The ($2,2,0$) Group Inverse Problem*

P. Patrício ${ }^{a \dagger}$ and R.E. Hartwig ${ }^{b}$

${ }^{a}$ Departamento de Matemática e Aplicações, Universidade do Minho, 4710-057 Braga, Portugal. e-mail: pedro@math.uminho.pt
${ }^{b}$ Mathematics Department, N.C.S.U., Raleigh, NC 27695-8205, U.S.A. e-mail: hartwig@unity.ncsu.edu

Abstract

We characterize the existence of the group inverse of a two by two matrix with zero $(2,2)$ entry, over a ring by means of the existence of the inverse of a suitable function of the other three entries. Some special cases are derived.

Keywords: Group inverse, block matrices

AMS classification: 15A09

1 Introduction

In this paper we shall examine the existence and representation of the group inverse of the block matrix $M=\left[\begin{array}{ll}a & c \\ b & 0\end{array}\right]$, in which the $(2,2)$ block is zero. We aim for results in terms of "words" in the three blocks a, b, c and their g -inverses, such as inner inverses or Drazin inverses (D-inverses for short). We shall use the results of [3] to create suitable unit matrices.

We shall need the concept of regularity, which guarantees solutions to $a a^{-} a=a$ and $a a^{+} a=$ $a, a^{+}=a^{+} a a^{+}$. If in addition $a a^{+}=a^{+} a$ then a^{+}is known as the group inverse of a and is traditionally denoted by $a^{\#}$. We will use $\operatorname{rk}(\cdot), R(\cdot)$ and $R S(\cdot)$ to denote rank, range and row space, respectively, and write \approx for similarity.

2 The group inverse of a (2,2,0) matrix

Consider the matrices $M=\left[\begin{array}{ll}a & c \\ b & 0\end{array}\right]$ and $M^{2}=\left[\begin{array}{cc}a^{2}+c b & a c \\ b a & b c\end{array}\right]$, where we assume that b, c and the cornerstone $w=\left(1-c c^{+}\right) a\left(1-b^{+} b\right)$ are regular.

Over a (skew) field it is known that $M^{\#}$ exists if and only if M and M^{2} have equal rank, and so we could apply the block rank formula of [2]. This, however, only seems to give a tractable result when $c=1$.

[^0]Proposition 2.1. Let $M=\left[\begin{array}{cc}A & I_{n} \\ B & 0\end{array}\right]$ be over a skew field \mathbb{F}. Then the following are equivalent:

1. $M^{\#}$ exists
2. $\operatorname{rk}\left[\left(I_{n}-B B^{-}\right) A\left(I_{n}-B^{-} B\right)\right]+\operatorname{rk}(B)=n$
3. $R\left(I_{n}-B B^{-}\right)=R\left[\left(I_{n}-B B^{-}\right) A\right]=R\left[\left(I_{n}-B B^{-}\right) A\left(I_{n}-B^{-} B\right)\right]$
4. $R S\left(I_{n}-B^{-} B\right)=R S\left[A\left(I_{n}-B^{-} B\right)\right]=R S\left[\left(I_{n}-B B^{-}\right) A\left(I_{n}-B^{-} B\right)\right]$

Proof. Let $N=\left[\begin{array}{cc}I_{n} & 0 \\ -A & I_{n}\end{array}\right]$. Then $M N=\left[\begin{array}{cc}0 & I_{n} \\ B & 0\end{array}\right]$ and $M^{2} N=\left[\begin{array}{cc}B & A \\ 0 & B\end{array}\right]$. We now recall the rank formulæ

$$
r k[P, Q]=r k(P)+r k\left[\left(I_{n}-P P^{-}\right) Q\right]
$$

and

$$
r k\left[\begin{array}{l}
P \\
Q
\end{array}\right]=r k(Q)+r k\left[P\left(I_{n}-Q^{-} Q\right)\right] .
$$

