GENERALIZED INVERSES OF A SUM IN RINGS

N. CASTRO-GONZÁLEZ ${ }^{\boxtimes}$, C. MENDES-ARAÚJO and PEDRO PATRICIO

Abstract

We study properties of the Drazin index of regular elements in a ring with a unity 1. We give expressions for generalized inverses of $1-b a$ in terms of generalized inverses of $1-a b$. In our development we prove that the Drazin index of $1-b a$ is equal to the Drazin index of $1-a b$.

2000 Mathematics subject classification. primary 15A09; secondary 16U99.
Keywords and phrases: Regular element, reflexive inverse, Drazin index, Drazin inverse, EP elements.

1. Introduction

Let \mathcal{R} be a ring with a unity 1 . An element a is said to be regular if there is an element x such that $a x a=a$. If it exists, then it is called an inner inverse of a (von Neumann inverse). We will denote by $a\{1\}=\{x \in \mathcal{R} \mid a x a=a\}$ the set of all inner inverses of a and we will write a^{-}to designate a member of $a\{1\}$. A reflexive inverse a^{+}of a is an inner and outer inverse of a, that is, $a^{+} \in a\{1\}$ and $a^{+} a a^{+}=a^{+}$.

An element a is said to be Drazin invertible provided there is a common solution for the equations

$$
x a x=x, \quad a x=x a, \quad a^{k} x a=a^{k} \text { for some } k \geq 0 .
$$

If a common solution exists, then it is unique and it will be denoted by a^{D} (see [2]). The smallest integer k for which the above equations hold is called the Drazin index of a, denoted by ind (a).

[^0]The Drazin index can be characterized in terms of right and left ideals generated by a power of a as follows [7]: $\operatorname{ind}(a)=k$ if and only if k is the smallest non-negative integer for which $a^{k} \mathcal{R}=a^{k+1} \mathcal{R}$ and $\mathcal{R} a^{k}=\mathcal{R} a^{k+1}$, or equivalently, $a^{k} \in a^{k+1} \mathcal{R} \cap \mathcal{R} a^{k+1}$.

If a is Drazin invertible with $\operatorname{ind}(a)=1$, then a is regular. In the former case the Drazin inverse of a is known as the group inverse of a, denoted by a^{\sharp}. It is well known that the smallest k for which $\left(a^{k}\right)^{\sharp}$ exists equals $\operatorname{ind}(a)=k$, and $a^{D}=\left(a^{k}\right)^{\sharp} a^{k-1}=a^{k-1}\left(a^{k}\right)^{\sharp}$.

If there exists an element $a^{\pi} \in \mathcal{R}$ such that a^{π} is idempotent, $a a^{\pi}=a^{\pi} a$, $a a^{\pi}$ is nilpotent, and $a+a^{\pi}$ is nonsingular, then it is called a spectral idempotent of a; such element is unique (if it exists). We know that a is Drazin invertible if and only the spectral idempotent of a exists. In this case we have $a^{D}=\left(a+a^{\pi}\right)^{-1}\left(1-a^{\pi}\right)$ and $a^{\pi}=1-a a^{D}$. Characterizations of ring elements with related spectral idempotents are given in [4], [5].

Let \mathcal{R} be a ring with an involution $x \rightarrow x^{*}$ such that $\left(x^{*}\right)^{*}=x,(x+y)^{*}=x^{*}+y^{*}$, $(x y)^{*}=y^{*} x^{*}$, for all $x, y \in \mathcal{R}$. We say that a is Moore-Penrose invertible if the equations

$$
b a b=b, \quad a b a=a, \quad(a b)^{*}=a b, \quad(b a)^{*}=b a
$$

have a common solution; such solution is unique if it exists (see [2], [6]), and it will be denoted by a^{\dagger}.

We say that an element a is EP if a is Moore-Penrose invertible and $a a^{\dagger}=a^{\dagger} a$. An element a is generalized EP if there exists $k \in \mathbb{N}$ such that a^{k} is EP.

