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Abstract

We characterize the existence of the group inverse of a two by two matrix with zero (2,2) entry,
over a ring by means of the existence of the inverse of a suitable function of the other three entries.

Some special cases are derived.
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1 Introduction

In this paper we shall examine the existence and representation of the group inverse of the block

a c
matrix M = b ool in which the (2,2) block is zero. We aim for results in terms of “words” in

the three blocks a, b, ¢ and their g-inverses, such as inner inverses or Drazin inverses (D-inverses for
short). We shall use the results of [3] to create suitable unit matrices.

We shall need the concept of regularity, which guarantees solutions to aa"a = a and aa’a =
a, a” = ataa’. If in addition aa™ = a*a then a™ is known as the group inverse of a and is
traditionally denoted by a”. We will use rk(-), R(-) and RS(-) to denote rank, range and row space,

respectively, and write ~ for similarity.

2 The group inverse of a (2,2,0) matrix

a’®+cb ac

ba be

Consider the matrices M = Z (C) and M? =

] , where we assume that b, ¢ and the

cornerstone w = (1 — cct)a(l — bTb) are regular.
Over a (skew) field it is known that M7 exists if and only if M and M? have equal rank, and
so we could apply the block rank formula of [2]. This, however, only seems to give a tractable result

when ¢ = 1.
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Proposition 2.1. Let M = be over a skew field F. Then the following are equivalent:

AIn]

1. M# exists

2. rk[(I, — BB™)A(I, — B-B)] + rk(B) = n

3. R(I, — BB~) = R|(I, — BB™)A] = R|(I, — BB~)A(I, — B™B)]

4. RS(I, — B~B) = RS[A(I, — B-B)] = RS|(I, — BB~)A(I, — B~B)]

B A
B

I, 0

0 I,

. Then MN = and M2N = . We now recall the

n

Proof. Let N = [

rank formulse
rk[P, Q] = rk(P) + rk[(I, — PP7)Q)]

and
P

Q

e =rk(Q) + rk[P(I, — Q~Q)].

These show that

B A

rk =rk(B) + rk[B, A(I, — B B)| = 2rk(B) + rk[(I, — BB™)A(I, — B B)].

It is now clear that rk(M?) = rk(M) exactly when condition (2) holds.

The remaining results follow from standard range-rank conditions. From R(B~B)®R(I,—B™B) =
R(I,) = R(BB™) @ R(I, — BB™), and since rk(BB~) = rk(B) = rk(B~B), we see that rk(I, —
B™B) = n —rk(B) = rk(I, — BB™). Condition (2) means that rk[(I, — BB~)A(l, — B~ B)]
rk(l, — BB™) = rk(I, — B~ B), which is equivalent to R(I,, — BB~) = R[(I, — BB™)A(l, — B™ B
and to RS(I, — B~B) = RS[(I, — BB~)A(I, — B~ B)].

~—

]

O

We shall not use rank to investigate the general (2,2,0) case but instead apply the “unit”-conditions

0 1
as given in [3], for the existence of the group inverse of the triplet M = PAQ, where P = - ] ,
b 0 . : .
Q=1I1and A= . We shall make use of the fact that A is regular as a matrix precisely when
a c
w is regular as an element [4].
We shall repeatedly use the fact that in any ring with 1,
Lemma 2.1.
(1 +ab)x =1 if and only if (1 + ba)(1 — bxa) = 1. (1)

Hence, 1+ ba is a unit if and only if 1 + ab is a unit, with (1 + ba)™* =1 — b(1 + ab) " ta.
Using [3, Corollary 1], (PA)# exists if and only if U = APAA™ +1 — AA™ is a unit, which is
equivalent to V.= A" APA + [ — A~ A being a unit. In this case,

M# = (PA)* = PUT'AV™ = P(U?)A = (PA)V 2 = MV 2



Now, U can be written as U = [ + (AP — I)AA™ = I + Y X, which by Lemma (2.1) tells us that
Ul=(T+YX)'=I-Y({I+XY)'X.

But
I+ XY =1+ (AA")(AP-1)=1—-AA" + AP =G.

As such,
Ult=I+(I-AP)G'AA™

and we shall have to compute I — AP, AA~ and G1.

We note in passing that when p = 1, a” exists if and only ifu =a?a™ +1—aa” =1+a(aa™ —a™)
is a unit if and only if v = a~a?+1—a"a = 1+ (a"a—a~)a is a unit, which, on account of the above
lemma, occurs precisely when g =a+ (1 —aa™) or h=a+ (1 —a"a) is a unit.

law™ =u2a=av™? whereu ' =1—-ah '(aa~ —a ) and v ' =1—(a"a—

In this case a” = u~lav™
a”)g la.

Since w is regular, we know from [4] that there exists an inner inverse A~, such that AA™ is
1 0 ] [ bt (1= bTb)w (1 — cct) ]

—cta 1 0 ct
will do, where again w = (1 — cc)a(1 — b™b).

lower triangular. Indeed, A~ = [

1 0
—(1—cct)abt 1

Next we compute

] +
AP = 00 and AA” = bb 0 (2)
c a | (1 —ww™)(1 —cch)ab™ cct +ww™ (1 —cch)
giving i
1—bbt | b
G = :
e~ (1—ww)(1—cct)ab™ | a+ (1 —ww)(1 - cct)

We then form

G -,

1ol 1o
b1l | a s

a=c+ab” — (1 —ww”)(1—cch)abt —bT]

where

and
§=a+(1—ww )(1l—cech).

