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Abstract. A kinetic model of the Boltzmann equation for chemical réats without energy barrier is considered here with
the aim of evaluating the reaction rate and characteriziegransport coefficient of shear viscosity for the reacsiystem.
The Chapman-Enskog solution of the Boltzmann equationed ts compute the chemical reaction effects, in a flow regime
for which the reaction process is close to the final equiliforistate. Some numerical results are provided illustratiad

the considered chemical reaction without energy barriarigduce an appreciable influence on the reaction rate anbeon t
transport coefficient of shear viscosity.
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INTRODUCTION

Chemical reactions without barriers, that is reactionscigiroceed without the need of exceeding an activation en-
ergy, have become an attractive subject of theoretical aperamental studies, due to their central role in combustio
phenomena and in many other processes of astrophysicsioemistry, enzymology, chemical physics and bio-
physics [1]. As discussed in paper [2], the non-barrier aaph provides many quantitative chemical information
about the reaction mechanism and can be of useful guidarateeimical investigations. In particular, some useful in-
formation about the kinetics of the reactions without bes;j improving the research on this subject, can be obtained
in the frame of the Boltzmann equation for reactive mixtuFeslowing this idea, a kinetic model has been proposed in
the recent paper [3] to describe a gaseous mixture of twditoests undergoing the chemical reaction A=B+B,
which occur without energy barrier. The fundamental aspétitat non-barrier model is the introduction of a proba-
bility coefficient in the reactive collision term and — x) in the elastic one, which allows to take into account each
binary encounter once exactly, either as a reactive oriekstounter. The coefficient can thus be interpreted as a
measure of the reactive degree of the mixture. In partictiarcasey = 1 corresponds to consider that all collisions
among identical particles occur with chemical reaction iehex = 0 describes an inert mixture with all collisions
being of elastic type.

As well known, there exists a rather vast bibliography witthie kinetic theory of chemically reacting gases, starting
from the pioneering papers [4, 5] by Prigogine and co-wakieralmost papers in existing literature, directed to both
theoretical studies and fluid dynamical investigationduding reaction effects, the chemical process is describbed
terms of reactive cross sections with activation energthatthe large part of the collisions result in elastic sraiy,
since only few particles can go beyond the activation enbeggier. Furthermore a steric factor connecting the elasti
and reactive diameters, normally considered smaller thméty, s also introduced to reduce the number of reactive
collisions. On the other hand, some few papers, as for exangirence [6, 7], consider reactive cross sections
without activation energy corresponding to chemical iat&ions of both Maxwell and hard sphere type. However,
the collision terms do not contain any feature which guaesthat each collision contributes exactly once to either
elastic or reactive term.

In the present paper, this topic is readdressed, startorg the non-barrier model proposed in paper [3], assum-
ing hard-sphere elastic cross sections and reactive ceati®iss without activation energy. The Chapman-Enskog
method, coupled with Sonine polynomial representatiorhefdne-particle distribution function [8], is applied and
an approximate solution of the kinetic equations is exgijiadbtained. This non-equilibrium solution contains &iet
effects induced by the chemical reaction and is used to ctertha reaction rate and the transport coefficient of shear
viscosity, in a flow regime close to the final stage of the clvahrieaction. The non-equilibrium effects induced by the
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reactive process are analyzed in correspondence of thalgitityy coefficienty and concentration of the reactants.

PRELIMINARIES OF THE NON-BARRIER KINETIC MODEL

The non-barrier kinetic model proposed in [3] refers to aabjngaseous mixture whose constituents, denoted by
andB, undergo a reversible reaction of the typerA\ = B + B. Each constituentr = A,B has binding energyy,
molecular massn; and molecular diametat,, with my = mg = mandda = dg = d. Examples of such reactions
are isomers, in particular the transitions of crotonaldishgnd acrolein (s-cisands-transconformers), the reactio
CH3NC=CH3CN and the transformation cyclopropasaepropene.

