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Abstract. A kinetic model of the Boltzmann equation for chemical reactions without energy barrier is considered here with
the aim of evaluating the reaction rate and characterizing the transport coefficient of shear viscosity for the reactivesystem.
The Chapman-Enskog solution of the Boltzmann equation is used to compute the chemical reaction effects, in a flow regime
for which the reaction process is close to the final equilibrium state. Some numerical results are provided illustratingthat
the considered chemical reaction without energy barrier can induce an appreciable influence on the reaction rate and on the
transport coefficient of shear viscosity.
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INTRODUCTION

Chemical reactions without barriers, that is reactions which proceed without the need of exceeding an activation en-
ergy, have become an attractive subject of theoretical and experimental studies, due to their central role in combustion
phenomena and in many other processes of astrophysics, organic chemistry, enzymology, chemical physics and bio-
physics [1]. As discussed in paper [2], the non-barrier approach provides many quantitative chemical information
about the reaction mechanism and can be of useful guidance inchemical investigations. In particular, some useful in-
formation about the kinetics of the reactions without barriers, improving the research on this subject, can be obtained
in the frame of the Boltzmann equation for reactive mixtures. Following this idea, a kinetic model has been proposed in
the recent paper [3] to describe a gaseous mixture of two constituents undergoing the chemical reaction A+A⇋B+B,
which occur without energy barrier. The fundamental aspectof that non-barrier model is the introduction of a proba-
bility coefficientχ in the reactive collision term and(1−χ) in the elastic one, which allows to take into account each
binary encounter once exactly, either as a reactive or elastic encounter. The coefficientχ can thus be interpreted as a
measure of the reactive degree of the mixture. In particular, the caseχ = 1 corresponds to consider that all collisions
among identical particles occur with chemical reaction whereasχ = 0 describes an inert mixture with all collisions
being of elastic type.

As well known, there exists a rather vast bibliography within the kinetic theory of chemically reacting gases, starting
from the pioneering papers [4, 5] by Prigogine and co-workers. In almost papers in existing literature, directed to both
theoretical studies and fluid dynamical investigations including reaction effects, the chemical process is describedin
terms of reactive cross sections with activation energy, sothat the large part of the collisions result in elastic scattering,
since only few particles can go beyond the activation energybarrier. Furthermore a steric factor connecting the elastic
and reactive diameters, normally considered smaller than unity, is also introduced to reduce the number of reactive
collisions. On the other hand, some few papers, as for example reference [6, 7], consider reactive cross sections
without activation energy corresponding to chemical interactions of both Maxwell and hard sphere type. However,
the collision terms do not contain any feature which guarantees that each collision contributes exactly once to either
elastic or reactive term.

In the present paper, this topic is readdressed, starting from the non-barrier model proposed in paper [3], assum-
ing hard-sphere elastic cross sections and reactive cross sections without activation energy. The Chapman-Enskog
method, coupled with Sonine polynomial representation of the one-particle distribution function [8], is applied and
an approximate solution of the kinetic equations is explicitly obtained. This non-equilibrium solution contains all the
effects induced by the chemical reaction and is used to compute the reaction rate and the transport coefficient of shear
viscosity, in a flow regime close to the final stage of the chemical reaction. The non-equilibrium effects induced by the
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reactive process are analyzed in correspondence of the probability coefficientχ and concentration of the reactants.

PRELIMINARIES OF THE NON-BARRIER KINETIC MODEL

The non-barrier kinetic model proposed in [3] refers to a binary gaseous mixture whose constituents, denoted byA
andB, undergo a reversible reaction of the type A+A ⇋ B+B. Each constituentα = A,B has binding energyεα ,
molecular massmα and molecular diameterdα , with mA = mB = m anddA = dB = d. Examples of such reactions
are isomers, in particular the transitions of crotonaldehyde and acrolein (s-cisands-transconformers), the reaction
CH3NC⇋CH3CN and the transformation cyclopropane⇋ propene.

