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Abstract. Bi-intuitionistic logic is a conservative extension of intu-
itionistic logic with a connective dual to implication, called exclusion.
We present a sound and complete cut-free labelled sequent calculus for
bi-intuitionistic propositional logic, BiInt, following S. Negri’s general
method for devising sequent calculi for normal modal logics. Although it
arises as a natural formalization of the Kripke semantics, it is does not
directly support proof search. To describe a proof search procedure, we
develop a more algorithmic version that also allows for counter-model
extraction from a failed proof attempt.

1 Introduction

Bi-intuitionistic logic (also known as Heyting-Brouwer logic, subtractive logic) is
an extension of intuitionistic logic with a connective dual to implication, called
exclusion (coimplication, subtraction), a symmetrization of intuitionistic logic. It
first got the attention of C. Rauszer [14–16], who studied its algebraic and Kripke
semantics, alongside adequate Hilbert-style systems and sequent calculi. More
recently, it has been of interest to ÃLukowski [9], Restall [17], Crolard [2] and Goré
with colleagues [6, 1, 7, 8]. Part of the motivation is the expected computational
significance of the logic: one would expect proof systems working as languages
for programming with values and continuations in a symmetric way.

A particularity of bi-intuitionistic logic is that it admits simple sequent calculi
obtained from the standard ones for intuitionistic logic essentially by dualizing
the rule for implication. Although several authors have stated or “proved” that
these calculi enjoy cut elimination (most notably Rauszer [15] for her sequent
calculus), they are in fact incomplete without cut and thus not directly suitable
for backward (i.e., root-first) proof search. The reasons of the failure are similar
to those for the modal logic S5 (S4 + symmetry) and the future-past tense
logic KtS4 (S4 + modalities for the converse of the accessibility relation). A
closer analysis suggests that finding remedies that are satisfactory, both from
the structural proof theory and automated theorem proving points of view, is
challenging and provides insights into the subtleties of the logic.



In this paper we propose one solution to the problem. We describe a cut-free
labelled sequent calculus for bi-intuitionistic propositional logic, BiInt, where
the labels are interpreted as worlds in Kripke structures. Exploiting the fact
that BiInt admits a translation to the future-past tense logic KtS4, we obtain
it by the general method of S. Negri [12] for devising sequent calculi for normal
modal logics. Then, to formulate a search procedure and obtain a termination
argument we fine-tune it for the constructive logic situation with monotonicity of
truth. This approach is in line with S. Negri’s method where frame conditions are
uniformly transformed into inference rules, but termination of proof search of the
resulting sequent calculus must be obtained on a case-by-case basis. Interestingly,
bi-intuitionistic logic turns out to be a rather delicate case.

Cut-free sequent calculi for BiInt have also been proposed by Goré and col-
leagues. Goré’s first formulation [6] was in the display logic format, inspired
by a general method for devising display systems for normal modal logics. The
next formulation by Postniece and Goré [1, 7] achieves cut-freedom by combining
refutation with proof (passing failure information from premise to premise) to
be able to glue counter-models together without the risk of violating the mono-
tonicity condition of interpretations. The new nested sequent calculus by Goré,
Postniece and Tiu [8] is a refinement of the display logic version and basically
allows reasoning in a local world of a Kripke structure with references to facts
about its neighbouring worlds captured in the nested structure.

The paper is organized as follows. In Sect. 2, we introduce BiInt with its
Kripke semantics and the translation to KtS4. We also show its Dragalin-style
sequent calculus and why cut elimination fails. In Sect. 3, we introduce a labelled
sequent calculus for BiInt designed according to S. Negri’s recipe. In Sect. 4,
we refine this declarative system into a more algorithmic version, show that it
is sound and its rules also preserve falsifiability. In the next section (Sect. 5) we
define a proof search procedure for the calculus and show that it terminates. In
Sect. 6 we put the pieces together to conclude completeness. In the final section
we sum up and outline some directions for further enquiry.

2 Bi-intuitionistic propositional logic, Dragalin-style
sequent calculus and failure of cut elimination

We start by defining the logic BiInt. The language extends that of intuitionistic
propositional logic, Int, by one connective, exclusion, thus the formulae are given
by the grammar:

A, B := p | > | ⊥ | A ∧B | A ∨B | A⊃B | A �B

where p ranges over a denumerable set of propositional variables which give
us atoms; the formula A � B is the exclusion of B from A. We do not take
negations as primitive, but in addition to the intuitionistic (or strong) negation,
we have dual-intuitionistic (or weak) negation, definable by ¬A := A ⊃ ⊥ and
vA := > �A.
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The Kripke semantics defines truth relative to worlds in Kripke structures
that are the same as for Int. A Kripke structure is a triple K = (W,≤, I) where
W is a non-empty set whose elements we think of as worlds, ≤ is a preorder
(reflexive-transitive binary relation) on W (the accessibility relation) and I—the
interpretation—is an assignment of sets of propositional variables to the worlds,
which is monotone w.r.t. ≤, i.e., whenever w ≤ w′, we have I(w) ⊆ I(w′).

