis by SDS-PAGE of recombinant protein expression and nickel column protein 

purification. 1-Molecular weight marker (250 kD, 150 kD, 100 kD, 75 kD, 50 kD, 37 kD, 25 kD, 

20 kD); 2-Insoluble fraction; 3-Soluble fraction; 4- Column filtrate; 5 to 9-Eluted fraction with 300 

mM of Imidazole. (A) CBM; (B) RGD–CBM; (C) RGD–CBM–RGD; (D) GRGDY–CBM; (E) GRGDY–

CBM–GRGDY. 

 

The interaction of RGD and GRGDY with the cells, in medium with or without 

serum 

The fibroblasts, incubated with the recombinant proteins conjugated with FITC, were observed 

by fluorescence microscopy. This study was performed to evaluate whether the recombinant 

proteins are able to interact with the cells through the RGD/GRGDY peptides. When the assays 

were performed with serum free medium, only the cells treated with RGD–CBM and GRGDY–

CBM became fluorescent, as displayed in Figure 4. When medium containing serum was used, 

no fluorescent cells were observed, due to competition of the serum proteins with RGD/GRGDY 
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for the integrins on the cell membranes. These results demonstrate the interaction of the 

RGD/GRGDY with the cells, and furthermore that the CBM does not interact with the cells. 

 

 

 

Figure 4. Fluorescent microscopy showing the binding of recombinant proteins to cell membranes. 

The arrows point with respect to some of the fluorescent cells. (A) RGD/CBM; (B) GRGDY/CBM; 

(C) CBM. 

 
Attachment of fibroblasts to the polystyrene plate coated with recombinant 

proteins  

In order to test the effect of the recombinant proteins in improving the adhesion and 

proliferation of fibroblasts, the cell culture polystyrene plates – with non-specifically bound 

proteins - were used. The polystyrene plates allow the observation of the cells morphology, 

unlike the bacterial cellulose. In these assays we aimed at observing whether the RGD 

containing proteins improve the adhesion of fibroblasts and also their effect on the cell 

differentiation.  

The MTS results and microscopic observations showed that the proteins containing the RGD 

sequence (RGD–CBM and RGD–CBM–RGD) were able to improve the adhesion of fibroblast on 

polystyrene plates, when compared to the controls (CBM or buffer). Furthermore, the RGD 

sequence was more effective than GRGDY. The results also showed that, while the protein 

containing one copy of the GRGDY sequence was able to improve the adhesion of fibroblasts to 

the polystyrene surface, the protein containing two copies of the GRGDY showed no effect. The 

fibroblast cells adhered to the wells treated with RGD–CBM and RGD–CBM–RGD showed an 

elongated morphology one hour after seeding, while the cells on the wells treated with the 

GRGDY–CBM and GRGDY–CBM–GRGDY and also on the control assays exhibit more spherical 

morphology (FIGURE 5 and FIGURE 6).  
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Figure 5. Photographs showing the effect of the recombinant proteins on cell (fibroblasts 3T3) 

attachment to polystyrene plate. (A) RGD–CBM, (B) RGD–CBM–RGD, (C) GRGDY–CBM, (D) 

GRGDY–CBM–GRGDY, (E) CBM, (F) Buffer, and (G) Control. The photographs were taken at 1, 5, 

24, and 48 h after addition of cells. 



Chapter 2 
 

  82 

 
Figure 6. MTS assays of fibroblast culture on polystyrene plates treated with the recombinant 

proteins (CBM, RGD–CBM, RGD–CBM–RGD, GRGDY–CBM, and GRGDY–CBM–GRGDY). The MTS 

test was developed at 1, 5, 24, and 48 h after addition of cells. 

 

It is quite clear from the results that the presence of the RGD–CBM, RGD–CBM–RGD and, to 

lower extent, GRGDY–CBM proteins, adsorbed on the polystyrene cell culture wells, improves 

the adhesion of fibroblasts. 

 

Attachment of fibroblasts on BC surfaces  

The recombinant proteins were added to the bacterial cellulose sheets and left adsorbing 

overnight. Then, the non–adsorbed protein was removed and analysed by SDS-PAGE 

electrophoresis. As may be seen in Figure 7, most of the protein adsorbed on the BC fibers. 

Thus, not only a functional RGD is present in the recombinant proteins, but also the CBM 

module fully conserves its functionality and ability to bind cellulose. 

The adhesion of fibroblasts to BC was improved by the presence of the adsorbed recombinant 

proteins. Indeed, the results of the MTS test demonstrated that the proteins containing the 

RGD sequence were able to significantly increase the adhesion of fibroblast to BC surfaces, 

while the proteins containing the GRGDY sequence had no effect, taking as reference the 

cellulose treated with the CBM or with buffer. The results also demonstrated that the protein 

containing one RGD sequence have a stronger effect than the protein containing two RGD 

sequences (FIGURE 8). 
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Figure 7. Analysis by SDS-PAGE of the interaction between the recombinant proteins with the 

cellulose sheets. Line 1, 10, and 11 - Molecular weight marker (250 kD, 150 kD, 100 kD, 75 kD, 

50 kD, 37 kD, 25 kD, 20 kD); line 2, 3 - RGD–CBM; line 4, 5 - RGD–CBM–RGD; line 6, 7 - GRGDY–

CBM; line 8, 9 - GRGDY–CBM–GRGDY; line 12, 13 - CBM. Lines 3, 5, 7, 9, and 13 represent the 

proteins after the interaction with BC sheets. 

 

 

 

Figure 8. MTS assays of fibroblast culture treated with the recombinant proteins (CBM, RGD–

CBM, RGD–CBM–RGD, GRGDY–CBM, and GRGDY–CBM–GRGDY) at the bacterial cellulose 

pellicles. The MTS test was developed at 2, 24, and 48 h after addition of cells. 
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Discussion 

It is known that the amino acids flanking the RGD sequence can influence (positive or 

negatively), the interaction of the RGD with the integrins on the cell membrane. Many 

sequences exhibiting different activities have been described: RGDS, GRGDG, GRGDS, GRGDF, 

YRGDS, CGRGDSPK, etc[6]. Different cell lines recognize the RGD sequences in a distinct way. 

In this work, the sequences RGD and GRGDY were fused to a CBM, and the interaction of the 

recombinant proteins with fibroblasts was analyzed. 

The observation of fibroblasts, incubated with the soluble recombinant proteins conjugated 

with FITC, by fluorescence microscopy, revealed that the integrins interact with the RGD and 

GRGDY sequences. Different effects are observed in serum and serum–free medium. These 

differences are probably due to competition of fibronectin and other serum proteins with the 

RGD/GRGDY – CBM for the integrins on the cell membrane. 

The recombinant proteins containing the RGD or GRGDY sequences were able to improve the 

adhesion of fibroblasts to the polystyrene plate, the CBM alone having no effect. Early cell 

spreading was also triggered by RGD-CBM and RGD-CBM-RGD proteins, as revealed by the 

more elongated morphology of the cells one hour after seeding on the polystyrene plates. 

Similar results have been previously obtained by other authors. Wierzba et al. (1995) produced 

a recombinant protein containing a RGD sequence at the C-terminus of a CBM from the 

Cellulomonas fimi endoglucanase A (CenA) [12]. This CBM/RGD promoted the attachment of 

green monkey Vero cell to polystyrene and cellulose acetate. Wang et al. (2006) studied the 

effect of a protein containing two GRGDS sequences at the N- and C- terminal of a CBM from 

Trichoderma koningii; this recombinant protein improved the adhesion of keratinocytes and 

dermal fibroblasts when grafted on the petri dish [13]. 

The proteins containing the RGD sequence significantly increased the adhesion of the fibroblast 

on the cellulose sheet, as compared to the cellulose treated only with CBM or buffer, while the 

GRGDY had no effect. The protein containing a single RGD had, surprisingly, a stronger effect 

on the adhesion of fibroblasts than the protein containing two RGDs. Thus, the effects of RGD 

vs GRGDY and 1xRGD vs 2xRGD are distinct, depending on whether the proteins are adsorbed 

on polystyrene or in bacterial cellulose. The affinity of the cells is expected to increase with the 

concentration of RGD copies. This was the motivation for the production of fusion proteins with 
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two RGD copies. However, the results demonstrate that there is not a simple and 

straightforward relation between the RGD surface concentration and the cells adhesiveness 

and proliferation. Besides concentration, also the exposure, conformation and steric effects 

may play a role to the RGD-integrin interaction. In fact, it seems that the second RGD or 

GRGDY brings no further functionality to the proteins. It must be remarked that the presence of 

a RGD sequence, in a protein, does not guarantee cell attachment activity. Indeed, several 

hundred proteins contain the RGD tripeptide, but most of these do not have cell attachment 

activity. To be functional, the RGD sequence must be appropriately exposed, in a conformation 

that can be recognized by a cell surface receptor [12]. The results obtained in this work 

consistently showed that, in the assays with BC, the protein containing two RGD sequences 

had lower activity. The CBM used in this work, from the bacteria Clostridium thermocellum, 

has N- and C- terminals close to each other [11]. Probably, the second linker - containing 

twelve amino acids, followed by the second adhesion peptide and the hexahistidine tag - at the 

protein C-terminal interferes with the interaction between the N-terminal RGD or GRGDY with 

the integrins on the cell membrane. Also, it may be that the presence of a hexahistidine tag, 

following the RGD, interferes with the exposure of this sequence and its interaction with the 

integrins. This effect is more relevant with cellulose – where the CBM adsorbs with a specific 

conformation and orientation - than with the polystyrene plate – where the non-specific 

adsorption probably leads to random orientation of the molecules. Wierzba et al. (1995) 

observed that different cell lines exhibited different patterns of attachment to CBM–RGD, 

depending on whether it was immobilized on polystyrene plate or cellulose acetate. Vero, COS, 

HFF, 3T3, 293, and U373 cells attached well to CBM–RGD immobilized on polystyrene or 

cellulose acetate. CHO, MRC-5, and HEp-2 cells attached to CBM–RGD immobilized on 

polystyrene, but not to CBM–RGD immobilized on cellulose acetate. BHK and L cells failed to 

attach to CBM–RGD immobilized on both surfaces. The authors conclude that the adsorption 

of CBM–RGD to polystyrene plate is nonspecific and presents the RGD in a different 

configuration or environment, and this may account for differences in the observed cell-binding 

properties, as observed in this work [14]. 
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Conclusion 

Bacterial cellulose is a material with excellent biocompatibility and mechanical properties, thus 

holding great potential for biomedical applications. In this work, a new approach was 

developed to functionalise the bacterial cellulose, through recombinant proteins containing 

adhesion peptides conjugated with a cellulose binding-module. The use of recombinant 

proteins containing a CBM domain, exhibiting high affinity and specificity for cellulose surfaces, 

allows the control on the interaction of this material with cells. The CBM may virtually be 

combined to any biologically active protein for the modification of cellulose-based materials, for 

in vitro or in vivo applications.  The recombinant proteins containing the RGD or GRGDY 

sequences were cloned and successfully expressed in fusion with a family 3 CBM of 

Clostridium thermocellum in E. coli expression system. The recombinant proteins containing 

the adhesion peptide were able to promote adhesion and spreading of the cells. Furthermore, 

the proteins containing the sequence RGD showed a stronger effect than GRGDY on fibroblast 

cells. The effect of different adhesive sequences seems to depend on the material where they 

are adsorbed, probably due to conformation effects. Protein models – not in the scope of this 

work - would probably be useful on helping the design of more effective recombinant proteins. 
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Chapter 3 
 

 

Improving bacterial cellulose for blood vessel 
replacement: functionalization with a chimeric 
protein containing a cellulose-binding module and 
an adhesion peptide 
 

Adapted from: Acta Biomaterialia 2010; 12;6:4034–4041. 

 

Abstract 

Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD 

or GRGDY) were produced and used to improve the adhesion of human microvascular 

endothelial cells (HMEC) to Bacterial Cellulose (BC). The effect of these proteins on the HMEC-

BC interaction was studied. The results obtained demonstrated that the recombinant proteins 

containing adhesion sequences were able to significantly increase the attachment of HMEC to 

BC surfaces, specially the RGD sequence. The images obtained by SEM microscopy showed 

that the cells on the RGD-treated BC present a more elongated morphology, 48h after cell 

seeding. The results also showed that the RGD decreased the in-growth of the HMEC cells 

through the BC and stimulated the early formation of cordlike structures by these endothelial 

cells. Thus, the use of recombinant proteins containing a CBM domain, with high affinity and 

specificity for cellulose surfaces, allows the control on the interaction of this material with cells. 

CBM may be combined virtually to any biologically active protein for the modification of 

cellulose-based materials, for in vitro or in vivo applications. 
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Introduction 

Cardiovascular disease is the leading cause of mortality in Western countries. Surgical bypass 

with autologous grafts remains the most used treatment, saphenous veins and mammary 

arteries being preferably used. However, many patients do not have suitable vessels, due to 

preexisting vascular disease, amputation or previous harvest for prior vascular procedures. 

Moreover, a second surgical procedure is needed to obtain the vessel [1, 2]. For the 

reconstruction of arteries with large caliber, currently available synthetic grafts (e.g.: Dacron, 

and ePTFE) offer a reasonable solution and proven clinical efficacy. However, for small size (<6 

mm) grafts, these materials generally present poor performance, due the anastomotic intimal 

hyperplasia and surface thrombogenicity [3-5]. This scenario prompts the search for new 

materials, suitable for the effective replacement of small blood vessels. 

Bacterial cellulose (BC) produced by Acetobacter organisms is a biomaterial that has gained 

interest in the field of tissue engineering, due to its unique properties. BC has been studied by 

several research groups as a scaffold for cartilage [6-8], wound dressing [9, 10], dental 

implants [11-17], nerve regeneration [18, 19] and vascular grafts [18, 20-23]. The in vivo 

biocompatibility of BC was also evaluated in a study conducted by Helenius and colleagues 

[24]. 

Many strategies have been pursued to improve the compatibility and effectiveness of vascular 

grafts, through the production of unreactive surfaces, the surface modification of existing 

synthetic grafts (e.g. modifying surface properties, the incorporation of biologically active 

substances) and coating with autologous cells [4]. Seeding the graft surface with endothelial 

cells [25] is a quite promising approach; the native vessel is this way mimicked, thereby 

decreasing thrombosis. However, the high loss of ECs by the restored blood flow after 

implantation presents a major challenge [4, 26, 27]. The rate and quality of endothelialization 

of a synthetic vascular graft depends on interaction of EC with these cardiovascular materials. 

Several approaches have been attempted to increase the EC adhesion on typically non-

adhesive polymeric biomaterials used for synthetic vascular grafts [28]. One such approach 

involves pre-coating with EC specific adhesive glues. The tripeptide Arg-Gly-Asp (RGD), an 

amino acid sequence found in many adhesive plasma and extracellular matrix protein, has 

been used to enhance cell adherence. Binding of cells to the RGD-sequence occurs via integrin 

receptors on the cell membranes. The improvement of the biocompatibility and performance of 

bacterial cellulose – envisaging its use as small-diameter vascular grafts – by enhancing the 
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adhesion of human microvascular endothelial cells (HMEC-1), was attempted in this work by 

coating BC with adhesion peptides. 