The affinity 4 of the chemical reaction is defined in terms of the chemictmiial L, of the constituents by

A =2(Ua— Us), with Ug = &g — KT [gInT—Inna—FC}, (1)

wherek is the Boltzmann constant, the temperature of the whole mixtumg, the particle number density of the
constituentr, andC denotes a real constant. From the definitions (1) one obtains

A=—-0+2kTIn (%) , where  Q =2(eg—&a). @
B

Above Q denotes the reaction heat which is defined as the differegiveclen the binding energies of the products
and reactants. The reaction is exothermic wiier: 0 and endothermic whe@ > 0. In chemical equilibrium the
concentrations are constrained by the mass action law,lgame

—-Q _ ngq ’ P * Q
e = (neq) , with o = Ko 3)
whereTeqis the equilibrium temperature of the mixture. The gas mdkesundergo binary elastic collisions and binary
reactive interactions and, as usual, the elastic collssessure momentum and kinetic energy conservation whereas
the reactive interactions preserve momentum and totaggnetich includes the binding energy of the molecules.
In the phase space the state of the reactive mixture is dieazed by the distribution functiofy (x,cq,t), whose
space-time evolution is described by the Boltzmann egndtiee paper [3])
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The first term on the right hand side of the above equationséfeelastic collisions and the second one corresponds
to chemical interactions. The pre, post and relative elastilisional velocities are denoted 6§4,¢g), (c’a,cb) and

dpa = Cg — Ca, respectivelyg, g is the Kronecker symbody, s is the elastic differential cross section ai refers to

an element of solid angle which characterizes the elastitesing process. Furthermorea, ca,) and(cg, cg, ) are the
velocities of the reactants and products of the forwardtieacrespectively, and the sub-index 1 is used to dististgui
two identical molecules that participate in the reactivilision, o; denotes the reactive differential cross secta;

the element of solid angle amg = cq, — Cq the relative velocity. Moreover, the paramejgrwith 0< x <1, is a
scalar factor which represents the probability of a chehtizeary encounter among identical molecules. In the case
a = 3, the term(1— x) is a reduced factor for the elastic contributions amongtideahmolecules which avoids a
double counting in the sense that each encounter amongademolecules gives only one contribution to equation
(4), which can be either of elastic or reactive type. As prasly mentioned in the introduction, this is not the usual
procedure in the literature of the Boltzmann equation fograleally reacting mixtures, since the majority of the
research papers deal with reactive cross sections witvesioth energy and introduce a steric factor connectingielas
and reactive interaction diameters. Therefore, reactilesons occur only for those pairs of molecules with rsat
translational energy larger than the activation energyereas almost elastic collisions occur for low energy levels
In this sense there exists some overlapping for high ergrgiace each encounter between particles of the same
constituent is counted both as an elastic collision and asétive interaction.



At the molecular level, the collisional dynamics of the ddesed gas is described in terms of cross sections of
hard-sphere type, i.egyp = d2/4 for elastic scattering and}; = d2/4 for reactive interactions. On the other hand,
the macroscopic picture is described by the balance eaqsafiiw the basic fields of the constituent particle number
densitiesng, mean velocityw and temperaturé of the whole mixture, defined in terms of the distributiondtians
by
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The balance equations for the fields (5) are
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whereu! is the constituent diffusion velocity;; andg; are pressure tensor and heat flux of the whole mixture:
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NONEQUILIBRIUM DISTRIBUTION FUNCTION

The nonequilibrium distribution function is here obtain®dusing the Chapman-Enskog method discussed in many
papers about chemically reacting gases (see, for examgger $8]). The chemical regime of the considered gas is
the one of the final stage of the reaction process, when thaicheaffinity A is a small quantity and the relaxation
times of both chemical reaction and elastic scattering atieeosame order. The nonequilibrium distribution function

is searched as a small deviati@él) of the Maxwellian distributiorf) of mechanical equilibrium only, that is
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ng being the equilibrium number densities which are conséiny the mass action law (3). The deviatiohg)

from the equilibrium are explicitly computed, after insegt the expansions (11)nto the Boltzmann equation (4),
neglecting the non-linear terms in the deviations and kegepnly the derivatives of the Maxwellian distribution orth