Truth in Kripke structures is defined as for Int, but covers also exclusion,
interpreted dually to implication as possibility in the past:

– w |= p iff p ∈ I(w);
– w |= > always; w |= ⊥ never;
– w |= A ∧B iff w |= A and w |= B; w |= A ∨B iff w |= A or w |= B;
– w |= B ⊃A iff, for any w′ ≥ w, w′ 6|= B or w′ |= A;
– w |= A �B iff, for some w′ ≤ w, w′ |= A and w′ 6|= B.

A formula is called valid if it is true in all worlds of all structures. It is easy to see
that monotonicity extends from atoms to all formulae thanks to the universal
and existential semantics of implication and exclusion.

It is also a basic observation that the Gödel translation of Int into the modal
logic S4 extends to a translation into the future-past tense logic KtS4 (cf. [9]).
As the semantics of KtS4 does not enforce monotonicity of interpretations,
atoms must be translated as future necessities or past possibilities (these are
always monotone): p# = ¤p (or ¨p); ># = >; ⊥# = ⊥; (A ∧B)# = A# ∧B#;
(A ∨B)# = A# ∨B#; (B ⊃A)# = ¤(B# ⊃A#); (A �B)# = ¨(A# �B#).

A sequent calculus for BiInt is most easily obtained from Dragalin’s sequent
calculus for Int (as has been done by Restall [17] and Crolard [2]; Rauszer’s
[15] original sequent calculus was different). In Dragalin’s system sequents are
multiple-conclusion, but the implication-right rule is constrained. The extension
imposes a dual constraint on the exclusion-left rule. The sequents are pairs Γ ` ∆
where Γ, ∆ (the antecedent and succedent) are finite multisets of formulae (we
omit braces and denote union by comma as usual). Such a sequent is taken to
be valid if, for any Kripke structure K and world w, some formula in Γ is false
or some formula in ∆ is true. The inference rules are displayed in Fig. 1.

Note that the context ∆ is missing in the premise of the ⊃R rule and dually in
the premise of �L we do not have the context Γ . The rules ⊃L and �R involve
some contraction. This is necessary because we have chosen not to include a
general contraction rule.

This calculus is sound and complete w.r.t. the above-defined notion of validity
(completeness can be shown going through the algebraic semantics in terms of
Heyting-Brouwer algebras [14]). However it is incomplete without cut, as shown
by Pinto and Uustalu in 2003 (private email message from T. Uustalu to R. Goré,
13 Sept. 2004, quoted in [1]). It suffices to consider the obviously valid sequent
p ` q, r ⊃ ((p � q) ∧ r). The only possible last inference in a proof could be

?
p, r ` (p � q) ∧ r

p ` q, r ⊃ ((p � q) ∧ r)
⊃R
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initial rule and cut:

Γ, A ` A, ∆
hyp

Γ ` A, ∆ Γ, A ` ∆

Γ ` ∆
cut

logical rules:

Γ ` ∆

Γ,> ` ∆
>L

Γ ` >, ∆
>R

Γ, A, B ` ∆

Γ, A ∧ B ` ∆
∧L

Γ ` A, ∆ Γ ` B, ∆

Γ ` A ∧ B, ∆
∧R

Γ,⊥ ` ∆
⊥L

Γ ` ∆

Γ ` ⊥, ∆
⊥R

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨ B ` ∆
∨L

Γ ` A, B, ∆

Γ ` A ∨ B, ∆
∨R

Γ, B ⊃ A ` B, ∆ Γ, A ` ∆

Γ, B ⊃ A ` ∆
⊃L

Γ, B ` A

Γ ` B ⊃ A, ∆
⊃R

A ` B, ∆

Γ, A � B ` ∆
�L

Γ ` A, ∆ Γ, B ` A � B, ∆

Γ ` A � B, ∆
�R

Fig. 1. Dragalin-style sequent calculus for BiInt

but the premise is invalid as the succedent formula q has been lost. With cut,
the sequent is proved as follows:

p ` q, p, . . .
hyp

p, q ` q, p � q, . . .
hyp

p ` q, p � q, . . .
�R

p, p � q, r ` p � q
hyp

p, p � q, r ` r
hyp

p, p � q, r ` (p � q) ∧ r
∧R

p, p � q ` q, r ⊃ ((p � q) ∧ r)
⊃R

p ` q, r ⊃ ((p � q) ∧ r)
cut

Cut elimination fails as we cannot permute the cut on the exclusion p � q up
past the ⊃R inference for which the cut formula is a side formula. This is one
type of cuts that cannot be eliminated, there are altogether 3 such types [11].
This situation is similar to the naive sequent calculus for S5 where the sequent
p ` ¤♦p cannot be proved without cut, but can be proved by applying cut to
the sequents p ` ♦p and ♦p ` ¤♦p that are provable without cut.

3 L: a labelled sequent calculus

We now proceed to a labelled sequent calculus for bi-intuitionistic logic that we
call L. This calculus turns out to be complete without a cut rule. Essentially it is
a formalization of the first-order theory of the Kripke semantics in such a fashion
that the extralogical axioms corresponding to the reflexivity-transitivity condi-
tion on frames and monotonicity condition on interpretations do not necessitate
cut. Our design follows the method of S. Negri [12].

We proceed from a denumerable set of labels. A labelled formula is a pair
x : A where x is a label and A a formula. The intended meaning is truth of the
formula at a particular world.

