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Penrose’s spinor calculus of four-dimensional Lorentzian geometry is extended to
the case of five-dimensional Lorentzian geometry. Such fruitful ideas in Penrose’s
spinor calculus as the spin covariant derivative, the curvature spinors, or the defi-
nition of the spin coefficients on a spin frame can be carried over to the spinor
calculus in five-dimensional Lorentzian geometry. The algebraic and differential
properties of the curvature spinors are studied in detail, and as an application, we
extend the well-known four-dimensional Newman–Penrose formalism to a five-
dimensional spacetime. © 2009 American Institute of Physics.
�doi:10.1063/1.3256124�

I. INTRODUCTION

In recent years, high progress has been made toward the understanding of general relativity
when the number of spacetime dimensions is 5. As a result, it is now known that some classical
results of four-dimensional general relativity do not translate to a five-dimensional spacetime �or
at least the translation is not straightforward�. Perhaps the best known example is supplied by the
uniqueness theorems of stationary vacuum black holes which, in four dimensions, put severe
constraints on the topology of the event horizon and the nature of the spacetime when certain
conditions are met �an up-to-date review of this subject is found in Ref. 2�. In five dimensions,
these theorems are no longer true as it was first shown by means of a counterexample in Ref. 5.
The counterexample was an exact solution of the Einstein vacuum field equations in five dimen-
sions, which is stationary, asymptotically flat, and has a connected, nondegenerate event horizon
�it is thus a black hole�, yet the topology of the event horizon is S1�S2�R �a black ring�. Since
the solution is asymptotically flat, one can define its mass and its angular momentum and check
that there is a range of these variables which fall within the ranges of the mass and the angular
momentum of the Myers–Perry solution in dimension 5. In this way, one concludes that in five
dimensions it is possible to have two different �nonisometric� vacuum, stationary, asymptotically
flat black holes with the same mass and angular momentum and both having a nondegenerate
connected event horizon.

The discovery of the black ring fostered the investigation of exact solutions in five and higher
dimensions �see Ref. 6 for a thorough review of the research conducted in this direction�. In this
framework, it is useful to have generalizations to higher dimensions of the tools, which have been
successfully employed in four dimensions to find and classify exact solutions. Two of these tools
are the Newman–Penrose formalism and the Petrov classification. For a generic spacetime dimen-
sion, which we may call N, these tools have been recently generalized by a number of authors. The
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introduction of the alignment theory in Ref. 14 made it possible to put forward a scheme to
classify the Weyl tensor �and, in fact, any tensor� in a Lorentzian vector space of arbitrary
dimension �this is reviewed in Ref. 3�. A frame formalism in which the Ricci and Bianchi iden-
tities are studied for a spacetime of dimension N has been developed in Refs. 17 and 21, respec-
tively.

While the aforementioned generalizations are useful when working in generic dimension N,
one hopes that in the particular case of N=5, it should be possible to adopt the same procedure,
which is followed in dimension 4 to introduce the Newman–Penrose formalism and the Petrov
classification. This consists of regarding these as natural applications of the spinor calculus intro-
duced by Penrose in Ref. 18, and therefore this approach requires the development of the spinor
calculus in a five-dimensional Lorentzian manifold. To present a detailed description of this spinor
calculus is one of the main aims of this paper. Using this spinor formalism, we extend the
Newman–Penrose formalism to a five-dimensional spacetime. We stress that the formalism intro-
duced here is truly an “extension” of the Newman–Penrose formalism used in four dimensions
because it contains the same variables �spin coefficients, curvature scalars, etc.� as in four dimen-
sions plus some additional quantities, which are specific to a five-dimensional spacetime. As can
be expected, the full set of Newman–Penrose equations in a five-dimensional spacetime is far
more involved than in four dimensions, but this does not mean that the formalism will be less
useful in certain particular cases, as we hope to illustrate in Ref. 9. One can also develop an
invariant classification of the Weyl spinor associated with the five-dimensional Weyl tensor.4

