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Abstract

It is shown that if all powers of a ring element a are regular, then a will be strongly-

pi-regular exactly when a suitable word in the powers of a and their inner inverses is a

unit.

1 Introduction

An element m in a ring R is regular if there exists m−, referred to an inner inverse, such

that mm−m = m. The set of all inner inverses of m will be denoted by m{1}. We say m is

strongly-pi-regular if it has a Drazin inverse md that satisfies xmx = x and mx = xm, as well

as mkxm = mk for some k [2]. The smallest such k, say k = s, is called the index of m and

denoted by i(m). When i(m) ≤ 1 we say that m has a group inverse, which will be denoted

by m#. In particular m will be a unit if and only if i(m) = 0. The index i(m) can also be

characterized as the smallest k for which there exist x and y such that ak+1x = ak = yak+1.

Given ring elements x and y, we say they are orthogonal, denoted by x ⊥ y, if xy = yx = 0.

It is known that if m is strongly-pi-regular, then mi(m) is regular and in fact belongs to a

multiplicative group, ensuring that (mi(m))# exists. We propose to solve the converse prob-

lem, namely that of characterizing strong-pi-regularity in terms of the regularity of suitable

powers of m together with the existence of a word, in powers of m and their inner inverses,

that is a unit.

∗Corresponding author.
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2 The regular stack

Suppose we are given an element m in R and assume that m and all its powers are regular.

For each power we pick a fixed inner inverse. That is, we assume a fixed list{
m−, (m2)−, . . . , (mk)−, . . .

}
.

We define the fixed idempotents Ek = mk(mk)− for k = 1, 2, . . . and set e = E1 = mm−.

It is easily seen that

(1) em = m (2) eEk = Ek = E2
k (3) EkmEk = mEk (4) EkEk+1 = Ek+1.

We now consider the map φ : R → R defined by φ(x) = mxe + 1 − exe and construct

the sequence of elements mk = φ(Ek) = xk + yk for k = 1, 2, . . . , where xk = mEke and

yk = 1− eEke.

It should be observed that φ(1) = φ(e) is a unit precisely when m has a group inverse [7],

and that φ(a) is a unit exactly when am has a group inverse [3].

In addition we see that

xkyk = mEke−mEkeEke = 0,

ykxk = mEke− eEkemEke = mEke− EkmEke = 0,

and therefore we have an orthogonal splitting mk = xk + yk.

We now claim that the elements mk are in fact regular and may recursively be generated.

Lemma 2.1. If mk = φ
(
mk(mk)−

)
then there exists an inner inverse m−

k−1 such that

mk = m2
k−1m

−
k−1 + 1−mk−1m

−
k−1,

with m0 = m.

Proof. For i ≥ 1 we have mi = xi + yi, in which both components are regular. In-

deed, yi = 1 − mi(mi)−mm− is idempotent, and xi has mi(mi+1)−mm− as an inner in-

verse; calling this x−i we have that xix
−
i = mi+1(mi+1)−mm−, and that yix

−
i = 0 since

eEiem
i = mm−mi(mi)−mm−mi = mi.

We can, therefore, take m−
k−1 = x−k−1 + yk−1, which in turn gives

mk = mk+1(mk)−mm− + 1−mk(mk)−mm−

= xk−1xk−1x
−
k−1 + yk−1 + 1− xk−1x

−
k−1 − yk−1

= (xk−1 + yk−1)(xk−1x
−
k−1 + yk−1) + 1− (xk−1x

−
k−1 + yk−1)

= m2
k−1m

−
k−1 + 1−mk−1m

−
k−1,

as desired.

Using the previous lemma, we can now express mk alternatively as

mk = mk+1(mk)−mm− + 1−mk(mk)−mm−.

2



3 Index Results

Let us now use the above regular stack to obtain suitable index results. Suppose that m is

strongly-pi-regular, and consider the associated sequences

uk = mk+1(mk)− + 1−mk(mk)−,

wk = m−mk+1(mk)−m+ 1−m−mk(mk)−m

and vk = (mk)−mk+1 + 1− (mk)−mk.

We shall first need the following fact:

Lemma 3.1 ([1]). If 1 + ab has a Drazin inverse, then 1 + ba has a Drazin inverse and

i(1 + ab) = i(1 + ba).

Proof. Suppose 1 +ab has a Drazin inverse and has index i(1 +ab) = k. Then (1 +ab)k+1x =

(1 + ab)k = y(1 + ab)k+1, for some x and y in R. This means that (1 + ba)k+1(1 − bxa) =

(1 + ba)k = (1− bya)(1 + ba)k+1 and thus i(1 + ba) ≤ i(1 +ab). Again by interchanging a and

b, we obtain equality.

By applying this lemma we may conclude that i(mk) = i(uk) = i(wk) = i(vk).

We now recall the following lemma:

Lemma 3.2 ([5]). Given m strongly-pi-regular,

i(m2m− + 1−mm−) = i(m)− 1.

As a consequence we may deduce that i(mk) = t if and only if i(mk+1) = t− 1.

We shall also need the following result, which can be deduced from the proof of [2, Theorem

4].

Lemma 3.3. If ak+1x = ak = yak+1, then ad = akxk+1 = yk+1ak and aad = akxk = ykak.