Sequents are triples Γ `G ∆ where Γ and ∆ are finite multisets of labelled
formulae, and G is a finite binary relation on labels called the graph. Graphs
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preorder rules:

Γ `G∪{(x,x)} ∆

Γ `G ∆
refl

xGy yGz Γ `G∪{(x,z)} ∆

Γ `G ∆
trans

initial rule and monotonicity rules:

Γ, x : A `G x : A, ∆
hyp

xGy Γ, x : A, y : A `G ∆

Γ, x : A `G ∆
monL

yGx Γ `G y : A, x : A, ∆

Γ `G x : A, ∆
monR

logical rules:

Γ `G ∆

Γ, x : > `G ∆
>L

Γ `G x : >, ∆
>R

Γ, x : A, x : B `G ∆

Γ, x : A ∧ B `G ∆
∧L

Γ `G x : A, ∆ Γ `G x : B, ∆

Γ `G x : A ∧ B, ∆
∧R

Γ, x : ⊥ `G ∆
⊥L

Γ `G ∆

Γ `G x : ⊥, ∆
⊥R

Γ, x : A `G ∆ Γ, x : B `G ∆

Γ, x : A ∨ B `G ∆
∨L

Γ `G x : A, x : B, ∆

Γ `G x : A ∨ B, ∆
∨R

xGy Γ `G y : B, ∆ Γ, y : A `G ∆

Γ, x : B ⊃ A `G ∆
⊃L

y /∈ G, Γ, ∆ Γ, y : B `G∪{(x,y)} y : A, ∆

Γ `G x : B ⊃ A, ∆
⊃R

y /∈ G, Γ, ∆ Γ, y : A `G∪{(y,x)} y : B, ∆

Γ, x : A � B `G ∆
�L

yGx Γ `G y : A, ∆ Γ, y : B `G ∆

Γ `G x : A � B, ∆
�R

Fig. 2. Labelled sequent calculus L

are a means to keep track of label dependencies and thus induce an accessibility
relation on worlds.

The inference rules are presented in Fig. 2. Some of them have provisos, that
we also write as rule premises. We let xGy abbreviate (x, y) ∈ G. Following
usual sequent calculus terminology, at a given rule, we call the explicit labelled
formula in the conclusion the labelled formula introduced by the rule or the main
labelled formula of the rule and the explicit labelled formulae in the premises the
side labelled formulae.

The interesting logical rules are those for implication and exclusion which
are dual. Notice the freshness condition on the label y in the rules ⊃R and �L,
guaranteeing their soundness. We call label y the eigenlabel of the rule and x
the parent of y. Note also the presence of the monotonicity rules accounting for
propagation of truth (resp. falsity) to future (resp. past) worlds and preorder
rules which account for reflexivity and transitivity of accessibility.

The counter-example to cut elimination for the Dragalin-style sequent calcu-
lus is proved in L as follows:

x : p, y : r `(x,y) x : q, x : p
hyp

x : p, y : r, x : q `(x,y) x : q
hyp

x : p, y : r `(x,y) x : q, y : p � q
�R

x : p, y : r `(x,y) x : q, y : r
hyp

x : p, y : r `(x,y) x : q, y : (p � q) ∧ r
∧R

x : p `∅ x : q, x : r ⊃ ((p � q) ∧ r)
⊃R

Notice the downward information propagation in the �R inference to an already
existing label.

In a L-derivation the names of the eigenlabels can be changed (to new names
not occurring in the derivation) without changing the end sequent. This property
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allows us to show by usual methods that L enjoys admissibility of the weakening
rules. A simple combination of the monotonicity, reflexivity and weakening also
guarantees admissibility of the contraction rules in L. (This is what enables us
to avoid explicit contractions at ⊃L and �R rules.)

The cut rule is also admissible in L. This can be proved along the lines of cut
elimination results of S. Negri for labelled sequent calculi for modal logics. In this
paper, as an immediate consequence of soundness and completeness of system L
w.r.t. the Kripke semantics (Cor. 1), we get a semantical proof of admissibility
of cut.

Given a Kripke structure K, a K-valuation is a mapping from the set of
labels to the set of worlds of K.

Definition 1. A Kripke structure K = (W,≤, I) and a K-valuation v are a
counter-model (cm) to an L-sequent Γ `G ∆, if: i) for all xGy, v(x) ≤ v(y); ii)
for all x : A ∈ Γ , v(x) |= A; and iii) for all x : A ∈ ∆, v(x) 6|= A. The sequent
is valid, if it has no counter-model.

Proposition 1 (Soundness of L). If Γ `G ∆ is derivable, Γ `G ∆ is valid.

Completeness holds as well (Cor. 1) and is proved with the help of the al-
gorithmic version of L introduced in the next section. In fact our completeness
argument allows for construction of counter-models of non-derivable sequents.

4 L∗: an algorithmic version of L

Although L constitutes a good basis for backward proof search for bi-intuitionistic
propositional logic, it still faces the problem that the preorder and monotonicity
rules can be applied at any point in backward proof search. To deal with this
problem, we introduce now an algorithmic version of L called L∗. System L∗ does
not have explicit preorder or monotonicity rules. It uses a marking mechanism on
certain kinds of labelled formulae. Such mechanism allows for the recovering of
labelled formulae, so that monotonicity requirements are guaranteed. The mark-
ing mechanism is also designed in a way that it can be used in loop-detection,
to avoid infinite search along paths corresponding to non-derivable sequents.

