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1. Introduction

Homotopy theoretical methods have been used successfully in the recent past to
study problems in concurrency theory, the domain of theoretical computer science
that deals with parallel computing. Various topological models have been intro-
duced to describe concurrent systems. Examples are partially ordered spaces (or
pospaces) and local pospaces [4], flows [5], globular CW-complexes [6], and d-spaces
[8]. The reader is referred to E. Goubault [7] for a recent introduction to differ-
ent topological models for concurrency. The purpose of this paper is to study the
homotopy theory or, more precisely, the relative directed homotopy theory of local
pospaces.

Many concurrent systems can be modeled as pospaces. A pospace is a space X
with a partial order ≤ on it which is closed as a subspace of X ×X. The space X
is interpreted as the state space of the system and the partial order represents the
time flow. The idea here is that the execution of a system is a process in time so
that a system in each state x can only proceed to subsequent states y ≥ x and not
go back to preceding states y < x.

The pospace conception of concurrent systems is too restrictive if one wishes to
consider systems which contain loops in the sense that they might return various
times to the same state during the execution. Such systems with loops can be
modeled as local pospaces. Local pospaces have been introduced in the late 1990’s
by L. Fajstrup, E. Goubault, and M. Raussen in a preprint version of [4] (avail-
able at http://www.di.ens.fr/∼goubault). In the meantime some alternative
definitions of local pospaces have been proposed (cf. [6], [3]). Note also that the
definition given in [4] is not the original one. In this paper we shall work with still
another definition of local pospaces. We define a local pospace to be a space X
together with a relation ≤ which locally is a partial order. It can be shown that
this definition is equivalent to the original one in the sense that the two concepts
give rise to equivalent categories.

A natural question is whether a system in a given state x can reach another
state y or, in other words, whether there is an “execution path” from x to y.
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Such problems can be formalized appropriately using the following notion of maps
between local pospaces. A dimap (short for directed map) from a local pospace
(X,≤) to a local pospace (Y,≤) is a continuous map f : X → Y such that each
point of X has a neighborhood on which f is compatible with the relations. An
execution path from a state x of a local pospace (X,≤) to a state y can now formally
be defined to be a dimap ω from the unit interval I = [0, 1] with the natural order
to (X,≤) such that ω(0) = x and ω(1) = y.

If there exists an execution path from one state of a system to another, there
will, in general, exist a lot. Many of them will actually not be qualitatively dif-
ferent and correspond to computer scientifically equivalent executions. From a
computer scientific point of view it makes sense to consider two execution paths
ω, ν : (I,≤) → (X,≤) from a state x to a state y as equivalent if there exists a homo-
topy H : I × I → X from ω to ν which is a dimap with respect to the partial order
on I × I given by (t, s) ≤ (t′, s′) ⇔ t ≤ t′, s = s′ and which satisfies H(0, t) = x
and H(1, t) = y for each t ∈ I. Such a homotopy is called a directed homotopy
(dihomotopy) from ω to ν relative to the sub pospace ({0, 1},≤) of (I,≤). Relative
directed homotopy theory plays thus a fundamental role in the study of execution
paths. As P. Bubenik [2] has pointed out, relative directed homotopy theory is also
useful for the task to decide to what extent two local pospaces can be considered
as models of the same concurrent system. Note that some authors work with a
stronger notion of dihomotopy where the time parameter interval is equipped with
the natural order (cf. [8], [3]).

The best known general framework for homotopy theory is certainly the one of
closed model categories in the sense of D. Quillen [10]. A closed model category
is a category with three classes of morphisms, called weak equivalences, fibrations,
and cofibrations, which are subject to certain axioms. The structure of a closed
model category splits up into two dual structures which are essentially the structure
of a cofibration category and the structure of a fibration category. Cofibration
and fibration categories have been introduced by H. Baues [1] who has developed
an extensive homotopy theory for these categories. The main ingredient of this
homotopy theory is of course a notion of homotopy. In this paper we show that the
category of local pospaces under a fixed local pospace is a fibration category such
that the homotopy notion is relative directed homotopy.

In [9] it has been shown that the category of pospaces (with a not necessarily
closed partial order) under a fixed pospace is both a fibration and a cofibration
category. Unfortunately, the author does not know whether the category of local
pospaces (under a fixed local pospace) is a cofibration category. The main problem
is that it is not known whether the category of local pospaces has enough colimits.
Note in this context that P. Bubenik and K. Worytkiewicz [3] have constructed a
closed model category containing the category of local pospaces (essentially in the
original sense) under a fixed local pospace as a subcategory.