It is well known that spinors can be introduced in a spacetime of arbitrary dimension—in fact,
the signature of the metric tensor need not be Lorentzian. The generic procedure to accomplish
this is also well known �see Appendix A of Ref. 20 for an account of it�, but if we are interested
in the particular case of a five-dimensional spacetime, it is worth spelling out the whole procedure
in detail for this particular case, especially if we are to focus on specific applications such as those
mentioned above. For a five-dimensional spacetime, the spin space is a four-dimensional complex
vector space endowed with an antisymmetric tensor, which plays the role of a metric tensor
�symplectic structure�. Also we show how one can develop a calculus using these spinors and
explain how to introduce the idea of a spin covariant derivative. When the spin covariant deriva-
tive is compatible with the spacetime metric and the symplectic structure, then we prove that such
a spin covariant derivative is unique. In this case, one can define the curvature spinors �Ricci
spinor and Weyl spinor� much in the same way as it is done in the spinor calculus of a four-
dimensional Lorentzian manifold. The algebraic and differential properties of these spinors are
analyzed and it is found that the Weyl spinor is a rank-4 totally symmetric spinor �this property
was already pointed out in Ref. 4� and that the Ricci spinor is a rank-4 Riemann-like tensor, by
which we mean that it has the same symmetries as a four-dimensional Riemann tensor �we regard
the cyclic property of the Riemann tensor as one of its symmetries�.

Working in dimension 5 leads to the manipulation of tensors with large numbers of compo-
nents, already with only three or four indices. This, together with the presence of various types of
symmetries �including an antisymmetric metric�, makes it convenient to use specialized tools for
tensor computer algebra. We have used the system xAct,12 based on MATHEMATICA, and developed
by one of us �J.M.M.G.�. xAct can handle both abstract and component expressions with arbitrary
permutation symmetries by means of efficient techniques of computational group theory13 and by
using systematically Penrose’s abstract index notations, as we shall do in this article. We have
recently extended it to perform spinor calculus in four-dimensional spacetimes,8 and the five-
dimensional spinor calculus studied in the present paper will also be included in the near future.

The structure of this paper is as follows. In Sec. II we recall how spinors are constructed in a
five-dimensional vector space possessing a Lorentzian metric and discuss some basic properties of
the spin space. Section III deals with the concept of spin structure on a five-dimensional Lorent-
zian manifold. One then can define a covariant derivative, which is compatible with the spin
structure �spin covariant derivative�. We prove here that a spin covariant derivative, which is also
compatible with the symplectic structure of the spin bundle, is unique and extends the Levi-Civita
connection to the spin bundle. To carry out the proof, we compute the connection coefficients of
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such a spin covariant derivative in a spin tetrad and a seminull pentad, which enable us to extend
the Newman–Penrose spin coefficients to the five-dimensional case. In Sec. IV we use this cova-
riant derivative to find the spinors representing the traceless Ricci tensor and the Weyl tensor
�curvature spinors� and study the algebraic and differential properties of these spinors. The main
application of previous results is shown in Sec. V where we explain how one can extend the
Newman–Penrose formalism to a five-dimensional spacetime. Some further applications are indi-
cated in Sec. VI.

II. THE SPIN STRUCTURE ON A FIVE-DIMENSIONAL LORENTZIAN VECTOR SPACE

Let L be a five-dimensional real vector space endowed with a real scalar product g� , � of
Lorentzian signature �signature convention �+,−,− ,− ,−�� and let S be a complex vector space
whose dimension is for the moment left unspecified �complex conjugate of scalars will be denoted
by an overbar�. Using the vector space L and its dual L� as the starting point, one builds a tensor
algebra in the standard fashion. Similarly, a tensor algebra is built from S and its dual S�. We
denote these algebras by T�L� and T�S�, respectively �strictly speaking, only the algebras Ts

r�L� of
tensors r-contravariant s-covariant can be defined, and the same applies to Ts

r�S��. To lessen the
notation, we will suppress the labels r and s in the notation and they will only be made explicit
when confusion may arise.�� In this work, abstract indices will be used throughout to denote
tensorial quantities: in this way, small Latin indices a ,b , . . . will denote abstract indices on ele-
ments of T�L� and capital Latin indices A ,B , . . . will be used for abstract indices of elements in
T�S�. The tensor algebra T�S� will be referred to as the spin algebra and its elements will be
called spinors. One can also build tensor algebras by taking tensor products of elements in T�L�
and elements in T�S�. Quantities in these tensor algebras will be referred to as mixed tensors and
they will carry abstract indices of both types. The algebras T�L� and T�S� shall be regarded as
complex vector spaces.