Sequents in L∗ are triples Γ `G ∆ as in L, with the difference that, in the
contexts Γ and ∆, labelled formulae can now be marked either with ∗ (written
as x : A∗), ◦ (written as x : A◦) or with • (written as x : A•). The rules of L∗

are in Fig. 3.
Let us briefly explain the role of + and − and of marks ∗, ◦ and • in backward

proof search. The + (resp. −) is used to propagate a formula to future (resp.
past) labels (as determined by the transitive closure of the graph). The marking
x : A∗ is done at the atom rules, ⊃L and �R (where x : A is the main formula) in
order to be able to recover A at eventual labels still unknown when x : A is anal-
ysed, but later created with a graph connection to x. The marking of a labelled
formula with a ◦ (used only with atoms) or • (used only with implications and
exclusions) means essentially that the formula was already analysed (the case
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initial rule:

Γ, x : p◦ `G x : p◦, ∆
hyp

atom rules:

Γ, p+, x : p∗, x : p◦ `G ∆

Γ, x : p `G ∆
atomL

where p+ = {y : p | xGy}

Γ `G x : p◦, x : p∗, p−, ∆

Γ `G x : p, ∆
atomR

where p− = {y : p | yGx}
logical rules:

Γ `G ∆

Γ, x : > `G ∆
>L

Γ `G x : >, ∆
>R

Γ, x : A, x : B `G ∆

Γ, x : A ∧ B `G ∆
∧L

Γ `G x : A, ∆ Γ `G x : B, ∆

Γ `G x : A ∧ B, ∆
∧R

Γ, x : ⊥ `G ∆
⊥L

Γ `G ∆

Γ `G x : ⊥, ∆
⊥R

Γ, x : A `G ∆ Γ, x : B `G ∆

Γ, x : A ∨ B `G ∆
∨L

Γ `G x : A, x : B, ∆

Γ `G x : A ∨ B, ∆
∨R

Γ, (B ⊃ A)+, x : (B ⊃ A)∗ `G x : B, ∆ Γ, x : A `G ∆

Γ, x : B ⊃ A `G ∆
⊃L

where (B ⊃ A)+ = {y : B ⊃ A | xGy}

x : (B ⊃ A)• /∈ ∆ y /∈ G, Γ, ∆, Γ, Γ y/x, y : B `G∪{(x,y)} y : A, x : (B ⊃ A)•, ∆

Γ `G x : B ⊃ A, ∆
⊃R

where Γ y/x = {y : C | x : C∗ ∈ Γ} ∪ {y : p◦ | x : p◦ ∈ Γ}
∪{y : (C � D)• | x : C �D ∈ Γ or x : (C �D)• ∈ Γ}

x : (A � B)• /∈ Γ y /∈ G, Γ, ∆ Γ, x : (A � B)•, y : A `G∪{(y,x)} y : B, ∆y/x, ∆

Γ, x : A � B `G ∆
�L

where ∆y/x = {y : C | x : C∗ ∈ ∆} ∪ {y : p◦ | x : p◦ ∈ ∆}
∪{y : (D ⊃ C)• | x : D ⊃ C ∈ ∆ or x : (D ⊃ C)• ∈ ∆}

Γ `G x : A, ∆ Γ, x : B `G x : (A � B)∗, (A � B)−, ∆

Γ `G x : A � B, ∆
�R

where (A � B)− = {y : A � B | yGx}

Fig. 3. Algorithmic version L∗

with the explicit circles and bullets in the rule premises of the atom rules, ⊃R,
�L) or has no further useful information and so need not be analysed (the case
with circles and bullets implicit in Γ y/x and ∆y/x in the premises of ⊃R and
�L respectively) and prevents a new analysis of the formula at the given world
(notice that no rule introduces a labelled formula with a circle or a bullet).

Notice that an L-sequent is also an L∗-sequent and that if we take an L∗-
sequent and erase all ∗, ◦ and • marks we obtain an L-sequent. Given an L∗

context Γ , we write Γ− for the L-context resulting from it by replacing all
labelled formulae x : A∗, x : A◦ with unmarked labelled formulae x : A and
removing all labelled formulae x : A•. Given an L∗-sequent Γ `G ∆ its erasure
is the L-sequent Γ− `G ∆−. We say that an L∗-rule is derivable in L if the rule
obtained by replacing its premises and conclusion by their erasures is derivable
in L. The next proposition shows that all L∗-rules are derivable in L and thus
L∗ is sound w.r.t. L.
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Proposition 2 (Soundness of L∗ w.r.t. L). 1. All rules of L∗ are derivable
in L. 2. If Γ `G ∆ is derivable in L∗ then Γ− `G ∆− is derivable in L.

Because the rules of L∗ do not throw away any relevant information (read
backward, i.e., from the conclusion to the premises), they have the strong prop-
erty that a counter-model of a premise is also a counter-model of the conclusion.
This is used in Sec. 6 for extracting counter-models out of failed proof attempts.