2. Local pospaces

Definition 2.1. A pospace (po is short for partially ordered) is a pair (X,≤)
consisting of a space X and a partial order ≤ on X which is closed as a subset of
X×X. A pair (X,≤) consisting of a space X and a relation ≤ on X is called a local
pospace if each point x ∈ X has a neighborhood U such that (U,≤) is a pospace. A
dimap (short for directed map) f : (X,≤) → (Y,≤) is a continuous map f : X → Y
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such that each point x ∈ X has a neighborhood restricted to which f is compatible
with the relation ≤.

Remarks 2.2. (i) Note that a pospace is a local pospace. Note also that the
relation ≤ of a local pospace (X,≤) is necessarily reflexive. When this is helpful
we shall denote this relation by ≤X instead of ≤.

(ii) Recall that a space X is a Hausdorff space if and only if the diagonal ∆ =
{(x, y) ∈ X×X |x = y} is closed in X×X. Therefore the pair (X,∆) is a pospace
if and only if X is a Hausdorff space.

(iii) For a Hausdorff space X and a local pospace (Y,≤) the set of dimaps from
(X,∆) to (Y,≤) coincides with the set of continuous maps from X to Y .

Examples 2.3. (i) The circle S1 is a local pospace with respect to the relation ≤
defined by

x ≤ y ⇔ ∃ θ ∈ [0, π[: y = xeiθ.

For x ∈ S1,
U = {xeiθ | θ ∈]− π/2, π/2[}

is an open neighborhood such that (U,≤) is a global pospace.
(ii) The unit interval I = [0, 1] together with the natural order ≤ is a pospace

and hence a local pospace. Consider x, y ∈ S1 and θ ∈ [0,+∞[ such that y = xeiθ.
An execution path from x to y, i.e., a dimap ω : (I,≤) → (S1,≤) with ω(0) = x
and ω(1) = y, is given by ω(t) = xeitθ. For t ∈ I, U = {s ∈ I | |s − t| < π

2θ} is a
neighborhood of t restricted to which ω is compatible with ≤.

Proposition 2.4. The composite of two dimaps f : (X,≤) → (Y,≤) and
g : (Y,≤) → (Z,≤) is a dimap.

Proof. Let x ∈ X. Since f and g are dimaps, there exist neighborhoods U ⊂ X of x
and V ⊂ Y of f(x) such that f is compatible with ≤ on U and g is compatible with
≤ on V . Since f is continuous, there exists a neighborhood W ⊂ X of x such that
f(W ) ⊂ V . The intersection U ∩W is a neighborhood of x on which the composite
g ◦ f is compatible with ≤. 2

It follows from the preceding proposition that local pospaces and dimaps form a
category. This category will be denoted by LPS.

Proposition 2.5. The category LPS is finitely complete.

Proof. We show that LPS has a final object and is closed under pullbacks. The
final object is (∗,∆). Let f : (X,≤X) → (B,≤B) and p : (E,≤E) → (B,≤B) be
two dimaps. Define a relation ≤ on the product X × E by

(x, e) ≤ (x′, e′) ⇔ x ≤X x′ and e ≤E e′.

Then the fiber product X ×B E is a local pospace with respect to the restriction
of ≤ to X ×B E. Indeed, let (x, e) ∈ X ×B E. Since X and E are local pospaces,
there exist open neighborhoods U ⊂ X of x and V ⊂ E of e such that (U,≤X) and
(V,≤E) are pospaces. The subspace U×B V = (U×V )∩(X×BE) of X×BE is an
open neighborhood of (x, e) and ≤ is a partial order on U×BV . Since ≤X ∩(U×U)
is closed in U×U and ≤E ∩(V ×V ) is closed in V ×V , ≤X × ≤E ∩(U×U×V ×V ) is
closed in U×U×V ×V . It follows that ≤ ∩(U×V ×U×V ) is closed in U×V ×U×V
and hence that ≤ ∩(U ×B V × U ×B V ) is closed in U ×B V × U ×B V . Therefore
(X ×B E,≤) is a local pospace. It is clear that the projections prX : X ×B E → X
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and prE : X ×B E → E are dimaps. We check that (X ×B E,≤) has the uni-
versal property of the pullback. Consider dimaps φ : (Z ≤Z) → (X,≤X) and
ψ : (Z,≤Z) → (E,≤E) such that f ◦φ = p ◦ψ. Let h : Z → X ×B E be the unique
continuous map such that prX ◦h = φ and prE ◦h = ψ. We check that h is a dimap.
Let z ∈ Z. Since both φ and ψ are dimaps, there exist neighborhoods U and V
of z such that φ is compatible with the relations on U and ψ is compatible with
the relations on V . The intersection U ∩ V is a neighborhood of z. Since φ and ψ
are compatible with the relations on U ∩ V , h is compatible with the relations on
U ∩ V . This shows that h is a dimap. It follows that (X ×B E,≤) is the pullback
of f and p in LPS. 2