The affinityA of the chemical reaction is defined in terms of the chemical potentialµα of the constituents by

A= 2(µA− µB), with µα = εα − kT

[

3
2

lnT− lnnα +C

]

, (1)

wherek is the Boltzmann constant,T the temperature of the whole mixture,nα the particle number density of the
constituentα, andC denotes a real constant. From the definitions (1) one obtains

A=−Q+2kT ln

(

nA

nB

)

, where Q= 2(εB− εA). (2)

AboveQ denotes the reaction heat which is defined as the difference between the binding energies of the products
and reactants. The reaction is exothermic whenQ < 0 and endothermic whenQ > 0. In chemical equilibrium the
concentrations are constrained by the mass action law, namely,

e−Q⋆
=

(

neq
B

neq
A

)2

, with Q⋆ =
Q

kTeq
, (3)

whereTeq is the equilibrium temperature of the mixture. The gas molecules undergo binary elastic collisions and binary
reactive interactions and, as usual, the elastic collisions assure momentum and kinetic energy conservation whereas
the reactive interactions preserve momentum and total energy, which includes the binding energy of the molecules.
In the phase space the state of the reactive mixture is characterized by the distribution functionfα(x,cα , t), whose
space-time evolution is described by the Boltzmann equation (see paper [3])

∂ fα
∂ t

+ cα
i

∂ fα
∂xi

=
B

∑
β=A

(1− χδαβ)

∫

[

f ′α f ′β − fα fβ

]

gβ α σαβ dΩdcβ (4)

+χ
∫

[

fγ fγ1− fα fα1

]

σ⋆
α gα dΩ⋆dcα1, α 6= γ = A,B.

The first term on the right hand side of the above equation refers to elastic collisions and the second one corresponds
to chemical interactions. The pre, post and relative elastic collisional velocities are denoted by(cα ,cβ ), (c

′
α ,c

′
β ) and

gβ α = cβ −cα , respectively,δαβ is the Kronecker symbol,σαβ is the elastic differential cross section anddΩ refers to
an element of solid angle which characterizes the elastic scattering process. Furthermore,(cA,cA1) and(cB,cB1) are the
velocities of the reactants and products of the forward reaction, respectively, and the sub-index 1 is used to distinguish
two identical molecules that participate in the reactive collision, σ⋆

α denotes the reactive differential cross section,dΩ⋆

the element of solid angle andgα = cα1− cα the relative velocity. Moreover, the parameterχ , with 0≤ χ ≤ 1, is a
scalar factor which represents the probability of a chemical binary encounter among identical molecules. In the case
α = β , the term(1− χ) is a reduced factor for the elastic contributions among identical molecules which avoids a
double counting in the sense that each encounter among identical molecules gives only one contribution to equation
(4), which can be either of elastic or reactive type. As previously mentioned in the introduction, this is not the usual
procedure in the literature of the Boltzmann equation for chemically reacting mixtures, since the majority of the
research papers deal with reactive cross sections with activation energy and introduce a steric factor connecting elastic
and reactive interaction diameters. Therefore, reactive collisions occur only for those pairs of molecules with relative
translational energy larger than the activation energy, whereas almost elastic collisions occur for low energy levels.
In this sense there exists some overlapping for high energies, since each encounter between particles of the same
constituent is counted both as an elastic collision and as a reactive interaction.



At the molecular level, the collisional dynamics of the considered gas is described in terms of cross sections of
hard-sphere type, i.e.,σαβ = d2/4 for elastic scattering andσ∗

α = d2/4 for reactive interactions. On the other hand,
the macroscopic picture is described by the balance equations for the basic fields of the constituent particle number
densitiesnα , mean velocityv and temperatureT of the whole mixture, defined in terms of the distribution functions
by

nα =
∫

fα dcα , vi =
1
ρ

B

∑
α=A

∫

mcα
i fαdcα , T =

1
3nk

B

∑
α=A

∫

mξ 2
α fα dcα , (5)

where

ρ =
B

∑
α=A

ρα , ρα = mnα , n=
B

∑
α=A

nα , ξ α
i = cα

i − vi. (6)