Barnes [1] proved that the ascents (descents) of $I-R S$ and $I-S R$ are equal for bounded operators on Banach spaces $R \in \mathcal{B}(X, Y)$ and $S \in \mathcal{B}(Y, X)$. Consequently, the Drazin indices of $I-R S$ and $I-S R$ are equal. In this paper we deal with the Drazin index of $1-a b$ and $1-b a$ in rings, and therefore neither functional calculi and operator theory can be used. Moreover, we provide a formula for the reflexive inverse, the group inverse and the Drazin inverse of $1-b a$ in terms of the corresponding generalized inverse of $1-a b$.

In our development, we extend the following characterization of the Drazin index given by Puystjens and Hartwig [10]: Given a regular element $a \in \mathcal{R}$, then

$$
\operatorname{ind}(a) \leq 1 \Leftrightarrow \operatorname{ind}\left(a+1-a a^{-}\right)=0, \text { for one and hence all choices of } a^{-} \in a\{1\} .
$$

2. Auxiliary results

In this section we give some auxiliary lemmas. We start with an elementary known result.

Lemma 2.1. Let $a, b \in \mathcal{R}$. Then $1-a b$ is invertible if and only if $1-b a$ is invertible.
Lemma 2.2. Let a be a regular element. Then, given a natural n,

$$
\begin{equation*}
\left(a+1-a a^{-}\right)^{n}=\left(a^{2} a^{-}+1-a a^{-}\right)^{n}+\sum_{i=1}^{n} a^{i}\left(1-a a^{-}\right) \tag{2.1}
\end{equation*}
$$

Proof. The proof is by induction on n. Denote $z=a+1-a a^{-}$and $x=a^{2} a^{-}+1-a a^{-}$. It is clear that $z=x+a\left(1-a a^{-}\right)$. Assuming (2.1) to hold for k, we will prove it for $k+1$.

We note that $z x=x^{2}+a\left(1-a a^{-}\right)$and $z a=a^{2}$. Now, by the induction step

$$
\begin{aligned}
z^{k+1} & =z\left(x^{k}+\sum_{i=1}^{k} a^{i}\left(1-a a^{-}\right)\right) \\
& =x^{k+1}+a\left(1-a a^{-}\right)+\sum_{i=1}^{k} a^{i+1}\left(1-a a^{-}\right) \\
& =x^{k+1}+\sum_{i=1}^{k+1} a^{i}\left(1-a a^{-}\right)
\end{aligned}
$$

Lemma 2.3. Let $a, b \in \mathcal{R}$. Then, given a natural n,

$$
(1-b a)^{n}=1-b r a \quad \text { and } \quad(1-a b)^{n}=1-r a b,
$$

where $r=\sum_{j=0}^{n-1}(1-a b)^{j}$.

Proof. It can be easily proved by induction on n.

In [5] the authors give the following characterization of EP elements in a ring.
Lemma 2.4. Let \mathcal{R} be a ring with an involution $x \rightarrow x^{*}$. For $a \in \mathcal{R}$ the following conditions are equivalent:
(i) a is $E P$.
(ii) a is Drazin and Moore-Penrose invertible and $a^{D}=a^{\dagger}$.
(iii) a is group invertible and $a^{\pi}=\left(a^{*}\right)^{\pi}$.

3. Main results

The following theorem is an answer to a question raised by Patricio and Veloso in [8] about the equivalence between $\operatorname{ind}\left(a^{2} a^{-}+1-a a^{-}\right)=k$ and $\operatorname{ind}\left(a+1-a a^{-}\right)=k$, and provides a new characterization of the Drazin index.

Theorem 3.1. Let a be a regular non-invertible element. The following conditions are equivalent:
(i) $\quad \operatorname{ind}(a)=k+1$.
(ii) $\operatorname{ind}\left(a^{2} a^{-}+1-a a^{-}\right)=k$, for one and hence all choices of $a^{-} \in a\{1\}$.
(iii) $\operatorname{ind}\left(a+1-a a^{-}\right)=k$, for one and hence all choices of $a^{-} \in a\{1\}$.