Let (X,≤X) be a local pospace. We define a relation on the path space XI (i.e.,
the set of all continuous maps ω : I → X with the compact-open topology) by

ω ≤XI ν ⇔ ∀ t ∈ I ω(t) ≤X ν(t).

Proposition 2.6. (XI ,≤XI ) is a local pospace.

Proof. Let ω ∈ XI . For each t ∈ I choose an open neighborhood Ut of ω(t) such
that (Ut,≤X) is a pospace. Since ω is continuous, for all t ∈ I there exists εt > 0
such that ω(I∩]t− 2εt, t+2εt[) ⊂ Ut. Since I is compact, there exist t1, . . . , tm ∈ I
such that I = ∪m

j=1I ∩ [tj − εtj
, tj + εtj

]. Set

Wj = {ν ∈ XI | ν(I ∩ [tj − εtj
, tj + εtj

]) ⊂ Utj
} (j = 1, . . . ,m)

and W = ∩m
j=1Wj . Then W is an open neighborhood of ω in XI . One checks

that ≤XI is a partial order on W . We show that ≤XI ∩(W × W ) is a closed
subset of W × W . Let α, β ∈ W such that α �XI β. Then there exists t ∈ I
such that α(t) �X β(t). Let j ∈ {1, . . . ,m} such that t ∈ [tj − εtj , tj + εtj ]. Then
α(t), β(t) ∈ Utj . Since ≤X ∩(Utj × Utj ) is a closed subset of Utj × Utj , there ex-
ists an open neighborhood N of (α(t), β(t)) in Utj

× Utj
such that a �X b for all

(a, b) ∈ N . Consider the continuos map f : W → Utj
given by f(γ) = γ(t).

The set (f × f)−1(N) is an open neighborhood of (α, β) in W × W . For all
(γ, δ) ∈ (f × f)−1(N), γ(t) �X δ(t) and hence γ �XI δ. This shows that the
complement of ≤XI ∩(W ×W ) is open in W ×W and hence that ≤XI ∩(W ×W )
is closed in W ×W . 2

Definition 2.7. Let (C,≤) be a local pospace. A local pospace under (C,≤) is
a triple (X,≤, ξ) consisting of a local pospace (X,≤) and a dimap ξ : (C,≤) →
(X,≤). A dimap under (C,≤) from (X,≤, ξ) to (Y,≤, θ) is a dimap f : (X,≤) →
(Y,≤) such that f ◦ ξ = θ. The category of local pospaces under (C,≤) is denoted
by LPS(C,≤).

Note that a local pospace is the same as a local pospace under (∅,∆).

Proposition 2.8. For any pospace (C,≤) the category LPS(C,≤) is finitely com-
plete.

Proof. This follows from 2.5. 2

Let (X,≤X , ξ) be a local pospace under (C,≤). Consider the dimap cξ : (C,≤) →
(XI ,≤XI ), z 7→ cξ(z) where cy is the constant path t 7→ y. Then (XI ,≤XI , cξ)
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is a local pospace under (C,≤). Moreover, for each t ∈ I, the evaluation map
evt : XI → X, ω 7→ ω(t) is a dimap under (C,≤).

3. Dihomotopy

Throughout this section we work under a fixed local pospace (C,≤).

Definition 3.1. Two dimaps f, g : (X,≤, ξ) → (Y,≤, θ) under (C,≤) are said to
be dihomotopic relative to (C,≤), f ' g rel. (C,≤), if there exists a dihomotopy
relative to (C,≤) from f to g, i.e., a dimap H : (X,≤)× (I,∆) → (Y,≤) such that
H(x, 0) = f(x), H(x, 1) = g(x) (x ∈ X), and H(ξ(c), t) = θ(c) (c ∈ C, t ∈ I). If
C = ∅ we simply talk of dihomotopies and dihomotopic maps.

We shall need the following lemma concerning the compatibility of dihomotopies
with the relations.