The balance equations for the fields (5) are

∂nα

∂ t
+

∂
∂xi

(nαuα
i +nαvi) = J

α , J α = χ
∫

[

fγ fγ1− fα fα1

]

σ⋆
α gα dΩ⋆dcα1 dcα , (7)

∂ρvi

∂ t
+

∂
∂x j

(pi j +ρviv j) = 0, (8)

∂
∂ t

[

3
2

nkT+
B

∑
α=A

nαεα +
1
2

ρv2

]

+
∂

∂xi

[

qi + pi j v j +

(

3
2

nkT+
B

∑
α=A

nα εα +
1
2

ρv2

)

vi

]

= 0, (9)

whereuα
i is the constituent diffusion velocity,pi j andqi are pressure tensor and heat flux of the whole mixture:

uα
i =

∫

ξ α
i fα dcα , pi j =

B

∑
α=A

∫

mξ α
i ξ α

j fαdcα , qi =
B

∑
α=A

∫

m
2

ξ 2
αξ α

i fα dcα . (10)

NONEQUILIBRIUM DISTRIBUTION FUNCTION

The nonequilibrium distribution function is here obtainedby using the Chapman-Enskog method discussed in many
papers about chemically reacting gases (see, for example, paper [8]). The chemical regime of the considered gas is
the one of the final stage of the reaction process, when the chemical affinityA is a small quantity and the relaxation
times of both chemical reaction and elastic scattering are of the same order. The nonequilibrium distribution function

is searched as a small deviationΦ(1)
α of the Maxwellian distributionf M

α of mechanical equilibrium only, that is

f (1)α = f M
α

[

1+Φ(1)
α

]

, f M
α = neq

α

( m
2πkT

)
3
2

exp

(

−
mξ 2

α
2kT

)

, (11)

neq
α being the equilibrium number densities which are constrained by the mass action law (3). The deviationsΦ(1)

α
from the equilibrium are explicitly computed, after inserting the expansions (11)1 into the Boltzmann equation (4),
neglecting the non-linear terms in the deviations and keeping only the derivatives of the Maxwellian distribution on the
left hand side of the equation, since these derivatives are the thermodynamic forces that induce the appearance of the
considered deviations. Proceeding with the usual steps of the Chapman Enskog method, the deviations are represented

in terms of the Sonine polynomialsS(r)m in the form

Φ(1)
α =−

1

∑
n=0

a
α
nS

(n)
3/2

(

C2
α
)

ξ α
i

1
T

∂T
∂xi
−b

α
0S

(0)
5/2

(

C2
α
)

ξ α
〈i ξ α

j〉
m
kT

∂v〈i
∂x j〉

−
1

∑
n=0

d
α
nS

(n)
3/2

(

C2
α
)

ξ α
i dA

i − e
α
1 S

(1)
1/2

(

C2
α
) A

kT
. (12)

Above,C2
α =mξ 2

α/2kT are dimensionless quantities,a
α
n , bα

0 , dα
n andeα

1 are coefficients which depend onnα andT and
are determined from the Boltzmann equation. The traceless part of the gradient of velocity,∂v〈i/∂x j〉, the temperature
gradient∂T/∂xi, the affinityA/kT and the generalized diffusion forcedA

i represent the thermodynamic forces. The
generalized diffusion force is given bydA

i = ∂xA/∂xi = −∂xB/∂xi = −dB
i , with xα = nα/n being the molar fraction

of the constituentα.



After some standard but rather cumbersome calculations, the deviationsΦ(1)
α have been explicitly computed so

that the nonequilibrium distribution functionsf (1)α are completely specified. The detailed expression forf (1)α is here
omitted for brevity. It depends on the probability coefficient χ and contains all the information about the deviations of
the reactive system from the equilibrium.

