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Abstract. The structure and linear stability of the one-dimensional steady overdriven detonation wave supported by a
chemical reaction of typeA+A ⇋ B+ B are examined in the frame of the Boltzmann equation extendedto chemically
reacting gases. The structure of the steady wave solution isdetermined solving the system of the Rankine-Hugoniot conditions
supplemented with the rate law, in a chemical regime which corresponds to the early stage of the reaction process. The response
of such steady wave solution to one-dimensional disturbances is investigated using a normal mode linear analysis whichleads
to an initial value problem for the state variable disturbances in the reaction zone. Some results are obtained numerically in
order to describe the stability spectra of the steady solution. The emphasis of the present study is on the influence of the
reaction heat on the linear stability spectra.
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INTRODUCTION

The one-dimensional steady detonation wave is commonly described in literature [1], [2] using the reactive hydro-
dynamic equations and related Rankine-Hugoniot jump conditions. The configuration of the steady wave solution is
qualitatively described by the ZND model [2] and consists ina plane non-reactive shock propagating with constant
velocity, followed by a finite reaction zone where the chemical reaction takes place. This rather standard approach
has been used in classical fluid mechanics [3]-[6] more recently, in the framework of the kinetic theory for chemi-
cally reactive system [7]-[10]. In particular, in the recent paper [9] by the present authors, the dynamics of the steady
detonation in a binary mixture undergoing a chemical reaction of typeA+A ⇋ B+B has been characterized with
the main purpose of analysing the effects of the reaction heat on the detonation wave solution. The structure of the
one-dimensional steady detonation wave solution has been characterized in that paper resorting to a different closure
procedure of the reactive hydrodynamic equations. In fact,instead of the usual equilibrium Maxwellian distribution
function, the hydrodynamic closure is based on the non-equilibrium solution of the Boltzmann equation obtained in
paper [11] by means of the Chapmann-Enskog method in a chemical regime proper of the early stage of the reaction
process, when the elastic time scale is smaller than the reactive one.

On the other hand, experimental studies [1], [2], [12] reveal that the ZND detonation solution tends to be structurally
unstable since a small rear perturbation of the wave front can affect the steady character of the state variables
in the reaction zone and the detonation solution does not admit anymore a steady configuration. The stability of
detonation waves and subsequent evolution of the instabilities in the reaction zone constitutes a relevant research topic
in detonation theory, after the pioneering studies conducted by Erpenbeck [13], based on a Laplace transform approach,
and many further contributions, see for example papers [4]-[6], [14] based on a normal mode analysis combined with
a numerical shooting technique. At the kinetic level, in theframe of the Boltzmann equation extended to chemically
reacting gases, the linear stability of steady detonation waves has been formulated for the first time in paper [15],
where a rather complete stability picture is shown with reference to the Hydrogen-Oxygen system. Starting from this
kinetic approach, the linear stability of the steady detonation solution characterized in paper [9] is here investigated,
integrating numerically the ODE’s for the steady state disturbances, between the detonation shock and the reaction
equilibrium state. Some results on both the steady detonation wave structure and its linear stability are discussed and
the numerical technique used to perform the stability simulations is described.
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PRELIMINARIES ON THE REACTIVE KINETIC MODEL

Consider a binary mixture of constituentsA andB, with the same massmand binding energiesEA andEB, respectively,
undergoing binary elastic collisions and inelastic interactions with chemical reaction of typeA+A ⇋ B+B. At the
kinetic level, the mixture is described by the reactive Boltzmann equations of paper [11], namely
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α are the elastic and reactive collision terms, respectively, whose explicit expressions are omitted
here for sake of brevity. In the above cited paper [11], a non-equilibrium solution of the previous Eqs. (1) has been
explicitly obtained as a small perturbation of Maxwellian distribution f M