We introduce now a mixed tensor �aB
C, which, by definition, fulfills the following algebraic

property:

�aA
B�bB

C + �bA
B�aB

C = − �A
Cgab, �1�

where �A
C is the identity tensor �also known as the Kronecker delta� on the vector space S. Note

that we use staggered indices in �.
This relation means that �aB

C can be regarded as belonging to a representation on the vector
space S of the Clifford algebra Cl�L ,g�. If we demand that this representation be irreducible, then
it can be shown that extra structures can be added to the vector space S. First of all we note that
the quantity �aA

A must vanish, for otherwise the 1-form �aA
A would be invariant under the action

of any endomorphism of L keeping gab invariant �orthogonal group�, and this can only happen for
scalars and 5-form.20 Another consequence of �aB

C belonging to an irreducible representation of
the Clifford algebra is shown in the next result.

Theorem 1: If the quantity �aB
C belongs to an irreducible representation of Cl�L ,g�, then the

dimension of S is 4 and there exist two antisymmetric spinors �AB and �̂AB, unique up to a
constant, such that

�AB�̂CB = �A
C. �2�

Furthermore, these antisymmetric spinors fulfill the following algebraic property:

�aD
A� a

C
B = 1

2�D
A�C

B − �C
A�D

B + �CD�̂AB. �3�

Proof: Equation �3� is just the same as Eq. �B.29� of the appendix in Ref. 20 particularly for
the case in which L is five dimensional. Equation �B.41.b� of that appendix shows that the quantity
E− of �B.29� reduces to the last term of Ref. 3. �

The results of the previous theorem allow us to introduce the concept of spin structure on the
vector space L.
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Definition 1: Under the conditions stated in Theorem 1, we will refer to �aA
B as a spin

structure on L. The complex vector space S is then called the spin space of the spin structure.
The spinors �AB and �̂AB can be regarded as a metric tensor and its inverse in the vector space

S, and therefore they can be used to raise and lower spinorial indices. The metric tensor �AB is a
symplectic metric, and therefore some care is required when introducing the conventions for the
raising and lowering of indices with �AB and �̂AB �see the Appendix for a review of this issue�. Our
conventions for these operations are

�A�AB = �B, �A = �̂AB�B.

In particular, we can raise the indices of �AB getting �AB= �̂AB and from now on only the symbol �
will be used for the symplectic metric and its inverse. Note also the property

�A
B = − �B

A. �4�

Here, the quantity �B
A is the Kronecker delta on S and �A

B is a derived quantity obtained from it
by the raising and lowering of indices. In particular, this implies �A

A=4. Again see the Appendix
for a further discussion about the properties and conventions related to a symplectic metric.

Using �AB, �AB, gab, and gab we can raise and lower indices of mixed quantities. In particular,
we can start from �aA

B and obtain the quantity �a
AB. The next result gathers a number of algebraic

properties of �a
AB, which are needed in this work.

Theorem 2: The quantity �a
AB has the following algebraic properties:

�a
AB�bAB = − 2gab, �5�

�aCD�a
AB = �AD�BC − �AC�BD + 1

2�AB�CD, �6�

�a
�AB� = �a

AB, �AB�a
AB = 0. �7�

Proof: Equation �5� is a direct consequence from the trace of �1�, while Eq. �6� comes from
lowering all the indices in Eq. �3�. Now, we multiply both sides of this last expression by �b

AB, use
�5�, and perform all the metric contractions. The result is

�bCD = − �bDC,

which entails �a
�AB�=0. Finally, we note

0 = �aA
A = − �AB�a

AB. �8�

�

For later applications, we need to introduce another quantity related to �a
AB. Its definition is

Gab
AC � − �a�AB� bC�B . �9�

From this definition, it is clear that Gab
AC has the following symmetries:

G�ab�
AC = Gab

AC, Gab
�AC� = Gab

AC.