REACTION RATE AND SHEAR VISCOSITY

The nonequilibrium effects due to the presence of chemical process and the influence of the chemical reaction on
the transport process can be evaluated starting from the distribution function determined as described in the previous
section. In the present paper, the analysis will be restricted to the the transport coefficient of shear viscosity and to the
influence of the probability coefficientχ on the reaction rate.

Navier-Stokes Law.The constitutive equation for the pressure tensorpi j is obtained by inserting first the nonequilib-

rium distribution (11), with the deviationΦ(1)
α characterized as described in the previous section, into its definition

(10)2. The integration of the resulting equation leads to the Navier-Stokes law of the mixture, namely

pi j = pδi j −2µ
∂v〈i
∂x j〉

, (13)

wherep andµ are the pressure and shear viscosity coefficient, respectively, of the mixture, namely

p=
1
3

B

∑
α=A

∫

mξ 2
α f (0)α dc =

B

∑
α=A

nα kT and µ =
B

∑
α=A

∫

mξ α
i ξ α

j f (0)α Φ(1)
α dc =

B

∑
α=A

nα b
α
0 kT. (14)

The above expressions have the same qualitative form as the corresponding ones in paper [8], for example, but the
coefficientbα

0 , which figures in the expression (14)2, depends now on the probability coefficientχ . This explicit
dependence is crucial for the investigation of the influenceof the chemical reaction on the transport process and this
will lead to a new contribution in the research of the chemically reactive gases.

Reaction Rate.When the system is an inert gas, the number of the molecules ofeach constituent always remains
constant, even if the system is in some non-equilibrium state. Conversely, in the case of reactive systems, the chemical
reaction induces a variation of the number of the molecules of each constituent and the corresponding production
rate density is given by the termJ α on the right hand side of the balance equation (7)1. For a binary system, if the
A-constituent has a positive production, this implies that theB-constituent is being consumed by the reaction. So it is
necessary only to know the behavior of only one constituent,for exampleA. The variation of theA-constituent results
from the net balance between what is produced by the reverse reactionA+A← B+B and what is consumed by the
direct reactionA+A→ B+B, given byJ A

r andJ A
d , namely

J A = J A
r −J

A
d , J A

r = χ
∫

fB fB1gBσ⋆
B dΩ⋆dcB1dcB, J A

d = χ
∫

fA fA1gAσ⋆
AdΩ⋆dcA1dcA. (15)

By substituting the distribution function (11) into the expressions (15) and then performing the integration, we get

J A
r = n2

Aκ (0)
[

1− (1−κ⋆
r )
A

kT

]

and J A
d = n2

Aκ (0)
[

1+ κ⋆
d
A

kT

]

, (16)

whereκ (0) is the first approximation to the rate constant,κ⋆
d andκ⋆

r are the dimensionless second approximations to
the direct and reverse rate constants, respectively, givenby

κ (0) = 4χd2
R

√

πkT
m

, κ⋆
r =

κ (1)
r

κ (0)
=

(

1
2
−Q⋆

)

e
B
1 , κ⋆

d =
κ (1)

d

κ (0)
=

1
2
e

A
1 . (17)

It is interesting to note that the coefficientκ (0), apart from the probability coefficientχ , is the same as the pre-
exponential factor of the Arrhenius equation. However, theimportant point here is that the coefficientκ (0) is in fact
the actual rate of reaction in the first order approximation,since in the case of non-barrier model there is no activation
energy and the rate constants of the direct and reverse reactions have - in this approximation - the same probability.
It is important to underline that the coefficientseA

1 andeB
1 depend explicitly on the probability coefficientχ and are

related by the constraintnAe
A
1 =−nBe

B
1.