Proof. The equivalence $(\mathrm{i}) \Leftrightarrow$ (ii) is proved in [8, Theorem 2.1]. We proceed to show that (ii) \Rightarrow (iii). Denote $x=a^{2} a^{-}+1-a a^{-}$and $z=a+1-a a^{-}$. Assume ind $(x)=k$, or equivalently, $\operatorname{ind}(a)=k+1$. Then $x^{k}=x^{k+1} \mathcal{R}$ and $a^{k+1}=a^{k+2} w$ for some $w \in \mathcal{R}$. By (2.1),

$$
\begin{aligned}
z^{k} \mathcal{R} & =\left(1+\sum_{i=1}^{k} a^{i}\left(1-a a^{-}\right)\right) x^{k} \mathcal{R} \\
& =\left(1+\sum_{i=1}^{k} a^{i}\left(1-a a^{-}\right)\right) x^{k+1} \mathcal{R} \\
& =\left(z^{k+1}-\sum_{i=1}^{k+1} a^{i}\left(1-a a^{-}\right)+\sum_{i=1}^{k} a^{i}\left(1-a a^{-}\right)\right) \mathcal{R} \\
& =\left(z^{k+1}-a^{k+1}\left(1-a a^{-}\right)\right) \mathcal{R}=\left(z^{k+1}-a^{k+2} w\left(1-a a^{-}\right)\right) \mathcal{R} \\
& =z^{k+1}\left(1-a w\left(1-a a^{-}\right)\right) \mathcal{R} \subseteq z^{k+1} \mathcal{R} .
\end{aligned}
$$

This gives $z^{k} \mathcal{R}=z^{k+1} \mathcal{R}$. On the other hand, since $\operatorname{ind}(x)=k$ we also have $x^{k}=u x^{k+1}$ for some $u \in \mathcal{R}$. By (2.1),

$$
\begin{aligned}
\mathcal{R} z^{k} & =\mathcal{R}\left(x^{k}+\sum_{i=1}^{k} a^{i}\left(1-a a^{-}\right)\right) \\
& =\mathcal{R}\left(u x^{k+1}+\sum_{i=1}^{k} a^{i}\left(1-a a^{-}\right)\right) \\
& =\mathcal{R}\left(u-u \sum_{i=1}^{k+1} a^{i}\left(1-a a^{-}\right)+\sum_{i=1}^{k} a^{i}\left(1-a a^{-}\right)\right) z^{k+1} \subseteq \mathcal{R} z^{k+1} .
\end{aligned}
$$

From this we conclude that $\mathcal{R} z^{k}=\mathcal{R} z^{k+1}$. Consequently, $\operatorname{ind}(z) \leq k$.

By symmetrical arguments, we can show that $\operatorname{ind}(z)=k$ implies that $\operatorname{ind}(x) \leq k$. Further, suppose $\operatorname{ind}(z)<k$, having $\operatorname{ind}(x)=k$, then we would get that $\operatorname{ind}(x) \leq k-1$, and we would arrive to a contradiction. Therefore $\operatorname{ind}(z)=k$.

We can state the symmetrical of Theorem 3.1.
Corollary 3.2. Let a be a regular non-invertible element. The following conditions are equivalent:
(i) $\quad \operatorname{ind}(a)=k+1$.
(ii) $\operatorname{ind}\left(a^{-} a^{2}+1-a^{-} a\right)=k$, for one and hence all choices of $a^{-} \in a\{1\}$.
(iii) $\operatorname{ind}\left(a+1-a^{-} a\right)=k$, for one and hence all choices of $a^{-} \in a\{1\}$.

The following corollary is an extension of the analogous result for the Drazin index of a complex partitioned matrix over \mathbb{C} [3, Theorem 7.7.5].

Corollary 3.3. Let \mathcal{R} be any ring with unity. If $M=\left(\begin{array}{cc}A & B \\ C & C A^{-1} B\end{array}\right) \in \mathcal{R}_{n \times n}$, where $A \in \mathcal{R}_{r \times r}$ is invertible, then $\operatorname{ind}(M)=\operatorname{ind}\left(A+B C A^{-1}\right)+1$.