These show that

$$
r k\left[\begin{array}{ll}
B & A \\
0 & B
\end{array}\right]=r k(B)+r k\left[B, A\left(I_{n}-B^{-} B\right)\right]=2 r k(B)+r k\left[\left(I_{n}-B B^{-}\right) A\left(I_{n}-B^{-} B\right)\right]
$$

It is now clear that $r k\left(M^{2}\right)=r k(M)$ exactly when condition (2) holds.
The remaining results follow from standard range-rank conditions. From $R\left(B^{-} B\right) \oplus R\left(I_{n}-B^{-} B\right)=$ $R\left(I_{n}\right)=R\left(B B^{-}\right) \oplus R\left(I_{n}-B B^{-}\right)$, and since $\operatorname{rk}\left(B B^{-}\right)=\operatorname{rk}(B)=r k\left(B^{-} B\right)$, we see that $r k\left(I_{n}-\right.$ $\left.B^{-} B\right)=n-\operatorname{rk}(B)=r k\left(I_{n}-B B^{-}\right)$. Condition (2) means that $\operatorname{rk}\left[\left(I_{n}-B B^{-}\right) A\left(I_{n}-B^{-} B\right)\right]=$ $r k\left(I_{n}-B B^{-}\right)=r k\left(I_{n}-B^{-} B\right)$, which is equivalent to $R\left(I_{n}-B B^{-}\right)=R\left[\left(I_{n}-B B^{-}\right) A\left(I_{n}-B^{-} B\right)\right]$ and to $R S\left(I_{n}-B^{-} B\right)=R S\left[\left(I_{n}-B B^{-}\right) A\left(I_{n}-B^{-} B\right)\right]$.

We shall not use rank to investigate the general $(2,2,0)$ case but instead apply the "unit"-conditions as given in [3], for the existence of the group inverse of the triplet $M=P A Q$, where $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, $Q=I$ and $A=\left[\begin{array}{ll}b & 0 \\ a & c\end{array}\right]$. We shall make use of the fact that A is regular as a matrix precisely when w is regular as an element [4].

We shall repeatedly use the fact that in any ring with 1 ,

Lemma 2.1.

$$
\begin{equation*}
(1+a b) x=1 \text { if and only if }(1+b a)(1-b x a)=1 . \tag{1}
\end{equation*}
$$

Hence, $1+b a$ is a unit if and only if $1+a b$ is a unit, with $(1+b a)^{-1}=1-b(1+a b)^{-1} a$.
Using [3, Corollary 1], $(P A)^{\#}$ exists if and only if $U=A P A A^{-}+1-A A^{-}$is a unit, which is equivalent to $V=A^{-} A P A+I-A^{-} A$ being a unit. In this case,

$$
M^{\#}=(P A)^{\#}=P U^{-1} A V^{-1}=P\left(U^{-2}\right) A=(P A) V^{-2}=M V^{-2}
$$

Now, U can be written as $U=I+(A P-I) A A^{-}=I+Y X$, which by Lemma (2.1) tells us that

$$
U^{-1}=(I+Y X)^{-1}=I-Y(I+X Y)^{-1} X .
$$

But

$$
I+X Y=I+\left(A A^{-}\right)(A P-I)=I-A A^{-}+A P=G
$$

As such,

$$
U^{-1}=I+(I-A P) G^{-1} A A^{-}
$$

and we shall have to compute $I-A P, A A^{-}$and G^{-1}.
We note in passing that when $p=1, a^{\#}$ exists if and only if $u=a^{2} a^{-}+1-a a^{-}=1+a\left(a a^{-}-a^{-}\right)$ is a unit if and only if $v=a^{-} a^{2}+1-a^{-} a=1+\left(a^{-} a-a^{-}\right) a$ is a unit, which, on account of the above lemma, occurs precisely when $g=a+\left(1-a a^{-}\right)$or $h=a+\left(1-a^{-} a\right)$ is a unit.