Lemma 3.2. Let H : (X,≤)×(I,∆) → (Y,≤) be a dimap. Then each point x0 ∈ X
admits an open neighborhood U such that H is compatible with the relations on U×I.

Proof. Let x0 ∈ X. For each t ∈ I there exist an open neighborhood Vt ⊂ X of x0

and an open neighborhood Wt ⊂ I of t such that H is compatible with the relations
on Vt×Wt. Since I is compact, there exist t1, . . . , tn ∈ I such that I = ∪n

i=1Wti
. Set

U = ∩n
i=1Vti

. Then U is an open neighborhood of x0. Let (x, t), (x′, t′) ∈ U×I such
that (x, t) ≤ (x′, t′). Then t = t′. There exists i ∈ {1, . . . , n} such that t = t′ ∈Wti

.
It follows that (x, t), (x′, t′) ∈ Vti ×Wti and hence that H(x, t) ≤ H(x′, t′). 2

Proposition 3.3. Dihomotopy relative to (C,≤) is a natural equivalence relation.

Proof. We only show transitivity. Let f, g, h : (X,≤, ξ) → (Y,≤, θ) be three dimaps
under (C,≤), F : (X,≤)× (I,∆) → (Y,≤) be a dihomotopy relative to (C,≤) from
f to g, and G : (X,≤) × (I,∆) → (Y,≤) be a dihomotopy relative to (C,≤) from
g to h. Consider the continuous map H : X × I → Y defined by

H(x, t) =
{
F (x, 2t), 0 ≤ t ≤ 1

2 ,
G(x, 2t− 1), 1

2 ≤ t ≤ 1

We have H(x, 0) = f(x), H(x, 1) = h(x), and H(ξ(c), t) = θ(c) for all c ∈ C and
t ∈ I. We check that H is a dimap (X,≤)× (I,∆) → (Y,≤). Let (x0, t0) ∈ X × I.
Since F and G are dimaps there exist, by 3.2, open neighborhoods U and V of x
such that F is compatible with ≤ on U×I and G is compatible with ≤ on V ×I. The
set (U ∩V )× I is an open neighborhood of (x0, t0). Let (x, t), (x′, t′) ∈ (U ∩V )× I
such that (x, t) ≤ (x′, t′). Then t = t′ and H(x, t) ≤ H(x′, t′). Thus H is a diho-
motopy relative to (C,≤) from f to h. 2

Definition 3.4. The equivalence class of a dimap under (C,≤) with respect to
dihomotopy relative to (C,≤) is called its dihomotopy class relative to (C,≤). The
quotient category LPS(C,≤)/ ' rel. (C,≤) is the dihomotopy category relative
to (C,≤). A dihomotopy equivalence relative to (C,≤) is a dimap f : (X,≤, ξ) →
(Y,≤, θ) under (C,≤) such that there exists a dihomotopy inverse relative
to (C,≤), i.e., a dimap g : (Y,≤, θ) → (X,≤, ξ) under (C,≤) satisfying
f ◦ g ' id(Y,≤,θ) rel.(C,≤) and g ◦ f ' id(X,≤,ξ) rel.(C,≤). Two local pospaces
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under (C,≤), (X,≤, ξ) and (Y,≤, θ), are said to be dihomotopy equivalent rela-
tive to (C,≤) or of the same dihomotopy type relative to (C,≤) if there exists a
dihomotopy equivalence relative to (C,≤) from (X,≤, ξ) to (Y,≤, θ).

Note that a dimap under (C,≤) is a dihomotopy equivalence relative to (C,≤)
if and only if its dihomotopy class relative to (C,≤) is an isomorphism in the
dihomotopy category relative to (C,≤). Similarly, two local pospaces under (C,≤)
are dihomotopy equivalent relative to (C,≤) if and only if they are isomorphic in
the dihomotopy category relative to (C,≤).

Proposition 3.5. Any isomorphism of local pospaces is a dihomotopy equivalence
relative to (C,≤). Let f : (X,≤, ξ) → (Y,≤, θ) and g : (Y,≤, θ) → (Z,≤, ζ) be two
dimaps under (C,≤). If two of f , g, and g ◦ f are dihomotopy equivalences relative
to (C,≤), so is the third.

Proof. The first assertion is obvious and the other follows from the corresponding
fact for isomorphisms. 2

As one would expect, relative dihomotopy can be characterized using path spaces:

Proposition 3.6. Two dimaps f, g : (X,≤, ξ) → (Y,≤, θ) under (C,≤) are
dihomotopic relative to (C,≤) if and only if there exists a dimap h : (X,≤, ξ) →
(Y I ,≤, cθ) under (C,≤) such that f = ev0 ◦ h and g = ev1 ◦ h.

