Submitted to the Bulletin of the Australian Mathematical Society doi:10.1017/S...

GENERALIZED INVERSES OF A SUM IN RINGS

N. CASTRO-GONZÁLEZ[™], C. MENDES-ARAÚJO and PEDRO PATRICIO

Abstract

We study properties of the Drazin index of regular elements in a ring with a unity 1. We give expressions for generalized inverses of 1 - ba in terms of generalized inverses of 1 - ab. In our development we prove that the Drazin index of 1 - ba is equal to the Drazin index of 1 - ab.

2000 *Mathematics subject classification*. primary 15A09; secondary 16U99. *Keywords and phrases:* Regular element, reflexive inverse, Drazin index, Drazin inverse, EP elements.

1. Introduction

Let \mathcal{R} be a ring with a unity 1. An element *a* is said to be regular if there is an element *x* such that axa = a. If it exists, then it is called an inner inverse of *a* (von Neumann inverse). We will denote by $a\{1\} = \{x \in \mathcal{R} \mid axa = a\}$ the set of all inner inverses of *a* and we will write a^- to designate a member of $a\{1\}$. A reflexive inverse a^+ of *a* is an inner and outer inverse of *a*, that is, $a^+ \in a\{1\}$ and $a^+aa^+ = a^+$.

An element *a* is said to be Drazin invertible provided there is a common solution for the equations

$$xax = x$$
, $ax = xa$, $a^k xa = a^k$ for some $k \ge 0$.

If a common solution exists, then it is unique and it will be denoted by a^D (see [2]). The smallest integer k for which the above equations hold is called the Drazin index of a, denoted by ind(a).

First researcher was partially supported by Project MTM2007-67232, "Ministerio de Educación y Ciencia" of Spain.

Second and third researchers were supported by the Portuguese Foundation for Science and Technology-FCT through the research program POCTI.

The Drazin index can be characterized in terms of right and left ideals generated by a power of *a* as follows [7]: ind(*a*) = *k* if and only if *k* is the smallest non-negative integer for which $a^k \mathcal{R} = a^{k+1} \mathcal{R}$ and $\mathcal{R}a^k = \mathcal{R}a^{k+1}$, or equivalently, $a^k \in a^{k+1} \mathcal{R} \cap \mathcal{R}a^{k+1}$.

If *a* is Drazin invertible with ind(a) = 1, then *a* is regular. In the former case the Drazin inverse of *a* is known as the group inverse of *a*, denoted by a^{\sharp} . It is well known that the smallest *k* for which $(a^k)^{\sharp}$ exists equals ind(a) = k, and $a^D = (a^k)^{\sharp} a^{k-1} = a^{k-1} (a^k)^{\sharp}$.

If there exists an element $a^{\pi} \in \mathcal{R}$ such that a^{π} is idempotent, $aa^{\pi} = a^{\pi}a$, aa^{π} is nilpotent, and $a + a^{\pi}$ is nonsingular, then it is called a spectral idempotent of a; such element is unique (if it exists). We know that a is Drazin invertible if and only the spectral idempotent of a exists. In this case we have $a^{D} = (a + a^{\pi})^{-1}(1 - a^{\pi})$ and $a^{\pi} = 1 - aa^{D}$. Characterizations of ring elements with related spectral idempotents are given in [4], [5].

Let \mathcal{R} be a ring with an involution $x \to x^*$ such that $(x^*)^* = x$, $(x + y)^* = x^* + y^*$, $(xy)^* = y^*x^*$, for all $x, y \in \mathcal{R}$. We say that *a* is Moore-Penrose invertible if the equations

$$bab = b$$
, $aba = a$, $(ab)^* = ab$, $(ba)^* = ba$

have a common solution; such solution is unique if it exists (see [2], [6]), and it will be denoted by a^{\dagger} .

We say that an element *a* is EP if *a* is Moore-Penrose invertible and $aa^{\dagger} = a^{\dagger}a$. An element *a* is generalized EP if there exists $k \in \mathbb{N}$ such that a^k is EP.

Barnes [1] proved that the ascents (descents) of I - RS and I - SR are equal for bounded operators on Banach spaces $R \in \mathcal{B}(X, Y)$ and $S \in \mathcal{B}(Y, X)$. Consequently, the Drazin indices of I - RS and I - SR are equal. In this paper we deal with the Drazin index of 1 - ab and 1 - ba in rings, and therefore neither functional calculi and operator theory can be used. Moreover, we provide a formula for the reflexive inverse, the group inverse and the Drazin inverse of 1 - ba in terms of the corresponding generalized inverse of 1 - ab.