RESULTS AND DISCUSSION

In order to illustrate the behavior of the shear viscosity coefficientµ and of the rate constantκ⋆
d defined in the previous

section, let us introduce first the dimensionless coefficient µ⋆ given by

µ⋆ =
µ
µI

, with µI =
5
16

1

d2

√

mkT
π

, (18)

whereµI represents the coefficient of shear viscosity of a single inert gas. After the introduction of dimensionless
coefficientsκ⋆

d, κ⋆
r and µ⋆, there remain three parameters to be considered before analyzing the behavior of the

variables: the molar fractionxA, the probability coefficientχ and the dimensionless reaction heatQ⋆ = Q/kT. With
respect to the last one, it is directly connected with the equilibrium molar fractions, through the mass action law (3)1

eQ
⋆
=

x2
A

(1− xA)2 , (19)

so that the number of parameters reduces to two independent ones, namelyxA andχ . In the present work, both types
of encounters (elastic and reactive) are considered to havethe same order of magnitude. So we choose values for the
parameterχ between 0 (absence of reactive collisions or chemical reactions) and 0.5 (each encounter among identical
particles results in both a reactive interaction or an elastic encounter with the same probability). Concerning the molar
fractionxA, we will restrictxA to the range 0.3≤ xA ≤ 0.7, which represent mixtures where the proportion of the two
constituents are not too disparate.

Figures 1 and 2 describe the behavior of the dimensionless shear viscosity coefficientµ∗ and direct reaction rate
κ⋆

d as functions of the molar fractionxA and probability coefficientχ . From Figure 1 we can observe that there is
an inflection point common to all curves for different valuesof χ , when the molar fractions of both constituents are
equal, i.e.,xA = xB = 0.5. This point corresponds to a mixture with vanishing reaction heat, see Eq. (19), and separates
the regionxA < 0.5 on its left hand side, with negative reaction heat, from theregionxA > 0.5 on the right hand
side, with positive reaction heat. Moreover, for the considered non-barrier model, the constituents are distinguished
by the formation energies only, which are related to the reaction heat byQ = 2(εB− εA). Therefore, the inflection
point corresponds to a mixture for which the particlesA andB become indistinguishable and the reaction process
does not affect the chemical composition of the gas system. On the other hand, the regionxA < 0.5 corresponds to a
mixture with predominantB-constituent and exothermic chemical reaction whereas theregionxA > 0.5 to a mixture
with predominantA-constituent and endothermic chemical reaction.

Other main observations that we can make here are the following:
i) It is noticeable that the effect on the shear viscosity ratioµ∗ is larger when the probability of reactive collision

tends to 0.5 (more reactions occur, larger is the effect);
ii) When there are no reactive collisions (χ = 0), the shear viscosity ratioµ⋆ remains constant and equal to one

for any value of the molar fractionxA, meaning that the reactive shear viscosity coefficientµ is equal to the inert one,
as expected, since, in this case, there are no reactive collisions, just elastic ones.

iii) ForxA = xB = 0.5 the reaction heat vanishes and there is no any reactive effect on the shear viscosity ratioµ∗;
iv) WhenxA < 0.5, the system becomes more viscous due to the chemical reaction; this feature can be explained

as follows: since the reaction heat is negative, the energy is released (exothermic process), so that the temperature of
the mixture increases and causes a rise in the shear viscosity of the mixture. Conversely, when we analyze the right
side of inflection point on Figure 1, just the opposite occurs: there are moreA-particles thanB-particles and the shear
viscosity decreases as a consequence of the temperature decreasing in an endothermic process.

With respect to the dimensionless reaction rateκ⋆, its first approximationκ (0) depends only on the probability
coefficientχ . This result is different from the one when an activation energy is involved and the Arrhenius equation
is valid. Moreover, the second approximation ofκ⋆ is a function of both the molar fractionxA and the probability
coefficientχ , through the coefficientseA

1 andeB
1 . The behavior of the second approximation for the direct reaction

rateκ⋆
d is plotted in Figure 2 as function of the molar fractionxA. Here we also note that this coefficient tends to zero

when the probability coefficient is zero or when there is equal amount ofA andB-particles. Again, the largest effect is
observed when the probability coefficientχ assumes its larger value, hereχ = 0.5. This behavior is totally expected,
since under this condition the reactions become more frequent.
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