Proof. Suppose first that f ' g rel. (C,≤). Let H : (X,≤) × (I,∆) → (Y,≤)
be a dihomotopy relative to (C,≤) from f to g. Consider the continuous map
h : X → Y I defined by h(x)(t) = H(x, t). This is a dimap. Indeed, let x0 ∈ X. By
3.2, there exists an open neighborhood U of x0 such that H is compatible with ≤
on U × I. Let x ≤ x′ be two elements of U . Then for each t ∈ I, (x, t) ≤ (x′, t) and
hence h(x)(t) = H(x, t) ≤ H(x′, t) = h(x′)(t). It follows that h(x) ≤ h(x′). Since
h(ξ(c))(t) = H(ξ(c), t) = θ(c), we have h(ξ(c)) = cθ(c) so that h is a dimap under
(C,≤). We have ev0(h(x)) = H(x, 0) = f(x) and ev1(h(x)) = H(x, 1) = g(x).

Suppose now that we are given a dimap h : (X,≤, ξ) → (Y I ,≤, cθ) under (C,≤)
such that f = ev0 ◦ h and g = ev1 ◦ h. Define a continuous map H : X × I → Y
by H(x, t) = h(x)(t). Let (x0, t0) ∈ X × I. Since h is a dimap, there exists
an open neighborhood U of x0 such that h is compatible with ≤ on U . Let
(x, t), (x′, t′) ∈ U × I such that (x, t) ≤ (x′, t′). Then t = t′ and therefore
H(x, t) = h(x)(t) ≤ h(x′)(t) = H(x′, t′). This shows that H is a dimap. We have
H(x, 0) = h(x)(0) = f(x), H(x, 1) = h(x)(1) = g(x), and H(ξ(c), t) = h(ξ(c))(t) =
cθ(c)(t) = θ(c). It follows that f ' g rel. (C,≤). 2

4. Difibrations

As in the preceding section we work under a fixed local pospace (C,≤). We
define difibrations relative to (C,≤) and establish their fundamental properties.

Definition 4.1. A difibration relative to (C,≤) is a dimap p : (E,≤, ε) →
(B,≤, β) under (C,≤) such that for every local pospace (X,≤, ξ) under (C,≤),
every Hausdorff space Y , every dimap f : (X,≤) × (Y,∆) → (E,≤) satisfying
f(ξ(c), y) = ε(c) and every dimap H : (X,≤) × (Y,∆) × (I,∆) → (B,≤) sat-
isfying H(x, y, 0) = (p ◦ f)(x, y) and H(ξ(c), y, t) = β(c) there exists a dimap
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G : (X,≤) × (Y,∆) × (I,∆) → (E,≤) such that G(x, y, 0) = f(x, y), p ◦ G = H,
and G(ξ(c), y, t) = ε(c).

Proposition 4.2. The class of difibrations relative to (C,≤) is closed under com-
position and base change. Every isomorphism of local pospaces under (C,≤) is a
difibration relative to (C,≤).

Proof. The proof is by standard left lifting property arguments. 2

Proposition 4.3. Every dimap f under (C,≤) admits a factorization f = p ◦ i
where p is a difibration relative to (C,≤) and i is a dihomotopy equivalence relative
to (C,≤).

Proof. Let f : (X,≤, ξ) → (Y,≤, θ) be a dimap under (C,≤). Form the pullback of
local pospaces under (C,≤)

(X ×Y Y I ,≤, (ξ, cθ))
prY I //

prX

��

(Y I ,≤, cθ)

ev0

��
(X,≤, ξ)

f
// (Y,≤, θ).

Let p : (X ×Y Y I ,≤, (ξ, cθ)) → (Y,≤, θ) and i : (X,≤, ξ) → (X ×Y Y I ,≤, (ξ, cθ))
be the dimaps under (C,≤) defined by p(x, ω) = ω(1) and i(x) = (x, cf(x)). We
have p ◦ i = f . We show that i is a dihomotopy equivalence relative to (C,≤) and
that p is a difibration relative to (C,≤).

The projection prX : (X ×Y Y I ,≤, (ξ, cθ)) → (X,≤, ξ) is a dihomotopy inverse
relative to (C,≤) of i. Indeed, prX ◦ i = idX and a dihomotopy relative to (C,≤)
from idX×Y Y I to i ◦ prX is given by F (x, ω, t) = (x, ω1−t). Here, ωs is the path
given by t→ ω(st).