In our development, we extend the following characterization of the Drazin index given by Puystjens and Hartwig [10]: Given a regular element $a \in \mathcal{R}$, then

 $\operatorname{ind}(a) \le 1 \Leftrightarrow \operatorname{ind}(a + 1 - aa^{-}) = 0$, for one and hence all choices of $a^{-} \in a\{1\}$.

2. Auxiliary results

In this section we give some auxiliary lemmas. We start with an elementary known result.

LEMMA 2.1. Let $a, b \in \mathbb{R}$. Then 1 - ab is invertible if and only if 1 - ba is invertible.

LEMMA 2.2. Let a be a regular element. Then, given a natural n,

$$(a+1-aa^{-})^{n} = (a^{2}a^{-}+1-aa^{-})^{n} + \sum_{i=1}^{n} a^{i}(1-aa^{-}).$$
(2.1)

PROOF. The proof is by induction on *n*. Denote $z = a + 1 - aa^-$ and $x = a^2a^- + 1 - aa^-$. It is clear that $z = x + a(1 - aa^-)$. Assuming (2.1) to hold for *k*, we will prove it for k + 1.

We note that $zx = x^2 + a(1 - aa^-)$ and $za = a^2$. Now, by the induction step

$$z^{k+1} = z \left(x^k + \sum_{i=1}^k a^i (1 - aa^-) \right)$$

= $x^{k+1} + a(1 - aa^-) + \sum_{i=1}^k a^{i+1} (1 - aa^-)$
= $x^{k+1} + \sum_{i=1}^{k+1} a^i (1 - aa^-).$

LEMMA 2.3. Let $a, b \in \mathcal{R}$. Then, given a natural n,

 $(1 - ba)^n = 1 - bra$ and $(1 - ab)^n = 1 - rab$,

where $r = \sum_{j=0}^{n-1} (1 - ab)^j$.

PROOF. It can be easily proved by induction on *n*.

In [5] the authors give the following characterization of EP elements in a ring.

LEMMA 2.4. Let \mathcal{R} be a ring with an involution $x \to x^*$. For $a \in \mathcal{R}$ the following conditions are equivalent:

- (i) a is EP.
- (ii) *a is Drazin and Moore-Penrose invertible and* $a^D = a^{\dagger}$.
- (iii) *a is group invertible and* $a^{\pi} = (a^*)^{\pi}$.

3. Main results

The following theorem is an answer to a question raised by Patricio and Veloso in [8] about the equivalence between $ind(a^2a^- + 1 - aa^-) = k$ and $ind(a + 1 - aa^-) = k$, and provides a new characterization of the Drazin index.

THEOREM 3.1. Let a be a regular non-invertible element. The following conditions are equivalent:

- (i) ind(a) = k + 1.
- (ii) $\operatorname{ind}(a^2a^- + 1 aa^-) = k$, for one and hence all choices of $a^- \in a\{1\}$.
- (iii) $ind(a + 1 aa^{-}) = k$, for one and hence all choices of $a^{-} \in a\{1\}$.

PROOF. The equivalence (i) \Leftrightarrow (ii) is proved in [8, Theorem 2.1]. We proceed to show that (ii) \Rightarrow (iii). Denote $x = a^2a^- + 1 - aa^-$ and $z = a + 1 - aa^-$. Assume ind(x) = k, or equivalently, ind(a) = k + 1. Then $x^k = x^{k+1}\mathcal{R}$ and $a^{k+1} = a^{k+2}w$ for some $w \in \mathcal{R}$. By (2.1),

$$z^{k}\mathcal{R} = \left(1 + \sum_{i=1}^{k} a^{i}(1 - aa^{-})\right) x^{k}\mathcal{R}$$

= $\left(1 + \sum_{i=1}^{k} a^{i}(1 - aa^{-})\right) x^{k+1}\mathcal{R}$
= $\left(z^{k+1} - \sum_{i=1}^{k+1} a^{i}(1 - aa^{-}) + \sum_{i=1}^{k} a^{i}(1 - aa^{-})\right)\mathcal{R}$
= $\left(z^{k+1} - a^{k+1}(1 - aa^{-})\right)\mathcal{R} = (z^{k+1} - a^{k+2}w(1 - aa^{-}))\mathcal{R}$
= $z^{k+1}(1 - aw(1 - aa^{-}))\mathcal{R} \subseteq z^{k+1}\mathcal{R}.$

