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Abstract

In this paper, we consider Moore-Penrose invertibility in rings with a general involu-
tion. Given two von Neumann regular elements a, b in a general ring with an arbitrary
involution, we aim to give necessary and sufficient conditions to aa† = bb†. As a special
case, EP elements are considered.

1 Introduction

Let R be a (associative) ring with unity 1. We will denote, for a given a ∈ R,

a{1} := {x ∈ R : axa = a}

the set of von Neumann inverses (or inner inverses, or 1-inverses) of a. A particular 1-inverse
of a will be written as a−, and a is regular if a{1} 6= ∅. As usual, R is a regular ring if all
elements of R are regular. A reflexive inverse a+ of a is a 1-inverse of a that is a solution of
the ring equation xax = x. Note that if a−, a= ∈ a{1} then a−aa= is a reflexive inverse of a.

An involution ∗ in R is an anti-isomorphism of degree 2 in R, that is to say, (x∗)∗ = x,
(x + y)∗ = x∗ + y∗ and (xy)∗ = y∗x∗, for all x, y ∈ R.

∗Corresponding author
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We say a ∈ R is Moore-Penrose invertible (with respect to ∗) if the equations

axa = a, xax = x, (ax)∗ = ax, (xa)∗ = xa

have a common solution. If such a solution exists, then it is unique, and denoted by a†.
R† will stand for the subset of all Moore-Penrose invertible elements of R.
Throughout this paper, R is a ring with unity and an arbitrary involution ∗ (unless

otherwise stated).
This paper is motivated by the recently published [1] and [6]. There, the authors addressed

to the characterization of the equality aaD = bbD, for complex matrices in the former, and
for elements in general rings in the latter. A similar problem can be considered for Moore-
Penrose inverses, which we aim to address in this paper. We are interested in the study of
this problem for general (associative with unity) rings, and therefore no dimentional analysis
nor special decompositions can be used (cf [1]).

Before we present our main results, let us focus on the characterization of Moore-Penrose
invertibility of regular elements.

As a starting point, we may give an alternative characterization of the existence of the
Moore-Penrose inverse of a regular element by using units in R. This will lead to a simpler
condition when compared to [8, Theorem 1].

Lemma 1.1. Let a ∈ R be a regular element and a− ∈ a{1}. Then,

1. r = a∗a + 1− a−a is a unit if and only if s = aa∗aa− + 1− aa− is a unit, in which case

r−1 = a−s−1a + 1− a∗s−1a

and
s−1 = ar−1a− + 1− ar−1a∗aa−.

2. g = aa∗ +1− aa− is a unit if and only if h = a−aa∗a+1− a−a is a unit, in which case

g−1 = ah−1a− + 1− ah−1a∗

and
h−1 = a−g−1a + 1− a−aa∗g−1a.

Proof. (1). aa∗aa−+1−aa− = 1−a(−a∗aa−+a−) is a unit if and only if 1−(−a∗aa−+a−)a =
a∗a + 1− a−a is a unit. The expression for r−1 uses the fact that aa− and s commute.
(2) is analogous to (1).

Theorem 1.2. Let a ∈ R be a regular element. Then the following statements are equivalent:

1. a† exists.

2. g = aa∗ + 1− aa− is a unit for one and hence all choices of a− ∈ a{1}.
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3. r = a∗a + 1− a−a is a unit for one and hence all choices of a− ∈ a{1}.
Moreover,

a† = a∗
(
r−1

(
a− − a∗

))∗
a∗ + a∗

= a∗
((

a− − a∗
)
g−1

)∗
a∗ + a∗

Proof. The proof is straightforward using [8, Theorem 1], [9, Theorem 2] and Lemma 1.1.

The results presented above were given in a ring context. These can be trivially extended
to an additive category with involution, as considered, for example, in [11].

The definition of the Gelfand-Naimark property for rings was introduced in [5, Definition
4]:

Definition 1.3. The ring R has the Gelfand-Naimark property (GN-property, for short) if
1 + xx∗ is a unit, for all x ∈ R.