left hand side of the equation, since these derivativesharéhermodynamic forces that induce the appearance of the
considered deviations. Proceeding with the usual stegeedhapman Enskog method, the deviations are represented

in terms of the Sonine polynomiaﬂ) in the form
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Above,C2 =mé&2/2KT are dimensionless quantitied,, b, d¢ andef are coefficients which depend og andT and

are determined from the Boltzmann equation. The tracelesopthe gradient of velocityv i/ 9x;,, the temperature

gradientdT /9%, the affinity A/KT and the generalized diffusion fort{ represent the thermodynamic forces. The
d

generalized diffusion force is given ltf = dxa/dx = —dxg/d% = —dP, with x4 = ng/n being the molar fraction
of the constituentr.



After some standard but rather cumbersome calculatioesdﬁviationsbgl) have been explicitly computed so

that the nonequilibrium distribution functiorfél) are completely specified. The detailed expressionfﬁ)?ris here
omitted for brevity. It depends on the probability coeffitigg and contains all the information about the deviations of
the reactive system from the equilibrium.

REACTION RATE AND SHEAR VISCOSITY

The nonequilibrium effects due to the presence of chemiaadgss and the influence of the chemical reaction on
the transport process can be evaluated starting from tkrédigon function determined as described in the previous
section. In the present paper, the analysis will be resttitd the the transport coefficient of shear viscosity anti¢o t
influence of the probability coefficient on the reaction rate.

Navier-Stokes Lawlhe constitutive equation for the pressure tengpis obtained by inserting first the nonequilib-

rium distribution (11), with the deviatiomé,l) characterized as described in the previous section, istdefinition
(10)%. The integration of the resulting equation leads to the Bla8itokes law of the mixture, namely

Pij :pdjfzﬂﬂ (13)
de) ’
wherep andp are the pressure and shear viscosity coefficient, respégtof the mixture, namely
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The above expressions have the same qualitative form athesponding ones in paper [8], for example, but the
coefficientbd, which figures in the expression (k4)depends now on the probability coefficient This explicit
dependence is crucial for the investigation of the influesfcne chemical reaction on the transport process and this
will lead to a new contribution in the research of the chethjgaactive gases.

Reaction RateWhen the system is an inert gas, the number of the moleculeadf constituent always remains
constant, even if the system is in some non-equilibriunestabnversely, in the case of reactive systems, the chemical
reaction induces a variation of the number of the molecufesach constituent and the corresponding production
rate density is given by the tergi® on the right hand side of the balance equation.(Fpr a binary system, if the
A-constituent has a positive production, this implies thatB-constituent is being consumed by the reaction. So it is
necessary only to know the behavior of only one constitfenexampleA. The variation of thé\-constituent results
from the net balance between what is produced by the reveastionA + A <— B+ B and what is consumed by the
direct reactiorA+ A — B+ B, given by 7 and 7', namely

TA=TA_gh Jh=y / fofe,0805dQ" dog,dcs, T = X / fafa,0A04dQ" doadca.  (15)
By substituting the distribution function (11) into the egpsions (15) and then performing the integration, we get

T =mk@ [1- (11—« A and  J=nik© |14k} A , (16)
kT kT

wherek (9 is the first approximation to the rate constaj,andk; are the dimensionless second approximations to

the direct and reverse rate constants, respectively, fgiyen

kT kD1 k1
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It is interesting to note that the coefficiert?, apart from the probability coefficient, is the same as the pre-
exponential factor of the Arrhenius equation. However,ithportant point here is that the coefficien®) is in fact

the actual rate of reaction in the first order approximatsimce in the case of non-barrier model there is no activation
energy and the rate constants of the direct and reversearstiave - in this approximation - the same probability.
It is important to underline that the coefficierts ande? depend explicitly on the probability coefficiegtand are
related by the constraimie; = —ngef.



