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Abstract. The aim of this work is to describe the light scattering spectra of a quaternary reacting gas mixture from the
macroscopic field equations derived from the kinetic BGK-type model proposed by the authors in a previous paper. The study
is developed in a hydrodynamic regime for which the system ofthe field equations of constituent number densities, momentum
and temperature of the mixture is closed by the constitutiveequations for rate of reaction, diffusion velocities, pressure tensor
and heat flux vector. The spontaneous Rayleigh-Brillouin scattering is calculated from the constituent density perturbations of
the linearized field equations, and its line shape is drawn for two different mixtures of the Hydrogen-Chlorine system showing
the induced chemical reaction effect.
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INTRODUCTION

When light interacts with a gaseous reactive mixture at thermodynamic equilibrium, the corresponding spectrum of
the scattered light gives back a lot of information on non-equilibrium thermodynamics and transport properties of
the gas and, in particular, on the decay of the thermal density fluctuations which is mainly ruled by the transport
coefficients. Many papers have been written on this matter within experimental and theoretical grounds (see e.g. the
review article [1]). The present paper deals with a gas mixture of four constituents undergoing a chemical reaction
of typeA+B⇋C+D described by the BGK-type model proposed by the authors in the previous paper [2]. Elastic
cross sections of rigid spheres and reactive cross sectionswith activation energy are considered. In the hydrodynamic
description of the mixture, the reactive balance laws for the basic fields of constituent number densities, mean velocity
and temperature of the whole mixture are closed at the Navier-Stokes, Fourier and Fick level in a flow regime for
which the chemical affinity is a small quantity. Accordingly, the transport coefficients of diffusion, shear viscosity and
thermal conductivity are explicitly determined and the model is suitable to study the light scattering phenomenon. The
main purpose consists in evaluating the spectral distribution of light scattered by thermal density fluctuations. The
analysis here follows the hydrodynamic approach used in those research works (see e.g. paper [3]) for which the gas
density fluctuations involve low frequencies and long wave length. The spectral distribution is directly related to the
dynamic structure factorS(q,ω) which is explicitly computed, once the auto and cross correlation functions of the
density fluctuations have been determined through the Fourier-Laplace transforms of the field perturbations predicted
by the linearized hydrodynamic system of the assumed relaxation model.

MODEL EQUATIONS

At the aim of studying the light scattering phenomenon in thequaternary reactive mixture, an approximate kinetic
model equation compatible with the BGK-type approach has been considered. The main idea underlying this model,
first proposed in paper [2], is to replace each elastic and reactive collision term with a single relaxation term keeping
the individual character of each elastic and reactive collision, namely,

∂ fα
∂ t

+ cα
i

∂ fα
∂xi

=−
D

∑
β=A

ζ E
αβ ( fα − f E

αβ )− ζ R
αγ( fα − f R

αγ), α =A, . . . ,D, (1)



where the quantitiesζ E
αβ andζ R

αγ denote elastic and reactive collision frequencies, related to the hard-spheres and

line-of-centers cross sections, respectively. The elastic f E
αβ and the reactivef R

αγ reference distribution functions have
the Gaussian form detailed in paper [2]. They have been explicitly evaluated imposing that the production terms for
mass, momentum and total energy are the same for both the approximate model equations (1) and the exact Boltzmann
equation. The chosen model is capable to describe a chemicalmechanism which affects the transport of masses due
to the behavior of diffusion, the transport of momentum due to the behavior of shear viscosity, and the transport of
energy due to thermal conductivity. In particular, all transport coefficients for this model are known in dependence on
the elastic and reactive collision frequencies, mass concentrations of each constituent and temperature of the whole
mixture. The model equations (1) lead to the balance equations for the number density of each constituent and to the
conservation laws for momentum and total energy of the mixture which read

∂nα
∂ t

+
∂

∂xi
(nαuα

i +nαvi) = τα ,
∂
∂ t

(ρvi)+
∂

∂x j
(pi j +ρviv j) = 0, (2)

∂
∂ t

[
3
2

nkT+
D

∑
α=A

nαεα+
1
2

ρv2

]
+

∂
∂xi

[
qi+pi j v j+

(
3
2

nkT+
D

∑
α=A

nαεα+
1
2

ρv2

)
vi

]
=0. (3)

Above, nα , uα
i andεα denote the number density, diffusion velocity and formation energy of each constituentα,

respectively, whereas symbols without indexes refer to thewhole mixture. The termτα on the right-hand-side of Eq.
(2)1 represents the reaction rate of the constituentα whose explicit expression is (see paper [2])
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In the previous expressions,k(0)σ denotes the first approximation to the forward (σ =1) and backward (σ =−1) rate
constants, andA denotes the chemical affinity for the forward reaction
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wheres1 is the steric factor,dAB a mean diameter of the colliding spheres, andεσ the activation energy of the forward
and backward reaction. The closure of the above system at theNavier-Stokes, Fourier and Fick level is assured by the
constitutive equations. They relate the transport fluxesuα

i , pi j , qi to the basic fields of constituent number densities
nα , mixture velocityvi and temperatureT. These relations express the link between the constitutivequantities and the
thermodynamical forces through the transport coefficientsof diffusionDαβ , shear viscosityµ and thermal conductivity
λ . The constitutive equations can be written in the form