In this case $a^{\#}=u^{-1} a v^{-1}=u^{-2} a=a v^{-2}$ where $u^{-1}=1-a h^{-1}\left(a a^{-}-a^{-}\right)$and $v^{-1}=1-\left(a^{-} a-\right.$ $\left.a^{-}\right) g^{-1} a$.

Since w is regular, we know from [4] that there exists an inner inverse A^{-}, such that $A A^{-}$is lower triangular. Indeed, $A^{-}=\left[\begin{array}{cc}1 & 0 \\ -c^{+} a & 1\end{array}\right]\left[\begin{array}{cc}b^{+} & \left(1-b^{+} b\right) w^{-}\left(1-c c^{+}\right) \\ 0 & c^{+}\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -\left(1-c c^{+}\right) a b^{+} & 1\end{array}\right]$ will do, where again $w=\left(1-c c^{+}\right) a\left(1-b^{+} b\right)$.

Next we compute
giving

$$
G=\left[\begin{array}{c|c}
1-b b^{+} & b \\
\hline c-\left(1-w w^{-}\right)\left(1-c c^{+}\right) a b^{+} & a+\left(1-w w^{-}\right)\left(1-c c^{+}\right)
\end{array}\right] .
$$

We then form

$$
G\left[\begin{array}{cc}
1 & 0 \\
b^{+} & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & b \\
\alpha & \delta
\end{array}\right]=G^{\prime}
$$

where

$$
\alpha=c+a b^{+}-\left(1-w w^{-}\right)\left(1-c c^{+}\right)\left[a b^{+}-b^{+}\right]
$$

and

$$
\delta=a+\left(1-w w^{-}\right)\left(1-c c^{+}\right) .
$$

As such, G will be a unit if and only if the $(1,1)$ Schur complement of G^{\prime},

$$
z=\delta-\alpha b=a\left(1-b^{+} b\right)-c b+\left(1-w w^{-}\right)\left(1-c c^{+}\right)\left[1+a b^{+} b-b^{+} b\right]
$$

is a unit.
We may state the following theorem:
Theorem 2.1. Assume that b, c and $w=\left(1-c c^{+}\right) a\left(1-b^{+} b\right)$ are regular. Then $M=\left[\begin{array}{ll}a & c \\ b & 0\end{array}\right]$ has a group inverse if and only if

$$
a\left(1-b^{+} b\right)-c b+\left(1-w w^{-}\right)\left(1-c c^{+}\right)\left[1+a b^{+} b-b^{+} b\right]
$$

is a unit.

Two special cases are of interest (cf. [1]):

Corollary 2.1.

1. $\left[\begin{array}{ll}a & a \\ b & 0\end{array}\right]^{\#}$ exists if and only if $z=\left(a+1-a a^{+}\right)\left(1-b^{+} b\right)-a b$ is a unit.
2. If in addition a has a group inverse and $e=a a^{\#}$ then the following are equivalent:
(a) $\left[\begin{array}{ll}a & a \\ b & 0\end{array}\right]^{\#}$ exists.
(b) $x=1-b^{+} b-b^{+} b e b$ is a unit.
(c) $y=1-b^{+} b-e b$ is a unit.
(d) $b e b R=b R$ and $R b e b=R b$.

In this case, be and eb have group inverses and are similar.
Proof. 1. Set $c=a$ and $w=0$.
2. Multiply through by $a^{\#}+1-a a^{\#}$ - the inverse of $a+1-a a^{\#-}$ and then use Lemma (2.1). The equivalence of (b) and (c) follows from Lemma (2.1).

If x is a unit, then $x b^{+} b=b^{+} b e b$ implies $b^{+} b \in R b e b$, which in turn implies $R b=R b e b$. Also, from $b x=b e b$ we obtain $b \in b e b R$, which implies $b R=b e b R$.