α , using the asymptotic expansion procedure
of Chapman-Enskog in a chemical regime for which the reaction process is close to its initial stage,
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wherek the Boltzmann constant,v andT the mean velocity and temperature of the mixture, andω is given by
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Above,xA=nA/n is the concentration of theA-constituent,d anddr are the elastic and reactive diameters,ε⋆A and
A⋆ =A/kT the activation energy and the affinity of the forward reaction in units of kT, andQ⋆

R = QR/kT is the
reaction heat in units ofkT. Moreover,QR=2(EB−EA), so thatQR > 0 when the forward reaction is endothermic
whereasQR< 0 when it is exothermic. The solution given by Eqs. (2-3) exhibit an appreciable influence of the reaction
heat as well as a small contribution of the affinity, and has been obtained adopting elastic cross sections of hard-sphere
type and reactive step cross sections with activation energy [11].

At the macroscopic level, the mixture is described by the governing balance equations for the number densitiesnα
of the constituents, mean velocityvi and temperatureT of the mixture,
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whose time-space evolution, in one-space dimension, is defined by
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Above,uα
i , n, ρ , pi j , qi define the diffusion velocity of theα-constituent, the number density, mass density, pressure

tensor and heat flux of the mixture. Moreover, the termτα on ther.h.s.of Eq. (5)1 is the reaction rate, given by
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which has been obtained through the closure process of the balance Eqs. (5-6), using the non-equilibrium distribution

f (0)α given by expressions (2-3).

STEADY DETONATION SOLUTION

The main aspects of the steady detonation modelling proposed by the authors in paper [9] are recalled here with the
aim of investigating the linear stability of the one-dimensional steady detonation solution characterized in that paper.



With reference to the ZND idealized description of the detonation wave [2], the steady detonation wave consists in
a plane non-reactive shock followed by a finite reaction zonewhere the chemical reaction takes place. The shock is
located atx= x0, and the reaction zone remains fromx0 to xF . The state just behind the shock is the Von Neumann
state, where the chemical reaction is triggered, and the onelocated atxF is the final state, where the chemical reaction
reaches the equilibrium. Ahead of the shock front, that is for x > x0, the gas is in its initial state and the chemical
reaction is not yet initiated. Assuming that the shock wave propagates from left to the right with constant velocityD
along thex-direction, one first introduces the normalized steady variablexs=(x−Dt)/Dtc , tc=

√ m
πkT+ /(4n+d2),

where the superscript+ refers to the initial state. For sake of simplicity, the normalized steady variablexs is still
denoted with the plane symbolx. The structure of the steady detonation solution of the hydrodynamic equations (5-6)
can be determined using the following jump Rankine Hugoniotconditions
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together with the rate equation describing the advancementof the chemical reaction in the reaction zone, namely
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Equations (8-10), withD as parameter, characterize any arbitrary state(nA(x),nB(x),v(x),T(x)) within the reaction
zone, say forx∈ [x0,xF ], in dependence of the initial state(n+A ,n

+
B ,0,T

+). In particular, the von Neumann state just
ahead the shock, where the chemical reaction is not yet initiated, can be characterized by Eqs. (8-9) together with a
further jump condition of Rankine Hugoniot type, obtained from Eq. (10) by integration acrossing the shock wave. This
problem has been numerically solved in paper [9] for both exothermic and endothermic chemical reactions, in the case
of an overdriven detonation wave, that is a detonation wave wich propagates with velocity greater than the Chapman-
Jouguet one and thus, once initiated, does not need any external support to sustain its further evolution. Figure 1
shows some representative steady detonation profiles for the mixture pressure, assuming the following kinetic and
thermodynamical input parametersD=1700ms−1, n+A = 0.35mol/l , n+B = 0mol/l , m= 0.01Kg/mol, T+ = 298.15K,
EA = 2400K andε⋆A = 6. The pictures show that the steady detonation solution is areactive rarefaction wave for an
exothermic reaction and a reactive compression wave for an endothermic reaction.
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FIGURE 1. Left: Pressure profile for an exothermic chemical reaction withQ⋆
R = −1 (solid line) andQ⋆

R = −2 (dashed line).
Right:Pressure profile for an endothermic chemical reaction withQ⋆

R = 1 (solid line) andQ⋆
R = 2 (dashed line).