We check that p is a difibration relative to (C,≤). Let (W,≤, ψ) be a local
pospace under (C,≤), Z be a Hausdorff space, g : (W,≤)× (Z,∆) → (X×Y Y

I ,≤)
be a dimap satisfying g(ψ(c), z) = (ξ(c), cθ(c)), and G : (W,≤)× (Z,∆)× (I,∆) →
(Y,≤) be a dimap such that G(w, z, 0) = (p ◦ g)(w, z) and G(ψ(c), z, t) = θ(c).
Define a continuous map H : W × Z × I → X ×Y Y I by

H(w, z, t) = ((prX ◦ g)(w, z), h(w, z, t))
where

h(w, z, t)(s) =

{
(prY I ◦ g)(w, z)

(
2s

2−t

)
, 2s ≤ 2− t,

G(w, z, 2s+ t− 2), 2− t ≤ 2s.
We have H(w, z, 0) = g(w, z) and (p ◦H)(w, z, t) = h(w, z, t)(1) = G(w, z, t). Since

h(ψ(c), z, t)(s) =

{
(prY I ◦ g)(ψ(c), z)

(
2s

2−t

)
= θ(c), 2s ≤ 2− t,

G(ψ(c), z, 2s+ t− 2) = θ(c), 2− t ≤ 2s,

we have H(ψ(c), z, t) = ((prX ◦ g)(ψ(c), z), h(ψ(c), z, t)) = (ξ(c), cθ(c)). We verify
that H is a dimap. It is clear that the first component of H is a dimap. So we
only have to check that h is a dimap. Let (w0, z0, t0) ∈W × Z × I. Since prY I ◦ g
and G are dimaps, there exists an open neighborhood U ⊂W × Z of (w0, z0) such
that prY I ◦ g is compatible with ≤ on U and G is compatible with ≤ on U × I. Let
(w, z, t), (w′, z′, t′) ∈ U × I such that (w, z, t) ≤ (w′, z′, t′). Then (w, z) ≤ (w′, z′)
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and t = t′. Since prY I ◦ g and G are dimaps, we have h(w, z, t)(s) ≤ h(w′, z′, t′)(s)
for all s ∈ I. This shows that h(w, z, t) ≤ h(w′, z′, t′). It follows that p is a difibra-
tion relative to (C,≤). 2

The proof of the following proposition is an easy exercise and is left to the reader:

Proposition 4.4. For every local pospace (X,≤, ξ) under (C,≤) the final dimap
under (C,≤), ∗ : (X,≤, ξ) → (∗,∆, ∗), is a difibration relative to (C,≤).

Definition 4.5. A trivial difibration relative to (C,≤) is a dimap under (C,≤)
which is both a difibration relative to (C,≤) and a dihomotopy equivalence relative
to (C,≤).

Proposition 4.6. Let p : (E,≤, ε) → (B,≤, β) be a trivial difibration relative to
(C,≤). Then p admits a section s such that s ◦ p ' id(E,≤,ε) rel. (C,≤).

Proof. Let f : (B,≤, β) → (E,≤, ε) be a dihomotopy inverse relative to (C,≤)
of p. Let F : (B,≤) × (I,∆) → (B,≤) be a dihomotopy relative to (C,≤) from
p ◦ f to id(B,≤,β). Since p is a difibration relative to (C,≤), there exists a dimap
H : (B,≤)× (I,∆) → (E,≤) such that H(b, 0) = f(b), p◦H = F , and H(β(c), t) =
ε(c). Let s : (B,≤, β) → (E,≤, ε) be the dimap under (C,≤) defined by s(b) =
H(b, 1). Then s ' f rel. (C,≤) and hence s ◦ p ' f ◦ p ' id(E,≤,ε) rel. (C,≤). We
have (p ◦ s)(b) = p(H(b, 1)) = F (b, 1) = b. 2

By a trivial cofibration of spaces we mean a closed cofibration which is also a
homotopy equivalence. The proof of the following important characterization of
difibrations relative to (C,≤) is a straightforward adaptation of the proof of [9,
4.7].