Many strategies developed to modify the materials used as synthetic grafts (e.g., Dacron, 

ePTFE, polyurethane) with the adsorption of active substances, like heparin, RGD, albumin-

heparin conjugates, dipyridamole, have little or no effect due to the coatings being washed 

away [27]. In a previous work (presented in chapter 2), we described the production of 

recombinant proteins containing the adhesion sequences fused to a CBM (cellulose-binding 

module) [29]. For artificial grafts based on cellulose, the use of a CBM (exhibiting high affinity 

and specificity for cellulose surfaces) that can virtually be combined to any biologically active 

protein is an important strategy to avoid loosing the biological agents coating the graft. 

 

Materials and methods 

Cell culture assays 

Human Microvascular Endothelial Cells (HMECs) (kindly provided by Dr João Nuno Moreira, 

Coimbra University) were used between passages 13 and 22. HMECs were cultured in RPMI 

1640 medium (Invitrogen Life Technologies, UK) supplemented with 10% FBS (Invitrogen Life 

Technologies, UK), 1% penicillin/streptomycin (Invitrogen Life technologies, UK), 1.176 g/L of 

sodium bicarbonate, 4.76 g/L of Hepes, 1mL/L of EGF and 1 mg/L of hydrocortisone > 98% 

(Sigma, Portugal), and maintained at 37ºC in a humidified 5% CO2 atmosphere. 

 

Cell attachment, proliferation and viability 

Production and purification of recombinant proteins: The recombinant proteins (RGD–CBM, 

RGD–CBM–RGD, GRGDY–CBM, GRGDY–CBM–GRGDY) have been formerly cloned in 

Escherichia coli and its production and purification was conducted as previously described [29] 

in chapter 2.  

Production of bacterial cellulose and coating with the recombinant peptides: Gluconacetobacter 

xylinus (ATCC 53582 and DSMZ 46604) purchased from the American Type Culture Collection 

and from the German Collection of Microorganisms and Cell Cultures were grown in Hestrin-
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Schramm medium, pH 5.0. The medium was inoculated with the culture, added to the 24-well 

or 96-well polystyrene plate (1 mL or 0.2mL per well, respectively) and incubated statically at 

30 oC, for 5 days (ATCC 53582) or 10 days (DSMZ 46604). BC pellicles were purified by 2% 

SDS treatment at 60 oC, for 12 h followed by 4% NaOH at 60 oC, for 90 min. Samples were 

autoclaved and stored in PBS pH 7.4, at 4ºC, prior to use. The pellicles produced by the DSMZ 

46604 strain (BC – L) presented a thickness of about 0.5mm, while the pellicles produced by 

the ATCC 53582 strain (BC – H) are approximately 3mm thick. The recombinant proteins were 

added (0.25mg of protein/per membrane) and left adsorbing to BC for 12 hours, 4 oC. Then, 

the membranes were washed with phosphate buffered saline (PBS). 

HMEC-1 Adhesion and proliferation: The mitochondrial activity of the cultured cells was 

determined using a colorimetric assay, which is related to cell viability. The MTS [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay was 

performed as follows: BC – H or BC – L membranes treated with the recombinant proteins 

were added to the wells of 24-well polystyrene plates. As referred above, the BC sheets were 

produced in similar 24-well polystyrene plates, such that they tightly fit in the wells, completely 

covering the bottom surface. The HMEC-1 cells were seeded on the BC at a density of 12 x 104 

cells/well, in RPMI medium without serum. The plates were incubated at 37 oC, in atmosphere 

of 5% CO2 and 95% humidified air. Two hours after the addition of the cells, the wells were 

washed with PBS and RPMI with 10% Foetal Bovine Serum (FBS) was added. The MTS assay 

of the adsorbed HMEC-1 cells was carried out to evaluate the adhesion of cells after 2h and 

proliferation 24h, 48h and 7 days after cell seeding. The results were obtained from at least 3 

different assays, each one with samples in triplicates. 

In order to evaluate the effect of the RGD on the rate of cell adhesion, a similar assay was 

performed at 15, 30, 60, 90 and 120 minutes after cell seeding, the non-adherent cells being 

washed out before running the MTS assay. 

Live and dead assay: The viability of the cells coating the cellulose (BC – L), treated or not with 

the recombinant proteins, was also analyzed with the LIVE/DEAD® Viability/Cytotoxicity Kit for 

mammalian cells (Invitrogen, UK). This kit provides two-color fluorescence cell viability assay, 

based on the simultaneous determination of live and dead cells with two probes that measure 

the intracellular esterase activity and the plasma membrane integrity. This assay employs 

calcein, a polyanionic dye, which is retained within the living cells, producing green 
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fluorescence. It also employs the ethidium bromide homodimer dye (red fluorescence), which 

can enter the cells through damaged membranes, binding to nucleic acids and being excluded 

by the intact plasma membrane of the living cells. The experiment was developed as described 

for the MTS assay. The fluorescence microscopy observations of the cells were carried out 

after 24 hours of incubation. Cells seeded on polystyrene were used as positive control (living 

cells), and cells further treated with methanol 70% for 30 min were taken as negative control 

(dead cells). Live and dead assay was also used to analyze the apoptosis event (qualitatively) in 

combination with the TUNEL assay (quantitatively). Samples were visualized and imaged using 

a Fluorescent microscope Olympus BX51 (Olympus Portugal SA, Porto, Portugal). 

 

Morphological analysis by fluorescent and SEM microscopy 

The BC – L membrane treated with recombinant proteins were seeded with cells as previously 

described. For fluorescent microscopy, 14 days after cells seeding on BC, the membranes 

were washed with prewarmed PBS; then, the cells were fixed in 4% formaldehyde (Pierce, 

Rockford, IL, USA) in PBS, permeabilized with acetone (Sigma) at –20ºC, and stained with 

Alexa Fluor 546-phalloidin (Molecular Probes). Nuclei were visualized by staining with DAPI. 

Microscopy observations were performed using an Olympus BX51 (Olympus Portugal SA, 

Porto, Portugal) fluorescence microscope. Fluorescence microscopic observations were carried 

out only with the BC – L membranes, which allow a proper visualization of the cells due to 

their thinness. For SEM microscopy, 48 hours after cell seeding the medium was removed and 

the BC pellicles washed twice with PBS. Next, 1ml of 2.5% glutaraldehyde in PBS was poured 

into each well, and the materials were maintained at room temperature for 1h, in order to fix 

the cells on the membrane. Afterwards, the membranes were rinsed with distilled water, and 

finally dehydrated by successive immersion in a series of ethanol-water solutions (55, 70, 80, 

90, 95, 100% v/v), for 30 min each, and allowed to evaporate at room temperature. The 

surface of the membranes with the adherent cells was observed with scanning electron 

microscopy (LEICA S 360), after gold-sputtering treatment. 
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Cell apoptosis 

Tunel Assay: HMEC-1 cells (12 × 104 cel/well) were seeded on the BC – L as described for the 

MTS assay and after 24h of incubation the TUNEL assay (Terminal deoxynucleotidyl 

transferasemediated deoxyuridine triphosphate nick-end labeling), which examines DNA strand 

breaks during apoptosis, was performed using the In Situ Cell Death Detection kit (Roche 

Diagnostics, Basel, Switzerland), according to the manufacturing instructions and as previously 

described [30]. To facilitate the counting of the total nucleus, the cells were also stained with 

DAPI. 

 

Cell invasion 

To evaluate the RGD effect on the migration of the endothelial cells through the BC a migration 

chamber and an attractant were used to stimulate the cells migration into the BC. The 

migration chamber consisted of cell culture inserts with a membrane pore size of 8.0 µm in a 

24 well plate (BD Biocoat TM Matrigel TM Invasion Chamber, BD, NJ, USA). Initially, HMEC-1 cells 

were seeded onto BC – L (treated with the recombinant proteins) at a density of 2.5x 104 

cell/well in Medium RPMI without serum. After four hours, 10% FBS serum was added to the 

wells. The plates were incubated at 37 oC in atmosphere of 5% CO2 and 95% humidified air for 

24 hours. In the next day, cell-coated BC pellicles were transferred to the invasion chamber 

containing medium with 2% FBS. To attract the cells to migrate into the cellulose, 20% FBS 

were added to the cell culture medium in the wells. Cell cultures were incubated for 72 hours. 

After conclusion of the experiments, the Matrigel membranes were removed from the inserts 

with a scalpel. The cellulose and Matrigel membranes were fixed and stained with a methanol 

– DAPI solution and photographed through fluorescence microscopy. The cells that migrated 

from the cellulose to matrigel were counted. 

 

Angiogenesis 

BC – L pellicles produced in a 24-well polystyrene plate were treated with the recombinant 

proteins and coated with HMEC cells (4 x 104 cel/well), in serum-free medium for two hours. 

Then, 10% FBS was added to the wells. The pellicles were incubated for 24 hours at 37 oC in 
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atmosphere of 5% CO2 and 95% humidified air. Afterwards, the medium was removed and 

fresh medium with serum (10%) was added. The plates were incubated for four days. To 

evaluate the effect of the recombinant protein on the morphology and assembly of EC into 

capillary-like structures when cultured on BC pellicles, the cordlike structures were observed 

qualitatively in a Leica DM IL inverted microscope (Leica Microsystems, Wetzlar, Germany). 

 

Immunocytochemistry 

The cells were grown on BC treated with the recombinant proteins (RGD-CBM or CBM) or 

buffer for 14 days, then fixed with methanol at -20 ºC. To avoid unspecific interactions the 

cellulose membranes were blocked with BSA 4% in PBS. The Primary antibody was vWF (von 

Willebrand factor) (1:100) (Chemicon, Hofheim, Germany) and the secondary antibody was an 

anti-rabbit FITC-conjugated (1:1000) (Santa Cruz Biotechnology, santa Barbara, USA). The 

Nuclei were counterstained with DAPI (Sigma Aldrich, Portugal). Cells were observed through 

fluorescent microscopy (Nikon Eclipse 50i, Japan). The endothelial specificity of the cells was 

also verified by the uptake of DiL-labelled acetylated low-density lipoprotein (Biomedical 

Techologies Inc., USA) another specific marker for these cells. 

 

Statistical analyses 

All experiments were performed in triplicate. Quantifications are expressed as mean (± SD) of 

3 independent experiments. Statistical significance of difference between various groups was 

evaluated by one-way analysis of variance (ANOVA test) followed by the Bonferroni test. 

 

Results 

The results of the MTS assay demonstrated that the recombinant proteins containing adhesion 

sequences were able to increase significantly the attachment of HMEC to BC – H surfaces 

(FIGURE 1). Two hours after cell seeding, approximately 140-150% and 60-80% more cells 

adhered to BC treated with the proteins containing the RGD and GRGDY peptides, respectively, 

when compared to non-treated BC – H.  
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Figure 1: MTS assays of HMEC-1 culture on BC – H pellicles treated with the recombinant proteins 

(CBM, RGD-CBM, RGD-CBM-RGD, GRGDY-CBM and GRGDY-CBM-GRGDY) and buffer. The MTS 

assay was developed at 2, 24, 48 hours and 7 days after cells addition. Results are expressed in 

absorbance values at 490nm. 

 

The results demonstrated that the proteins containing RGD sequence have a stronger effect 

than the protein containing GRGDY sequences. Moreover, it seems that the presence of a 

second adhesion sequence at the C-terminal of the protein did not significantly enhance the 

effect of the recombinant protein when compared with the protein containing only one copy of 

the peptide. Moreover, the results indicated that the adsorption of the CBM protein to BC – H 

slightly decreases cell adhesion (FIGURE 1) by 14%. When the assay was developed with BC – 

L membranes, coated with proteins containing one or two RGD copies, around 108 and 77% 

more cells adhered to the material than to non-treated BC – L. The proteins containing the 

GRGDY peptide promoted an increase of only 22-40% of cell adhesion (FIGURE 2). Figure 3 

shows that the improvement of cell attachment is significant already 15 minutes after cell 

seeding. From figures 1 and 2, after 24 and 48 hours following the cell seeding no proliferation 

is detected, irrespective of the BC membrane or treatment used. However, after 7 days, 

proliferation is noticeable on BC – H treated with the RGD and GRGDY containing proteins (in 

contrast with CBM and buffer treated BC-H), while no proliferation is visible when cells were 

cultured on BC – L. 
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Figure 2: MTS assays of HMEC-1 culture on BC – L pellicles treated with the recombinant proteins 

(CBM, RGD-CBM, RGD-CBM-RGD, GRGDY-CBM and GRGDY-CBM-GRGDY) and buffer. The MTS 

assay was developed at 2, 24, 48 hours and 7 days after cells addition. Results are expressed in 

absorbance values at 490nm. 

 

 

Figure 3: MTS assays of HMEC-1 culture on BC- H pellicles treated with CBM, RGD-CBM and 

buffer. The MTS test was developed at 15, 30, 60, 90 and 120 minutes after addition of cells. 

Results are expressed in absorbance values at 490nm. 
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To estimate the viability of the cells on the protein coated BC, the LIVE/DEAD assay was 

performed 24 hours after cell adhesion. The fluorescence images obtained show that, 

irrespective of the treatment, the cells remain viable on the BC pellicle (FIGURE 4). TUNEL 

assay results corroborated the LIVE/DEAD assay, showing no significant differences between 

BC pellicles treated with the recombinant proteins (RGD-CBM and CBM) when compared with 

control (buffer) (FIGURE 5). 

 

 

Figure 4: Fluorescence photographs of endothelial cells stained with LIVE/DEAD® 

Viability/Cytotoxicity Kit for mammalian cells. Live cells are stained in green and dead cells are 

stained in red. BC-L treated with RGD-CBM (a), CBM (b) and buffer (c). Controls with cells on 

polystyrene, live (d) and dead (e). Images were acquired using objectives 40x (scale 50µm). 

 

We next investigated whether the RGD affects HMEC invasion capacity using a double-chamber 

assay. The cells were seeded on the BC – L pellicle treated with the RGD, CBM or buffer. The 

number of migrating cells was then quantified through the double-chamber assay, using serum 

at 20% as chemoattractant. In comparison to the controls, the RGD decreased the ingrowth of  
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Figure 5: Apoptosis was quantitatively evaluated by the TUNEL assay. The HMEC cells were 

seeded on the BC – L and after 24h of incubation the TUNEL assay was performed. Bars represent 

the percentage of apoptotic cells evaluated by the ratio between TUNEL-stained cells and DAPI-

stained nuclei in every culture. Experiments were repeated three times with identical results.  

the HMEC cells through the BC. A 4- and 2.4-fold increase of the number of cells migrating 

through the membrane was obtained, respectively for the BC treated with buffer and CBM, 

taking as reference the BC treated with RGD (FIGURE 6). 

Optical Microscopy observation indicated that the RGD stimulated the formation of cellular 

cordlike structures, at an earlier stage as compared with the other groups. These findings 

showed that 24 hours after seeding, most of the cells present a round shape in all groups 

(data no shown). However, after 96 hours, the cells of the RGD treated - BC are more 

elongated than those on the buffer control, starting to form cordlike structures, while the cell of 

the CBM group remain round shaped (FIGURE 7). In fact, the structure showed in image (d) 

from figure 7, obtained by fluorescent microscopy, was found only in the BC surfaces treated 

with RGD. Details on the morphology of the cells 48 hours after cell seeding were obtained by 

SEM. The cells on the RGD treated BC presented an elongated shape; in fact, as can be seen 

in image (a), most of the cells are so elongated that become hardly noticeable on SEM, unlike 

cells observed on the untreated or CBM treated – BC where most remain rounded (FIGURE 8). 

The von Willebrand factor expression is a widely used criterion for defining endothelial cell type 

[31-33], thus to determine whether HMECs cells maintain the endothelial phenotype  
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Figure 6: Effect of RGD on the HMEC cell invasion through bacterial cellulose pellicles. Invasion 

was quantified in a double-chamber assay using medium complemented with 20% FBS as a 

chemoattractant. Bars represent the number of invasive cells. 