LINEAR STABILITY ANALYSIS

A normal mode linear stability analysis is developed here for the one-dimensional steady overdriven detonation
solution characterized in terms of Eqs. (8-10), as described in the previous section. The main purpose is to investigate
the response of the steady structure to small rear boundary perturbations which are instantaneousnly assigned and
induce a deviation on the planar shock wave. This distortiongives rise to small perturbations on the state variables
which propagate in the reaction zone and can either grow or decay in time. The stability of the steady solution is
determined by the evolution of those small perturbations inthe reaction zone The mathematical analog is defined by
the stability equations derived from the one-space dimensional version of the hydrodynamic equations (5-6), through
a linearization around the steady solution assuming an exponential time-dependence for the perturbations.



First, let introduce a more convenient coordinate system, say ta = t/tc, y = x/Dtc, into the hydrodynamic equations
in one-space dimension. For sake of simplicity, relabel thenew time coordinateta with the previous symbolt. The
following step consists in transforming the resulting equations to the perturbed shock attached frame. At this end, let
introduce the shock front displacement from the unperturbed position,ψ̃(t), so that the perturbed shock is located at
ψ(t) = Dt + ψ̃(t) and its velocity isD(t) = D+ ψ̃ ′(t). Let consider then the wave coordinate,x = y−ψ(t), which
measures the distance from the perturbed shock and observe that the instantaneous position of the perturbed shock
wave isx = 0 in the new shock-attached coordinate system. The corresponding transformed equations are omitted
here. The next step consists in the linearization of the transformed hydrodynamic equations around the steady state,
assuming a normal mode expansion for the state variablesnA, nB, v and p. Intoducing the state vectorz defined by
z= [nA nB v p]T , the expansions are assumed in the form

z(x, t) = z∗(x)+eat z(x), ψ(t) = ψeat, a, ψ ∈ C, (11)

wherez∗(x) represents the steady solution andz(x) the unknown space disturbances, withz∈ C. Moreover,ψ is a
perturbation parameter anda= α + iβ , with α being the perturbation growth rate andβ the perturbation frequency.
The linearization of the transformed governing equations in the perturbed shock frame leads to the stability equations,
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In these equations,τA andτB =−τA denote the linearized reaction rates whose form reads
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namics of the perturbationsz(x) in the reaction zone and have to be integrated from the perturbed shock positionx= 0
to the equilibrium final statex= xF . The initial conditions to be joined to these ordinary differential equations connect
the value of the disturbances at the von Neuman state to theirzero value ahead the perturbed shock. They are provided
by the Rankine-Hugoniot relations (8-9) together with the further jump condition for the von Neuman state obtained as
explained in the previous section. After applying the coordinate transformations and related normalizations introduced
above to the jump conditions at the von Neuman state, the desired initial conditions are obtained in the form
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The stability equations (12-14), as well as the related initial conditions (16-18), have been deduced introducing the
normalizationw = z/ψ of the state variables, which avoids the dependence of the the complex parameterψ . They
constitute a set of eight real equations in the eight unknowns Rew and Imw, which is not closed since the parameter
a is involved. The necessary closure condition, which gives the dispersion relation for the normal modes (11), is the
radiation condition usually adopted in the literature of the detonation stability [15], [16]. This condition states that the
inherent instability of the detonation wave solution results exclusively from the interplay between the leading shock
and the reaction zone and can not be affected by further disturbances traveling towards the shock from a great distance
from the reaction zone. Thus the closure condition is assigned at the equilibrium final state in the form

v(xF)+a=
−1

γρ∗
eqc∗eq

p(xF), (19)



whereγ is the ratio of specific heats,c∗eq andρ∗
eq the isentropic sound speed and gas density at equilibrium.