Note that the ring of square complex matrices n×n with transconjugate as the involution
has the GN-property. Namely, for any complex matrix X, since XX∗ is positive semi-definite
it has non-negative real eigenvalues. That is to say, its spectrum is a subset of R+

0 . Since
λ− 1 is an eigenvalue of XX∗ if and only if λ is an eigenvalue of I + XX∗, then there are no
zero eigenvalues of I + XX∗. Hence, I + XX∗ is invertible.

Still, the involution considered plays a crucial role on the GN-property. As an example,
the same ring of complex matrices and the transposition as the involution fails to have the

GN-property. Take, in this case, X =

[
1 0
0 i

]
.

An element a ∈ R is ∗-cancellable provided a∗ab = a∗ac implies ab = ac and baa∗ = caa∗

implies ba = ca, for b, c ∈ R.
The involution ∗ is said to be proper if xx∗ = 0 implies x must vanish, for any choice

of x. We note in passing that the involution is proper exactly when all elements are ∗-
cancellable. Indeed, if a∗ab = a∗ac then a∗a(b− c) = 0 which implies (a(b− c))∗(a(b− c)) =
(b − c)∗a∗a(b − c) = 0 and thus ab − ac = a(b − c) = 0. Conversely. for all x ∈ R, x∗x = 0
implies x∗x1 = x∗x0, which in turn forces x = 0 by the ∗-cancellability of x.

A ring is said to be ∗-regular if it is a regular ring and the involution ∗ is proper.
We end this introductory section providing an alternative proof of [5, Theorem 2].

Theorem 1.4. If R has the GN-property then a ∈ R is regular if and only if it is Moore-
Penrose invertible. Moreover, every regular ring with the GN-property is ∗-regular.

Proof. Let a ∈ R and a−, a= be von Neumann inverses of a. Note that e = aa− and f = a=a

are idempotents. Setting u = 1 + (e − e∗)(e∗ − e), then eu = ee∗e = ue, from which
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eR = ee∗R, Re = Re∗e since u is a unit. Thus, e† exists. Analogously, f † exists. Also
a−e† is a 1-3 inverse of a and f †a= is a 1-4 inverse of a, from which

a† = (a=a)†a=aa−(aa−)†.

The second part of the result follows since on a regular ring R the involution is a proper
if and only if R† = R, by [11, Lemma 3].

Combining the results presented above, all elements of the form aa∗ + 1 − aa− from a
regular ring with the GN-property are units. Also if R is ∗-regular then aa∗ + 1 − aa− is a
unit, for any choice of a− ∈ a{1}. This is close to the GN-property, but not exactly the same.
For instance, the field of complex numbers C with the identity ι as involution is ι-regular but
fails to satisfy the GN-property. Indeed, 1 + xxι = 1 + x2 is not a unit with x = i.

2 Main results

In this paper we are interested on studying the problem aa† = bb† in a ring with an arbitrary
involution ∗. When it is clear, and for the sake of simplicity, whenever we address to the
Moore-Penrose inverse or to symmetry it is taken with respect to the fixed (arbitrary, unless
otherwise stated) involution in the ring. We investigate necessary and sufficient conditions
for aa† = bb†, using the same reasoning as in [1] and [6]. Let us first present a lemma which
will be useful in the upcoming results.

Lemma 2.1. Let a, b ∈ R be regular elements.

1. There exist a− ∈ a{1}, b− ∈ b{1} for which (1− bb−) aa− = 0 if and only if

(1− bb=) aa= = 0

for all a= ∈ a{1}, b= ∈ b{1}.

2. There exist a− ∈ a{1}, b− ∈ b{1} for which (1− bb−) (1− a−a) = 0 if and only if

(1− bb=) (1− a=a) = 0

for all a= ∈ a{1}, b= ∈ b{1}.