Given a Kripke structure K = (W,≤, I), a K-valuation v and a graph G,
≤−G denotes the relation ≤ \v(G)∗, i.e., ≤−G is the relation obtained from ≤ by
eliminating all pairs in the reflexive-transitive closure of {(v(x), v(y)) | xGy}.
Definition 2. A Kripke structure K = (W,≤, I) and a K-valuation v are a
counter-model of an L∗-sequent Γ `G ∆ when:

1. for all xGy, v(x) ≤ v(y);
2. for all x : A, x : A◦ ∈ Γ , v(x) |= A;
3. for all x : A∗ ∈ Γ and for all w ∈ W such that v(x) ≤−G w, w |= A;
4. for all x : A, x : A◦ ∈ ∆, v(x) 6|= A;
5. for all x : A∗ ∈ ∆ and for all w ∈ W such that w ≤−G v(x), w 6|= A.

Notice that for L-sequents this notion of counter-model coincides with the
notion introduced in the previous section. As usual valid sequents are those for
which there are no counter-models.

Proposition 3 (Preservation of counter-models). For each L∗-rule, a counter-
model of a premise is also a counter-model of the conclusion.

5 A search procedure and its termination

We now describe a backward search procedure for L∗, which incorporates a loop-
checking mechanism, and prove it sound and terminating. As a by-product of
the explicit presence in sequents of labels/worlds and the graph/accessibility
relation, when the search procedure terminates with failure, we will be left with
a Kripke counter-model of the given sequent. This fact is proved in the next
section and accounts for the completeness of the search procedure. In order to
describe the search procedure, we introduce first some terminology, notation and
also the loop-rules.

The rules ⊃R and �L are the only rules of L∗ where the graph relation
varies in a backward reading. We call these rules world creating rules. A sequent
Γ `G ∆ is called saturated if it is irreducible w.r.t. the non-world creating rules.
A sequent Γ `G ∆ is called stuck when it is irreducible w.r.t. any rule and
moreover it is not an axiom (hyp, ⊥L, >R).

Given an L∗ context Γ , we use the notations Γ [x], Γ ∗[x], Γ ◦[x], Γ •[x] and
Γ (x) to mean {A | x :A ∈ Γ}, {A | x :A∗ ∈ Γ}, {A | x :A◦ ∈ Γ}, {A | x :A• ∈ Γ}
and Γ [x] ∪ Γ ∗[x] ∪ Γ ◦[x] ∪ Γ •[x] respectively.

The loop rules are presented in Fig. 4. (For a context Γ and labels x and
y, the notation Γ [x/y] stands for the context obtained by replacing y with x
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y 6∈ G Γ \ Γ (y) `G ∆[x/y]

Γ `G∪{(x,y)} ∆
loopUp

provided Γ [y] ⊆ Γ [x] ∪ Γ•[x], Γ∗[y] ⊆ Γ∗[x],
and Γ◦[y] ⊆ Γ◦[x]

y 6∈ G Γ [x/y] `G ∆ \∆(y)

Γ `G∪{(y,x)} ∆
loopDn

provided ∆[y] ⊆ ∆[x] ∪∆•[x], ∆∗[y] ⊆ ∆∗[x],
and ∆◦[y] ⊆ ∆◦[x]

Fig. 4. Loop rules

in Γ .) Their backward reading corresponds to the action taken when a loop is
detected and the detection of a loop corresponds to satisfaction of their side-
conditions. The formulation of the loop rules corresponds to the situation where
x is the parent and thus y is a descendant of x, labeling necessarily subformulae
of x-labelled formulae.

We are now in conditions of presenting the search procedure. It goes as follows:

1. Given an L∗-sequent Γ `G ∆, we reduce it w.r.t. the non-world creating
rules (i.e., we apply as long as possible these rules). We call a saturation
both this process and the partial proof of Γ `G ∆ so constructed. The top
sequent of each branch of a saturation is a saturated sequent. Notice also
that the order in which rules are applied in saturation is unimportant since
they are inter-permutable.

2. Then, for every branch in the saturation of Γ `G ∆, we do the following:
(a) we check if the top sequent is an axiom and if so search along the branch

is stopped with success;
(b) we check if there is a loop, i.e., we test if the side condition of any of the

loop rules is met, and if so proceed according to the corresponding loop
rule.

3. If neither (a) nor (b) is the case, the development of the branch carries on,
by applying one of the world creating rules, and we go back to 1.We stop
with failure if no world creating rule can be applied.

We call proof attempt both the run of the search procedure with a given
sequent and the corresponding partial proof (in L∗ augmented with the loop
rules). Throughout we assume that proof attempts always start with L-sequents
whose graphs are trees (i.e., the graph, seen as an undirected graph by forgetting
the directions of the arcs, is connected and acyclic). Then the graphs of all
sequent in the proof attempt are trees.

Proposition 4 (Soundness of the search procedure). If the proof attempt
for an L-sequent terminates with success, then the sequent is L-derivable.