Proof. We have $M^{-}=\left(\begin{array}{cc}A^{-1} & 0 \\ -C A^{-1} & I\end{array}\right)$ is an inner inverse of M and

$$
M+I-M M^{-}=\left(\begin{array}{cc}
A+B C A^{-1} & 0 \\
C-C A^{-1}\left(I-B C A^{-1}\right) & I
\end{array}\right)
$$

Using the following known result for block triangular matrices,

$$
\max \left\{\operatorname{ind}(I), \operatorname{ind}\left(A+B C A^{-1}\right)\right\} \leq \operatorname{ind}\left(M+I-M M^{-}\right) \leq \operatorname{ind}\left(A+B C A^{-1}\right)+\operatorname{ind}(I),
$$

we conclude that $\operatorname{ind}\left(M+I-M M^{-}\right)=\operatorname{ind}\left(A+B C A^{-1}\right)$. Now, that $\operatorname{ind}(M)=$ $\operatorname{ind}\left(A+B C A^{-1}\right)+1$ follows from Theorem 3.1.

It is well known that $1-b a$ is regular if and only if $1-a b$ is regular. Moreover, if $(1-a b)^{-}$is an inner inverse of $1-a b$ then $(1-b a)^{-}=1+b(1-a b)^{-} a$ is an inner inverse of $1-b a$. In the sequel, we will extend the same reasoning to other generalized inverses, namely reflexive, group and Drazin inverse.

Theorem 3.4. Let $a, b \in \mathcal{R}$. If $(1-a b)^{+}$is a reflexive inverse of $1-a b$, then a reflexive inverse of $1-b a$ is given by

$$
(1-b a)^{+}=1+b\left((1-a b)^{+}-p q\right) a,
$$

where $p=1-(1-a b)^{+}(1-a b)$ and $q=1-(1-a b)(1-a b)^{+}$.

Proof. Let $x=1+b\left((1-a b)^{+}-p q\right) a$. Then

$$
(1-b a) x=1-b q a .
$$

Further,

$$
(1-b a) x(1-b a)=1-b a-b q a(1-b a) a=1-b a
$$

and

$$
\begin{aligned}
x(1-b a) x & =x-x b q a \\
& =x-b q a-b\left((1-a b)^{+}-p q\right) a b q a \\
& =x,
\end{aligned}
$$

where we have simplified writing $a b=1-(1-a b)$ and using relations $(1-a b)(1-$ $a b)^{+}(1-a b)=(1-a b)$ and $(1-a b)^{+}(1-a b)(1-a b)^{+}=(1-a b)^{+}$.

Theorem 3.5. Let $a, b \in \mathcal{R}$. If $1-a b$ is group invertible, then $1-b a$ is group invertible and

$$
(1-b a)^{\sharp}=1+b\left((1-a b)^{\#}-(1-a b)^{\pi}\right) a,
$$

where $(1-a b)^{\pi}=1-(1-a b)^{\sharp}(1-a b)$.

Proof. Let $x=1+b\left((1-a b)^{\sharp}-(1-a b)^{\pi}\right) a$. First, we note that $(1-a b)^{\sharp}$ is a reflexive inverse that commutes with $1-a b$. In view of the preceding theorem we have that x is reflexive inverse of $1-b a$. Next, we will prove that x commutes with $1-b a$. We have

$$
x(1-b a)=1-b a+b(1-a b)^{\sharp}(1-a b) a=1-b(1-a b)^{\pi} a
$$

and, similarly, $(1-b a) x=1-b(1-a b)^{\pi} a$ which gives $x(1-b a)=(1-b a) x$. Therefore x verifies the three equations involved in the definition of group inverse.