Proof. (1). If (1− bb−) aa− = 0 for some a− ∈ a{1}, b− ∈ b{1} then bx = aa− is a consistent
equation. This implies, for any choice of b= ∈ b{1}, and multiplying on the left hand side
by 1 − bb=, the equality (1 − bb=)aa− = 0. Post-multiplication by aa=, where a= is chosen
arbitrarily in a{1}, gives the desired equality (1− bb=) aa= = 0. The converse is obvious.
(2). If (1− bb−) (1− a−a) = 0, for given a− ∈ {1}, b− ∈ {1}, then

b
(
−b−a−a + b−

)
−

(
−a−

)
a = 1,
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and hence bx − ya = 1 is a consistent ring equation. Taking arbitrary a= ∈ {1}, b= ∈ {1},
and multiplying on the left by 1− bb= and on the right by 1− a=a, we have

(1− bb=) (1− a=a) = 0.

The converse is obvious.

Next, we give several equivalences to aa† = bb†aa†. There, we will make use of the partial
orders (see [3] and [4]) ≤ and ≤

∗
defined by

• a ≤ b if aa+ = ba+ and a+a = a+b for some reflexive inverse a+ of a;

• a≤
∗

b if aa∗ = ba∗ and a∗a = a∗b.

If a ∈ R† then a≤
∗

b implies a ≤ b. If R is a *-regular ring then ≤
∗
⊆≤ as subsets of R×R.

If e, f are symmetric idempotents in R then e ≤ f forces e≤
∗

f . In fact, if e and f are such

that e = e2 = e∗ and f = f2 = f∗ and if there exists a reflexive inverse e+ of e for which
ee+ = fe+ and e+e = e+f then e = ee+e = fe+e = fe+f . Hence ef = fe+f2 = fe+f = e

and fe = f2e+f = fe+f = e. This implies, if a, b ∈ R†, that aa†≤
∗

bb† exactly when aa† ≤ bb†.

Proposition 2.2. Let a, b ∈ R† with Moore-Penrose inverses a† and b†, respectively. The
following conditions are equivalent:

1. aa† = bb†aa†

2. aa− = bb−aa− for some a− ∈ a{1}, b− ∈ b{1}

3. aa− = bb−aa− for all choices a− ∈ a{1}, b− ∈ b{1}

4. aa∗ = bb†aa∗ = aa∗bb†

5. aa∗ = bb−aa∗ for some b− ∈ b{1}

6. aa∗ = bb−aa∗ for all choices b− ∈ b{1}

7. a∗ = a∗bb†

8. a = bb†a

9. a = bb−a for some b− ∈ b{1}

10. a = bb−a for all b− ∈ b{1}

11. aa†≤
∗

bb†

12. a ≤ bb−a for some b− ∈ b{1}
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13. a ≤ bb−a for all b− ∈ b{1}

14. aR ⊆ bb†aR

15. Ra† ⊆ Ra†bb†

Proof. (1)⇔(3). Since aa† = bb†aa† is equivalent to (1−bb†)aa† = 0, by Lemma 2.1 the result
follows.
(2)⇔(3) follows directly from Lemma 2.1.
(1)⇔(4). aa† = bb†aa† multiplied on the right hand side by aa∗ gives the first equality. Since
aa∗ is symmetric, the second equality becomes trivial. Conversely, right multiplication of
aa∗ = bb†aa∗ by (a†)∗a†, gives (1), since aa∗(a†)∗a† = a(a†a)∗a† = aa†.
(3)⇒(6). Condition (3) implies, in particular, the equality aa† = bb−aa†, for any choice of
b− ∈ b{1}. Post-multiplication by aa∗ gives condition (6).
(6)⇒(5) is obvious.
(5)⇒(2). If aa∗ = bb−aa∗ for some b− ∈ b{1} then multiplying on the right hand side by
(a†)∗a† we get the equality aa† = bb−aa†, for some b− ∈ b{1}. (2) follows by taking a− = a†.
(1)⇔(8) is obvious by multiplication of (1) on the right hand side by a and of (8) by a†.
(7)⇔(8), (2)⇔(9), (3)⇔(10), (1)⇔(11) are trivial.
(10)⇒(13) by the reflexivity of the partial order.
(13)⇒(12) is obvious.
(12)⇒(9). (12) implies there is, in particular, a reflexive inverse a+ of a for which aa+ =
bb−aa+, and therefore a = bb−a, for some b−.
(1)⇒ (14) is trivial.
(14)⇒ (1). Since aa† ∈ aR and bb†aR = bb†aa†R, aa† ∈ bb†aa†R and therefore aa† = bb†aa†x

for some x ∈ R. By multiplication on the left hand side by bb† we get bb†aa† = bb†bb†aa†x =
bb†aa†x. Hence aa† = bb†aa†.
(1)⇒ (15) is trivial.
(15)⇒ (1). Note that aa† ∈ Ra† and Ra†bb† = Raa†bb†. These imply aa† = xaa†bb† for some
x ∈ R. By multiplication on the right hand side by bb† the equality aa† = bb†aa† follows.