Proof: By induction on the height of the proof attempt, we prove that, for any
L∗-sequent Γ `G ∆ in it, Γ− `G ∆− is derivable in L. The cases corresponding
to L∗-inferences follow by part 1. of Prop. 2. Consider the case correspond-
ing to the loopUp rule of Fig. 4. (The case of loopDn is similar.) By IH we
have that (Γ \ Γ (y))− `G ∆[x/y]− is L-derivable. From this, by weakening ,
Γ− `G∪{(x,y)} (∆ \∆(y))−,∆(y)[x/y]−,∆(y)−is also derivable in L. Since xGy,
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by repeated use of monR, we can derive Γ− `G∪{(x,y)} (∆ \∆(y))−,∆(y)−which
is Γ− `G∪{(x,y)} ∆−. ¤

Now we consider terminology, notation and lemmata used in particular for
proving termination of the search procedure. Given a label x, the world creation
tree of x induced by a branch of a proof attempt has x as root and has as subtrees
(if any) the world creation trees of each eigenlabel in the branch whose parent
is x. Given a set of formulas S, mhf(S) stands for the maximal height of the
formulae in S.

Lemma 1. Any saturation in a proof attempt is finite.

Proof: Observe that: (i) ∧ and ∨ inferences replace the main formula by strict
subformulae; and (ii) even if the main formula of an atomL, atomR, ⊃L or �R
inference may reappear in the premises or upper sequents, it does so with a
distinct label (as the graph is a tree) and thus can only reappear finitely many
times (recall L∗-graphs are finite). ¤

Lemma 2. Given a label x and a branch B of a proof attempt, x has finitely
many children in B.

Proof: Notice that all formulae in a sequent of B are subformulae of a formula
in the end sequent of B (which is finite) and that, once x : A⊃B (resp. x : A�B)
is analysed as the main formula of a ⊃R (resp. �L) inference, x : (A⊃B)• (resp.
x : (A � B)•) is added to the succedent (resp. antecedent) of the inference’s
premise, preventing that x : A⊃B (resp. x : A �B) becomes analysed again. ¤

Lemma 3. For ¦ ∈ {∗, ◦} and any saturated sequent Γ `G∪{(x,y)} ∆ in a proof
attempt: i) if x : A¦ ∈ Γ , y : A¦ ∈ Γ ; and ii) if y : A¦ ∈ ∆, x : A¦ ∈ ∆.

Proof: Firstly notice that, for any L∗-rule, if z : B¦ is in the antecedent (resp.
succedent) of the conclusion, z : B¦ is in the antecedent (resp. succedent) of
any premise. Consider the case x : p◦ ∈ Γ (the other cases being similar or
simpler). Then x : p∗ ∈ Γ and thus x : p must have been the main formula in an
atomL inference. Let Γ0 `G0 ∆0 be the premise of that inference. If (x, y) ∈ G0,
y : p ∈ Γ0 and any top sequent in the saturation of Γ0 `G0 ∆0 has both y : p∗

and y : p◦ in the antecedent. If not, above the referred inference, there must
be an ⊃R inference with eigenlabel y and parent x and the top sequents of the
saturation of its premise have y : p∗ and y : p◦ in their antecedents. ¤

Lemma 4. In a proof attempt, if Γ0 `G ∆0 is the conclusion of an ⊃R inference
with eigenlabel x1 and parent x0 and Γ1 `G∪{(x0,x1)} ∆1 is a top sequent in the
saturation of the inference’s premise, then Γ0(x0) ⊂ Γ1(x1).

Proof: By the following three facts: i) Γ0(x0) ⊆ Γ1(x0), because no L∗ rule
removes starred, circled or bulleted formulae (when read backwards); ii) Γ1(x0) ⊆
Γ1(x1), because Γ1[x0]∪Γ •1 [x0] ⊆ Γ •1 [x1], Γ ∗1 [x0] ⊆ Γ ∗1 [x1], Γ ◦1 [x0] ⊆ Γ ◦1 [x1] (the
last two containments proved with the help of Lemma 3); iii) Γ1(x1) 6⊆ Γ1(x0),
because of the loop checking mechanism. ¤
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Lemma 5. For any sub-branch of a proof attempt of the form

Γ2 `G1∪{(x2,x1)} ∆2

.

.

.

Γ1, x1 : (A1 � B1)
•, x2 : A1 `G1∪{(x2,x1)} x2 : B1, ∆1, ∆

x2/x1
1

Γ1, x1 : A1 � B1 `G1 ∆1
�L

.

.

.

Γ0, Γ
x1/x0
0 , x1 : A0 `G0∪{(x0,x1)} x1 : B0, x0 : (A0 ⊃ B0)

•, ∆0

Γ0 `G0 x0 : A0 ⊃ B0, ∆0
⊃R

where the conclusion of �L is a top sequent in the saturation of the premise of
⊃R and Γ2 `G1∪{(x2,x1)} ∆2 is a top sequent in the saturation of the premise of
�L we have mhf(Γ0(x0) ∪ {A0 ⊃B0}) > mhf(Γ2(x2) ∪∆2(x2)).

Proof: By the following two facts: i) each formula of Γ2(x2) ∪ ∆2(x2) is a
subformula of ∆1(x1) or a strict subformula of A1 � B1; and ii) ∆1(x1) has
only strict subformulae of Γ0(x0) ∪ {A0 ⊃ B0} and A1 � B1 is a subformula of
Γ0(x0) ∪ {A0 ⊃B0}3. ¤

Theorem 1 (Termination of the search procedure). A proof attempt al-
ways terminates.