 

Figure 7: Images (a), (b) and (c) - optical microscopy photographs showing the effect of the RGD 

on the assembly of endothelial cells into capillary-like structures. BC – L treated with RGD-CBM 

(a), CBM (b) and buffer (c). Image was acquired using objective 20x (scale 200µm). Image (d) - 

Fluorescent microscopy image showing HMECs cells cultured at 14 days on BC – L pellicle treated 

with RGD – CBM recombinant protein. Nuclei were visualized by staining with DAPI (blue) and f- 

actin with Alexa Fluor 546-phalloidin (red). Image was acquired using objective 20x (scale 

100µm). 
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characteristic after 14 days cultured on BC, the vWF expression was evaluated. 

Immunocytochemistry results showed that cells grown on BC treated with the recombinant 

proteins or buffer maintained their positive staining for vWF (FIGURE 9). 

 

 

Figure 8: SEM micrographs of bacterial cellulose. BC treated with RGD–CBM (a, b); CBM (c, d) 

and buffer (e, f). The arrows remark cells with elongated morphology. (a), (c) and (e) scale 50µm; 

(b), (d) and (f) scale 5µm. 

 

 

Figure 9: Immunocytochemical analyses using anti-vWF antibody. The results showed that HMEC 

cells cultured after 14 days on BC–L treated with recombinant proteins or buffer stained positively 

for vWF. (a) RGD-CBM, (b) CBM and (c) buffer. Image was acquired using objective 20x (scale 

100µm). 

 

Discussion 

Gluconacetobacter xylinus constructs a BC pellicle that presents a denser and flatter surface 

side and a gelatinous layer on the opposite side [18]. In this study, all the experiments were 
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conducted on the denser side of both the BC-H and BC-L, because a smooth surface, being 

similar to the basal membrane of the luminal side of blood vessels, is preferable for the 

attachment of endothelial cells [20]. Analysis by SEM showed that G. xylinus ATCC 53582 

produce a thicker and more compact cellulose pellicle than the DSMZ 46604 strain (data not 

shown). Therefore, the BC-H pellicle presents a smoother surface than the BC-L. This may lead 

to differences between BC-H and BC-L in the adhesion and proliferation of the cells in the MTS 

test. The results from the attachment assay were similar to those obtained in our previous 

work (chapter 2), when fibroblasts were seeded on BC produced by ATCC 53582 strain coated 

with adhesion peptides [29]. In that previous work, the RGD improved the adhesion of 

fibroblast onto cellulose and the presence of a second RGD did not enhance the effect of the 

recombinant protein, probably because the RGD at the C-terminal of the protein was not 

properly exposed to be recognized by integrins. However, unlike the results with endothelial 

cells, the GRGDY sequence was not effective on the adhesion of fibroblasts. Apparently, the 

microvascular endothelial cells adhere stronger than fibroblasts to the recombinant protein 

containing RGD sequences. Indeed, endothelial cells may have substantially more αvβ3 integrin 

than fibroblasts [34]. The results also demonstrated that pre-coating BC with the RGD-

containing protein decreased the incubation time required for adsorption. A short incubation 

period is particularly important in single-stage seeding as the incubation time is kept to a 

minimum to fit into the time frame of the surgical procedure [26]. 

Several works have been developed to improve the interaction of cells to bacterial cellulose 

[21, 29, 35, 36]. However, only a few studied the migration and ingrowth of cells on BC [20, 

21, 37, 38]. The migration of the cells is mediated mainly by integrins, a diverse family of 

glycoproteins that form heterodimeric receptors for ECM molecules. During migration, cells 

project lamellipodia that attach to the ECM, and simultaneously break existing ECM contacts at 

their trailing edge. This allows the cell to pull itself forward. Integrins are essential for cell 

migration and invasion, not only because they directly mediate adhesion to the extracellular 

matrix, but also because they regulate intracellular signaling pathways that control cytoskeleton 

organization, force generation, gene transcription, and survival [39]. 

Endothelialization may either be developed ex vivo or post-implantation, stimulating the ECs 

(from tissues adjacent to anastomosis or from circulation) to adhere and proliferate on the 

graft. The rate and quality of a vascular graft endothelialization depends on the cell-material 
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interaction, leading to functions such as adhesion and migration. Several studies have shown 

that cell adhesiveness to substratum modulates cell migration on surfaces coated with ECM 

proteins [25, 40-42]. Our results showed that a small number of cells migrated through the 

cellulose when compared with the rather large number of cells added (2.5x 104 cel/well). 

During invasion, cells release proteases that degrade and remodel the ECM, promoting cell 

passage through to the stroma and entrance into the new tissue [39]. However, cellulose could 

not be degraded by animal cells [24] and in order to migrate in a fibrous hydrogel as BC the 

cells must push the nanofibrils aside when migrating into the cellulose nanofibril network [20]. 

Probably, the time used in the experiment (72h) was too short to enable cells to migrate 

through the BC pellicle with around 0.5mm of thickness. Nevertheless, the results obtained 

allowed the observation that the migration of endothelial cells on BC was decreased by the 

presence of the RGD. Since adhesion involves receptor/ligand binding, cell migration can be 

regulated by controlling cell integrin expression level, integrin-ECM binding affinity or 

substratum ECM surface density. However, if other stimuli are added, such as growth factors 

that affect signaling processes of the cell, the migration/adhesion relationship can be 

dramatically altered [43, 44]. The migration rates of cells are influenced by the chemical and 

physical interaction with the surface of the material. Studies described that cell migration 

capacity presents a biphasic behavior depending on the attachment strength. Optimal 

migration speed can be achieved with intermediate strengths of adhesiveness, since when the 

adhesion to the substratum is weak no traction occurs, so that the locomotion is not possible 

and the cell spreads poorly. On the other hand, with strong adhesion, cell is well-spread and 

immobilized, so dynamic disruption of cell-substratum attachments is difficult and locomotion 

again does not occur [28, 40, 41, 45, 46]. The CBM used in this work presents a great affinity 

to cellulose and adsorbs in a specific and very stable way. Probably, the amount of protein 

used in the experiments was great enough as to saturate the surface of the cellulose pellicle 

with the RGD-containing proteins, promoting an intense affinity of the cells to the substratum 

and affecting negatively the locomotion through BC. The saturation of the surface of the 

cellulose pellicle with the RGD-containg proteins is corroborated by the results shown in our 

previous work (chapter 2) [29]. In order to enhance endothelialization of BC vascular grafts it is 

important to promote not only the adhesion of endothelial cells, but also to allow migration 

through the material. The treatment used in this work greatly improved the adhesion, however 

the migration was negatively affected by the presence of the RGD, because the affinity of 
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HMEC cells to the material surface became to strong. However, it is probably possible to 

improve migration of the cells on BC by optimizing the concentration of RGD containing 

protein, attempting to reach a compromise between adsorption and migration. However, longer 

experiments are needed to better assess the effect of RGD on cell migration through BC. 

The effect of the RGD on HMECs morphology was observed by SEM. The cells on the RGD – 

coated BC exhibits a more elongated, flattened morphology, while the ones on “bare” BC were 

round (Fig. 8a and b). The more extended morphology of the HMECs upon interaction with the 

adhesive peptides is likely driven by the larger number of focal contacts between integrins and 

RGDs peptides linked to the BC surface. It is well known that a critical RGD density is essential 

for the establishment of mature and stable integrin adhesions, which, in turn, induce efficient 

cell migration, spreading and formation of focal adhesions [47-50]. 

During angiogenesis events, cells must adhere to one another and to extracellular matrix 

(ECM) to construct and extend new microvessels [51]. Angiogenesis depends not only on 

growth factors and their receptors, being also influenced by receptors for ECM proteins. Our 

results showed that the RGD-containing recombinant protein (RGD-CBM protein) stimulated the 

early formation of cellular cordlike structures by on bacterial cellulose when compared to BC 

treated with the recombinant protein without the adhesion peptide (CBM protein) or buffer. 

HMEC-1 cells express αVβ3 and αVβ5 integrins [52] that can bind an array of ligands such as 

vitronectin, fibronectin, von Willebrand factor, fibrinogen, osteopontin, thrombospondin, and 

RGD-containing peptides [51, 53]. Moreover these two complexes also have been identified as 

having an especially interesting expression pattern among vascular cells during angiogenesis 

and vascular remodeling. 

Immunocytochemistry results showed that cells grown on BC maintained their positive staining 

for von Willebrand factor (vWF). This glycoprotein is one of the various secretory and 

membrane-bound molecules produced by the endothelium. The vWF mediates the interaction 

of platelets with damaged endothelial surfaces at sites of vascular injury and has been long 

favored as an endothelial-cell marker, once the expression of this factor is highly restricted to 

endothelial cells, platelets, and megakaryocytes [33].  

In the current scenario of regenerative medicine there is a great demand for production of new 

materials appropriate for small-diameter blood vessel replacements. In this work, bacterial 
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cellulose, a promising cardiovascular biomaterial, was successfully functionalized. The strategy 

used aims the improvement of microvascular cell adhesion to BC, through recombinant 

proteins containing adhesion peptides and a cellulose-binding module. For artificial grafts 

based on cellulose, the use of a CBM (exhibiting high affinity and specificity for cellulose 

surfaces) is an excellent feature, once CBM can virtually be combined to any biologically active 

protein and used to modify the cellulose-based materials. The chimeric proteins were able to 

enhance endothelial cells adhesion to BC and stimulate angiogenesis. However, the ingrowth 

of the cell through cellulose was decreased. We believe that an improved migration of the cells 

on BC will be achieved with intermediary concentration of protein used in this work. 
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Chapter 4 

 

 

Studies on the hemocompatibility of bacterial 
cellulose 
  

  

Abstract 

Vascular grafts must gather a complex and vast number of attributes, namely good mechanical 

properties and an appropriate post implantation healing response. Among the strategies 

developed over the years to modify materials for vascular devices, pre-coating with the 

tripeptide Arg-Gly-Asp (RGD) improves endothelialization thus lowering thrombogenicity. In the 

present work, the blood compatibility of native and RGD-modified bacterial cellulose (BC) was 

studied. Although this is a rather promising material for vascular replacements, to our 

knowledge only very recently a first publication was dedicated to this subject.  

The clotting times (aPTT, PT, FT and PRT) and whole blood clotting results results demonstrate 

the good hemocompatibility of BC. A significant amount of plasma protein adsorbed to BC 

fibres, albumin presenting a higher BC affinity than γ-globulin or fibrinogen. According to 

analysis carried out by intrinsic tryptophan fluorescence, the BC adsorbed albumin, fibrinogen 

and γ-globulin do not undergo major conformational modifications. Although the presence of 

the adhesion peptide on bare-BC surface increases the platelet adhesion, when the material 

was cultured with human microvascular endothelial cells a confluent cell layer was readily 

formed, inhibiting the adhesion of platelets. As a general conclusion, both native and RGD-

modified BCs may be classified as hemocompatible materials, since they showed to be non-

hemolytic and the whole blood coagulation studies shows that the results are comparable to 

those produced by currently available materials for blood replacements. 
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Introduction 

Biocompatibility refers to the ability of a biomaterial to perform with an appropriate host 

response in a specific situation [1]. It is well known that blood-contacting surfaces may activate 

the coagulation and complement systems, as well as trigger cellular responses [2, 3]. Thus, 

blood-contacting biomaterials and artificial organs, such as artificial blood vessels, pumps and 

artificial hearts, require improved blood compatibility for clinical uses. In addition, vascular 

grafts must bear both good mechanical attributes and post implantation healing responses. 

However, vascular substitutes currently available (e.g. Polyurethane, Dacron and ePTFE) still 

do not fully achieve these ideals, trombogenicity hampering their use as small-diameter (<6 

mm) arterial substitutes. Vascular graft failure is mainly caused by 

thrombosis/thromboembolism, infections, intimal fibrous hyperplasia and poor mechanical 

performance [4]. These problems arise from the fact that, after half a century of research and 

implant of cardiovascular devices, no material has been found to be truly blood-compatible [5]. 

While developing materials for blood-contacting devices, researchers have primarily focused 

their attention on hydrophobic polymers, such as Teflon, silicones and polyethylene, which 

have good mechanical properties and optimal surface lubricity for applications as catheters 

and shunts [6]. However, these materials have strong affinity for proteins, like fibrinogen, that 

adsorb on the surface, forming a monolayer that promotes platelets adhesion. These events 

are associated with coagulation factors activation and thrombus formation [7, 8]. Also, highly 

hydrophobic materials generally retard wound healing due to very slow tissue ingrowth [9]. 

Bacterial Cellulose (BC) is a highly hydrophilic material and according to several research 

groups a promising arterial substitute [10-14]. This biomaterial, produced by Acetobacter 

microorganisms, is a glucose polymer with unique properties, including high water holding 

capacity, high crystallinity, ultrafine fiber network, and high tensile strength [13]. Several 

authors addressed the potential use of BC as scaffold, for tissue engineering applications, 

given its harmless interaction with mammalian cells [15-18], and in vivo good integration with 

host tissues, showing no signs of chronic inflammatory or foreign body reactions [19]. 

The biomedical devices conceived to perform in contact with blood are often surface modified 

using active substances like heparin, to reduce thrombogenicity. However, the limited success 

of surface treatments for improved blood compatibility has encouraged researchers to pursue 
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other strategies. Instead of designing materials that avoid indiscriminately the problematic 

interaction with blood proteins and platelets, the incorporation of molecules that can stimulate 

the adhesion and colonization of endothelial cell (EC) has been investigated [20]. It is known 

that ECs covering the lumen of vessels actively inhibit thrombosis and intimal hyperplasia, also 

serving as anticoagulant surface [21, 22]. Therefore, the formation of an EC layer on the 

luminal surface of prosthetic grafts is highly desirable. The endothelialization of the graft may 

either be developed ex vivo, or post-implantation, stimulating the ECs (from tissues adjacent to 

anastomosis or from circulation) to adhere and proliferate on the graft. The rate and quality of 

a vascular graft endothelialization depends, of course, on the cell-material interaction. Several 

approaches have been used, attempting to increase the EC adhesion on typically non-adhesive 

polymeric biomaterials used for synthetic vascular grafts [23]. One such approach, that 

involves pre-coating the material with the tripeptide Arg-Gly-Asp (RGD), an amino acid 

sequence found in many adhesive plasma and extracellular matrix proteins, has been used to 

enhance cell adherence. Binding of cells to the RGD-sequence occurs via integrin receptors on 

the cell membranes. In a previous work, we described the production of recombinant proteins 

containing the adhesion sequences fused to a CBM (cellulose-binding module) [18] (chapter 

2). For artificial grafts based on cellulose, the use of a CBM (a protein exhibiting specific high 

affinity for cellulose surfaces) may be a facile and smart strategy to avoid loosing the biological 

agents coating the graft when the blood flow is restored, after implantation. In the same lines, 

we have also shown [24] that the presence of RGD sequences significantly increases the 

adhesion of human microvascular cells (HMECs) on BC (chapter 3). Thus, RGD sequence 

could be used to improve the endothelialization of vascular substitutes based on bacterial 

cellulose. However, although envisaging the graft coverage with ECs, the blood compatibility of 

both the bare native and RGD-modified bacterial cellulose must be also characterized. 

