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Abstract

We characterize the existence of the group inverse of a two by two matrix with zero (2,2) entry,

over a ring by means of the existence of the inverse of a suitable function of the other three entries.

Some special cases are derived.

Keywords: Group inverse, block matrices

AMS classification: 15A09

1 Introduction

In this paper we shall examine the existence and representation of the group inverse of the block

matrix M =

[
a c

b 0

]
, in which the (2,2) block is zero. We aim for results in terms of “words” in

the three blocks a, b, c and their g-inverses, such as inner inverses or Drazin inverses (D-inverses for

short). We shall use the results of [3] to create suitable unit matrices.

We shall need the concept of regularity, which guarantees solutions to aa−a = a and aa+a =

a, a+ = a+aa+. If in addition aa+ = a+a then a+ is known as the group inverse of a and is

traditionally denoted by a#. We will use rk(·), R(·) and RS(·) to denote rank, range and row space,

respectively, and write ≈ for similarity.

2 The group inverse of a (2,2,0) matrix

Consider the matrices M =

[
a c

b 0

]
and M2 =

[
a2 + cb ac

ba bc

]
, where we assume that b, c and the

cornerstone w = (1− cc+)a(1− b+b) are regular.

Over a (skew) field it is known that M# exists if and only if M and M2 have equal rank, and

so we could apply the block rank formula of [2]. This, however, only seems to give a tractable result

when c = 1.
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Proposition 2.1. Let M =

[
A In

B 0

]
be over a skew field F. Then the following are equivalent:

1. M# exists

2. rk[(In −BB−)A(In −B−B)] + rk(B) = n

3. R(In −BB−) = R[(In −BB−)A] = R[(In −BB−)A(In −B−B)]

4. RS(In −B−B) = RS[A(In −B−B)] = RS[(In −BB−)A(In −B−B)]

Proof. Let N =

[
In 0

−A In

]
. Then MN =

[
0 In

B 0

]
and M2N =

[
B A

0 B

]
. We now recall the

rank formulæ

rk[P,Q] = rk(P ) + rk[(In − PP−)Q]

and

rk

[
P

Q

]
= rk(Q) + rk[P (In −Q−Q)].

These show that

rk

[
B A

0 B

]
= rk(B) + rk[B,A(In −B−B)] = 2rk(B) + rk[(In −BB−)A(In −B−B)].

It is now clear that rk(M2) = rk(M) exactly when condition (2) holds.

The remaining results follow from standard range-rank conditions. From R(B−B)⊕R(In−B−B) =

R(In) = R(BB−) ⊕ R(In − BB−), and since rk(BB−) = rk(B) = rk(B−B), we see that rk(In −
B−B) = n − rk(B) = rk(In − BB−). Condition (2) means that rk[(In − BB−)A(In − B−B)] =

rk(In −BB−) = rk(In −B−B), which is equivalent to R(In −BB−) = R[(In −BB−)A(In −B−B)]

and to RS(In −B−B) = RS[(In −BB−)A(In −B−B)].

We shall not use rank to investigate the general (2,2,0) case but instead apply the “unit”-conditions

as given in [3], for the existence of the group inverse of the triplet M = PAQ, where P =

[
0 1

1 0

]
,

Q = I and A =

[
b 0

a c

]
. We shall make use of the fact that A is regular as a matrix precisely when

w is regular as an element [4].

We shall repeatedly use the fact that in any ring with 1,

Lemma 2.1.

(1 + ab)x = 1 if and only if (1 + ba)(1− bxa) = 1. (1)

Hence, 1 + ba is a unit if and only if 1 + ab is a unit, with (1 + ba)−1 = 1− b(1 + ab)−1a.

Using [3, Corollary 1], (PA)# exists if and only if U = APAA− + 1 − AA− is a unit, which is

equivalent to V = A−APA+ I −A−A being a unit. In this case,

M# = (PA)# = PU−1AV −1 = P (U−2)A = (PA)V −2 = MV −2.
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Now, U can be written as U = I + (AP − I)AA− = I + Y X, which by Lemma (2.1) tells us that

U−1 = (I + Y X)−1 = I − Y (I +XY )−1X.