Conversely, from $b e b R=b R$ we see that $(e b)^{2} R=e b R$ and $b e R=b R$, while $R b e b=R b$ implies that $R(b e)^{2}=R b e$ and $R e b=R b$.

We then observe that $b e R=b R=b e b R=b e(b e b) R \subseteq b e b e R \subseteq b e R$ and thus be has a group inverse. Likewise (eb) ${ }^{\#}$ exists.

These observations imply $(-e b)^{\#}$ exists and $R b=R(-e) b$, which, by [3, Corollary 1], is equivalent to the invertibility of $x=1-b^{+} b-b^{+} b e b$.
Part (d) can be completed with aid of the following result:
Lemma 2.2. Let $e^{2}=e$ and $b e R=b R$ and $R e b=R b$. Then $b e \approx e b$.
Proof. If $b e k=b=\ell e b$, then $b e(u v)=(u v) e b$, where $u=1+(1-e) \ell e$ and $v=1+e k(1-e)$. The latter are clearly units.

Our second special case concerns the (flipped) companion matrix [3].
Corollary 2.2. $\left[\begin{array}{ll}a & 1 \\ b & 0\end{array}\right]^{\#}$ exists if and only if $\left[b-a\left(1-b^{+} b\right)\right]$ is a unit.
Proof. Set $c=1$ and $w=0$ so that z reduces to $z=-\left[b-a\left(1-b^{+} b\right)\right]$.
To find the actual expressions for the group inverse of $M=P A$, we still have to compute G^{-1}.
Now

$$
G=\left[\begin{array}{ll}
1 & 0 \\
\alpha & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & z
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-b^{+} & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & b \\
\alpha & \delta
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-b^{+} & 1
\end{array}\right]
$$

with $z=\delta-\alpha b$, and thus

$$
G^{-1}=\left[\begin{array}{cc}
1 & 0 \\
b^{+} & 1
\end{array}\right]\left[\begin{array}{cc}
1+b z^{-1} \alpha & -b z^{-1} \\
-z^{-1} \alpha & z^{-1}
\end{array}\right]=\left[\begin{array}{cc}
1+b z^{-1} \alpha & -b z^{-1} \\
b^{+}-\left(1-b b^{+}\right) z^{-1} \alpha & \left(1-b b^{+}\right) z^{-1}
\end{array}\right] .
$$

We can now either compute U^{-1} and then $M^{\#}=P\left(U^{-1}\right)^{2} A$, or we can first simplify this expression and use G^{-1}.

For the former case we need

$$
\begin{aligned}
(I-A P) G^{-1} & =\left[\begin{array}{cc}
1 & -b \\
-c & 1-a
\end{array}\right]\left[\begin{array}{cc}
1+b z^{-1} \alpha & -b z^{-1} \\
b^{+}-\left(1-b b^{+}\right) z^{-1} \alpha & \left(1-b b^{+}\right) z^{-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1-b b^{+}+\left(2 b-b^{2} b^{+}\right) z^{-1} \alpha & -b\left(2-b b^{+}\right) z^{-1} \\
-c-\left[c b+(1-a)\left(1-b b^{+}\right)\right] z^{-1} \alpha+(1-a) b^{+} & {\left[c b+(1-a)\left(1-b b^{+}\right)\right] z^{-1}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\gamma_{1} & \gamma_{3} \\
\gamma_{2} & \gamma_{4}
\end{array}\right]
\end{aligned}
$$

followed by

$$
U^{-1}=I+(I-A P) G^{-1} A A^{-}=\left[\begin{array}{ll}
u_{1} & u_{3} \\
u_{2} & u_{4}
\end{array}\right],
$$

where

$$
\begin{aligned}
& u_{1}=1+\left(2 b-b^{2} b^{+}\right) z^{-1} \alpha b b^{+}+\gamma_{3}\left(1-w w^{-}\right)\left(1-c c^{+}\right) a b^{+}, \\
& u_{2}=\gamma_{2} b b^{+}+\gamma_{4}\left(1-w w^{-}\right)\left(1-c c^{+}\right) a b^{+}, \\
& u_{3}=\gamma_{3}\left[c c^{+}+w w^{-}\left(1-c c^{+}\right)\right], \\
& u_{4}=1+\gamma_{4}\left[c c^{+}+w^{-}\left(1-c c^{+}\right)\right],
\end{aligned}
$$

while for the latter case we compute

$$
U^{-2} A=A+2(I-A P) G^{-1} A+(I-A P) G^{-1}\left(A A^{-}-A P\right) G^{-1} A
$$