To our knowledge, only one study conducted by Fink et al. [25] evaluated the thrombogenic 

properties of vascular graft tubes based on BC and compared with commercial vascular grafts 

of poly(ethylene terephtalate) (PET) and expanded poly(tetrafluoroethylene) (ePTFE). The 

results showed that the BC material did not induce plasma coagulation to any great extent and 

in comparison with PET and ePTFE, the BC material performed very well and was found to 

induce the least and slowest activation of the coagulation cascade. Further characterization is 

necessary, not only to confirm the promising hemocompatibility of BC, but also to better 

understand the BC-blood interaction, through more comprehensive characterization. 
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Materials and Methods 

Production of bacterial cellulose 

Gluconacetobacter xylinus (ATCC 53582) purchased from the American Type Culture 

Collection was grown in Hestrin-Schramm medium, pH 5.0. The medium was inoculated with 

the culture, added to the 24-well polystyrene plate (1 ml per well) and incubated statically at 

30 oC, for 5 days. BC pellicles were purified by 2% sodium dodecyl sulfate (SDS) treatment at 

60 oC, for 12 h, followed by 4% NaOH at 60 oC, for 90 min. Samples were autoclaved and 

stored in phosphate buffered solution (PBS) pH 7.4, at 4ºC, prior to use. The pellicle produced 

in a 24-well polystyrene plate presented a diameter of 15.5mm. 

 

Production and purification of recombinant proteins 

The recombinant proteins RGD – CBM and CBM have been formerly cloned in Escherichia coli 

and its production and purification was conducted as described in our previous work [18] 

(chapter 2). 

 

Surface modification with CBM and RGD-CBM proteins 

The surface modification of BC was developed as previously described [18] (chapter 2). The 

purified recombinant proteins were added to the wells of 24-well polystyrene plates (0.25mg of 

protein/per well), coated with bacterial cellulose sheets produced in similar 24-well polystyrene 

plates. The plates were incubated overnight at 4 ºC. Unbound protein was removed and the BC 

pellicles were washed with PBS and used in the in vitro blood compatibility assays. 

 

Preparation of blood samples 

Whole blood was collected from healthy donors with vacuum blood-collection tubes of 1.8ml, 

containing sodium citrate buffer solution 3.2% (0,109 mol/l). The citrated whole blood was 

immediately centrifuged for 15 min (300g, 4 ºC) and the citrated platelet-rich plasma (PRP) 
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was collected. Citrated platelet poor plasma (PPP) was also prepared from the whole blood, by 

centrifugation for 15 min at 2000g, 4 ºC. 

 

Determination of the amount of adsorbed plasma proteins 

Plasma protein adsorption on the membrane surface was evaluated as follows. Disk-shaped 

BC pellicles (1.88 cm2, ∼ 2.4mg), previously incubated with the recombinant proteins (RGD-

CBM and CBM) or buffer, were immersed in PPP (0.5ml per pellicle) diluted (1:2) with a 

phosphate-buffered solution (PBS, pH 7.4), at 37 ºC for 3 hours. Expanded tetrafluoroethylene 

(MAXIFLOTM ePTFE Vascular Prosthesis, Vascutek Ltda, Scotland) samples  (1.4 cm2, ∼ 114 

mg) were used as a control. The unbound fraction (supernatant) of plasma proteins was then 

collected. The total protein in the PPP and supernatants were quantified using the micro-BCA 

method (Pierce); the protein concentration was calibrated with bovine serum albumin solution 

(Applichem Biochemica, Darmstadt, Germany).  

 

Albumin, fibrinogen and Human γ- globulin adsorption on BC 

Disk-shaped BC pellicles – untreated or previously treated with the recombinant proteins and 

also the control materials (ePTFE – 1.4 cm2  and polystyrene plate – 1.88 cm2) – were 

immersed in phosphate buffered solution (PBS, 0.02M, pH 7.4) of (1) 5mg/ml human serum 

albumin (HSA), (2) 1mg/ml Human γ-globulin (IG) or (3) 0.3mg/ml human fibrinogen (HFG), 

for 120 min at 37oC [26, 27]. The concentrations of the tested proteins were chosen to reflect 

a 10-fold dilution of their levels in blood.  

In another study, to evaluate the affinity of HSA, HFG and IG for bacterial cellulose, adsorption 

isotherms of these proteins on BC were developed as follows: untreated BC membranes were 

immersed (0.5ml) in two-fold dilution series of protein solutions (with concentrations ranging 

from 10mg/ml to 0.078125 mg/ml) and shaken for 60 min, 37oC. After the removal of the 

supernatant and rinsing the membranes five times with PBS, 0.5ml of 1wt% aqueous solution 

of SDS was added; the samples were then shaken for 60min at room temperature, to remove 

the proteins adsorbed on the membranes. Both the concentration in the supernatant and the 

desorbed protein recovered after washing were quantified using the micro-BCA method 
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(Pierce). The protein concentration was calibrated with bovine serum albumin solution 

(Applichem Biochemica, Darmstadt, Germany). The amount of adsorbed protein on the BC 

membrane was calculated through the difference between the initial protein and the protein 

from supernatant. 

 

Determination of conformational changes of adsorbed proteins 

Intrinsic tryptophan fluorescence was used to evaluate the conformational changes of albumin, 

fibrinogen and γ-globulin adsorbed on bacterial cellulose. BC pellicles were immersed in 

phosphate buffered solution (PBS, 0.02M, pH 7.4) of (1) 1mg/ml human serum albumin 

(HSA), (2) 1mg/ml Human γ-globulin (IG) or 1mg/ml human fibrinogen (HFG), for 60 min at 

37oC, then the pellicles were washed five times with PBS to removed unbound proteins. 

Fluorescence measurements were performed using a Fluorolog 3 spectrofluorimeter®, 

equipped with double monochromators in both excitation and emission. Fluorescence spectra 

were corrected for the instrumental response of the system. Emission spectra were measured 

by exciting the sample at 295 nm or 270 nm and collecting the emitted fluorescence from 305 

to 400 nm. Protein solutions of HSA, IG and HFG were used as controls. 

 

Coagulation Times 

BC membranes, treated either with the recombinant protein (RGD-CBM) or buffer, were 

incubated with 0.5ml of PPP, at 37 ºC for 1h. The activated Partial Thromboplastin Time 

(aPTT), Prothrombin Time (PT) and Fibrinogen Time (FT) of the PPP were determined, as 

described below, using an automated coagulation analyser (STA-R Evolution®, Diagnostica 

STAGO, France). The polystyrene plate, ePTFE, glass coverslips and glass microspheres (with 

0.10mm of diameter) were used as controls. The coagulation times of PPP non-contacted with 

the materials were also analysed, as a control. The comparison of coagulation times (aPTT, PT 

and FT) of endothelialized polymers were also tested. For the description of the methods used 

in cell culture, please see item “Platelet adhesion to BC covered with human microvascular 

endothelial cells” from materials and methods. 
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Activated partial thromboplastin time: The aPTT is a simple and highly reliable measurement of 

the capacity of blood to coagulate through the intrinsic coagulation pathway and the effect of 

the biomaterial on possible delay of the process. After contacting the materials, 50µl of the 

PPP was removed and then activated by addition of 50µl of Pathromtin SL® (Siemens 

Healthcare Diagnostics, Marburg, Germany). This reagent contains silicon dioxide particles, 

plant phospholipids, sodium chloride and Hepes, pH 7.6. Then, immediately after adding 

calcium chloride 0.025M (50µl, 37oC), the time for initiation of clot formation was measured 

by using an automated coagulation analyser (STA-R Evolution®, Diagnostica STAGO, France). 

Prothrombin time: Prothrombin time was measured to assess BC-induced deferment, 

interdiction or activation of the extrinsic coagulation pathway. After contact with the materials, 

50µl of the PPP was removed and then 100µl of Thromborel® S (Siemens Healthcare 

Diagnostics, Marburg, Germany) – a reagent containing human placental thromboplastin with 

calcium chloride – was added. Immediately, the time for initiation of clot formation was 

detected by using an automated coagulation analyser (STA-R Evolution®, Diagnostica STAGO, 

France). 

Fibrinogen time: In the presence of excess thrombin, the coagulation time of a plasma sample 

is inversely proportional to the fibrinogen concentration. Thus, to assess the effect of BC 

interaction with the fibrinogen plasma, FT was developed. After contact with the materials, 

100µl of the PPP was removed and then human thrombin (STA Fibrinogen, Diagnostica 

Stago/Roche Diagnostics, Mannhein, Germany) was added. Immediately afterwards the time 

for initiation of clot formation was detected by using an automated coagulation analyser (STA-R 

Evolution®, Diagnostica STAGO, France). 

 

Measurement of plasma recalcification profiles 

The measurement of plasma recalcification time was analyzed through the adapted method 

described by Motlagh et al. [28]. Blood was drawn from healthy adult volunteers into citrated 

tubes (as described above) and centrifuged at 2000g in order to obtain the PPP. BC samples 

were incubated with 0.5ml of PPP, at 37 ºC for 1h. Then 100µl of citrated PPP were 

transferred to the wells of a 96-well plate. Controls consisted of polystyrene plate (exposed to 
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PPP with and without CaCl2), ePTFE and glass microspheres. Following the addition of PPP, 

100ml of 0.025M CaCl2 was added to each well (except the negative control with no Ca+2). The 

plate was then immediately placed in a 96-well plate reader, where the kinetics of the clotting 

process due to recalicification were monitored by measuring the absorbance at 405nm (every 

30 s for 30 min) at 37 ºC. In calculating the mean absorbance at each time point, tested 

samples treated with PPP from 5 different donors were averaged per sample. The clotting time 

to reach half maximal absorbance was calculated and analyzed. 

 

Quantification of whole blood clotting time 

The thrombogenicity of BC was evaluated using a whole blood kinetic clotting time method, as 

previously described [28].  Samples of the tested materials were used per time point. Briefly, 

the clotting reaction was activated with the addition of 850 µl CaCl2 (0.1M) to the 8.5 ml 

sample of citrated blood. A 100µl volume of the activated blood was carefully added to BC 

lyophilized samples, which were placed in the wells of a 12-well plate. Glass microspheres, 

ePTFE and polystyrene were used as controls. All samples were incubated at room 

temperature for 0, 5, 15, 25 and 35. At the end of each time point, the samples were 

incubated with 2.5ml of distilled water for 5 min. Each well was sampled in triplicate (200 ml 

each) and transferred to a 96-well plate. The red blood cells that were not trapped in a 

thrombus were lysed with the addition of distilled water, thereby releasing hemoglobin into the 

water for subsequent measurement. The concentration of hemoglobin in solution was 

assessed by measuring the absorbance at 540nm using a 96 well plate reader. The size of the 

clot is inversely proportional to the absorbance value. 

 

Evaluation of Platelet Adhesion 

Bare-BC membranes, treated with the recombinant proteins or buffer, were placed in contact 

with 0.5ml of human PRP and incubated for 2h. Then, the supernatant was removed and the 

BC pellicles washed twice with PBS. Next, 0.7ml of 2.5% glutaraldehyde in PBS was poured 

into each well, and the materials were maintained at room temperature for 1h, in order to fix 

the blood components on the membrane. Afterwards, the membranes were rinsed with 
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distilled water, and finally dehydrated by successive immersion in a series of ethanol-water 

solutions (55, 70, 80, 90, 95, 100% v/v), for 30 min each, and allowed to evaporate at room 

temperature. The surface of the membranes with adsorbed platelets was observed with 

scanning electron microscopy (LEICA S 360), after gold-sputtering treatment. 

In a parallel assay, the number of platelets adhered on the bare-BC membranes was 

determined by the lactic acid dehydrogenase (LDH) activity method [29]. The PRP (0.4 ml) was 

placed in contact with BC membranes, in the 24-wells, and allowed to stand for 90 min at 37 

ºC. The samples were washed twice. In order to release the intracellular LDH, adhered 

platelets were lysed with 0.3ml of Triton X-100 (0.1%) for 45min, at 37 ºC. Then, the 

supernatant was used to determine the LDH activity as follows: The supernatant (0.050ml) 

was added to a tube containing 1.5 ml of solution I (50mM phosphate, 0.63 mM piruvate 

(Sigma), pH 7.5) and 0.025ml of solution II (11.3mM β-NADH (Sigma), 119 mM sodium 

bicarbonate), and homogenised. Recording of the enzymatic reaction kinetics started promptly, 

reading the absorbance at 340nm (Jasco V-550) for 120s, at 25 ºC. The initial reaction rate 

was determined as the slope of the graph obtained plotting the optical density vs reaction time, 

at time zero. The LDH calibration curve was obtained by measuring the enzymatic activity of a 

set of samples with a known concentration of platelets, under the same conditions as above. 

The ePTFE was used as a reference material. 

 

Platelet adhesion to BC covered with human microvascular endothelial cells 

Cell culture: Human Microvascular Endothelial Cells (HMECs) were cultured in RPMI 1640 

medium (Invitrogen Life Technologies, UK) supplemented with 10% FBS (Invitrogen Life 

Technologies, UK), 1% penicillin/streptomycin (Invitrogen Life technologies, UK), 1.176 g/L of 

sodium bicarbonate, 4.76 g/L of Hepes, 1mL/L of EGF and 1 mg/L of hydrocortisone > 98% 

(Sigma, Portugal), and maintained at 37 ºC in a humidified 5% CO2 atmosphere. 

As previously described [24] (chapter 3), the HMEC-1 cells were seeded on the BC and ePTFE 

(control) at a density of 12 x 104 cells/well, in RPMI medium without serum. The plates were 

incubated at 37 oC, in atmosphere of 5% CO2 and 95% humidified air. Two hours after the 

addition of the cells, the wells were washed with PBS and RPMI with 10% Foetal Bovine Serum 

(FBS) was added. The cells were allowed to grow on BC for 14 days. 
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Platelet adhesion: 0.5ml of human PRP was loaded on the HMECs proliferated on BC and 

ePTFE, and incubated for 2h at 37 ºC in a humidified 5% CO2 atmosphere. Then, the 

supernatant was removed and the BC pellicles washed twice with PBS. Next, 0.7ml of 2.5% 

glutaraldehyde in PBS was poured into each well, and the materials were maintained at room 

temperature for 1h, in order to fix the blood components on the membrane. Afterwards, the 

membranes were rinsed with distilled water, and finally dehydrated at 30 ºC. The surface of 

the membranes with adsorbed platelets was observed with scanning electron microscopy 

(Nova NanoSEM 200, The Netherlands), after gold-sputtering treatment. By counting the 

number of adhered platelets on the sample surfaces, the platelet adhesion densities were 

determined for each kind of sample. On each sample, five different areas (19x103 µm2) were 

selected [30]. The bare polymers (BC and ePTFE) that were incubated with RPMI with 10% 

Foetal Bovine Serum for 14 days were used as controls. 