This gives $z^k \mathcal{R} = z^{k+1} \mathcal{R}$. On the other hand, since ind(x) = k we also have $x^k = ux^{k+1}$ for some $u \in \mathcal{R}$. By (2.1),

$$\begin{aligned} \mathcal{R}z^{k} &= \mathcal{R}\left(x^{k} + \sum_{i=1}^{k} a^{i}(1 - aa^{-})\right) \\ &= \mathcal{R}\left(ux^{k+1} + \sum_{i=1}^{k} a^{i}(1 - aa^{-})\right) \\ &= \mathcal{R}\left(u - u\sum_{i=1}^{k+1} a^{i}(1 - aa^{-}) + \sum_{i=1}^{k} a^{i}(1 - aa^{-})\right) z^{k+1} \subseteq \mathcal{R}z^{k+1}. \end{aligned}$$

From this we conclude that $\Re z^k = \Re z^{k+1}$. Consequently, $\operatorname{ind}(z) \le k$.

By symmetrical arguments, we can show that ind(z) = k implies that $ind(x) \le k$. Further, suppose ind(z) < k, having ind(x) = k, then we would get that $ind(x) \le k - 1$, and we would arrive to a contradiction. Therefore ind(z) = k.

We can state the symmetrical of Theorem 3.1.

COROLLARY 3.2. Let a be a regular non-invertible element. The following conditions are equivalent:

- (i) ind(a) = k + 1.
- (ii) $\operatorname{ind}(a^{-}a^{2} + 1 a^{-}a) = k$, for one and hence all choices of $a^{-} \in a\{1\}$.
- (iii) $ind(a + 1 a^{-}a) = k$, for one and hence all choices of $a^{-} \in a\{1\}$.

The following corollary is an extension of the analogous result for the Drazin index of a complex partitioned matrix over \mathbb{C} [3, Theorem 7.7.5].

COROLLARY 3.3. Let \mathcal{R} be any ring with unity. If $M = \begin{pmatrix} A & B \\ C & CA^{-1}B \end{pmatrix} \in \mathcal{R}_{n \times n}$, where $A \in \mathcal{R}_{r \times r}$ is invertible, then $\operatorname{ind}(M) = \operatorname{ind}(A + BCA^{-1}) + 1$.

PROOF. We have $M^- = \begin{pmatrix} A^{-1} & 0 \\ -CA^{-1} & I \end{pmatrix}$ is an inner inverse of M and

$$M + I - MM^{-} = \begin{pmatrix} A + BCA^{-1} & 0 \\ C - CA^{-1}(I - BCA^{-1}) & I \end{pmatrix}.$$

Using the following known result for block triangular matrices,

 $\max\{\operatorname{ind}(I), \operatorname{ind}(A + BCA^{-1})\} \le \operatorname{ind}(M + I - MM^{-}) \le \operatorname{ind}(A + BCA^{-1}) + \operatorname{ind}(I),$

we conclude that $ind(M + I - MM^{-}) = ind(A + BCA^{-1})$. Now, that $ind(M) = ind(A + BCA^{-1}) + 1$ follows from Theorem 3.1.

It is well known that 1 - ba is regular if and only if 1 - ab is regular. Moreover, if $(1 - ab)^-$ is an inner inverse of 1 - ab then $(1 - ba)^- = 1 + b(1 - ab)^-a$ is an inner inverse of 1 - ba. In the sequel, we will extend the same reasoning to other generalized inverses, namely reflexive, group and Drazin inverse.

THEOREM 3.4. Let $a, b \in \mathcal{R}$. If $(1 - ab)^+$ is a reflexive inverse of 1 - ab, then a reflexive inverse of 1 - ba is given by

$$(1 - ba)^{+} = 1 + b((1 - ab)^{+} - pq)a,$$

where $p = 1 - (1 - ab)^{+}(1 - ab)$ and $q = 1 - (1 - ab)(1 - ab)^{+}$.