Proof. Repeatedly pre-multiplying the first equality by a and post-multiplying by x, shows

that ak+rxr = ak for all r = 1, 2, . . ., and in particular, when r = k, a2kxk = ak. By symmetry

we also get ak = yka2k. The latter two equalities ensure that ak has a group inverse of the

form (ak)# = ykakxk = yka2kx2k = akx2k = y2kak. This implies that ad = ak−1(ak)# =

ak−1akx2k =
(
ak+(k−1)xk−1

)
xk+1 = akxk+1, and by symmetry ad = yk+1ak.

Lastly we also see that aad = ak+1xk+1 =
(
ak+1x

)
xk = akxk and by symmetry aad =

ykak.

Combining these results, we now may state the following theorem:

Theorem 3.4. The following conditions are equivalent:

1. i(m) = s.

2. s is the smallest integer such that ms + 1−ms(ms)− is a unit.
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3. s is the smallest integer such that m2s(ms)− + 1−ms(ms)− is a unit.

4. s is the smallest integer such that ms is a unit.

5. s is the smallest integer such that us is a unit.

6. m` is strongly-pi-regular and i(m`) = s− `, for one and hence all 0 ≤ ` ≤ s.

7. u` is strongly-pi-regular and i(u`) = s− `, for one and hence all 0 ≤ ` ≤ s.

When the conditions are satisfied,

md = u−1
s msv−s

s = msv−s−1
s

= u−s
s msv−1

s = u−s−1
s ms

= ms−1u−(s+1)
s ms+2v−(s+1)

s .

Proof. The equivalences between (1), (2) and (3) are known (see [6]).

Since i(m`) = t⇔ i(m`+1) = t−1, we may, by using this argument recursively, conclude that

i(m) = s is equivalent to i(m`) = s− `.
(6) is equivalent to (7) (respectively (4) is equivalent to (5)), by applying Lemma 3.1 with

b = mm− and a = m`+1(m`)− −m`(m`)− (respectively a = ms+1(ms)− −ms(ms)−).

It is obvious that (6) is sufficient to (4) and that (7) is sufficient to (5).

Finally, we now prove that (5) implies (1). As us is a unit and usm
s = ms+1, we have

ms = u−1
s ms+1. Likewise, us being a unit implies that vs = (ms)−ms+1 + 1 − (ms)−ms

is a unit, which in turns yields ms = ms+1v−1
s . Therefore, ms ∈ ms+1R ∩ Rms+1 and

md = ms−1u
−(s+1)
s ms+2v

−(s+1)
s .

We may in fact compute the Drazin inverses of the three associated sequences {uk}, {vk}
and {wk}. It suffices to compute the former.

Theorem 3.5. If i(m) = s then, for all 0 ≤ ` ≤ s,

ud` = mdm`(m`)− + 1−m`(m`)−.

Proof. Set X = m` and A = m(m`)− so that u` = XA+ (1−E`). From the last theorem we

recall that i(u`) = i(m) − `. Now observe that u` is a sum of two orthogonal elements, and

since u` is strongly-pi-regular so are each of the two orthogonal summands. In particular,

m`+1(m`)− is strongly-pi-regular and we obtain the expression

(u`)
d = (mE`)

d + 1− E` (1)

= (XA)d + 1− E`, (2)

where E` = m`
(
m`
)−

.

Next, we turn to the computation of (XA)d = (mE`)
d. We claim that (XA)k+1y = (XA)k,

where y = mdm`(m`)−. Indeed, it follows by induction that (XA)i = mi+`(m`)−, and hence
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we have

(XA)k+1y = mk+`+1(m`)−m`md(m`)−

= m`mk+1md(m`)−

= mk+`(m`)− = (XA)k.

We now apply Lemma 3.3 to obtain (XA)d = (XA)kyk+1.

Again, by induction, yi = (md)im`(m`)−, and hence yk+1 = (md)k+1m`(m`)−, which gives

(XA)d = (XA)kyk+1 = m`+k(m`)−(md)k+1m`(m`)−

= m`+k(m`)−m`(md)k+1(m`)−

= m`mk(md)k+1(m`)−

= mdm`(m`)−

and

(XA)dXA = (mE`)
dmE`

= mdm`(m`)−m`+1(m`)−

= mdm`+1(m`)−.

Lastly, substituting the expression for (XA)d in equation (2), we arrive at

(u`)
d = mdE` + 1− E`

= mdm`(m`)− + 1−m`(m`)−

which is the desired expression.

We close with some pertinent remarks.

Remarks

1. If mk is a unit for one choice of (mk)− then it is a unit for all such choices.

Indeed, the fact that mk is a unit implies that i(m) = s, which implies, from the proof,

that ms = ms+1(ms)=mm− + 1−ms(ms)=mm− is also a unit.

2. If us is a unit for one choice of (ms)− then it is a unit for all such choices.

3. In a ring, a2 may be regular without a being regular. For example let a = 4 in Z8.

4. In a ring it can happen that an element a is regular without a2 being regular. Indeed, let

A =

[
0 0

1 2

]
be over Z4. Then A has an inner inverse A− =

[
0 1

0 0

]
while A2 = 2A

does not, since (2A)X(2A) = 0 6= 2A.
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