 

Hemolysis 

Hemolysis studies were conducted according to the procedures described in American Society 

for Testing and Materials (ASTM F756-00, 2000). BC samples with 1.88 cm2 were equilibrated 

in PBS (Ca and Mg free), and then transferred to a tube containing 7 ml of PBS (Ca and Mg 

free). Then, 1 ml of diluted blood (hemoglobin concentration of 10mg/ml) was added. The 

material was maintained in contact with the blood for 3h, at 37 ºC, in a water bath. The tubes 

were gently inverted twice every 30 min to promote the BC-blood contact. Afterwards, the 

membranes were removed and the diluted blood centrifuged at 750g, 15 min. The hemoglobin 

was determined adding 1 ml of the supernatant to 1 ml of Drabkin´s reagent (Sigma); after 15 

min, the absorbance at a wavelength of 540nm was read (Jasco V-550). The hemoglobin 

concentration (HC) was determined using a calibration curve prepared with human hemoglobin 

(Sigma) and was calculated by the equation: HC = AxFxd (A, Absorbance; F, Slope of the 

hemoglobin curve; d, dilution). The hemolytic index (HI) was obtained by the equation 

HI = 100 × (concentration of hemoglobin released in supernatant) / (total hemoglobin 

concentration in tube). As reference materials, ePTFE and PBS (negative control) and ultra 

pure water (positive control) were used. 
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Results and Discussion 

Protein adsorption 

It is well known that protein adsorption and denaturation are responsible for triggering 

hemostasis and specifically the contact pathway, upon blood-biomaterial contact. While 

albumin is considered non-thrombogenic, other plasma proteins are. Hence, in this section, 

the BC affinity and surface denaturation of the three more abundant plasma proteins was 

analysed. The total plasma protein adsorption was measured after incubation of the BC 

pellicles in diluted plasma for 3 hours. The results obtained showed that the amount of protein 

adsorbed on BC surface is not influenced by the treatment with recombinant proteins (CBM or 

RGD-CBM) and also that BC membranes adsorbed approximately 1.7 – 1.8 mg of protein per 

mg of BC, while only 0.01 mg of protein adsorbed per mg of ePTFE, the reference material 

(FIGURE 1a). It is well known that the protein adsorption is significantly influenced by surface 

characteristics, such as hydrophilicity, topography, charge, or chemistry [8]. The gelatinous BC 

membrane formed in static culture is characterized by a 3D ultrafine fibrous network structure, 

containing about 99% water [13]; it is, thus, a highly hydrophilic material. Proteins adsorb 

preferentially on hydrophobic than hydrophilic surfaces, once more energy is necessary to 

remove the water molecules from hydrophilic than from hydrophobic surfaces. The adhesion 

forces on hydrophobic substrates have been shown to be dependent on the structural rigidity 

of the protein, while on the hydrophilic substrates both the protein and surface charge are 

more important [31]. Therefore, it has been reported that polymers with a hydrophilic surface 

adsorb low amounts of serum proteins, having low thrombogenic potential [8, 32]; however, 

the large surface area of the nanofibrous network of BC allows the binding of a large quantity 

of protein. However, the amount of plasma protein adsorbed on a surface is by itself not 

enough to draw conclusions regarding the blood compatibility, its identity and conformation 

(which may change over time following adsorption) being also important [33]. When a material 

comes in contact with blood, immediately proteins adsorbs to the material surface. These 

initially adsorbed proteins may be displaced by a series of others, all within a few minutes. At 

least two or three of these proteins, namely fibrinogen, fibronectin and immunoglobulins, plays 

an important role when adsorbed, since platelets or leukocytes will adhere to these proteins 

through specific receptors [34]. 
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Figure 1: Plasma protein adsorption onto the bacterial cellulose membrane untreated or treated 

with the recombinant proteins (RGD-CBM or CBM) and controls (ePTFE and polystyrene). (a) 

Platelet-poor plasma; (b) human serum albumin; (c) human γ-globulin and (d) human fibrinogen. 

 

Platelets adhesion follows, mediated by the proteins initially adsorbed on the surface. 

Therefore, in the present work, the BC affinity for plasma proteins human albumin, fibrinogen 

and immunoglobulin, corresponding respectively to 60, 4% and 20% of the total plasma protein 

was analysed, attempting to better understand the nature of the platelet adhesion on BC 

surfaces, since it is known that plasma protein adsorption is a key phenomenon in determining 

the thrombogenicity of the materials. In a first experiment BC membranes were immersed in 

pure solutions of HSA, HFG or IG - the concentrations of the tested proteins were chosen to 

reflect a 10-fold dilution of their levels in blood. The results obtained show that the presence of 

recombinant proteins (CBM and RGD-CBM) decreased the adsorption of fibrinogen on BC, an 

effect not observed in the case of albumin and immunoglobulin (FIGURE 1b-d). We believe that 

the recombinant proteins on the BC surface interfere more significantly in the case of 

fibrinogen because its concentration (0.3mg/ml) was lower than that of albumin (5mg/ml) and 
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γ-globulin (1mg/ml). The lower concentration explains also why a different amount of adsorbed 

protein is not observed when using the PPP (FIGURE 1a). 

The adsorption isotherms (FIGURE 2) shows that, for the same concentration, the amount of 

adsorbed HSA, HFG and IG on BC-untreated are similar; however, when the membranes were 

treated with 1wt% aqueous solution of SDS, a higher amount of fibrinogen desorbed from the 

BC than albumin or immunoglobulin was observed (FIGURE 3). This result showed that the BC 

affinity of the tested proteins follows the order albumin > γ-globulin > fibrinogen. These are 

interestingly results since, fibrinogen, fibronectin and γ-globulin pre-coating, even at low levels, 

causes an increase of platelet adhesion. The opposite effect has been described for surfaces 

coated with albumin [34, 35]. 

 

Determination of conformational changes of adsorbed proteins 

Conformational changes always occur, following unfolding, to different extent depending on the 

protein, exposing previously hidden amino acid sequences. This remodeling of the protein 

surface can trigger the activation of processes such as the blood coagulation cascade. 

The intrinsic fluorescence of tryptophan, tyrosine and to a lesser extent phenylalanine is a 

sensitive probe of conformational changes because the intensity and Stockes’ shift of the 

fluorescence depends on local environment of the fluorophore [36]. The unfolding of human 

serum proteins albumin, fibrinogen and γ - globulin were studied by measuring the intrinsic 

fluorescence intensity at a wavelength of excitation corresponding to tryptophan’s or tyrosine’s 

fluorescence. For an excitation of 295 nm tryptophan is the only aromatic amino acid to 

absorb light. For an excitation of 274 nm there is a transfer of energy from the excited tyrosine 

to tryptophan, which also corresponds to a single emission peak [37, 38]. 

Figure 4 shows the fluorescence spectra at excitation wavelengths of 295 and 270 nm. 

Irrespective of the protein analyzed or the excitation wavelength used, the proteins adsorbed 

on BC exhibit no conformational changes, taking as reference the protein in solution. These 

results are a promising prospect regarding BC as vascular implants. Once proteins cover the 

surface of implants, host cells no longer contact the underlying foreign-body material but only 

the protein-coated surface.  
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Figure 2: Comparison of the adsorption isotherms for the binding human serum albumin (HSA), 

human fibrinogen (HFG) and human γ-globulin (IG) on BC. 

 

 

Figure 3: Percentage of desorbed proteins on BC at each concentration tested after treatment 

with 1wt% aqueous solution of SDS. Human serum albumin (HSA), human fibrinogen (HFG) and 

human γ-globulin (IG). 
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Figure 4: Steady-state fluorescence emission spectra of (a, b) human serum albumin, (c, d) human 

fibrinogen and (e, f) human γ-globulin adsorbed on BC and in solution. (a, c, e) and (b, d, f)  

excitation wavelength of 295 nm and 270, respectively, collected from 305 to 400 nm. 

 

The adsorbed protein layers rather than the foreign material itself may stimulate or inhibit 

further biochemical processes. Platelet adhesion and activation is strongly influenced not only 

by the adhesion but especially by the conformation change, namely of the adsorbed fibrinogen. 

The dissolved, native fibrinogen, does not bind to the adhesion receptors of platelets unless 

these are appropriately stimulated. When the fibrinogen adsorbed to a surface and a 

conformational change occur some amino acids previously hidden inside the molecule 

becomes exposed and able to interact with the platelet receptors [31, 36, 39, 40]. Also, it is 

well known that platelet adhesion and spreading do not occur on an albumin-coated surface, 

and that with increasing degree of albumin denaturation, platelet adhesion and activation are 



Chapter 4 
 

  127 

enhanced [40]. Although a highly hydrophilic material, BC adsorbs a large amount of plasma 

protein due to the large surface area; however, these proteins remain their native conformation 

once adsorbed, hence are not expected to become a factor of adhesion and activation of 

platelets. 

 

Blood coagulation 

The coagulation cascade consists of three pathways: contact activation (intrinsic), tissue factor 

(extrinsic), and the final common pathway of factor X, thrombin and fibrin. Although they are 

initiated by distinct mechanisms, the two converge on a common pathway that leads to clot 

formation. The formation of a thrombus or a clot in response to an abnormal vessel wall in the 

absence of tissue injury is the result of the intrinsic pathway. Fibrin clot formation in response 

to tissue injury is the result of the extrinsic pathway [41]. When biomaterials are in contact with 

blood, plasma proteins are instantaneously adsorbed onto the surface and coagulation factors 

or platelets will then be activated, starting a series of cascade reactions and leading to blood 

coagulation [42]. Interference with the coagulation cascade can be indicated by alterations of a 

series of plasma coagulation assays: aPTT, PT and FT. APTT and PT are used to examine 

mainly the intrinsic and extrinsic pathway, respectively. FT measures how much fibrinogen 

converts into fibrin clot, by action of thrombin [43]. The results showed that the BC polymer, 

irrespective of the presence of RGD peptide covering the surface, presented similar plasma 

clotting times (FT, aPTT and PT) comparable to the ones obtained for the negative controls 

(plasma incubated in the absence of tested materials or with polystyrene) (FIGURE 5). In fact, 

none of the tested materials were able to alter the fibrinogen or extrinsic factors content (or 

even activate the extrinsic factors) present in PPP, as no differences were detected in FT and 

PT, respectively. 

To study the blood compatibility of a material, important information can be obtained through 

the evaluation of its effect on the intrinsic (contact) coagulation pathway. In the intrinsic 

pathway, activation of factor XII occurs when blood comes into contact with a surface 

containing negative charges (eg, the wall of a glass tube). This process is called "contact 

activation" and still requires the presence of other plasma components: pre-kallikrein (a serine 
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Figure 5: Comparison of anticoagulation time (aPTT, PT and FT) of BC membranes untreated or 

treated with the recombinant protein (RGD-CBM) and the controls (ePTFE, polystyrene and glass 

microspheres). The coagulation times of PPP non-contacted with the materials (pre-incubation 

control) were also analysed. 

protease) and high molecular weight kininogen (a non-enzymatic cofactor) [44]. Several 

authors used the aPTT test to evaluate the blood compatibility of materials [45-48]. In this test 

an aliquot of platelet-poor plasma is incubated with a factor XII activator (i.e., silica, celite, 

kaolin, micronized silica, ellagic acid, etc.), a reagent containing phospholipid (partial 

thromboplastin) and CaCl2. Although aPTT is appropriated to detect antithrombogenic activity 

such as in materials with heparinised surfaces [48, 49], this method should not be used when 

aiming to detect the activation of the contact pathway (as often shown in the literature). 

Indeed, the effect of the material can be masked by the reagent used for the test, which 

already contains an activating substance, as described above. This effect explains the similar 

aPTT results for the all tested materials described in the present work. 

The coagulation assays (FT, PT and aPTT) were also carried out using the endothelialized 

materials and no significant differences in the coagulation time values were observed between 

the tested materials (data not shown). Similar results were obtained by Liu et al. [46], when 

comparing the bare and endothelialized poly(D,L-lactide-co-beta-malic acid) (PLMA) polymer 

modified with the GRGDS sequence. Also, this may indicate that the cells seeded on polymers 

showed a balance of procoagulant and anticoagulant activities, which would not be displaced 

to either side without certain stimuli, as is the case for ECs in their normal state [46]. 



Chapter 4 
 

  129 

For the evaluation of the BC blood compatibility, specifically to ascertain whether the activation 

of the contact pathway occurs, the plasma recalcification time (PRT) and whole blood clotting 

time tests were carried out. Plasma recalcification profiles serve as a measure of the intrinsic 

coagulation system [28, 34]. The absorbance increases as the plasma becomes more turbid, 

correlating with the formation of a clot. A rightward shift of the curve indicates a slower clotting 

time; whereas, a leftward shift of the curve indicates a faster one. Citrated platelet poor plasma 

(without the addition of CaCl2) serves as a negative control, as it should not form a clot. In the 

kinetic profiles the plasma incubated with glass microspheres produced the more leftward 

curve while the ePTFE produced the more rightward curve, and the others materials tested 

presented kinetics profiles between these two controls (FIGURE 6a). The plasma incubated 

with BC treated with RGD-CBM and untreated BC presented similar curves (data not showed). 

The clotting time to reach half-maximal absorbance (half-max time) was measured for each 

surface (FIGURE 6b). The half-max time for glass microsphere (2.826 ± 0.13 min) was 

significantly lower than that for BC (3.92 ± 0.161 min) or BC treated with RGD-CBM (3.725 ± 

0.202 min, data not showed), followed by polystyrene (5.896 ± 0.154 min), lyophilized BC 

(5.908 ± 0.141 min) and ePTFE (6.725 ± 0.117 min). Taken together, the shift of the kinetic 

profile (Fig. 6a) and the half-maximal absorbance clotting time (Fig. 6b) results, the order of 

the lower to higher coagulative materials is glass microspheres < untreated and RGD-CBM 

treated BC < polystyrene and lyophilized BC < ePTFE. We believe that the difference between 

the hydrated BC and the lyophilized BC is due to reduction of the porosity, and consequently of 

the surface area, of the cellulose after the lyophilization process [13].  

Whole blood was used to assess clotting times. In this assay, higher absorbance values 

correlate with improved thromboresistance of the material. The results showed that, after 15 

min of calcium addition, the percentage of blood coagulation was 87, 57, 9.3 and 8.6% for 

glass microspheres, lyophilized BC, ePTFE and polystyrene, respectively. At each time point 

measured, blood incubated with glass had a significantly higher coagulation percentage, while 

the polystyrene presented the lower values. In general, the BC presented a clotting time higher 

than the glass microsphere and lower than the ePTFE and polystyrene (FIGURE 7). Although 

lyophilized BC induces a faster blood coagulation than ePTFE, this may be the result of the 

larger surface area, a parameter quite difficult to control in these experiments, which directly 

influence the blood-material interaction. 
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Figure 6: Clotting kinetic profiles of the absorbance at 405nm as a function of time for PPP 

incubated with polystyrene, BC (hydrated and lyophilized), glass microspheres and ePTFE (a). 

Citrated PPP (without the addition of calcium) serves as a negative control. The data was 

averaged over five independent experiments. The half-max time of each profile (b) was calculated 

as a measure of the clotting time. 

 

 

 

Figure 7: The effect of BC, ePTFE, polystyrene and glass microspheres on thrombus formation in 

whole blood at 0, 5, 15, 25 and 35 min. 
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Platelet adhesion 

When blood contacts a foreign material, such as artificial vessel, catheter or a hemodialyzer, 

plasma proteins readily adsorb onto the material surfaces. Stimulation of adhesion of platelets, 

white blood cells and some red blood cells onto the plasma protein layer may follow. After 

adhesion and aggregation, platelets release materials such as ADP and ATP, thereby inducing 

more platelet aggregation on the surface. Finally, a non-soluble fibrin network or thrombus is 

formed [47]. Thus, platelet adhesion on BC is an important test for the evaluation of blood 

compatibility. Figure 8 shows the relative number of platelet adhered to the ePTFE and BC 

surfaces. The lactic acid dehydrogenase (LDH) activity method [29] was used for platelet 

quantification. The untreated and the CBM-treated BC adsorbed approximately 15% and 16%, 

respectively, of the platelets added to the pellicle during the assay, while the reference material 

(ePTFE) adsorbed only 6%. However, when BC was pre-treated with RGD-CBM, the amount of 

platelets adhered increased to 34%.  