RESULTS AND DISCUSSION

In order to illustrate the behavior of the shear viscositgfticientu and of the rate constary defined in the previous
section, let us introduce first the dimensionless coeffiqigrgiven by

oM _ 51, /mkT
IJ - “|7 Wlth IJI - 16 d2 T ’ (18)

wherey represents the coefficient of shear viscosity of a singlet igas. After the introduction of dimensionless
coefficientskj, k7 and u*, there remain three parameters to be considered beforgzamalthe behavior of the
variables: the molar fractioxa, the probability coefficieng and the dimensionless reaction hedt= Q/kT. With
respect to the last one, it is directly connected with theldiwm molar fractions, through the mass action law;(3)

o X2 19

o T (19)
so that the number of parameters reduces to two independesf namelyka and x. In the present work, both types
of encounters (elastic and reactive) are considered to thavsame order of magnitude. So we choose values for the
parametef between 0 (absence of reactive collisions or chemicali@ajtand 0.5 (each encounter among identical
particles results in both a reactive interaction or an El&tcounter with the same probability). Concerning theanol
fractionxa, we will restrictxa to the range B < xa < 0.7, which represent mixtures where the proportion of the two
constituents are not too disparate.

Figures 1 and 2 describe the behavior of the dimensionlesar shiscosity coefficienti* and direct reaction rate
kg as functions of the molar fractioxy and probability coefficieng. From Figure 1 we can observe that there is
an inflection point common to all curves for different valwgsy, when the molar fractions of both constituents are
equal, i.e.xp = xg = 0.5. This point corresponds to a mixture with vanishing reactieat, see Eq. (19), and separates
the regionxa < 0.5 on its left hand side, with negative reaction heat, fromréggionxa > 0.5 on the right hand
side, with positive reaction heat. Moreover, for the coaséd non-barrier model, the constituents are distingdishe
by the formation energies only, which are related to thetreadeat byQ = 2(eg — €a). Therefore, the inflection
point corresponds to a mixture for which the partickeand B become indistinguishable and the reaction process
does not affect the chemical composition of the gas systemth® other hand, the regioa < 0.5 corresponds to a
mixture with predominanB-constituent and exothermic chemical reaction whereasetienx, > 0.5 to a mixture
with predominanA-constituent and endothermic chemical reaction.

Other main observations that we can make here are the foltpwi

i) It is noticeable that the effect on the shear viscosity ratias larger when the probability of reactive collision
tends to 0.5 (more reactions occur, larger is the effect);

i) When there are no reactive collisions £ 0), the shear viscosity ratip* remains constant and equal to one
for any value of the molar fractioxy, meaning that the reactive shear viscosity coefficieist equal to the inert one,
as expected, since, in this case, there are no reactiveionHi just elastic ones.

iif) Forxa =xg = 0.5 the reaction heat vanishes and there is no any reactiv efighe shear viscosity ratjo*;

iv) Whenxa < 0.5, the system becomes more viscous due to the chemicaloegittis feature can be explained
as follows: since the reaction heat is negative, the enarggiéased (exothermic process), so that the temperature of
the mixture increases and causes a rise in the shear visobsite mixture. Conversely, when we analyze the right
side of inflection point on Figure 1, just the opposite occtirere are moré-particles tharB-particles and the shear
viscosity decreases as a consequence of the temperatueasiag in an endothermic process.

With respect to the dimensionless reaction nateits first approximatiork®© depends only on the probability
coefficienty. This result is different from the one when an activationrggés involved and the Arrhenius equation
is valid. Moreover, the second approximationidfis a function of both the molar fractioxy and the probability
coefficienty, through the coefficients} andef. The behavior of the second approximation for the directtiea
ratek] is plotted in Figure 2 as function of the molar fractign Here we also note that this coefficient tends to zero
when the probability coefficient is zero or when there is équaount ofA andB-particles. Again, the largest effect is
observed when the probability coefficignassumes its larger value, heye= 0.5. This behavior is totally expected,
since under this condition the reactions become more fraque
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FIGURE 1. Evolution of dimensionless shear viscosity coefficigiitas function of the molar fractioxu, for different values of
the probability coefficieng.
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FIGURE 2. Evolution of direct reaction ratej as function of the molar fractiora, for different values of the probability
coefficienty.
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