The linear stability problem of the steady detonation is formulated in terms of the complex disturbancesz(x) and
perturbation parametera, by means of the ordinary differential equations (12-14) with initial conditions (16-18) and
closure condition (19). For a given set of thermodynamical and chemical parameters specifying the structure of the
steady detonation wave solution, the disturbancesz(x) and perturbation parametera are determined numerically. To
do this, a trial value ofa in a fixed bounded domainR of the complex plane is considered and then Eqs. (12-14) are
integrated in the reaction zone]0,xF ]. For a given steady detonation solution, an arbitrary valueof a does not satisfy
the closure condition (19) and thus it does not produce a solution of the satbility problem. To overcome this difficulty,
the residual functionH(a), defined from the closure condition by

H(a) =

∣∣∣∣v(xF)+a+
1

γρ∗
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∣∣∣∣ , a∈R, (20)

is estimated at each trial value ofa, and only those solutionsz(x) obtained for values ofa for which the residual
function vanish within a given tolerance are accepted. In order to implement the numerical scheme to solve the
stability problem, it is convenient to approximate the location of the zeros ofH(a) and find a confidence domain
R in the complex plane containing, at least, one zero of the residual function. The search of such a domain requires a
rather sophisticated technique which is explained in detail in the extended version of the present work [17]. When the
confidence domain is supplied and the zero ofH(a) is found in that domain, the numerical scheme provides the entire
stability solution, that is the perturbationsz(x) and the perturbation parametera.

Some simulations have been done using the numerical procedure referred above, in order to describe the stability
spectra of the steady detonation solution. The results are shown in the next section.

RESULTS AND DISCUSSION

The response of the steady detonation solution to the rear boundary perturbations, as well as the influence of the
reaction heat on the stability spectra, is investigated solving numerically the stability problem formulated in terms
of the perturbation parametera and perturbationsz by the Eqs. (12-19). For the simulations, a rectangular regionR
such that 0< Rea< 0.02 and 0.001< Ima< 0.1 is considered in the right complex half-plane. For the following
kinetic and thermodynamical input parametersD= 1700ms−1, n+A = 0.35mol/l , n+B = 0mol/l , m= 0.01Kg/mol,
T+ = 298.15K, EA = 2400K andε⋆A = 6. The results on the stability problem are in dimensionlessform. The influence
of the reaction heat on the stability spectra is investigated by considering the reaction heat varying in a given domain.
In the present paper the analysis is restricted to the range 0.75≤ Q∗

R ≤ 1, corresponding to endothermic chemical
reactions. When the reaction heat increases the number of zeros of the residual functionH(a) in the right complex
half-plane decreases. In the left Frame of Figure 2, the migration in the complex plane of the zero with lower imaginary
part, corresponding to that zero with lower perturbation frequency, is shown. The results shown in the other pictures
have been obtained forQ∗

R = 1. A three-dimensional plot ofH(a) in a sub-region ofR is shown in the right Frame
of Figure 2, where the location of one zero is evidentiated. Typical unstable profiles are exhibited in Figure 3 for
Rea=10−5, Ima=6,0419×10−2, where the real part of the pressure perturbation, Rep, is represented in the reaction
zone. Frame 1 exhibits a complete profile whereas Frame 2 shows a detailed profile in the vicinity of the von Neuman
state, As expected, the profile shows that the perturbation is greater at the von Neuman state and tends to decay when
the distance from the perturbed shock increases. The instability spectrum is complemented in Frames 3, 4 of Figure
3, where the time evolution of the real part of the total pressure perturbation̂p = eat p, at the von Neuman state, is
represented. Frame 3 evidentiates the increasing time behaviour of the perturbation, and Frame 4 shows a detailed
representation.

The real parts of the other state variables perturbation as well as the corresponding imaginary parts, show an
analogous behaviour. See paper [9] for more detailed results.