The adhesion of platelets to BC may be driven by the adsorption of plasma protein and clearly, 

the RGD peptide increases the platelets adhesion by two-fold. Thus, the results demonstrate 

that the RGD was able to recognize the platelet integrin αIIbβ3, leading to platelet adhesion, 

which is in agreement with results previously reported by Hansson et al. [50]. 

 

Figure 8: Relative number of platelets adhered on ePTFE and BC membrane untreated or treated 

with the recombinant proteins (RGD-CBM or CBM).  
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Figure 9 shows SEM images of the platelets adhered to the materials tested. As can be seen, 

these results are in agreement with the LDH assay (FIGURE 8). The platelets adhered to ePTFE 

present pseudopodia, indicating that they might have been activated. In the case of BC, it is 

difficult to identify elongations of the adhered platelets, due to the fibrous structure of the 

material.  

The platelet adhesion on endothelialized polymer was also studied. As demonstrated in our 

previous work [24] (chapter 3) after 14 days, only the BC treated with RGD-CBM was able to 

form a confluent endothelial cell layer when compared with the untreated or CBM-treated BC. 

The SEM images from figure 10 shows that the presence of an endothelial layer on the RGD-

treated BC significantly decreases the platelet adhesion, when compared with bare-BC. Once 

HMECs were not able to form a confluent layer on untreated or CBM-treated BC, platelets were 

still able to adhere to the gaps between the cells. Few platelets adhered to ePTFE, and also 

HMEC cells attached and proliferated poorly on this material. The densities of adhered 

platelets on endothelialized polymers are shown in figure 11 and as can be seen the number 

of platelets on RGD-treated BC reached similar values to the reference material. Although the 

presence of RGD increased the platelet adhesion on bare-BC, it may be used to cover the BC 

grafts with ECs before implantation. This strategy has been successfully reached by other 

authors [30, 46] that observed fewer platelets adhering to surfaces covered with endothelial 

cells. ECs are antithrombogenic, the glycocalyx preventing platelets from adhering; production 

of nitric oxide and prostacyclin also inhibit platelet adhesion, aggregation and cause blood 

vessel dilatation. In addition, endothelium also displays ectonucleotidases at its luminal 

surface. These enzymes hydrolyze ATP and ADP, both potent platelet aggregating agents, into 

AMP and adenosine [51, 52]. 

Hemolysis 

The results of hemolysis quantification over incubation of blood with BC membranes and 

ePTFE are shown in table 1. As negative and positive controls, blood was incubated in an 

isotonic solution (PBS buffer) and ultra pure water, respectively. It may be observed that 

hemolysis occur in less than 2% of the red cells, thus BC is classified as a nonhemolytic 

material, since, according to the American Society for Testing and Materials (ASTM F756-00, 

2000), a material may be classified as nonhemolytic (0-2% of hemolysis), slightly haemolytic 

(2-5% of hemolysis) and haemolytic (>5% of hemolysis). However, the evaluation of the 
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haemolytic character for materials are subject to consideration of the nature of tissue contact, 

duration of contact, and surface area to body ratios, and the nature of device. 

 

Figure 9: SEM images of BC membrane and ePTFE surface after contact with PRP for 2 hours. 

Column II (scale bar 5µm) is the magnified images of Column I (scale bar 20µm). 



Chapter 4 
 

  134 

 

 

Figure 10: SEM images of the adhered platelets on endothelialized BC untreated or treated with 

recombinant proteins and ePTFE. The bare BC and ePTFE were used as controls. The captions 

without “bare” indicate the cultured HMEC surface. Column II and IV (scale bar 10µm) is the 

magnified images of Column I and II (scale bar 30µm), respectively. 
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Figure 11: Densities of adhered platelets on endothelialized BC untreated or treated with 

recombinant proteins and ePTFE. The bare BC and ePTFE were used as controls. 

 

 

 

Table 1: Hemolysis of blood after contact with BC surfaces and ePTFE. 

Sample Hemolytic index 
(%) 

Ultra pure water 99.3 
PBS buffer 1.43 
BC + RGD-CBM 1.63 
BC + CBM 1.42 
BC 1.43 
ePTFE 1.85 
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Conclusions 

The blood compatibility of BC has not been systematically investigated. In this report, the 

adhesion of plasma protein and platelets and blood coagulation on bare and endothelialized 

BC surfaces was studied. The results showed that BC presents good hemocompatibility, the 

blood coagulation studies shows that the results are comparable to those produced by 

currently available materials for blood replacements and that the adsorption of total plasma 

protein was not influenced by the presence of recombinant proteins bearing the peptide RGD, 

although decreasing the adhesion of fibrinogen on pure solutions. Besides adsorption isotherm 

studies showed that BC presented a higher affinity for albumin than immunoglobulin or 

fibrinogen. Results also showed that the presence of RGD on BC polymer increased platelet 

adhesion, however when endothelial cells were cultured on RGD-treated BC, a confluent cell 

layer was formed and almost no platelets adhered to the material, thus the improvement of BC 

blood-compatibility through modification with adhesion peptides seems to be an interesting 

strategy in cases where cellulose grafts were previous covered with endothelial cells. 
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Chapter 5 
 

 

Studies on the biocompatibility of bacterial 
cellulose 
 

 

Abstract 

The production of functional blood vessels by tissue engineering techniques being already 

possible, it must be acknowledged that, due to the associated costs and lengthy production, 

the development of new materials appropriated for small diameter blood vessel replacements 

is still required. Bacterial cellulose is a promising material for this application, given its 

excellent biocompatibility and mechanical properties. In the present work, BC tubes with small 

diameter (3mm ID) were produced and its mechanical properties evaluated. The 

functionalization of BC membranes using a chimeric protein containing a cellulose – binding 

module (CBM) and the adhesion peptide Arg-Gly-Asp (RGD) improves interaction with cells – 

work previously developed in our lab; Since the recombinant protein contains a bacterial CBM, 

the biocompatibility of native and RGD-CBM treated BC – to analyse whether the presence of 

the recombinant protein gives rise to any immunologic reaction – was now investigated 

through in vitro and in vivo studies. BC was implanted subcutaneously in the sheep for 1, 2, 4, 

8, 16 and 32 weeks. Implants were evaluated regarding the inflammatory reaction, cell in-

growth and angiogenesis. Histological results showed that BC trigger a biological response 

typically observed for high surface-to-volume implants (e.g., fabrics medical devices). After 1 

week the presence of an inflammatory infiltrate suggests an acute/subacute inflammatory 

reaction that advances to a chronic inflammation confined to the implantation site and 

associated to the proliferation of small blood vessels. The presence of giant cells was observed 

at latter periods (16 and 32 weeks) and a narrow fibrous capsule was present surrounding the 

implant. There were no significant differences on the inflammation degree between the BC 

coated with the recombinant protein RGD-CBM and the native BC. 

The CryoSEM analysis showed that the BC tubes present a denser luminal side and a porous 

outer side; no orientation of the fibrils network was observed. Fluorescence microscopy reveals 
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that apart from increasing cell adhesion, the presence of RGD stimulates an even cell 

distribution, while cells coating the untreated BC seem to form aggregates. Furthermore, cells 

observed on the RGD treated – BC present a more elongated morphology. Mechanical test 

results showed that small-diameter BC tube produced by our group possess an elasticity 

higher than that of human arteries and veins. 
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Introduction 

Tissue engineering and regenerative medicine aim at promoting the regeneration of diseased 

or damaged human tissues. Biomaterials are used as scaffolds in which cells and/or growth 

factors are seeded, cultured, and implanted to induce and direct the growth of new, healthy 

tissue [1]. Among the biomaterials used, natural polymers represent one of the most attractive 

options, since being similar to biological macromolecules, may avoid the stimulation of chronic 

inflammation or immunological reactions and toxicity, often detected with synthetic polymers. 

Although several groups described the successful production of tissue engineered blood 

vessels [2-7], it must be recognized the cost and long time required for its production. 

Furthermore, the long culture time required brings about the question of the safety, due to 

possible cell differentiation. Therefore, using a material with good mechanical properties, 

allowing cell colonization, may provide a “mixed” tissue engineered/artificial prosthesis 

approach, allowing a prompt utilization and good tissue integration. 

Bacterial cellulose (BC) is a pure form of cellulose secreted by bacteria such as 

Gluconacetobacter xylinus. It is a material with unique properties, including high water holding 

capacity, high crystallinity, ultrafine fiber network, high tensile strength and the possibility to be 

shaped into three-dimensional (3D) structures during synthesis [8]. This set of features makes 

BC a promising material for the production of scaffolds in tissue engineering. In fact, several 

research groups studied the use of BC as a scaffold for cartilage [9, 10], wound dressing [11, 

12], dental implants [13-19], nerve regeneration [20, 21] and vascular grafts [22, 24-28]. 

Inflammation, wound healing, and foreign body response are generally considered as parts of 

the tissue or cellular host responses to injury and implantation of a biomaterial in the body. 

This involves injection, insertion, or surgical implantation, all of which injure the tissues or 

organs involved. The sequence of local events following implantation is: injury, acute 

inflammation, chronic inflammation, granulation tissue, foreign body reaction and 

fibrosis/fibrous capsule development [22]. The degrees to which the homeostatic mechanisms 

are perturbed and pathophysiologic conditions created and resolved are a measure of the host 

reaction to the biomaterial and may ultimately determine its biocompatibility. 

Biocompatibility is one main requirement for any biomedical material. It can be defined as the 

ability to remain in contact with living tissue without causing any toxic or allergic side effects, 

simultaneously performing its function [23]. In this context, BC has been modified to further 

enhance biocompatibility. Depending on the envisaged biomedical application, improved 
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cellulose integration with the host tissue, increased degradation in vivo or modified mechanical 

properties, to mimic the tissue to be replaced, are required. Many BC modification studies, 

such as chemical surface modifications [24-26], incorporation of bioactive molecules [27], 

modification of porosity and crystallinity [28], design of 3D structures [29], modification of BC 

composition [30-32] and production of nanocomposites [33-36], enlarge the repertoire of 

bacterial cellulose as a potential material for biomedical application. 

The functionalization of BC tubes using bioactive peptides was previously successfully 

developed in our research group, envisaging its application for vascular replacements. The 

attachment of cells to biomedical materials can be improved by using adhesion molecules, 

such as fibronectin, vitronectin, or laminin. These molecules, present in the extracellular matrix 

proteins, regulate the adhesion, migration and growth of cells, by binding to integrin receptors 

located on the outer cellular membranes. The amino acid sequence Arg-Gly-Asp (RGD) has 

been recognized as the minimal essential cell adhesion peptide sequence present in these 

proteins. In a previous work we described the production of recombinant proteins containing 

RGD sequences fused to a CBM (cellulose-binding module) [37] (chapter 2).  The use of a 

CBM (a protein exhibiting high adsorption affinity and specificity for cellulose surfaces) fused 

with biologically active peptides, allow a simple and effective approach to decorate the BC 

surface. This concept was further demonstrated using human microvascular endothelial cells 

[38] (chapter 3). The chimeric proteins were able to enhance endothelial cell adhesion to BC 

and stimulate angiogenesis. 

Very few studies on the in vivo biocompatibility of BC have been published. Helenius and 

colleagues [39] reported the histological analysis of subcutaneously implanted BC, in mice, for 

a period of up to 12 weeks. BC was shown to integrate well into the host tissue, with cells 

infiltrating the BC network and no signs of chronic inflammatory reaction or capsule formation. 

The formation of new blood vessels around and inside the implants was also observed, 

evidencing the good biocompatibility of the biomaterial. In another study, Klemm et al. [20] 

investigated the application of patented BC tubes (BASYC® - BActerialSYnthesized Cellulose) as 

microvessel endoprosthesis, using the carotid artery of a white rat. In this study, four weeks 

after implantation, the carotid artery-BASIC complex was wrapped up with connective tissue 

and the BC tube was completely incorporated in the body without rejection. Following the same 

approach, but this time in the carotid artery of pigs over a period of 12 weeks, BC grafts 

showed good in situ tissue regeneration, without signs of thrombosis, inflammation or fibrotic 
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capsule formation around the implants. The luminal wall of the newly formed tissue showed 

complete endothelialisation, with a confluent endothelial layer [40].  

To further explore the potential of BC for tissue engineering blood vessels, in this work we 

investigate the mechanical properties of BC tubes and the in vivo and in vitro biocompatibility 

of BC membranes. The fate of long term subcutaneous implants in sheep - 32 weeks - was 

analysed. Implants were evaluated in aspects of chronic inflammation, foreign body reaction 

responses, cell in-growth and angiogenesis. Once the chimeric protein used in this work 

contain a bacterial CBM – a cellulose-binding domain family III from the cellulosomal-

scaffolding protein A of the bacteria Clostridium thermocellum – also the in vivo 

biocompatibility of BC membranes treated with the RGD-CBM protein was investigated. 

Furthermore, the in vitro biocompatibility was evaluated using 3T3 mouse embryo fibroblast 

cultures. Viability, morphology and cell in-growth were analysed by MTS [3-(4,5-dimethylthiazol-

2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium] assay, fluorescence and 

CryoSEM microscopy. 

 

Material and Methods 

Production of Bacterial Cellulose 

Gluconacetobacter xylinus (ATCC 53582) purchased from the American Type Culture 

Collection was grown in Hestrin-Schramm medium, pH 5.0. The medium was inoculated with 

the culture, added to the 24-well polystyrene plate (1 ml per well) and incubated statically at 

30 oC, for 5 days. BC pellicles were purified by 2% SDS treatment at 60 oC, for 12 h, washed 

with distilled water until complete removal of SDS and immersed in 4% NaOH at 60 oC, for 90 

min. After neutralization with distilled water the samples were autoclaved and stored in 

phosphate buffered solution (PBS) pH 7.4, at 4ºC, prior to use. The pellicle produced in a 24-

well polystyrene plate presented a diameter of 15.5mm. 

Preparation of tubular BC: the experimental set-up used for the production of BC tubes 

(FIGURE 1) was autoclaved and the Hestrin-Schramm medium was inoculated and added to 

the system. A layer of sterilized oil was placed surfacing the culture medium, to reduce the 

growth of the bacteria at the air-liquid interface. The silicon tube is permeable to oxygen, 

allowing the growth of the strictly aerobic bacteria next to the tub wall. To avoid the formation 

of air bubbles on the surface of the silicon tube – leading to irregularly shaped BC tubes – the 
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system was first connected to an air bomb during 4 days in an open circuit. After the formation 

of a thin BC pellicle, the air bomb was disconnected and pure oxygen was injected at 0,5 bar 

for 14 days and allowed the production of a BC tube with (3mm of inner diameter). Then, the 

BC tubes were removed from the silicon mould and treated with a 4% NaOH solution, at 60 oC, 

for 12 hours. The purified BC was then neutralized with filtered distilled water, autoclaved and 

stored in phosphate buffered solution (PBS) pH 7.4, at 4ºC, prior to use. 

 

 

Figure 1. Bacterial cellulose produced by G. xylinus (ATCC 53582) grows around the silicon tube, 

when an air flow is injected through the tube. a) Schematic picture of the cultivation system; b) 

Bacterial cellulose tube. 

 

Surface modification of BC with RGD-CBM protein 

The recombinant protein RGD – CBM has been formerly cloned in Escherichia coli and its 

production and purification was conducted as described in our previous work [37] (chapter 2). 