PROOF. Let $x = 1 + b((1 - ab)^{+} - pq)a$. Then

$$(1 - ba)x = 1 - bqa.$$

Further,

$$(1 - ba)x(1 - ba) = 1 - ba - bqa(1 - ba)a = 1 - ba$$

and

$$x(1 - ba)x = x - xbqa$$

= $x - bqa - b((1 - ab)^{+} - pq)abqa$
= x ,

where we have simplified writing ab = 1 - (1 - ab) and using relations $(1 - ab)(1 - ab)^+(1 - ab) = (1 - ab)$ and $(1 - ab)^+(1 - ab)(1 - ab)^+ = (1 - ab)^+$.

THEOREM 3.5. Let $a, b \in \mathcal{R}$. If 1 - ab is group invertible, then 1 - ba is group invertible and

$$(1-ba)^{\sharp} = 1 + b\left((1-ab)^{\sharp} - (1-ab)^{\pi}\right)a,$$

where $(1 - ab)^{\pi} = 1 - (1 - ab)^{\sharp}(1 - ab)$.

PROOF. Let $x = 1 + b((1 - ab)^{\sharp} - (1 - ab)^{\pi})a$. First, we note that $(1 - ab)^{\sharp}$ is a reflexive inverse that commutes with 1 - ab. In view of the preceding theorem we have that *x* is reflexive inverse of 1 - ba. Next, we will prove that *x* commutes with 1 - ba. We have

$$x(1 - ba) = 1 - ba + b(1 - ab)^{\sharp}(1 - ab)a = 1 - b(1 - ab)^{\pi}a$$

and, similarly, $(1-ba)x = 1-b(1-ab)^{\pi}a$ which gives x(1-ba) = (1-ba)x. Therefore *x* verifies the three equations involved in the definition of group inverse.

THEOREM 3.6. Let $a, b \in \mathcal{R}$. If 1 - ab is Drazin invertible with ind(1 - ab) = k, then 1 - ba is Drazin invertible with ind(1 - ba) = k and

$$(1 - ba)^{D} = 1 + b\left((1 - ab)^{D} - (1 - ab)^{\pi}r\right)a,$$

where $r = \sum_{j=0}^{k-1} (1 - ab)^j$.

PROOF. Assume $\operatorname{ind}(1 - ab) = k \ge 2$. Then $(1 - ab)^k$ is group invertible and Theorem 3.1 leads to $\operatorname{ind}(1 - (1 - (1 - ab)^k)(1 - ab)^k((1 - ab)^k)^{\sharp}) = 0$. By Lemma 2.3 we have

$$1 - (1 - ab)^k = rab$$
 and $1 - (1 - ba)^k = bra$, (3.1)

where $r = \sum_{j=0}^{k-1} (1-ab)^j$. According to the above relations, $1 - rab(1-ab)^k((1-ab)^k)^{\sharp}$ is invertible and by Lemma 2.1 we have that $1 - b(1 - ab)(1 - ab)^D ra$ is invertible. Further,

$$(1 - b(1 - ab)(1 - ab)^{D}ra)(1 - ba)^{k} = (1 - ba)^{k} - b(1 - ab)(1 - ab)^{D}ra(1 - ba)^{k}$$
$$= (1 - ba)^{k} - b(1 - ab)^{k}ra$$
$$= (1 - bra)(1 - ba)^{k} = (1 - ba)^{2k}.$$

From this it follows that $(1-ba)^k = (1-b(1-ab)(1-ab)^D ra)^{-1}(1-ba)^{2k} \in \mathcal{R}(1-ba)^{k+1}$. On the other hand,

$$(1 - ba)^{k}(1 - b(1 - ab)(1 - ab)^{D}ra) = (1 - ba)^{k} - (1 - ba)^{k}b(1 - ab)(1 - ab)^{D}ra$$
$$= (1 - ba)^{k} - b(1 - ab)^{k}ra = (1 - ba)^{2k}$$

and hence $(1 - ba)^k = (1 - ba)^{2k}(1 - b(1 - ab)(1 - ab)^D ra)^{-1} \in (1 - ba)^{k+1} \mathcal{R}.$

Therefore
$$(1 - ba)^k \in \mathcal{R}(1 - ba)^{k+1} \cap (1 - ba)^{k+1}\mathcal{R}$$
, which implies $\operatorname{ind}(1 - ba) \le k$.