ACKNOWLEDGMENTS

The paper is partially supported by FCT Phd Grant SFRH/BD/28795/2006, by the Research Centre of Mathematics of
the University of Minho through the FCT Pluriannual FundingProgram and by Project FCT-PTDC/MAT/68615/2006.



0.1 0.15 0.2 0.25 0.3
ReHaL

0.06

0.0601

0.0602

0.0603

0.0604

ImHaL

Others

QøR=1

QøR=0.97

QøR=0.88

QøR=0.81

QøR=0.75

0.75
1
1.25

1.5
ReHaL

6.0415

6.04175

6.042

6.04225

ImHaL
0

0.02
0.04
0.06

0.75
1
1.25

1.5
ReHaL

FIGURE 2. Instability spectrum.Left: Migration in the complex plane of the zeroa of the residual functionH(a) with lower
imaginary part. The reaction heat varies from 0.75 to 1 (Rea is scaled by the factor 104 and Ima is not scaled).Right: Three-
dimensional plot ofH(a) in a sub-region ofR, for Q∗

R = 1 (Rea is scaled by the factor 105 and Ima is scaled by 102).

-4 -3 -2 -1 0
x

-100

-50

0

50

100

ReHpL

-4 -3 -2 -1 0
x

-100

-50

0

50

100

ReHpL

0 50 100 150 200 250 300
t

-4

-2

0

2

4

ReHp
ï
L

0 50 100 150 200
t

-0.2

-0.1

0

0.1

0.2

ReHp
ï
L

FIGURE 3. Instability spectrum forQ∗
R=1, Rea=10−5, Ima=6,0419×10−2. Frame 1:Profile of Rep in the reaction zone (x

scaled by the factor 103). Frame 2:Detail of Rep at the beginning of the reaction zone (x scaled by 10).Frame 3:Time evolution
of Rep̂ at the von Neuman state (t scaled by 103). Frame 4:Detail of Rep̂ (t not scaled).

REFERENCES

1. W. Fickett and W. C. Davis,Detonation, Theory and Experiment(University of California, Berkeley) 1979.
2. W. Fickett,Introduction to Detonation Theory(University of California, Berkeley) 1986.
3. J. B. Bdzil and D. S. Stewart,Phys. Fluids, 1, 1261-1267 (1989).
4. A. Kasimov and D. S. Stewart,Phys. Fluids, 16, 3566-3578 (2004).
5. S. Yungster and K. Radhakrishnam,Shock Waves, 14, 61-72 (2005).
6. A. Kasimov and D. S. Stewart,SIAM J. Appl. Math., 66, 384-407 (2005).
7. M. Pandolfi Bianchi and A. J. Soares,Phys. Fluids8 17-34 (1996).
8. F. Conforto, R. Monaco, F. Schürrer and I. Ziegler,J. Phys. A: Math. Gen.36 5381-5398 (2003).
9. F. Carvalho and A. J. Soares, “Steady detonation wave solutions under the reaction heat effect”, inWASCOM 2009, edited by

A. M. Greco et.al. World Scientific Proceedings, Singapore,2010, pp. 87-92.
10. M. Bisi, M. Groppi and G. SpigaKRM 3 17-34 (2010).
11. G. M. Kremer and A. J. Soares,J. Stat. Mech., P120031-16 (2007).
12. R. A. Strehlow,Astro. Acta, 15345-357 (1970).
13. J. J. Erpenbeck,Phys. Fluids, 5, 604–614 (1962).
14. H. I. Lee and D. S. Stewart,J. Fluid Mech.216, 103–132 (1990).
15. M. Pandolfi Bianchi and A. J. Soares, Linear Stability of Steady Detonation in Extended Kinetic TheoryJ. Diff. Equations and

Applic. (accepted).
16. A. Kasimov and D. S. Stewart,J. Fluid Mech., 466, 179-203 (2002).
17. F. Carvalho and A. J. Soares (extended paper in preparation).