Proposition 4.7. A dimap p : (E,≤, ε) → (B,≤, β) under (C,≤) is a difibration
relative to (C,≤) if and only if for every local pospace (Z,≤, ζ) under (C,≤), every
trivial cofibration of Hausdorff spaces i : A→ X, every dimap f : (Z,≤)×(A,∆) →
(E,≤) satisfying f(ζ(c), a) = ε(c), and every dimap g : (Z,≤) × (X,∆) → (B,≤)
satisfying g(z, i(a)) = p(f(z, a)) and g(ζ(c), x) = β(c), there exists a dimap
λ : (Z,≤) × (X,∆) → (E,≤) such that λ(z, i(a)) = f(z, a), p ◦ λ = g, and
λ(ζ(c), x) = ε(c).

Proposition 4.8. The class of trivial difibrations relative to (C,≤) is closed under
base change.

Proof. Let p : (E,≤, ε)) → (B,≤, β) be a trivial difibration and consider a pullback
diagram of local pospaces under (C,≤)

(X ×B E,≤, (ξ, ε))
f̄ //

p̄

��

(E,≤, ε)

p

��
(X,≤, ξ)

f
// (B,≤, β).

By 4.2, p̄ is a difibration relative to (C,≤). It remains to show that p̄ is a dihomotopy
equivalence relative to (C,≤). By 4.6, there exists a section s of p such that s ◦ p '
id(E,≤,ε) rel. (C,≤). Let F : (E,≤) × (I,∆) → (E,≤) be a dihomotopy relative
to (C,≤) from s ◦ p to id(E,≤,ε). Consider the following commutative diagram of
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spaces where i is the obvious inclusion and h and H are given by h(e, t, 0) = F (e, t),
h(e, t, 1) = (s ◦ p ◦ F )(e, t), h(e, 0, τ) = (s ◦ p)(e), and H(e, t, τ) = (p ◦ F )(e, t):

E × (I × {0, 1} ∪ {0} × I) h //

idE×i

��

E

p

��
E × I × I

H
// B

Since p ◦ F is a dimap, H is a dimap (E,≤) × (I × I,∆) → (B,≤). Consider an
element (e0, t0, τ0) ∈ E× (I ×{0, 1}∪ {0}× I). Since F and s ◦ p are dimaps, there
exists an open neighborhood U ⊂ E of e0 such that s◦p is compatible with ≤ on U
and F and s◦p◦F are compatible with ≤ on U×I. The set U×(I×{0, 1}∪{0}×I) is
an open neighborhood of (e0, t0, τ0). Let (e, t, τ), (e′, t′, τ ′) ∈ U×(I×{0, 1}∪{0}×I)
such that (e, t, τ) ≤ (e′, t′, τ ′) in (E,≤) × (I × {0, 1} ∪ {0} × I,∆). Then e ≤ e′,
t = t′, and τ = τ ′ and hence h(e, t, τ) ≤ h(e′, t′, τ ′) in (E,≤). Thus h is a dimap
(E,≤) × (I × {0, 1} ∪ {0} × I,∆) → (E,≤). We have h(ε(c), t, τ) = ε(c) and
H(ε(c), t, τ) = β(c). Since i is a trivial cofibration of Hausdorff spaces there exists,
by 4.7, a dimap G : (E,≤) × (I × I,∆) → (E,≤) such that G ◦ (idE × i) = h,
p ◦G = H, and G(ε(c), t, τ) = ε(c). Let Φ : (E,≤)× (I,∆) → (E,≤) be the dimap
given by Φ(e, τ) = G(e, 1, τ). We have Φ(ε(c), τ) = ε(c),

Φ(e, 0) = G(e, 1, 0) = h(e, 1, 0) = F (e, 1) = e,

Φ(e, 1) = G(e, 1, 1) = h(e, 1, 1) = (s ◦ p ◦ F )(e, 1) = (s ◦ p)(e),
and

(p ◦ Φ)(e, τ) = (p ◦G)(e, 1, τ) = H(e, 1, τ) = (p ◦ F )(e, 1) = p(e).

Let σ : (X,≤, ξ) → (X ×B E,≤, (ξ, ε)) be the dimap under (C,≤) defined by
σ(x) = (x, (s ◦ f)(x)). Then p̄ ◦ σ = id(X,≤,ξ). Consider the dimap

Ψ : (X ×B E,≤)× (I,∆) → (X ×B E,≤)

given by Ψ((x, e), τ) = (x,Φ(e, τ)). Since f(x) = p(e) = pΦ(e, τ), Ψ is well-defined.
We have Ψ((x, e), 0) = (x,Φ(e, 0)) = (x, e),

Ψ((x, e), 1) = (x,Φ(e, 1)) = (x, (s ◦ p)(e)) = (x, (s ◦ f)(x)) = σ(x) = (σ ◦ p̄)(x, e),

and Ψ((ξ(c), ε(c)), τ) = (ξ(c),Φ(ε(c), τ)) = (ξ(c), ε(c)). This shows that

id(X×BE,≤,(ξ,ε)) ' σ ◦ p̄ rel. (C,≤)

and hence that p̄ is a dihomotopy equivalence relative to (C,≤). 2

5. The fibration category structure

In this section we put the results of the preceding sections together and show that
the category of local pospaces under a fixed local pospace is a fibration category in
the sense of H. Baues [1]. The homotopy theory of this fibration category is relative
directed homotopy theory.