Further, analysis similar to that of the last part of the proof of Theorem 3.1 shows that ind(1 - ab) = k. Now, $(1 - ba)^D = ((1 - ba)^k)^{\sharp}(1 - ba)^{k-1}$. In view of (3.1) and applying Theorem 3, it follows

$$((1 - ba)^{k})^{\sharp} = (1 - bra)^{\sharp} = 1 + b\left((1 - rab)^{\sharp} - (1 - rab)^{\pi}\right)ra$$
$$= 1 + b\left(\left((1 - ab)^{k}\right)^{\sharp} - \left((1 - ab)^{k}\right)^{\pi}\right)ra$$
$$= 1 + b\left(\left((1 - ab)^{D}\right)^{k} - (1 - ab)^{\pi}\right)ra.$$

Hence,

$$(1 - ba)^{D} = \left(1 + b\left(\left((1 - ab\right)^{D}\right)^{k} - (1 - ab)^{\pi}\right)ra\right)(1 - ba)^{k-1}$$

= $(1 - ba)^{k-1} + b\left(\left((1 - ab\right)^{D}\right)^{k} - (1 - ab)^{\pi}\right)(1 - ab)^{k-1}ra$
= $1 - br'a + b\left((1 - ab)^{D}r - (1 - ab)^{\pi}(1 - ab)^{k-1}\right)a$
= $1 + b\left((1 - ab)^{D} - (1 - ab)^{\pi}r' - (1 - ab)^{\pi}(1 - ab)^{k-1}\right)a$
= $1 + b\left((1 - ab)^{D} - (1 - ab)^{\pi}r\right)a$,

where $r' = \sum_{j=0}^{k-2} (1 - ab)^j$, completing the proof.

Let $\mathcal{R}_{n\times n}$ the ring of $n \times n$ matrices over \mathcal{R} . Any matrix $A \in \mathcal{R}_{r\times n}$ $(B \in \mathcal{R}_{n\times r})$ with r < n may be enlarged to square $n \times n$ matrix A'(B') by adding zeros. Then we can compute a generalized inverse of I - BA = I - B'A' using preceding results in the ring $\mathcal{R}_{n\times n}$. Finally, we can rewrite the corresponding expression for the generalized inverse of I - B'A' in terms of A and B, getting that formulas similar to that in the preceding theorems hold for rectangular matrices A and B.

EXAMPLE 3.7. We consider the following matrices with entries in the univariate polynomial ring in *x* over \mathbb{Z}_8 , the ring of integers modulo 8:

$$A = \begin{pmatrix} x & 2 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 7x \\ 2 \\ x^2 + 3 \end{pmatrix}$$

Then

$$I - BA = \begin{pmatrix} x^2 + 1 & 2x & x \\ 6x & 5 & 6 \\ 7x^3 + 5x & 6x^2 + 2 & 7x^2 + 6 \end{pmatrix} \text{ and } 1 - AB = 2.$$

The zero degree polynomial equal to 2 is nilpotent of index 3 and, so, ind(1 - AB) = 3 and $(1 - AB)^D = 0$. Applying Theorem 3 we get

$$(I - BA)^{D} = I + \begin{pmatrix} 7x \\ 2 \\ x^{2} + 3 \end{pmatrix} (0 - 1(1 + 2 + 2^{2})) \begin{pmatrix} x & 2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 7x^{2} + 1 & 6x & 7x \\ 2x & 5 & 2 \\ x^{3} + 3x & 2x^{2} + 6 & x^{2} + 4 \end{pmatrix}.$$

We know that in general 1 - ab is EP may not imply that 1 - ba is EP. In the following result we give a necessary and sufficient condition for such implication to hold.

COROLLARY 3.8. Let \mathcal{R} be a ring with an involution $x \to x^*$. If 1 - ab is EP, then 1 - ba is EP if and only if $a^*(1 - ab)^{\pi}b^* = b(1 - ab)^{\pi}a$. In this case,

$$(1-ba)^{\dagger} = 1 + b\left((1-ab)^{\dagger} - (1-(1-ab)(1-ab)^{\dagger})\right)a.$$

PROOF. Since 1 - ab is EP, by Lemma 2.4 we have that 1 - ab is group invertible and Moore-Penrose invertible and $(1 - ab)^{\sharp} = (1 - ab)^{\dagger}$. Now, from Theorem 3 it follows that 1 - ba is also group invertible and $(1 - ba)^{\sharp} = 1 + b((1 - ab)^{\sharp} - (1 - ab)^{\pi})a$, and consequently, $(1 - ba)^{\pi} = b(1 - ab)^{\pi}a$. Thus, by Lemma 2.4, 1 - ba is EP if and only if $((1 - ba)^{*})^{\pi} = (1 - ba)^{\pi}$, that is,

$$(b(1-ab)^{\pi}a)^* = b(1-ab)^{\pi}a.$$

Hence, using that $((1 - ab)^*)^{\pi} = (1 - ab)^{\pi}$, the result follows.