Theorem 3.6. Let $a, b \in \mathcal{R}$. If $1-a b$ is Drazin invertible with $\operatorname{ind}(1-a b)=k$, then $1-b a$ is Drazin invertible with $\operatorname{ind}(1-b a)=k$ and

$$
(1-b a)^{D}=1+b\left((1-a b)^{D}-(1-a b)^{\pi} r\right) a,
$$

where $r=\sum_{j=0}^{k-1}(1-a b)^{j}$.

Proof. Assume $\operatorname{ind}(1-a b)=k \geq 2$. Then $(1-a b)^{k}$ is group invertible and Theorem 3.1 leads to $\operatorname{ind}\left(1-\left(1-(1-a b)^{k}\right)(1-a b)^{k}\left((1-a b)^{k}\right)^{\sharp}\right)=0$. By Lemma 2.3 we have

$$
\begin{equation*}
1-(1-a b)^{k}=r a b \text { and } 1-(1-b a)^{k}=b r a, \tag{3.1}
\end{equation*}
$$

where $r=\sum_{j=0}^{k-1}(1-a b)^{j}$. According to the above relations, $1-r a b(1-a b)^{k}\left((1-a b)^{k}\right)^{\#}$ is invertible and by Lemma 2.1 we have that $1-b(1-a b)(1-a b)^{D} r a$ is invertible. Further,

$$
\begin{aligned}
\left(1-b(1-a b)(1-a b)^{D} r a\right)(1-b a)^{k} & =(1-b a)^{k}-b(1-a b)(1-a b)^{D} r a(1-b a)^{k} \\
& =(1-b a)^{k}-b(1-a b)^{k} r a \\
& =(1-b r a)(1-b a)^{k}=(1-b a)^{2 k} .
\end{aligned}
$$

From this it follows that $(1-b a)^{k}=\left(1-b(1-a b)(1-a b)^{D} r a\right)^{-1}(1-b a)^{2 k} \in \mathcal{R}(1-b a)^{k+1}$. On the other hand,

$$
\begin{aligned}
(1-b a)^{k}\left(1-b(1-a b)(1-a b)^{D} r a\right) & =(1-b a)^{k}-(1-b a)^{k} b(1-a b)(1-a b)^{D} r a \\
& =(1-b a)^{k}-b(1-a b)^{k} r a=(1-b a)^{2 k}
\end{aligned}
$$

and hence $(1-b a)^{k}=(1-b a)^{2 k}\left(1-b(1-a b)(1-a b)^{D} r a\right)^{-1} \in(1-b a)^{k+1} \mathcal{R}$.
Therefore $(1-b a)^{k} \in \mathcal{R}(1-b a)^{k+1} \cap(1-b a)^{k+1} \mathcal{R}$, which implies ind $(1-b a) \leq k$.
Further, analysis similar to that of the last part of the proof of Theorem 3.1 shows that ind $(1-a b)=k$. Now, $(1-b a)^{D}=\left((1-b a)^{k}\right)^{\sharp}(1-b a)^{k-1}$. In view of (3.1) and applying Theorem 3, it follows

$$
\begin{aligned}
\left((1-b a)^{k}\right)^{\sharp} & =(1-b r a)^{\sharp}=1+b\left((1-r a b)^{\sharp}-(1-r a b)^{\pi}\right) r a \\
& =1+b\left(\left((1-a b)^{k}\right)^{\sharp}-\left((1-a b)^{k}\right)^{\pi}\right) r a \\
& =1+b\left(\left((1-a b)^{D}\right)^{k}-(1-a b)^{\pi}\right) r a .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
(1-b a)^{D} & =\left(1+b\left(\left((1-a b)^{D}\right)^{k}-(1-a b)^{\pi}\right) r a\right)(1-b a)^{k-1} \\
& =(1-b a)^{k-1}+b\left(\left((1-a b)^{D}\right)^{k}-(1-a b)^{\pi}\right)(1-a b)^{k-1} r a \\
& =1-b r^{\prime} a+b\left((1-a b)^{D} r-(1-a b)^{\pi}(1-a b)^{k-1}\right) a \\
& =1+b\left((1-a b)^{D}-(1-a b)^{\pi} r^{\prime}-(1-a b)^{\pi}(1-a b)^{k-1}\right) a \\
& =1+b\left((1-a b)^{D}-(1-a b)^{\pi} r\right) a,
\end{aligned}
$$

where $r^{\prime}=\sum_{j=0}^{k-2}(1-a b)^{j}$, completing the proof.