Proof: If it did not, by König’s Lemma there would be an infinite branch B
in the proof attempt. Since each saturation is finite (Lemma 1), there must be
infinitely many saturations and at least one of the labels in the end sequent,
x00 say, has an infinite world creation tree, call it T . By Lemma 2, T is finitely
branching and so König’s Lemma forces T to have an infinite branch, which we
will show to be impossible.

It is impossible that an infinite branch of T beyond a certain point, z0 say,
goes always upwards, i.e., that the descendants z1, z2, . . . of z0 in T all arise with
⊃R inferences. Otherwise, using Lemma 4, we could form an infinite sequence

Γ0(z0) ⊂ Γ1(z1) ⊂ Γ2(z2) . . .

(where Γi is the conclusion’s antecedent of the inference where zi creates zi+1),
which is is impossible, for all these sets must be included in the finite set of
3 The first fact follows from the following lemma (and the second fact from an analo-

gous lemma): For any sequent Γ `G1∪{(x2,x1)} ∆ in the saturation of the premise of
an �L inference with eigenlabel x2 and parent x1:

1. if x : A ∈ Γ (resp. ∆) and A is not an exclusion (resp. implication), then x2(G1 ∪
{(x2, x1)})∗x (resp. x(G1 ∪ {(x2, x1)})∗x2);

2. if A ∈ Γ [x1] (resp. ∆[x1]), then A is an exclusion (resp. implication) or A ∈ Γ (x2)
(resp. ∆(x2));

3. if Γ0 `G1∪{(x2,x1)} ∆0 is a sequent immediately above Γ `G1∪{(x2,x1)} ∆ and
A ∈ Γ0(x2) (resp. ∆0(x2)), then A is a subformula of Γ (x2) (resp. ∆(x2)) or a
strict subformula of ∆(x2) (resp. Γ (x2)).
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subformulae of the end sequent. Similarly, T cannot have an infinite branch that
beyond a certain point goes always downwards.

Therefore, an infinite branch of T would have to correspond to an infinite
zigzag of the shape shown in Fig. 5 (or of a dual shape), where a dashed arrow
up (resp. down) means that zero or more worlds were created by ⊃R (resp. �L)
inferences in between xi0 and xini

and a solid arrow up (resp. down) means that
x(i+1)0 was created from xini by an ⊃R (resp. �L) inference. Let Γij (resp. ∆ij)
stand for the conclusion’s antecedent (resp. succedent) of the inference where xij

creates its immediate successor in branch B. By Lemma 5, a property analogous
to it (for the case where �L is below ⊃R), and the fact that, given i and j1 <
j2 ≤ ni, mhf(Γij1(xij1)∪∆ij1(xij1)) ≥ mhf(Γij2(xij2)∪∆ij2(xij2)), it follows that
mhf(Γini(xini)∪∆ini(xini)) > mhf(Γ(i+1)ni+1(x(i+1)ni+1)∪∆(i+1)ni+1(x(i+1)ni+1))
and so an infinite descending chain of natural numbers would be produced. ¤

x10
** **

x30

)) ))x0n0

44hhhhh x1n1
**VVVVV x2n2

44hhhhh

x00

44 44
x20

44 44

Fig. 5. An infinite zigzag

6 Completeness and counter-model construction

We prove here that when the search procedure introduced in the previous section
arrives at a stuck sequent, we can immediately read off from the sequent a Kripke
counter-model for it. This result is then instrumental in achieving the equivalence
between derivability in L and validity.

Theorem 2 (Counter-models at stuck sequents). Let B be a failed branch
of a proof attempt with top sequent Γ `G ∆.

1. The structure K = (W,≤, I) where W is the set of labels in the sequent, ≤ is
the reflexive-transitive closure of G and I(x) = {p | x : p◦ ∈ Γ}, is a Kripke
structure.

2. Let Gext stand for G extended with all pairs removed in loop steps of B4. Let
v be the valuation on W such that v(y) = x if (x, y) or (y, x) is in Gext and
y 6∈ G; and v(y) = y otherwise. For any sequent Γ ′ `G′ ∆′ in B, (i) for all
xG′y, v(x) ≤ v(y), and moreover (ii) for any formula A,
(a) if x : A or x : A◦ or x : A• belongs to Γ ′, v(x) |= A;
(b) if x : A∗ ∈ Γ ′, for all w ∈ W s.t. v(x) ≤−G′ w, w |= A;
(c) if x : A or x : A◦ or x : A• belongs to ∆′, v(x) 6|= A;
(d) if x : A∗ ∈ ∆′, for all w ∈ W s.t. w ≤−G′ v(x), w 6|= A;

4 Here is assumed that when an eigenlabel is created at a branch of a proof attempt
it is distinct of any other label occurring below in the branch.
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hence, in particular, (K, v) is a cm of Γ ′ `G′ ∆′.

Proof: 1. If x = x1Gx2G...Gxn = y and x : p◦ ∈ Γ , follows by induction on n
that y : p◦ ∈ Γ (using Lemma 3 in the step case).