As a remark, note that aa† = aa†bb† ⇔ aa† = bb†aa† ⇒ [aa†, bb†] = 0. Moreover, the
converse on the previous implication is false.

Theorem 2.3. Let a, b ∈ R† with Moore-Penrose inverses a† and b†, respectively. The
following conditions are equivalent:

1. aa† = bb†.

2. aa† = aa†bb† and u = aa† + 1− bb† is invertible.

3. aa† = aa†bb† and v = aa∗ + 1− bb† is invertible.
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4. aa† = aa†bb† and ∃b−∈b{1} : w = aa∗ + 1− bb− is invertible.

5. aa† = aa†bb† and ∀b=∈b{1} : w = aa∗ + 1− bb= is invertible.

6. [aa†, bb†] = 0 and both u = aa† + 1− bb† and l = bb† + 1− aa† are invertible.

7. [aa†, bb†] = 0 and both v = aa∗ + 1− bb† and k = bb∗ + 1− aa† are invertible.

Proof. (1) implies (2), (3), (6) and (7) is trivial.
(2)⇔(3). Note that (aa† + 1− bb†)(aa∗ + 1− aa†) = aa∗ + 1− bb†, and therefore u is a unit
iff v is a unit, since both aa∗ + 1− aa† and u are symmetric.
(3)⇒(1). Recall that aa† = bb†aa† implies aa∗ = aa∗bb†, and hence vaa† = aa∗ and vbb† =
aa∗. The invertibility of v implies that aa† = bb†.
(5)⇒(3) and (5)⇒(4) are trivial.
(3)⇒(5). Since aa∗ = bb†aa∗ then we can rewrite

v = bb†aa∗ + 1− bb† = bb†aa∗bb† + 1− bb†.

This means v is invertible if and only if bb†aa∗bb− + 1 − bb− is a unit for any choice of b−,
using [10, Proposition 3]. That is to say, v is a unit if and only if 1 − (−bb†aa∗ + 1)bb− is a
unit, which is equivalentto the invertibility of 1 − bb−(−bb†aa∗ + 1) = 1 + bb†aa∗ − bb− = w

since bb†aa∗ = aa∗, where b− is an arbitrary 1-inverse on b.
(4)⇒(5). According to Proposition 2.2, aa∗ = bb−aa∗ and hence

w = aa∗ + 1− bb− = bb−aa∗ + 1− bb− = 1− bb−(−aa∗ + 1).

The invertibility of w implies the invertibility of

1− (−aa∗ + 1)bb− = aa∗bb− + 1− bb− = bb−aa∗bb− + 1− bb−.

Using [10, Proposition 3], this implies

bb−aa∗bb= + 1− bb= = aa∗bb= + 1− bb= = 1− (−aa∗ + 1)bb=

is a unit for all choices of b= ∈ b{1}. This means that also 1−bb=(−aa∗+1) = bb=aa∗+1−bb=

is a unit. By Lemma 2.1, bb=aa∗ = aa∗, and the result follows.
(6)⇒(1). From [aa†, bb†] = 0 the equalities bb†aa† = bb†u = bb†aa†u and bb†aa† = laa† =
lbb†aa† hold. The invertibility of u implies bb†aa† = bb† and the invertibility of l implies
bb†aa† = aa†. Hence aa† = bb†.
(7)⇒(3). From [aa†, bb†] = 0 we get aa†k = aa†bb∗ = bb†aa†k. The invertibility of k implies
aa† = bb†aa†. The result follows.
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3 Final remarks

We end this paper with some remarks:

1. The equivalence (1) ⇔ (2) in Proposition 2.2 could be proved directly, as (1) ⇒ (2)
trivially, and if aa− = bb−aa− then right muliplication by aa† gives aa† = bb−aa†,
which in turn gives, after left multiplication by bb†, bb†aa† = bb−aa† = aa†.