Let $\mathcal{R}_{n \times n}$ the ring of $n \times n$ matrices over \mathcal{R}. Any matrix $A \in \mathcal{R}_{r \times n}\left(B \in \mathcal{R}_{n \times r}\right)$ with $r<n$ may be enlarged to square $n \times n$ matrix $A^{\prime}\left(B^{\prime}\right)$ by adding zeros. Then we can compute a generalized inverse of $I-B A=I-B^{\prime} A^{\prime}$ using preceding results in the ring $\mathcal{R}_{n \times n}$. Finally, we can rewrite the corresponding expression for the generalized inverse of $I-B^{\prime} A^{\prime}$ in terms of A and B, getting that formulas similar to that in the preceding theorems hold for rectangular matrices A and B.

Example 3.7. We consider the following matrices with entries in the univariate polynomial ring in x over \mathbb{Z}_{8}, the ring of integers modulo 8:

$$
A=\left(\begin{array}{lll}
x & 2 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{c}
7 x \\
2 \\
x^{2}+3
\end{array}\right) .
$$

Then

$$
I-B A=\left(\begin{array}{ccc}
x^{2}+1 & 2 x & x \\
6 x & 5 & 6 \\
7 x^{3}+5 x & 6 x^{2}+2 & 7 x^{2}+6
\end{array}\right) \text { and } 1-A B=2 .
$$

The zero degree polynomial equal to 2 is nilpotent of index 3 and, so, $\operatorname{ind}(1-A B)=3$ and $(1-A B)^{D}=0$. Applying Theorem 3 we get

$$
\begin{aligned}
(I-B A)^{D}= & I+\left(\begin{array}{c}
7 x \\
2 \\
x^{2}+3
\end{array}\right)\left(0-1\left(1+2+2^{2}\right)\right)\left(\begin{array}{lll}
x & 2 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
7 x^{2}+1 & 6 x & 7 x \\
2 x & 5 & 2 \\
x^{3}+3 x & 2 x^{2}+6 & x^{2}+4
\end{array}\right) .
\end{aligned}
$$

We know that in general $1-a b$ is EP may not imply that $1-b a$ is EP. In the following result we give a necessary and sufficient condition for such implication to hold.

Corollary 3.8. Let \mathcal{R} be a ring with an involution $x \rightarrow x^{*}$. If $1-a b$ is $E P$, then $1-b a$ is EP if and only if $a^{*}(1-a b)^{\pi} b^{*}=b(1-a b)^{\pi} a$. In this case,

$$
(1-b a)^{\dagger}=1+b\left((1-a b)^{\dagger}-\left(1-(1-a b)(1-a b)^{\dagger}\right)\right) a .
$$

Proof. Since $1-a b$ is EP, by Lemma 2.4 we have that $1-a b$ is group invertible and Moore-Penrose invertible and $(1-a b)^{\sharp}=(1-a b)^{\dagger}$. Now, from Theorem 3 it follows that $1-b a$ is also group invertible and $(1-b a)^{\sharp}=1+b\left((1-a b)^{\sharp}-(1-a b)^{\pi}\right) a$, and consequently, $(1-b a)^{\pi}=b(1-a b)^{\pi} a$. Thus, by Lemma 2.4, $1-b a$ is EP if and only if $\left((1-b a)^{*}\right)^{\pi}=(1-b a)^{\pi}$, that is,

$$
\left(b(1-a b)^{\pi} a\right)^{*}=b(1-a b)^{\pi} a .
$$

Hence, using that $\left((1-a b)^{*}\right)^{\pi}=(1-a b)^{\pi}$, the result follows.
Corollary 3.9. Let \mathcal{R} be a ring with an involution $x \rightarrow x^{*}$. If $1-a b$ is generalized $E P$, then $1-$ ba is generalized EP if and only if $(r a)^{*}(1-a b)^{\pi} b^{*}=b(1-a b)^{\pi} r a$, where $r=\sum_{j=0}^{k-1}(1-a b)^{j}$ and $k=\operatorname{ind}(1-a b)$.