Definition 5.1. [1, I.1a] A category F equipped with two classes of morphisms,
weak equivalences and fibrations, is a fibration category if it has a final object ∗ and
if the following axioms are satisfied:
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F1 An isomorphism is a trivial fibration, i.e., a morphism which is both a
fibration and a weak equivalence. The composite of two fibrations is a
fibration. If two of the morphisms f : X → Y , g : Y → Z, and g◦f : X → Z
are weak equivalences, so is the third.

F2 The pullback of two morphisms one of which is a fibration exists. The
fibrations are stable under base change. The base extension of a weak
equivalence along a fibration is a weak equivalence.

F3 Every morphism f admits a factorization f = p ◦ j where p is a fibration
and j is weak equivalence.

F4 For each object X there exists a trivial fibration Y → X such that Y is
cofibrant, i.e., every trivial fibration E → Y admits a section.

An object X is said to be ∗-fibrant if the final morphism X → ∗ is a fibration.

Theorem 5.2. Let (C,≤) be a local pospace. The category LPS(C,≤) of local
pospaces under (C,≤) is a fibration category. The weak equivalences are the diho-
motopy equivalences relative to (C,≤) and the fibrations are the difibrations relative
to (C,≤). All objects are (∗,∆, ∗)-fibrant and cofibrant.

Proof. By 2.8, LPS(C,≤) is finitely complete. By 4.4, all objects are (∗,∆, ∗)-
fibrant. The fact that all objects are cofibrant (and hence F4) is proved in 4.6. F1
follows from 3.5 and 4.2. F3 is 4.3. By 4.2, fibrations are stable under base change.
By 4.8, the trivial fibrations are stable under base change. Since all objects are
fibrant, this implies that weak equivalences are stable under base change along fi-
brations (cf. [1, I.1.4]). 2

There is an extensive homotopy theory available for fibration categories (cf. [1]).
The homotopy relation is defined as follows:

Definition 5.3. Let F be a fibration category, Y be a ∗-fibrant object, and X
be a cofibrant object. Two morphisms f, g : X → Y are homotopic if for some
factorization of the diagonal Y → Y × Y into a weak equivalence Y → P and a
fibration e : P → Y ×Y there exists a morphism h : X → P such that e◦h = (f, g).

Proposition 5.4. Let (C,≤) be a local pospace and (E,≤, ε) be a local pospace
under (C,≤). Then the dimap under (C,≤) i : (E,≤, ε) → (EI ,≤, cε) given by
i(e) = ce is a dihomotopy equivalence relative to (C,≤) and the dimap under (C,≤)
ev : (EI ,≤, ε) → (E,≤, ε)× (E,≤, ε) given by ev(ω) = (ω(0), ω(1)) is a difibration
relative to (C,≤).

Proof. Consider the dimap under (C,≤)

f : (E ×E×E (E × E)I ,≤, (ε, c(ε,ε))) → (EI ,≤, cε)

given by

f(e, (α, β))(t) =
{
α(1− 2t), 0 ≤ t ≤ 1

2 ,
β(2t− 1), 1

2 ≤ t ≤ 1.

This is an isomorphism of local pospaces under (C,≤). The inverse is given by
f−1(ω) = (ω( 1

2 ), (ω−, ω+)) where ω−(t) = ω( 1
2 −

1
2 t) and ω+(t) = ω( 1

2 + 1
2 t). We

have seen in 4.3 that f−1 ◦ i is a dihomotopy equivalence relative to (C,≤) and that
ev ◦ f is a difibration relative to (C,≤). The result follows. 2
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Proposition 5.5. Let (C,≤) be a local pospace. Two dimaps under (C,≤) are
homotopic in the fibration category LPS(C,≤) if and only if they are dihomotopic
relative to (C,≤).

Proof. By [1, II.2.2], we may replace the word “some” in Definition 5.3 by “any”.
The result follows from 5.4 and 3.6. 2
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