−
D

∑
β=A

xeq
α xeq

β

Dαβ
(uα

i −uβ
i ) =

1
p

(
∂ pα
∂xi

−
ρα
ρ

∂ p
∂xi

)
, with xeq

α =
neq

α
n

(6)

pi j = pδi j − µ
(

∂vi

∂x j
+

∂v j

∂xi
−

2
3

∂vr

∂xr
δ i j

)
, qi =−λ

∂T
∂xi

+
D

∑
α=A

(
5
2

kT+ εα

)
neq

α uα
i . (7)

In particular, observe that the Fick law (6) can be rewrittenin the explicit form
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where∆αβ are related to the diffusion coefficients. The closed systemof the reactive field equations (2)-(3) and
constitutive equations (6)-(7) will now be linearized around an equilibrium state of the mixture, characterized by
constant number densitiesneq

α , mixture temperatureT0 and vanishing mean velocity, through the expansions of the
basic fields

nα = neq
α + ñα , vi = ṽi , T = T0+ T̃. (9)

Above, ñα , ṽ and T̃ represent small unknown perturbations of the corresponding basic fields. By introducing the
expansions (9) together with the constitutive equations (6)-(8) into the balance equations (2)-(3), one obtains the



following linearized hydrodynamic system, withn0, ρ0 denoting equilibrium quantities for the whole mixture and
ñ= ∑D

α=A ñα :
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ñB

xeq
B

−
ñC
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∂x2
i

−
mβ xeq

β

ρ0

∂ 2ñ
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∂x1∂xi
+

∂ 2ṽ2
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HYDRODYNAMIC APPROACH FOR LIGHT SCATTERING PROBLEM

To study light scattering phenomenon in the considered reactive mixture, one can start from the hydrodynamic
equations in the approximate linear theory (10)-(15) to describe the response of the equilibrium reactive system to the
incident light field. The deviations of the light field due to its interaction with the system can be examined in terms of
the time-correlation functions of the partial number densities fluctuations. Such correlation functions provide a suitable
tool to evaluate the intensity of the light scattered by the reactive mixture. The knowledge of auto and cross correlation
functions of the partial number densities leads to the evaluation of the spectrum of number density fluctuations with
scattering vectorq, which is also known in literature as the dynamic structure factorS(q,ω). Its definition [4] is given
in terms of the auto correlation function of the spatial Fourier transform of the dielectric constant fluctuationδε(x, t).
Since such correlation is a real and even time-reversal function, the dynamic structure factorS(q,ω) is explicitly given
by
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is the Laplace-Fourier transform of the ensemble average ofthe dielectric fluctuation over the initial state of the
mixture. For the considered quaternary reactive mixture, the dielectric fluctuationδε(x, t) is a linear combination
of the constituent number density fluctuations whose coefficientsaα denote the constituent’s atomic polarizabilities,
namely
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Equation (18) extends the Clausius-Mossotti equation to the considered dilute gas mixture (see the book [5]). Con-
sequently, from Eqs. (16) and (18), the dynamic structure factor can be expressed in terms of the Laplace-Fourier
transforms of the cross and auto correlation functions of the constituent number density fluctuations, that is
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By invoking the Onsager reciprocity regression hypothesis, which states that the spontaneous microscopic fluctuations
regress to equilibrium according to the same hydrodynamic laws which govern the relaxation to equilibrium of the
macroscopic perturbations, the dynamic structure factor assumes the equivalent form

S(q,ω) =
D

∑
α=A

D

∑
γ=A

aαaγ Re
[
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In order to determine the correlation functions〈ñα(q, iω) ñγ (q,0)〉, first write the Fourier-Laplace transform of the
linearized hydrodynamic equations (10)-(15) in the following matrix form:
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whereI is the identity matrix and
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]T

(22)

is the vector of the Fourier-Laplace transforms of the field perturbations. Moreover, the elements of the so-called
hydrodynamic matrixM(q), besides the system parameters, depend on the equilibrium state and transport coefficients.
Their explicit expressions will be provided in the extendedpaper [6]. Next, the algebraic system (21) will be solved for
ñα(q, iω). Multiplying the resulting equation bỹnγ(q,0) and performing the ensemble average over the initial states
of the system, one gets
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where the equal-time correlation function〈 | ñγ (q,0) |2〉 is known from the assigned initial conditions. Finally, the
dynamic structure factor can be evaluated as
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LIGHT SCATTERING SPECTRUM