COROLLARY 3.9. Let \mathcal{R} be a ring with an involution $x \to x^*$. If 1 - ab is generalized *EP*, then 1 - ba is generalized *EP* if and only if $(ra)^*(1 - ab)^{\pi}b^* = b(1 - ab)^{\pi}ra$, where $r = \sum_{j=0}^{k-1}(1 - ab)^j$ and k = ind(1 - ab).

PROOF. Since 1 - ab is generalized EP then there exists the smallest integer $k \in \mathbb{N}$ such that $(1 - ab)^k$ is EP. From Lemma 2.4 we can deduce that ind(1 - ab) = k. Now, by Lemma 2.3 we have $(1 - ab)^k = 1 - rab$, where *r* is defined as in the statement of this corollary. By preceding corollary, $(1 - ba)^k = 1 - bra$ is EP if and only if $(b(1 - ab)^{\pi}ra)^* = b(1 - ab)^{\pi}ra$, completing the proof.

In this example we show that the existence of the Moore-Penrose of 1 - ab does not imply the existence of the Moore-Penrose of 1 - ba.

EXAMPLE 3.10. Consider the following matrices over the field \mathbb{C} of complex numbers, with the involution defined by $A^* = A^T$:

$$A = \begin{pmatrix} 0 & -i \\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}.$$

Then

$$I - AB = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad I - BA = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix},$$

and, further,

$$(I - AB)^{\star}(I - AB) = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}, \quad (I - BA)^{\star}(I - BA) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Since rank (I - AB) = 1 and rank $(I - AB)^*(I - AB) = \text{rank } (I - AB)(I - AB)^* = 1$ we conclude, applying [9, Theorem 1], that I - AB is Moore-Penrose invertible. On the other hand, since rank (I - BA) = 1 and rank $(I - BA)^*(I - BA) = 0$ we conclude that I - BA is not Moore-Penrose invertible.

References

- [1] B.A. Barnes, *Common operator properties of the linear operators RS and SR*, Proc. Am. Math. Soc. 126 (1998), 1055-1061.
- [2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses. Theory and Applications (Second Edition), Springer-Verlag, New York, 2003.
- [3] S. L. Campbell, C. D. Meyer Jr., *Generalized Inverse of Linear Transformations*, Pitman, London, (1979); Dover, New York, (1991).
- [4] N. Castro-González, J. Y. Vélez-Cerrada, *Elements in rings and Banach algebras with related spectral idempotents*, J. Aust. Math. Soc., 80 (2006), 383–396.
- [5] J. J. Koliha, P. Patricio, *Elements of rings with equal spectral idempotents*, J. Aust. Math. Soc., 72 (2002), 137–152.
- [6] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal., 61, (1976), 197–251.
- [7] R. E. Hartwig, J. Shoaf, *Group inverse of bidiagonal and triangular Toeplitz matrices*, J. Austral. Math. Soc. Ser. A, 24 (1977), 10–34.
- [8] P. Patricio, A. Veloso da Costa, On the Drazin index of regular elements, Cent. Eur. J. Math. 7(2) (2009), 200–208.
- [9] M. H. Pearl, Generalized inverses of matrices with entries taken from an arbitrary field, Linear Algebra and Its Applications, 1 (1968), 571–587.
- [10] R. Puystjens, R. E. Hartwig, *The group of a companion matrix*, Linear and Multilinear Algebra, 43 (1997), 137–150.

N. Castro-González, Facultad de Informática, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain e-mail: nieves@fi.upm.es

C. Mendes-Araújo, Centro de Matemática, Universidade do Minho, 4710-057 Braga, Portugal

e-mail: clmendes@math.uminho.pt

Pedro Patricio, Centro de Matemática, Universidade do Minho, 4710-057 Braga, Portugal

e-mail: pedro@math.uminho.pt