As such, G will be a unit if and only if the (1,1) Schur complement of G’,
z=0—ab=a(l —=b"b) —cb+ (1 —ww )(1—cc)[1+abb— b0

is a unit.

We may state the following theorem:

Theorem 2.1. Assume that b, ¢ and w = (1 — cc)a(1 — bTb) are reqular. Then M = [ @ ] has
a group tnverse if and only if
a(l —=b"bh) —cb+ (1 —ww™ )(1 —cct)[1 4+ abtb — bTb]

1S a unit.



Two special cases are of interest (cf. [1]):

Corollary 2.1.

#
1. [ Z g ] exists if and only if z = (a+1 —aat)(1 — bTb) — ab is a unit.

2. If in addition a has a group inverse and e = aa® then the following are equivalent:

a a #

a exists.

W o]

(b) x=1—"b*tb—bTbeb is a unit.
(c) y=1—b"b—eb is a unit.

(d) bebR = bR and Rbeb = Rb.

In this case, be and eb have group inverses and are similar.
Proof. 1. Set ¢ =a and w = 0.
2. Multiply through by a# + 1 — aa” — the inverse of a + 1 — aa™— and then use Lemma (2.1). The

equivalence of (b) and (c) follows from Lemma (2.1).

If z is a unit, then zb7b = b beb implies b*b € Rbeb, which in turn implies Rb = Rbeb. Also,
from bx = beb we obtain b € bebR, which implies bR = bebR.

Conversely, from bebR = bR we see that (eb)?R = ebR and beR = bR, while Rbeb = Rb implies
that R(be)?> = Rbe and Reb = Rb.

We then observe that beR = bR = bebR = be(beb)R C bebeR C beR and thus be has a group

inverse. Likewise (eb)™ exists.

These observations imply (—eb)# exists and Rb = R(—e)b, which, by [3, Corollary 1], is equiva-
lent to the invertibility of x = 1 — b™b — b beb.
Part (d) can be completed with aid of the following result:

Lemma 2.2. Let €2 = e and beR = bR and Reb = Rb. Then be ~ eb.

Proof. If bek = b = leb, then be(uv) = (uv)eb, where u = 1 4+ (1 — e)le and v = 1 + ek(1 —e). The

latter are clearly units. O

Our second special case concerns the (flipped) companion matrix [3].
a 1 #
Corollary 2.2. [ b 0 ] exists if and only if [b — a(1 — b*b)] is a unit.

Proof. Set ¢ =1 and w = 0 so that z reduces to z = —[b — a(1 — b*b)]. O

To find the actual expressions for the group inverse of M = PA, we still have to compute G~1.

S IS Y | e |

4

G =




with 2 = § — ab, and thus

10
G l=
B

1+bzla —bz! ] _

—z7 1o 271

1+bzta —bz!
bt — (1 —bbH)z7la (1 —bbH)z7t

We can now either compute U~! and then M# = P(U~1)2A, or we can first simplify this expression
and use G~1.

For the former case we need

(- AP)G! — 1 b 1+bz""a —bz1
B | ¢ l-a bt —(1—bb")z7ta (1 —bbT)z7!
[ 1—bbT + (2b— b%bH) 2 Loy —b(2 — bb+)z L

—c—[eb+(1—a)(1—=bbN)]zta+ (1 —a)bt [cb+ (1 —a)(1l—bbT)]z1

_ il ’Ys]

2 m
followed by
U =I+(I—-AP)G A4~ = | "1 ] ,
uy U4
where
up = 14+ (20— b*")z tabb™ +y3(1 — ww™)(1 — cc™)ab™,
uy = 2bbT + (1 —ww ) (1 — ccM)ab™,
us = slec” +ww (1 —cch)],
ug = 14yfect +w (1 —cch),

while for the latter case we compute
U2A=A+2(I—-AP)G'A+ (I - AP)G '(AA~ — AP)G'A.
Recalling that A = PM and P~! = P we arrive at
M# =M +2(I - M)H'M + (I - M)H '\ (MM~ — M)H™, (3)

(1—bb")z7t bF — (1 —0bb")z ta

where H—! = pG=1p~! =
—bz1 1+bz"la

Remarks and questions

We close with some remarks and questions.

1. For the case where ¢ = a, we may postmultiply Rz = R by b~b and premultiplying zR = R by

1 —aa™ and aa™ in succession. This yields the necessary conditions

(i) Rb= Rab,
(ii)) (1—aa")R=(1—aa")(1 —bb")R, and



(i) aR =alb— (1 —b7b)|R.

The second condition is equivalent to aR+ (1 —b"b)R = R or R(1 —aa™) N Rb = (0) and hence

we must also have
(iv) baR = bR.

2. If ¢ = a and in addition a* exists then we can solve the range and row-space equations M2X = M
and Y M? = M directly to give M#* =Y MX = YM(FKF~'), where

. (1= rr#)at T#aa#] [ 1 0] LK [aa#ss#b aat st
e s = an —

brita 57 a?s#b  a¥( —ss?) |’

in which r = eb and s = be.
3. It would be of interest to find the conditions on a, b , ¢ and d in the general case, for M to have

a ¢
a group inverse. That is to say, when does [ b d ] have a group inverse?

4. When does (n + €) have a group inverse, where n is nilpotent and e is idempotent?
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