2. (i) Trivial. (ii) By induction on the formula A and sub-induction on the
number of sequents above Γ ′ `G′ ∆′ in B. If Γ ′ `G′ ∆′ is Γ `G ∆ itself, it
can only have circled atoms or else starred or bulleted formulas. The conditions
on circled atoms hold by construction of (K, v) and the conditions on starred
formulas hold trivially, since ≤−G=≤ \v(G)∗ = ∅. If x : (C � D)• ∈ Γ ′ (for
x : (C ⊃D)• ∈ ∆′ the argument is analogous), it can be proved that there are
labels y and z, such that zGexty(Gext)∗x and B includes a step

Γ ′′, y : (C � D)•, z : C `G′′∪{(z,y)} z : D, ∆′′z/y, ∆′′

Γ ′′, y : C �D `G′′ ∆′′
�L

By the outer IH, v(z) |= C and v(z) 6|= D. Thus, since zGexty(Gext)∗x implies
v(z) ≤ v(y) ≤ v(x), v(x) |= C �D.

If Γ ′ `G′ ∆′ is the conclusion of an atom or logical inference, the desired
conditions follow by the inner IH applied to the premise in B. Let us consider
the case of the loopUp rule (loopDn is analogous):

y 6∈ G0 Γ ′ \ Γ ′(y) `G0 ∆′[x0/y]

Γ ′ `G0∪{(x0,y)} ∆′
loopUp

provided Γ ′[y] ⊆ Γ ′[x0] ∪ Γ ′•[x0], Γ ′∗[y] ⊆ Γ ′∗[x0], Γ ′◦[y] ⊆ Γ ′◦[x0]

Conditions (a) and (b) restricted to Γ ′ \ Γ ′(y) hold by the inner IH. As to
Γ ′(y): for y : A¦ ∈ Γ ′ (¦ ∈ {∗, ◦}), the proviso guarantees x0 : A¦ ∈ Γ ′ and
so, by the inner IH and v(y) = v(x0), v(y) |= A; for y : A ∈ Γ ′, the proviso
guarantees either x0 : A ∈ Γ ′ or x0 : A• ∈ Γ ′, but both cases follow also from
the inner IH5. Conditions (c) and (d) follow from the inner IH and the facts
∆′(y) ⊆ (∆′[x0/y])(x) and v(y) = v(x0). ¤

Corollary 1. 1. Let Γ `G ∆ be an L-sequent whose graph is a tree. The fol-
lowing statements are equivalent: i) Γ `G ∆ is derivable in L; ii) Γ `G ∆ is
valid; iii) the attempt to prove Γ `G ∆ terminates with success.

2. For any L-sequent whose graph is a tree, the search procedure yields either
a proof or a counter-model.

Proof: 1. Follows from Thm. 2 with the help of Thm. 1 and Prop. 1.
2. Apply the search procedure to the given sequent. Thm. 1 guarantees that it

terminates. If this happens with success, then by Prop. 4 the sequent is provable
in L. Otherwise, the proof attempt has at least one failed branch and thus Thm. 2
guarantees the wanted cm. ¤

5 The second case illustrates why the inductive argument does not go through, if we
simply prove that (K, v) is a cm of Γ ′ `G′ ∆′.
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7 Conclusion

Although bi-intuitionistic logic may seem to be a modest extension of intuition-
istic logic, it has proved to be rather intricate from the structural proof theory
point of view. While naive sequent calculus formalizations are incomplete with-
out a cut rule, more considerate attempts at the design of sequent calculi for
backward proof search seem all to lead to relatively sophisticated designs.

We believe that our labelled sequent calculus represents a meaningful com-
promise between declarativeness and algorithmicity by encoding a reasonably
straightforward Kripke semantics based search strategy very much in the spirit
of analytic tableaux. Some novelties include integration of all useful monotonic-
ity consequences into the logical rules, including a specific annotation to deal
with consequences that must be delayed (flow of information into worlds not yet
created), and a termination argument utilizing the fact that information cannot
flow around too many turns. The failure-collecting sequent calculus by Postniece
and Goré [1, 7] and the new calculus of nested sequents by Goré et al. [8] are
systems with the same aim and we find the nested sequent calculus especially
neat proof-theoretically, although it may require fine-tuning to be practical in
theorem proving/counter-model building.

As future work, we would like to see whether bi-intuitionistic logic admits
a loop-free backward-search proof system à la Dyckhoff [4], possibly modifiable
into a refutation system [13]. We would like to see if it is possible to devise a
system with controlled (“analytic”) cuts by a careful analysis of the failure of
cut elimination for the Dragalin-style sequent calculus. A yet further line would
be to devise a sequent calculus for forward search (a calculus of Mints-style
resolution) [10].

On a different note, we would also very much like to come to an under-
standing of the computational significance of bi-intuitionistic logic, i.e., whether
it admits useful a Curry-Howard interpretation justified by a well-motivated,
non-degenerate categorical semantics. The first step in this direction was made
already by Filinski [5] and further considerations appear in the work of Curien
and Herbelin [3]. Crolard’s project [2] clearly had the same ultimate aim. We
expect that the nested sequences technique of Goré et al. [8] can point to the
right structures.
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Poigné, eds.: Proc. of 3rd Int. Conf. on Category Theory and Computer Science
(Manchester, Sept. 1988), Vol. 389 of Lect. Notes in Comput. Sci. Springer (1988)
224–249
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