But

I +XY = I + (AA−)(AP − I) = I −AA− +AP = G.

As such,

U−1 = I + (I −AP )G−1AA−

and we shall have to compute I −AP , AA− and G−1.

We note in passing that when p = 1, a
#

exists if and only if u = a2a−+ 1−aa− = 1 +a(aa−−a−)

is a unit if and only if v = a−a2 + 1−a−a = 1 + (a−a−a−)a is a unit, which, on account of the above

lemma, occurs precisely when g = a+ (1− aa−) or h = a+ (1− a−a) is a unit.

In this case a# = u−1av−1 = u−2a = av−2 where u−1 = 1−ah−1(aa−−a−) and v−1 = 1− (a−a−
a−)g−1a.

Since w is regular, we know from [4] that there exists an inner inverse A−, such that AA− is

lower triangular. Indeed, A− =

[
1 0

−c+a 1

][
b+ (1− b+b)w−(1− cc+)

0 c+

][
1 0

−(1− cc+)ab+ 1

]
will do, where again w = (1− cc+)a(1− b+b).

Next we compute

AP =

[
0 b

c a

]
and AA− =

[
bb+ 0

(1− ww−)(1− cc+)ab+ cc+ + ww−(1− cc+)

]
(2)

giving

G =

[
1− bb+ b

c− (1− ww−)(1− cc+)ab+ a+ (1− ww−)(1− cc+)

]
.

We then form

G

[
1 0

b+ 1

]
=

[
1 b

α δ

]
= G′,

where

α = c+ ab+ − (1− ww−)(1− cc+)[ab+ − b+]

and

δ = a+ (1− ww−)(1− cc+).

As such, G will be a unit if and only if the (1,1) Schur complement of G′,

z = δ − αb = a(1− b+b)− cb+ (1− ww−)(1− cc+)[1 + ab+b− b+b]

is a unit.

We may state the following theorem:

Theorem 2.1. Assume that b, c and w = (1− cc+)a(1− b+b) are regular. Then M =

[
a c

b 0

]
has

a group inverse if and only if

a(1− b+b)− cb+ (1− ww−)(1− cc+)[1 + ab+b− b+b]

is a unit.
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Two special cases are of interest (cf. [1]):

Corollary 2.1.

1.

[
a a

b 0

]#

exists if and only if z = (a+ 1− aa+)(1− b+b)− ab is a unit.

2. If in addition a has a group inverse and e = aa# then the following are equivalent:

(a)

[
a a

b 0

]#

exists.

(b) x = 1− b+b− b+beb is a unit.

(c) y = 1− b+b− eb is a unit.

(d) bebR = bR and Rbeb = Rb.

In this case, be and eb have group inverses and are similar.

Proof. 1. Set c = a and w = 0.

2. Multiply through by a# + 1−aa# – the inverse of a+ 1−aa#– and then use Lemma (2.1). The

equivalence of (b) and (c) follows from Lemma (2.1).

If x is a unit, then xb+b = b+beb implies b+b ∈ Rbeb, which in turn implies Rb = Rbeb. Also,

from bx = beb we obtain b ∈ bebR, which implies bR = bebR.

Conversely, from bebR = bR we see that (eb)2R = ebR and beR = bR, while Rbeb = Rb implies

that R(be)2 = Rbe and Reb = Rb.

We then observe that beR = bR = bebR = be(beb)R ⊆ bebeR ⊆ beR and thus be has a group

inverse. Likewise (eb)# exists.

These observations imply (−eb)# exists and Rb = R(−e)b, which, by [3, Corollary 1], is equiva-

lent to the invertibility of x = 1− b+b− b+beb.
Part (d) can be completed with aid of the following result:

Lemma 2.2. Let e2 = e and beR = bR and Reb = Rb. Then be ≈ eb.