Proof. Since $1-a b$ is generalized EP then there exists the smallest integer $k \in \mathbb{N}$ such that $(1-a b)^{k}$ is EP. From Lemma 2.4 we can deduce that $\operatorname{ind}(1-a b)=k$. Now, by Lemma 2.3 we have $(1-a b)^{k}=1-r a b$, where r is defined as in the statement of this corollary. By preceding corollary, $(1-b a)^{k}=1-b r a$ is EP if and only if $\left(b(1-a b)^{\pi} r a\right)^{*}=b(1-a b)^{\pi} r a$, completing the proof.

In this example we show that the existence of the Moore-Penrose of $1-a b$ does not imply the existence of the Moore-Penrose of $1-b a$.

Example 3.10. Consider the following matrices over the field \mathbb{C} of complex numbers, with the involution defined by $A^{\star}=A^{T}$:

$$
A=\left(\begin{array}{cc}
0 & -i \\
1 & 0
\end{array}\right) \text { and } \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) .
$$

Then

$$
I-A B=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right), \quad I-B A=\left(\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right),
$$

and, further,

$$
(I-A B)^{\star}(I-A B)=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right), \quad(I-B A)^{\star}(I-B A)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Since $\operatorname{rank}(I-A B)=1$ and $\operatorname{rank}(I-A B)^{\star}(I-A B)=\operatorname{rank}(I-A B)(I-A B)^{\star}=1$ we conclude, applying [9, Theorem 1], that $I-A B$ is Moore-Penrose invertible. On the other hand, since rank $(I-B A)=1$ and $\operatorname{rank}(I-B A)^{\star}(I-B A)=0$ we conclude that $I-B A$ is not Moore-Penrose invertible.

References

[1] B.A. Barnes,Common operator properties of the linear operators RS and SR, Proc. Am. Math. Soc. 126 (1998), 1055-1061.
[2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses. Theory and Applications (Second Edition), Springer-Verlag, New York, 2003.
[3] S. L. Campbell, C. D. Meyer Jr., Generalized Inverse of Linear Transformations, Pitman, London, (1979); Dover, New York, (1991).
[4] N. Castro-González, J. Y. Vélez-Cerrada, Elements in rings and Banach algebras with related spectral idempotents, J. Aust. Math. Soc., 80 (2006), 383-396.
[5] J. J. Koliha, P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc., 72 (2002), 137-152.
[6] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal., 61, (1976), 197-251.
[7] R. E. Hartwig, J. Shoaf, Group inverse of bidiagonal and triangular Toeplitz matrices, J. Austral. Math. Soc. Ser. A, 24 (1977), 10-34.
[8] P. Patricio, A. Veloso da Costa, On the Drazin index of regular elements, Cent. Eur. J. Math. 7(2) (2009), 200-208.
[9] M. H. Pearl, Generalized inverses of matrices with entries taken from an arbitrary field, Linear Algebra and Its Applications, 1 (1968), 571-587.
[10] R. Puystjens, R. E. Hartwig, The group of a companion matrix, Linear and Multilinear Algebra, 43 (1997), 137-150.
N. Castro-González, Facultad de Informática, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain
e-mail: nieves@fi.upm.es
C. Mendes-Araújo, Centro de Matemática, Universidade do Minho, 4710-057 Braga, Portugal
e-mail: clmendes@math.uminho.pt

Pedro Patricio, Centro de Matemática, Universidade do Minho, 4710-057 Braga, Portugal
e-mail: pedro@math.uminho.pt

[^0]: First researcher was partially supported by Project MTM2007-67232, "Ministerio de Educación y Ciencia" of Spain.

 Second and third researchers were supported by the Portuguese Foundation for Science and Technology-FCT through the research program POCTI.