For surface modification of BC, the purified recombinant protein was added to the wells of 24-

well polystyrene plates (0.25mg of protein/per well), coated with bacterial cellulose sheets 

produced in similar 24-well polystyrene plates. The plates were incubated overnight at 4 ºC. 

Unbound protein was removed and the BC pellicles were washed with PBS and used in the in 

vitro and in vivo biocompatibility assays. 

 

Fibroblast adhesion and proliferation 

The mitochondrial activity of the cultured cells was determined using a colorimetric assay, 

commonly used as a measure of cell viability. The MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium] assay was performed as follows: the 

purified recombinant proteins were added to the wells of the 24-well polystyrene plates (0.25 
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mg of protein/per well), coated with bacterial cellulose sheets. As referred earlier, the BC 

sheets were produced in similar 24-well polystyrene plates, such that they tightly fit in the 

wells, completely covering the bottom surface. The fibroblasts 3T3 were seeded at a density of 

12x 104cells/per well, in DMEM medium without serum. Two hours after the addition of the 

cells, the wells were washed with PBS and DMEM with serum (10%) was added. The MTS 

assay of the attached and spreading 3T3 fibroblasts was carried out at 2, 72 and 7 days after 

the addition of the cells. The plates were incubated at 37ºC, in atmosphere of 5% CO2 and 95% 

humidified air. The results were obtained from at least three different assays, each one with 

samples in triplicates. 

 

Morphological analysis by fluorescent microscopy 

After 2h, 72 and 7days of cell seeding on BC - untreated or treated with the RGD-CBM protein 

–the membranes were washed with pre-warmed PBS; then, the cells were fixed in 4% 

formaldehyde (Pierce, Rockford, IL, USA) in PBS, permeabilized with acetone (Sigma) at – 

20ºC, and stained with Alexa Fluor 546-phalloidin (Molecular Probes). Nuclei were visualized 

by staining with DAPI. Microscopy observations were performed using an Olympus BX51 

(Olympus Portugal SA, Porto, Portugal) fluorescence microscope. 

 

Cryo-Scanning Electron Microscopy (CryoSEM) 

CryoSEM presents a valuable technique for the visualization of materials that have a high water 

content, whose structure might be altered or destroyed by dehydration and cross linking. After 

14 days of cell seeding on BC – untreated or treated with the RGD-CBM protein – the 

membranes were washed with pre-warmed PBS; then, the cells were fixed in 2.5% 

glutaraldehyde in PBS. Samples were washed in ultrapure water and a piece of BC membrane 

was placed between two miniature rivets on a vacuum transfer rod and the sample was slam-

frozen in a nitrogen slush and transferred to the cryostat chamber, which was maintained at - 

150 °C. The top rivet was flicked off to produce a fractured surface, the ice was sublimed at - 

90 °C during 2 minutes (for visualization of fibers on the dense side of BC) or 4 minutes (for 

visualization of fibers on the porous side of BC), and then fractured surface was coated with 

gold/palladium. Afterwards, the sample was transferred to the microscope chamber, which 

was also maintained at - 150 °C and examined at 15 kV using a working distance of 15 mm. 
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The samples were analyzed by use of a CryoSEM (Model Gatan ALTO 2500) at CEMUP (Centre 

for materials characterization from the University of Porto). 

For visualization of the fibers from the BC tube, the tube samples were cut longitudinally and 

transversely. The transversal section was fractured and sublimed during 10 minutes. The 

longitudinal section was not fractured and the sublimation time was 30 minutes. 

 

Mechanical properties: Young´s modulus (E) tensile strength (TS) and elongation-

at-break (ε%) 

TS, E and ε% were measured with an Instron Universal Testing Machine (Model 4500, 

InstronCorporation, USA). The initial grip separation was set at 15 mm and the crosshead 

speed was set at 5 mm/min. TS is the stress needed to break a sample and was calculated by 

dividing the maximum load (N) by the initial cross-sectional area (m2) of the specimen, the TS 

is expressed in MPa. E is the initial slop of the stress-strain curve and expressed in MPa. ε% is 

the strain on a sample when it breaks. It was calculated as the ratio of the increased length to 

the initial length of a specimen (15 mm) and expressed as a percentage. BC tube was 

stretched in lengthwise direction and a total of fifteen tubes were used in the test. 

 

In vivo biocompatibility studies 

Experimental groups: 18 adult female white merino sheep weighing approximately 60 kg were 

random allocated to two groups of 6 animals each. One group (group 1) of animals was 

implanted with bacterial cellulose discs with 1.5 cm diameter and treated with the recombinant 

protein (RGD-CBM), a second group (group 2) was implanted with untreated BC discs. 

Anaesthesia and surgical procedures: The animals were solids fastened for 48 hours prior to 

the surgical procedure. An intravenous catheter of 20G was placed at the cephalic vein. The 

anesthetic protocol consisted in xylazine (0.2 mg/Kg, intravenous) as tranquilizer. For inducing 

anesthesia, sodium thiopental was used at a dosis of 15 mg/Kg intravenous. The anesthetic 

maintenance was done with isoflurane at 2% via endotracheal intubation carried by 100% 

oxygen with a flow of 2L/min. 

For surgery, sheep were placed in sternal recumbence over a tilted table so that the animal´s 

head and neck are always lower than the stomach to reduce risks of aspiration pneumonia. 

The wool was clipped in roughly square areas and the skin was aseptic prepared with 
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iopovidone. The incisions were made over the dorsal area, starting over the last ribs and 

ending just cranially to the sacrum. These 3 cm length incisions, 3 on the left side e two on the 

right one, were made parallel and 4 cm off the midline. A minimum distance of 3 cm was kept 

between incisions. After exposing the dorsal muscles, the BC tubes were inserted under the 

skin, distally to the midline, subsequently, the skin was closed with a Supramid® USP1 suture 

and the ewes were transferred to straw yards (4 m x 3 m) after surgery. The skin sutures were 

not removed in order to localize the implant site. 

Collection of implants and histological procedures: The implants and the surrounding tissue 

were collected after a peripheral infiltration of 2% lidocaine, at 1, 2, 4, 8, 16 e 32 weeks post-

implantation. Two samples were collected in each animal, randomly selected in each 

experimental group at the previously reported temporal points. The samples were fixed in 10% 

formalin, paraffin-embedded, cut in 2 µm and stained with hematoxylin and eosin (HE) for 

histological evaluation. 

Histological evaluation: The biological response parameters were assessed in the 

implant/tissue interface with three high power fields (x400) by at least two pathologists, for 

each sample and recorded in an appropriated formulary. Among the biological response 

parameters all were evaluated according to the ISO standard 10993-6 (annex E) and included: 

the extent of fibrosis/fibrous capsule (layer in micrometres) and inflammation; the 

degeneration as determined by changes in tissue morphology; the number and distribution 

from the material/tissue interface of the inflammatory cell types, namely polymorphonuclear 

neutrophilic leucocytes (PMN), lymphocytes, plasma cells, eosinophils, macrophages and 

multinucleated cells; the presence, extent and type of necrosis; other tissue alterations such as 

vascularization, fatty infiltration and granuloma formation; the material parameters such as 

fragmentation and/or debris presence, form and location of remnants of degraded material. 

 

Results and discussion 

In vitro studies on the BC-cell interactions 

When cultivated in static culture G. xylinus constructs a cellulose network much denser on the 

culture medium/air interface than on the opposite side [20, 41]. The results of the MTS test 

(FIGURE 2) showed that there were no significant differences on the fibroblast adhesion to the 

porous or dense side of BC and also that the cells proliferated equally well on both sides, as 
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previously reported by Backdahl and colleagues [41], in a study using human smooth muscle 

cells (SMC). The effect of the recombinant protein (RGD – CBM) on the adhesion of fibroblasts 

to BC was previously discussed [37] (chapter 2). Fluorescence microscopy allows, in this work, 

the observation of more details of the cell-BC interaction. Figure 3 show that, apart from 

increasing cell adhesion – as previously observed using the MTS assay – the presence of RGD 

stimulates a uniform distribution of the cells, important to improve the endothelialization of the 

graft, while cells coating the untreated BC seems to form aggregates (the images containing 

only the nuclei labelled on figure 3 allow a better visualization of this effect). There were no 

differences on the morphology of the fibroblast cultured on porous and denser side of the 

membrane.  

 

 

Figure 2. MTS assays of fibroblast cultures at the dense or porous side of BC membrane. The MTS 

assay was developed at 2, 72 and 7 days after cell seeding. Results are expressed as absorbance 

values at 490 nm. 

 

The CryoSEM results (FIGURE 4) showed that cells on RGD-treated BC present a more 

elongated morphology than the ones covering the untreated pellicle, irrespective of the side 

analysed. The more extended morphology of fibroblasts upon interaction with the adhesive 

peptides is likely driven by the greater number of focal contacts between integrins and RGD-

containing peptides linked to the BC surface. It is well known that a critical RGD density is 
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essential for the establishment of mature and stable integrin adhesions, which, in turn, induce 

efficient cell migration, spreading and formation of focal adhesions [42-45]. 

 

 

 

Figure 3. Fluorescent microscopy images showing fibroblast cultured 7 days on BC pellicle. (a) 

Dense and (b) porous side of RGD-treated BC; (c) Dense and (d) porous side of untreated BC. 

Nuclei were visualized by staining with DAPI (blue) and f- actin with Alexa Fluor 546-phalloidin 

(red). Actin and nuclei combined images were acquired using objectives 10x (scale 200µm); 

Nuclei images were acquired using objectives 20x (scale 100µm). 

 

The migration of cells is mediated by integrins, a diverse family of glycoproteins that form 

heterodimeric receptors for extracellular matrix (ECM) molecules. During migration, cells 

project lamellipodia that attach to the ECM and simultaneously break existing ECM contacts at 

their trailing edge. This allows the cell to pull itself forward [46]. Animal cells cannot degrade 

cellulose [39] and must push the nanofibrils aside while migrating into the cellulose network 

[41]. The CryoSEM technique was also used for visualization of cell ingrowth in BC scaffold. 

The results showed that after 14 days of culture the cells could not migrate through the BC 

fibers, once only cells on the surface were found. However, it has been demonstrated that cells 
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may migrate through BC membranes. Andrade et al. [38] (chapter 3) and Backdahl et al. [41] 

demonstrated the ingrowth of human microvascular endothelial cells (HMECs) and SMC, 

respectively, through BC network using an invasion chamber where an attractant (serum, 

growth factor, etc…) is used to stimulate the cells to grow into the BC - in both cases the cells 

were able to invade the fibrous cellulose matrix. 

 

 

Figure 4. CryoSEM micrographs of bacterial cellulose cultured with fibroblasts after 14 days. (a) 

Dense and (b) porous side of RGD-treated BC; (c) Dense and (d) porous side of untreated BC. Scale 

10µm. 

 

Mechanical properties of the BC tubes; structural details (CryoSEM) 

The production of BC tubes using different techniques has been described in the literature, for 

example:(1) a cylindrical glass matrix is immersed in a large volume and tubular BC is 

produced in the culture medium that enters between the outer and inner matrices. In this case 

the oxygen is supplied through the second opening that opens to the air surface [20]. This 

approach is not feasible for the production of long tubular BC structures. (2) Another technique 
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was developed by Putra et al. [47]; the authors used a silicone tube (an oxygen-permeable 

material) as a mould. The culture medium is poured into a silicone tube and the both edges 

were sealed. The G. xylinus produce BC gel all around the interface between the inner surface 

of silicone tube and the culture medium, which leads the formation of a BC tube with a more 

porous structure on the luminal side than the outer side. (3) Gatenholm and his group [41, 48, 

49] produced BC tubes submerging silicone tubes in a glass tube containing culture medium. 

One of the edges was sealed and at the other edge gas was inlet through the support. The G. 

xylinus produce BC gel all around the interface between the outer surface of silicone tube and 

the culture medium. The experimental set-up used in this work for the production of BC tubes 

(FIGURE 1) is similar to the one used by the Gatenholm group and produces a BC tube with a 

smoother and denser luminal side and a more porous outer side (FIGURE 5). According to 

Backdahl et al. [41] a smoother luminal surface, being similar to the basal membrane of the 

luminal side of blood vessels, is preferable for the attachment of endothelial cells while a 

porous outer side probably will facilitated the integration with the host tissue. The CryoSEM 

results also showed that, unlike the tubes produced by Putra et al. [47], no orientation of the 

fibrils network was observed. According to Putra and co-workers the degree of orientation of 

the fibrils depended on the diameter of the curvature of the silicone mould. An increase in the 

diameter of curvature led to a decrease in the degree of BC fibril orientation. Since, in the 

present study, the bacteria grow on the outer side of the silicone tube (hence, with lower 

curvature), this probably affected the direction of the fibril secretion by the G. xylinus. 

The Young´s modulus (E) of the BC tube was evaluated. Higher values of E are associated 

with a greater vessel wall stiffness. The BC tube produced in this work presented a more 

elastic structure in the lengthwise, i.e., lower E (0.25 ± 0.07 MPa) than human arteries and 

veins and much lower than collagen and PTFE, two common polymers used as vascular grafts 

(TABLE 1). The value reported by Putra and colleagues [47] is, also along the length of the 

tube, even more elastic (lower E), these differences are probably due to the different cellulose 

density/thickness. Typical plots of wall stress versus strain in BC tube segments are shown in 

Figure 6. The BC-tube produced in this work presented an ε% of 31± 4.4%, a value higher 

than presented by collagen (10%) and lower than PTFE (200–400).  
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Figure 5. CryoSEM micrographs of bacterial cellulose tubes. Visualization through a longitudinal 

cut of (a) Inner side (b) outer side. Visualization through a transversal cut of (c) Inner side (d) 

outer side. Scale 60µm (longitudinal images), scale 10µm (transversal images). 

 

The TS from our BC-tube was 0.19 ± 0.03 MPa, a value lower than the one obtained by Putra 

and colleagues (0.59 MPa) [47]. Again, although the values are in the same order of 

magnitude, the different properties may be assigned to variable thickness of the tubes. The TS 
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values for the BC tubes (obtained in our lab and described by Putra and colleagues [47]) are 

one order of magnitude lower than the ones reported for human arteries and veins (TABLE 1). 

 

Table 1. Comparison of the mechanical properties of BC tubes (3mm of inner diameter and 1mm 

of wall thickness) produced in this present work with BC tubes produced by Putra et al.[47], 

human arteries and veins and common polymers used as vascular grafts (collagen and PTFE). 

 Young´s Modulus 

(MPa) 

Tensile Strength 

(MPa) 

Elongation 

(%) 

References 

BC – tube 0.25 0.19 31 * 

BC – tube 0.06 0.59 - [47] 

Arteries 1.54 1.57 - [50, 51] 

Veins 3.11 2.65 – 3.3 - [50, 51] 

Collagen 1000 50 – 100 10 [52] 

PTFE 400 14 – 35 200 – 400 [52] 

* BC tubes produced in this work. 
- Not described. 
 

 

Figure 6. Tensile stress-strain curves of the lengthwise of BC tubes with an inner diameter and 

wall thickness of 3 mm and 1 mm, respectively. 
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According to Sanchavanakit and collegues, a BC dried film (from a 48h grown culture) with a 

thickness of 0.12 mm presents a tensile strength and break strain of 5.21 MPa and 3.75%, 

whereas for the reswollen films the values are 1.56 MPa and 8.0%, respectively [53]. McKenna 

and collegues reported a TS value of wet bacterial cellulose sheet grown between 48h – 96h  

of 1.1 - 2.2 MPa, ε% of 16 - 27% and E 10 - 14 MPa [54]. The BC production as well as the 

mechanical properties are influenced by the carbon and nitrogen sources and concentration, 

the pH and temperature, time of cultivation, the surface area of the fermentation system, the 

type of cultivation system (e.g. static or agitated cell culture) and differences in the bacterial 

strains. Also, the treatment after synthesis influenced the properties of BC membranes [8].  