The theoretical analysis of the previous section is here applied to two different mixtures of the Hydrogen-Chlorine
system where the elementary bimolecular chemical reactionH2+Cl ⇋ HCl+H occurs. The considered mixtures have
different equilibrium constituent concentrations, the same equilibrium temperatureT0 = 1500K and positive value
of the chemical affinityA which corresponds to an exothermic reaction. Accordingly,two cases are investigated,
namely: (a)xeq

A = xeq
B = 0.33 andxeq
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D = 0.17; (b)xeq
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B = 0.618, xeq
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TABLE 1. Partial uniformity parameters (y= 15).

yA yB yC yD

case (a) 10.062 16.449 29.255 5.081

case (b) 7.165 9.551 18.455 3.415

andxeq
C were also obtained in the same manner as before. The values ofthe transport coefficients, activation energy,

Arrhenius parameter and steric factor are those of paper [2]for the mixture of case (a) and those of paper [7] for the
mixture of case (b).

In Figures 1 and 2 the light scattering spectrum is represented as function of the reduced angular frequencyω/cq
for different values of the uniformity parametery = (τcq)−1, with τ an effective relaxation time,c the adiabatic
sound speed of the mixture andq the intensity of the scattering vector. Sincey is proportional to the ratio between the
wavelength of the incident light and the effective mean freepathτc, the hydrodynamic equations (10)-(15) can be used
to describe light scattering spectrum if the conditiony ≫ 1 holds. In this case, the light scattering spectrum has the
well-known triplet shape consisting of a central Rayleigh peak and two Brillouin peaks that are shifted symmetrically
about the origin. The widths of the Rayleigh and Brillouin lines depend on the transport coefficients. The Brillouin
shifts are proportional to the adiabatic sound velocity of the mixture, so that the position of the Brillouin peaks moves
outwards of the center of the spectrum when the adiabatic sound velocity of the mixture increases. Furthermore, in the
kinetic regime(y∼ 1) the central Rayleigh and lateral Brillouin peaks tend to broaden whereas, in the hydrodynamic
regime(y≫ 1) the intensity of the peaks grows and they become narrower. These features can be recognized in Figures
1 and 2 for the selected range of the uniformity parametery. In addition, the results shown in these figures allow to
appreciate the effects of the chemical reaction, since the mixtures of cases (a) and (b) have been considered in the
reactive case (solid line) and also when the chemical reaction is absent (dashed line). In both pictures, the effect of the
chemical reaction produces higher Rayleigh and lower Brillouin peaks. In particular, the explanation for the behavior
of the Rayleigh and Brillouin peaks is based on the fact that their widths are proportional to the transport coefficients
and these last are smaller for reactive mixtures than for inert ones, see paper [2].

To understand better the curves in the figures one defines a partial uniformity parameter as
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µαqvα
, where vα =

√
5kT0
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with µα being the shear viscosity of constituentα in the mixture. The values of the partial uniformity parameters for
y= 15 are given in Table 1 and the partial polarizabilities satisfy the conditionsαA ≈ αD ≈ αB/3≈ αC/3. Since the
polarizabilities of Cl and HCl are almost three times largerthan the polarizabilities of H2 and H, the light scattering
spectra showed in Figure 1 and 2 are basically determined by these constituents. According to the values of the partial
uniformity parameters given in Table 1, it can be verified forcase (a) that both Cl and HCl are in the hydrodynamic
regime since conditionyα ≫ 1 is satisfied. However, for case (b) one verifies that HCl satisfies the hydrodynamic
condition, but Cl does not meet this condition. This explains why the Rayleigh and Brillouin peaks are less evident in
case (b) than in case (a).

One may also obtain that the effect of the chemical reaction on the Rayleigh and Brillouin lines are less pronounced
by decreasing the temperature of the mixture. Lastly, it is important to mention that the light scattering spectrum
of gaseous mixtures is very sensitive to the presence of thermal-diffusion effects, in particular, when the molecular
masses of constituents are very distinct. Note that the considered hydrodynamic model does not take into account
thermal-diffusion effects, so that an improvement in the light scattering predictions can be obtained if these effectsare
introduced into the model. The introduction of these effects into the hydrodynamic model and their influence on light
scattering of a chemically reacting gas mixture will be the subject of a forthcoming paper [6].
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FIGURE 1. Light scattering spectra as functions of the reduced angular frequencyω/cq for different values of the uniformity
parametery. Case (a)xA = xB = 0.33,xC = xD = 0.17. Reactive mixture (solid line) and inert mixture (dashedline).
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FIGURE 2. Light scattering spectra as functions of the reduced angular frequencyω/cq for different values of the uniformity
parametery. Case (b):xA = 0.1, xB = 0.618,xC = 0.082,xD = 0.2. Reactive mixture (solid line) and inert mixture (dashed line).
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