2. The equality aa† = aa†bb† does not imply aa† = bb†. As an example, take A =[
1 0
0 0

]
, B = I2 over Z2, and the transposition as the involution. Then A† = A,B† =

B−1 = B and AA† = AA†BB† and still AA† 6= BB†.

3. The invertibility of u, v or w, by itself, is not sufficient to aa† = bb†. For instance, over

R and the transposition as involution, A =

[
1 0
0 1

]
= A† = A∗ and B =

[
0 0
0 1

]
=

B† = B∗, then u and v are invertible. Still, AA† 6= BB†.

4. The invertibility of both u and l is also not sufficient to aa† = bb†. Over Z7, consider

the transposition as the involution and take A =

[
1 1
1 1

]
and B =

[
1 0
0 0

]
. Then

A† =

[
2 2
2 2

]
, B† = B and both u and l are invertible. Still, AA† 6= BB†.

5. The co-support of a (see [5, page 374]) provides an alternative proof of (3)⇒(1) in
Theorem 2.3. The uniqueness of the co-support, jointly with the invertibility of v and
a = bb†a implies aa† = bb†.

6. Theorem 2.3 could be used to study EP elements in R, that is, elements for which the
Moore-Penrose and the group inverse exist and are equal. We may apply our theorem
to derive some more equivalent conditions. Take b = a†.

(a) The condition aa† = bb† = a†a defines a to be EP.

(b) Statement (2) in the theorem becomes aa† = a(a†)2a = a†a2a†, which implies
by multiplication on the right hand side by a that a = a(a†)2a2 = a†a2, and so
a ∈ Ra2. Now, a = a2a†u−1 ∈ a2R and therefore a ∈ a2R∩Ra2. Consequently, a#

exists ([2, Proposition 7]). Recalling a = a†a2, and multiplying on the right hand
side by a# then aa# = a†a is symmetric, which leads to aa† = a†a and a is EP.

(c) The invertibility of v = aa∗ + 1− a†a in (3) jointly with a = a†a2 is equivalent to
a is EP.

(d) In condition (4) and (5), it is not trivial a is EP if and only if a = a†a2 and
w = aa∗ + 1− a†(a†)− is a unit for one and hence all choices of (a†)−.
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(e) In condition (6), from a(a†)2a2 = a†a2, multiplying on the left hand side by a, the
equality a2 = a2(a†)2a2 holds. In this case, u = aa†+1−a†a and l = a†a+1−aa†

are units. From a = a2a†u−1 ∈ a2R and a = l−1a†a2 ∈ Ra2 follows a# exists.
Multiplying both sides of a2 = a2(a†)2a2 by a#, we obtain aa# = a(a†)2a which is
symmetric since a(a†)2a = a†a2a†.

(f) Condition (7) states a is EP if and only if [aa†, a†a] = 0 and both k = a†(a†)∗ +
1− aa† and v = aa∗ + 1− a†a are units. As in the previous item, the invertibility
of k and v imply a ∈ a2R ∩Ra2, that is to say, a has a group inverse.

7. Similar considerations for EP elements could be drawn by taking, in Theorem 2.3,
b = a∗, a = b† and a = b∗.
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[1] Castro González, N.; Koliha, J. J.; Wei, Yimin; Perturbation of the Drazin inverse for
matrices with equal eigenprojections at zero. Linear Algebra Appl. 312 (2000), no. 1-3,
181–189.

[2] Hartwig, Robert E.; Block generalized inverses. Arch. Rational Mech. Anal. 61 (1976),
no. 3, 197–251.

[3] Hartwig, Robert E.; How to partially order regular elements. Math. Japon. 25 (1980),
no. 1, 1–13.

[4] Hartwig, Robert E.; Styan, George P. H.; On some characterizations of the “star” partial
ordering for matrices and rank subtractivity. Linear Algebra Appl. 82 (1986), 145–161.
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