The mechanical properties of the BC tubes produced using the method adopted in this work 

are inferior to the properties of both the commercial BC grafts available and of the natural 

blood vessels. Therefore, a different method for the production of the tubes, allowing a thicker 

BC wall is required (ongoing work). On the other hand, the impregnation of the porous 

cellulose matrix with blood before implantation may provide significant improvement on the 

mechanical properties. 

 

In vivo biocompatibility studies 

Implanted medical devices must perform, improving quality of life of the patients. However, 

some implants ultimately develop complications (adverse patient – device interactions) leading 

to the graft failure, and thereby may cause harm to or death of the patient. The complications 

associated to medical devices are largely due to the materials – tissue interactions, including 

both the effects of the implant on the host tissues, as well as the effects of the host tissues on 

the implant [52]. This way, much of the research is directed towards the search for 

biomaterials that are able to provide best performance. 

As a promising material for small vascular grafts, bacterial cellulose was evaluated in terms of 

its in vivo biocompatibility. The effect of the recombinant protein containing a bacterial domain 

on the biocompatibility of BC was also examined. Bacterial cellulose membranes with 1.5 cm 

diameter coated or not with the RGD-CBM, were subcutaneously implanted in the sheep. The 

implants and the surrounding tissue were collected at 1, 2, 4, 8, 16 e 32 weeks post-

implantation.  

The histological observation showed that at 1 week post-implantation there was a 

predominance of polymorphonuclear leukocytes (PMN) and macrophage infiltrate at the 
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implant – tissue junction in both groups 1 and 2, suggesting an acute/subacute inflammatory 

reaction (FIGURE 7a).  

In the 2nd week post-implantation an increase in macrophages, plasma cells and lymphocytes 

infiltration associated to a proliferation of small blood vessels was compatible with a chronic 

inflammation. The persistence of the inflammatory stimuli (BC membranes) led to a change 

from acute to chronic inflammation [55]. This chronic inflammation response was confined to 

the implantation site (FIGURE 7b). 

During the initial 4 weeks of observation, lymphocytes and macrophages were the most 

represented cells for both groups. The type of cell infiltrate and the increased 

neovascularisation, always surrounding the implant area were compatible with a chronic 

inflammation (FIGURE 7c). Macrophages must be considered in the development of immune 

responses to synthetic biomaterials by presenting antigen to immuno competent cells such as 

lymphocytes and plasma cells [56]. The macrophage is probably the most important cell in 

chronic inflammation because of the great number of biologically active products expressed by 

these cells [56]. Among these, growth factors are responsible for the growth of fibroblasts and 

blood vessels observed in both groups at the 4 week pos-implantation. 

8 weeks past implantation a marked decrease in inflammation grading was detected in both 

experimental groups (FIGURE 7d). These findings can be related to the formation of 

granulation tissue, the hallmark of healing inflammation, consisting in the proliferation of 

fibroblasts, macrophages and vascular endothelial cells and a decrease in inflammatory cells 

such as PMN and lymphocytes. 

The foreign body reaction (FBR), consisting mainly of macrophages and/or foreign body giant 

cells infiltration at the tissue-implant interface associated to the different degrees fibrosis (i.e. 

fibrous encapsulation) were observed at latter periods (16 and 32 weeks) of the experimental 

process (FIGURE 7e and 7f). With biocompatible materials, the composition of the foreign body 

reaction in the implant site may be controlled by the surface properties of the biomaterial, the 

form of the implant and the relationship between the surface area of the biomaterial and the 

volume of the implant [57, 58]. High surface-to-volume implants such as the BC membranes 

will have higher counts of macrophages and foreign body giant cells in the tissue-implant 

surface than will smooth-surface implants, which will have fibrosis as a significant component 

of the implant site.  
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Figure 7. Histomorphology of bacterial cellulose membrane implanted subcutaneously in sheep 

and surrounding tissue reaction. Once there were no significant differences in biological 

responses by the host, the images represent the results for both groups of the post-implantation 

times analyzed. (a) 1, (b) 2, (c) 4, (d) 8, (e) 16 and (f) 32 weeks post-implantation. (a, b, c, d), (e) 

and (f), 40x, 100x and 400x ampliation, respectively (Hematoxylin - eosin staining). The solid 

arrows indicate the fibrous capsule formation. The dashed arrow on image (f) indicates small 

blood vessels formation. (*) Bacterial cellulose. 
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Most biomaterials of potential clinical interest typically elicit the foreign body reaction, a special 

form of nonspecific inflammation. The major role of the neutrophil in acute inflammation is to 

remove foreign materials and bacteria from the injury site through phagocytose (engulfment, 

followed by the killing or degradation) [59]. The form and topography of the surface of the 

biomaterial determine the composition of the foreign-body reaction. Relatively flat and smooth 

surfaces such as that found on breast prostheses have a foreign body reaction that is 

composed of a layer of macrophages one to two cells in thickness. Relatively rough surfaces 

such as those found on the outer surfaces of expanded poly tetrafluoroethylene (ePTFE) or 

Dacron vascular prostheses have a foreign-body reaction composed of macrophages and 

foreign body giant cells at the surface. Fabric materials generally have a surface response 

composed of macrophages and foreign body giant cells, with varying degrees of granulation 

tissue subjacent to the surface response. A material in a phagocytosable form (i.e., powder or 

particulate) may provoke a different degree of inflammatory response than the same material 

in a nonphagocytosable form (i.e., film) [52]. 

Multinucleated giant cells (formed by the fusion of monocytes and macrophages in an attempt 

to phagocytose the material with a size greater then the own cell) in the vicinity of a foreign 

body are generally considered evidence of a more severe FBR, however it is not uncommon to 

see very large foreign-body giant cells containing large numbers of nuclei on the surface of 

biomaterials, in fact the components of the FBR (giant cells and granulation tissue) may persist 

at the tissue–implant interface for the lifetime of the implant [22, 52]. Sonohara and Greghi 

compared the biological response of Millipore membrane, Teflon and Gengiflex (a product 

based on bacterial cellulose) after subcutaneous implantation in rats for an experimental 

period of 30 days. The histological results showed that none of the material tested induced 

intense reaction with the host. The presence of a discrete to moderate giant cells infiltrate was 

observed for Millipore membrane and Teflon, in case of Gengiflex the framework was moderate 

to intense. [60] 

Märtson et al. [61] implanted a high purity cellulose sponge (Cellspon®) in the subcutaneous 

tissue of rats from 1 to 60 weeks. In that study, a mild foreign body reaction was observed at 

16 weeks post-implantation, in agreement with the observation made in the present study, at 

the same temporal point [61]. Märtson et al. described a decrease in the volume of 

amorphous cellulose implants that can be attributed to a degradation by, probably, a 

combination of chemical, biological and mechanical processes. At the latter stages of the 
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current assay (16 and 32 weeks), a change in the shape of the membrane was observed, 

which may be assigned to similar events, but our data do not allow an objective position 

regarding the possible degradation of the BC implants. 

Only a few studies addressed so far the in vivo biocompatibility of BC. Helenius and colleagues 

[39] reported the histological analysis of subcutaneously implanted BC, in mice, for a period of 

up to 12 weeks. BC was shown to integrate well into the host tissue, with cells infiltrating the 

BC network and no signs of chronic inflammatory reaction or capsule formation. The formation 

of new blood vessels around and inside the implants was also observed, evidencing the good 

biocompatibility of the biomaterial. 

Mendes and coworkers implanted BC subcutaneously in mice for 90 days, the results showed 

that the microbial cellulose membrane was found to be nonresorbable and induced a mild 

inflammatory response, suggesting that the membrane was well tolerated by the organism 

[62]. 

Esguerra and collegues used another animal model to evaluate the biocompatibility of BC, 

polyglycolic acid and expanded polytetrafluorethylene; these materials were implanted in a 

dorsal skinfold chambers of Syrian golden hamsters. The authors used intravital fluorescence 

microscopy, histology, and immunohistochemistry to analyze the biocompatibility, 

neovascularization, and incorporation of each material over a time period of 2 weeks. Histology 

results showed that the inflammatory response to BC is similar to that of ePTFE and PGA. 

However angiogenesis in BC is slower and less well developed than the other materials tested 

[63]. 

Testing always leads to experimental variability, particularly tests in living systems. It should be 

noted that the different results obtained until now with BC implants, may be explained by the 

different animal species used and the different methodology applied in assessing the 

inflammatory reaction. 

Generally, fibrosis (i.e., fibrous encapsulation) surrounds the biomaterial, isolating the implant 

and foreign-body reaction from the local tissue environment [52]. Our results showed that BC 

implants present a narrow fibrous capsule for both groups tested. The thickness of the fibrous 

capsule around implants placed subcutaneously has been used as a measure of the 

“biocompatibility” of materials. Hence, overall, from the present work, a classification of BC as 

a biocompatible material may be drawn. However, it is important to note that materials yielding 

acceptable tissue compatibility in one implantation site might yield unfavourable results in 
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another site [52]. Thus, to employ BC as a biomedical scaffold for artificial blood vessels 

requires additional compatibility studies, in which the BC is subjected to the environment that 

exists in the grafting site in the vasculature. 

Figure 7 shows the histological photographs of bacterial cellulose membrane implanted 

subcutaneously in sheep and surrounding tissue reaction. Once there were no significant 

differences in biological responses by the host for untreated or RGD-CBM treated BC, the 

images represent the results for both groups of the post-implantation times analyzed. Analysis 

of the histological sections by light microscopy shows the maturation of the granulation tissue, 

with a inflammatory infiltrate of mainly polymorphonuclear cells and lymphocytes and no 

capsule at 1 week pos-implantation, leading the formation of a mature fibrous capsule 

surround the implant and presence of newly formed vessels at 32 weeks pos-implantation. 

Significant differences of inflammation degree between the two groups were not observed. 

Although the adhesion peptide (RGD) present on BC membranes (group 2) could potentially 

interact with monocytes/macrophages (these cells express αVβ3 integrin) [22], influencing the 

adhesion and chemotaxis of these cells, a more intense infiltration of inflammatory cells was 

not observed. 

 

Conclusion 

Our data indicate that BC triggers a biological reaction typical of high surface-to-volume 

implants with an acute/subacute inflammatory reaction after 1 week pos-implantation that 

advance to a mild chronic inflammation confined to the implantation site and associated with 

neovascularisation. The presence of giant cells was observed at latter periods and a narrow 

fibrous capsule was present surrounding the implant. There were no significant differences on 

the inflammation degree between the BC coated with the recombinant protein RGD-CBM and 

the native BC. 

The CryoSEM analysis showed that the BC tubes present a denser luminal side and a porous 

outer side; no orientation of the fibrils network was observed. Fluorescence microscopy reveals 

that apart from increasing cell adhesion, the presence of RGD stimulates the elongation and an 

even cell distribution, while cells coating the untreated BC are rounded and seems to form 

aggregates. Mechanical test results showed that small-diameter BC tube produced by our 

group possess an elasticity higher than human arteries and veins. 
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Chapter 6 
 

 

General conclusions and future perspectives 
 

This work consisted in the functionalization of structures based on bacterial cellulose with 

recombinant proteins containing a cellulose-binding module fused to an adhesion peptide and 

the study of the potential application of this biomaterial as blood vessel replacement. The 

results obtained showed that the recombinant proteins containing the RGD or GRGDY 

sequences were cloned and successfully expressed in fusion with a family 3 CBM of 

Clostridium thermocellum in Escherichia coli expression system. The recombinant proteins 

containing the adhesion peptide were able to promote adhesion and spreading of the 

fibroblasts; besides, the presence of RGD stimulates the elongation and an even cell 

distribution, while cells coating the untreated BC are rounded and seem to form aggregates. 

Furthermore, the proteins containing the sequence RGD showed a stronger effect than GRGDY 

on these cells. However, it seems that the second RGD or GRGDY brings no further 

functionality to the proteins, probably because the RGD sequence at the C-terminus of the 

peptide was not exposed in such a way as to be recognized by integrins. The chimeric proteins 

were able to enhance endothelial cells adhesion to BC and stimulate angiogenesis. However, 

the ingrowth of the cell through cellulose was decreased. We believe that an improved 

migration of the cells on BC will be achieved with an intermediary concentration of the protein 

used in this work. Immunocytochemistry results showed that cells grown on BC maintained 

their positive staining for vWF. This glycoprotein is one of the various secretory and membrane-

bound molecules produced by the endothelium and has long been favored as an endothelial 

cell marker. 

Blood compatibility studies showed that BC presents good hemocompatibility. Namely, the 

whole blood coagulation studies shows that the results are comparable to those produced by 

currently available materials for blood replacements. Taking in consideration the – presumably 

– much larger surface area of BC, and the possibility of having this material endothelialized 

(not possible with Dacron or ePTFE), the results may be considered very promising. The 
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adsorption of total plasma protein was not influenced by the presence of recombinant proteins 

(RGD-CBM), although decreasing the adhesion of fibrinogen on pure solutions. Adsorption 

isotherm studies showed that BC presents a higher affinity for albumin than immunoglobulin or 

fibrinogen. The presence of RGD on BC polymer increased platelet adhesion; however, when 

endothelial cells were cultured on RGD-treated BC, a confluent cell layer was formed and 

almost no platelets adhered to the material. Thus, the improvement of BC blood-compatibility 

through modification with adhesion peptides seems to be an interesting strategy as long the 

cellulose grafts are previously covered with endothelial cells. Nevertheless, a further 

characterization of the hemocompatibility is advised for future work, namely using methods for 

the detection of the specific actvation of coagulation factors related to the contact activation 

pathway. 

In vivo biocompatibility studies indicate that BC triggers a biological reaction typical of high 

surface-to-volume implants. There were no significant differences on the inflammation degree 

between the BC coated with the recombinant protein RGD-CBM and the native BC. The 

CryoSEM analysis showed that the BC tubes present a denser luminal side and a porous outer 

side; no orientation of the fibrils network was observed. Preliminary mechanical test results 

showed that small-diameter BC tube produced by our group possess an elasticity higher than 

human arteries and veins. However, the tensile strength was significantly lower as compared to 

the one exhibited by natural vessels, and therefore a method to produce tubes with improved 

mechanical properties is already in progress in our laboratory. 

The modification of BC with the CBM technique is far from limited to the adhesion peptide. 

Other active groups and growth factors could be fused to the CBM domain. Also once platelets 

adhered to exposed RGD peptides, other peptides more specific to ECs, or different 

combinations of peptides should be explored. Future modifications of BC could include 

heparinisation to produce not only a blood compatible but also an antithrombogenic surface. 

Some research could be directed to the production of a more porous BC tubes that allows the 

in-growth of endothelial cells. In fact, our lab is currently developing a different method for the 

production of the tubes, with thicker and porous wall thus, improving the quality and 

mechanical properties of BC tubes. 

The realization of in vivo experiments is mandatory for the effective evaluation of BC as a blood 

vessel substitute. These assays started indeed in the curse of this work, however it has been 



Chapter 6 
 

  169 

not possible to conclude the experiments in due time. Among other issues, evaluation of the 

thrombogenicity in in vivo conditions, suturability, mechanical performance, endothelialisation, 

etc, must be evaluated (assays are already ongoing). 
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