Recalling that $A=P M$ and $P^{-1}=P$ we arrive at

$$
\begin{equation*}
M^{\#}=M+2(I-M) H^{-1} M+(I-M) H^{-1}\left(M M^{-}-M\right) H^{-1} \tag{3}
\end{equation*}
$$

where $H^{-1}=P G^{-1} P^{-1}=\left[\begin{array}{cc}\left(1-b b^{+}\right) z^{-1} & b^{+}-\left(1-b b^{+}\right) z^{-1} \alpha \\ -b z^{-1} & 1+b z^{-1} \alpha\end{array}\right]$.

Remarks and questions

We close with some remarks and questions.

1. For the case where $c=a$, we may postmultiply $R z=R$ by $b^{-} b$ and premultiplying $z R=R$ by $1-a a^{-}$and $a a^{-}$in succession. This yields the necessary conditions
(i) $R b=R a b$,
(ii) $\left(1-a a^{-}\right) R=\left(1-a a^{-}\right)\left(1-b b^{-}\right) R$, and
(iii) $a R=a\left[b-\left(1-b^{-} b\right)\right] R$.

The second condition is equivalent to $a R+\left(1-b^{-} b\right) R=R$ or $R\left(1-a a^{-}\right) \cap R b=(0)$ and hence we must also have
(iv) $b a R=b R$.
2. If $c=a$ and in addition $a^{\#}$ exists then we can solve the range and row-space equations $M^{2} X=M$ and $Y M^{2}=M$ directly to give $M^{\#}=Y M X=Y M\left(F K F^{-1}\right)$, where

$$
Y=\left[\begin{array}{cc}
\left(1-r r^{\#}\right) a^{\#} & r^{\#} a a^{\#} \\
b r^{\#} a^{\#} & s^{\#}
\end{array}\right], F=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right] \text { and } K=\left[\begin{array}{cc}
a a^{\#} s s^{\#} b & a a^{\#} s^{\#} \\
a^{\#} s^{\#} b & a^{\#}\left(-s s^{\#}\right)
\end{array}\right],
$$

in which $r=e b$ and $s=b e$.
3. It would be of interest to find the conditions on a, b, c and d in the general case, for M to have a group inverse. That is to say, when does $\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ have a group inverse?
4. When does $(n+e)$ have a group inverse, where n is nilpotent and e is idempotent?

Ackowledgement

The authors wish to thank the referee for valuable comments.

References

[1] Bu, Changjiang; Zhao, Jiemei; Zheng, Jinshan; Group inverse for a class 2×2 block matrices over skew fields. Appl. Math. Comput. 204 (2008), no. 1, 45-49.
[2] Hartwig, R. E.; Block generalized Inverses, Arch. Rat. Mech. Anal., 61 (1976), pp.197-251.
[3] Puystjens, R.; Hartwig, R. E.; The group inverse of a companion matrix. Linear and Multilinear Algebra 43 (1997), no. 1-3, 137-150.
[4] Patrício, Pedro; Puystjens, Roland; About the von Neumann regularity of triangular block matrices. Linear Algebra Appl. 332/334 (2001), 485-502.

[^0]: *Research with financial support provided by the Research Centre of Mathematics of the University of Minho (CMAT) through the FCT Pluriannual Funding Program.
 ${ }^{\dagger}$ Corresponding author