Proof. If bek = b = `eb, then be(uv) = (uv)eb, where u = 1 + (1 − e)`e and v = 1 + ek(1 − e). The

latter are clearly units.

Our second special case concerns the (flipped) companion matrix [3].

Corollary 2.2.

[
a 1

b 0

]#

exists if and only if [b− a(1− b+b)] is a unit.

Proof. Set c = 1 and w = 0 so that z reduces to z = −[b− a(1− b+b)].

To find the actual expressions for the group inverse of M = PA, we still have to compute G−1.

Now

G =

[
1 0

α 1

][
1 0

0 z

][
1 b

0 1

][
1 0

−b+ 1

]
=

[
1 b

α δ

][
1 0

−b+ 1

]
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with z = δ − αb, and thus

G−1 =

[
1 0

b+ 1

][
1 + bz−1α −bz−1

−z−1α z−1

]
=

[
1 + bz−1α −bz−1

b+ − (1− bb+)z−1α (1− bb+)z−1

]
.

We can now either compute U−1 and then M# = P (U−1)2A, or we can first simplify this expression

and use G−1.

For the former case we need

(I −AP )G−1 =

[
1 −b
−c 1− a

][
1 + bz−1α −bz−1

b+ − (1− bb+)z−1α (1− bb+)z−1

]

=

[
1− bb+ + (2b− b2b+)z−1α −b(2− bb+)z−1

−c− [cb+ (1− a)(1− bb+)]z−1α+ (1− a)b+ [cb+ (1− a)(1− bb+)]z−1

]

=

[
γ1 γ3

γ2 γ4

]
,

followed by

U−1 = I + (I −AP )G−1AA− =

[
u1 u3

u2 u4

]
,

where

u1 = 1 + (2b− b2b+)z−1αbb+ + γ3(1− ww−)(1− cc+)ab+,

u2 = γ2bb
+ + γ4(1− ww−)(1− cc+)ab+,

u3 = γ3[cc
+ + ww−(1− cc+)],

u4 = 1 + γ4[cc
+ + w−(1− cc+)],

while for the latter case we compute

U−2A = A+ 2(I −AP )G−1A+ (I −AP )G−1(AA− −AP )G−1A.

Recalling that A = PM and P−1 = P we arrive at

M# = M + 2(I −M)H−1M + (I −M)H−1(MM− −M)H−1, (3)

where H−1 = PG−1P−1 =

[
(1− bb+)z−1 b+ − (1− bb+)z−1α

−bz−1 1 + bz−1α

]
.

Remarks and questions

We close with some remarks and questions.

1. For the case where c = a, we may postmultiply Rz = R by b−b and premultiplying zR = R by

1− aa− and aa− in succession. This yields the necessary conditions

(i) Rb = Rab,

(ii) (1− aa−)R = (1− aa−)(1− bb−)R, and
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(iii) aR = a[b− (1− b−b)]R.

The second condition is equivalent to aR+ (1− b−b)R = R or R(1− aa−)∩Rb = (0) and hence

we must also have

(iv) baR = bR.

2. If c = a and in addition a# exists then we can solve the range and row-space equationsM2X = M

and YM2 = M directly to give M# = YMX = YM(FKF−1), where

Y =

[
(1− rr#)a# r#aa#

br#a# s#

]
, F =

[
1 0

−1 1

]
and K =

[
aa#ss#b aa#s#

a#s#b a#( −ss#)

]
,

in which r = eb and s = be.

3. It would be of interest to find the conditions on a, b , c and d in the general case, for M to have

a group inverse. That is to say, when does

[
a c

b d

]
have a group inverse?

4. When does (n+ e) have a group inverse, where n is nilpotent and e is idempotent?
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[4] Patŕıcio, Pedro; Puystjens, Roland; About the von Neumann regularity of triangular block ma-

trices. Linear Algebra Appl. 332/334 (2001), 485–502.

6