Also, using the results of Theorem 2, we deduce the following algebraic properties for Gab
AB,

GabCDGab
AB = �AD�BC + �AC�BD, �10�

Gad
ABGbcAB = gabgcd − gacgbd. �11�

Finally, we note that the product �aA
B�bCB can be written in the form

�aA
B�bCB = − GabAC + 1

2gab�AC. �12�
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A. Relation between spinors and tensors

Elements of the tensor algebra T�L� can be put into correspondence with spinors by means of
�a

AB. To see an example of how this works, we consider a 1-rank vector va. Then, its spinor
counterpart is given by

vAB = �a
ABva.

In view of the properties presented in Theorem 2, it is immediate that the spinor vAB is antisym-
metric and traceless. Reciprocally, any antisymmetric and traceless spinor �AB has a vector coun-
terpart given by �AB�a

AB.
Previous example can be generalized for tensors and spinors of higher rank. The fundamental

result is comprised of the following proposition.
Proposition 1: Let TA1B1. . .ApBp

�T2p
0 �S�, p�N, and suppose that

TA1B1. . .�AjBj�. . .ApBp
= TA1B1. . .AjBj. . .ApBp

, �13�

TA1B1. . .Aj−1Bj−1

Aj
AjAj+1Bj+1. . .ApBp

= 0 �14�

for any j=1, . . . , p. Then, there is a unique tensor Ta1¯ap
�Tp

0�L� such that

Ta1¯ap
�a1

A1B1
¯ �ap

ApBp
= TA1B1¯ApBp

. �15�

The tensor Ta1¯ap
is given by

Ta1. . .ap
=

1

�− 2�p�a1

A1B1
¯ �ap

ApBpTA1B1¯ApBp
. �16�

Proof: If TA1B¯ApBp
is a given spinor fulfilling �13� and �14� and we define a tensor Ta1¯ap

through �16�, then we have

Ta1. . .ap
�a1

A1B1
¯ �ap

ApBp
=

1

�− 2�p�a1
A1B1

�a1

C1D1
¯ �ap

ApBp
�ap

CpDpTC1D1. . .CpDp

= ��A1

C1�B1

D1

2
−

�A1

D1�B1

C1

2
+

�A1B1

4
�D1C1�

¯ ��Ap

Cp�Bp

Dp

2
−

�Ap

Dp�Bp

Cp

2
−

�ApBp

4
�DpCp� � TC1D1. . .CpDp

= TA1B1. . .ApBp
,

where �6� was used in the first step and �13� and �14� in the last step. Suppose now that there is

another tensor T̃a1¯ap
such that

T̃a1¯ap
�a1

A1B1
¯ �ap

ApBp
= TA1B1¯ApBp

.

Then, if we multiply both sides of previous equation by �b1

A1B1
¯�bp

ApBp and use �5�, we obtain

�− 2�pT̃b1¯bp
= �b1

A1B1
¯ �bp

ApBpTA1B1¯ApBp
,

which via Eq. �16� entails T̃a1. . .ap
=Ta1. . .ap

. �

Elements of T2p
0 �S� fulfilling �13� and �14� form a subspace, which is denoted by U2p�S�.

Thus, previous proposition asserts that U2p�S� and Tp
0�L� are, in fact, isomorphic as vector spaces.

Similar considerations as before lead us to the definition of U2p�S�.
It is possible to define a unique tensor starting from any spinor �A1B1¯ApBp

in T2p
0 �S� as
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follows. First, we introduce the linear projector P, which projects the vector space T2p
0 �S� down

to the subspace U2p�S�. Then, we apply Proposition 1 to the spinor P��A1B1¯ApBp
�. The tensor so

obtained is called the tensor counterpart or tensor equivalent of �A1B1¯ApBp
. It is clear that differ-

ent spinors can have the same tensor counterpart.
Proposition 2: If �A and �A are such that �A�A=0, then the spinor �AB���A���B� defines a null

vector la by means of the relation

la = �a
AB�AB. �17�

Proof: We need to show that the vector la defined by �17� is null. Using �6� we get

lala = − 2�AB�AB = − 2��A���B��
�A���B� = 0.

�

Remark 1: Unlike as in the case of the spinor algebra in four-dimensional Lorentzian geom-
etry, there is no converse to previous proposition. All what can be said is that if la is null, then the
spinor �AB��aABla fulfills the property

�AB�AB = 0,

as is easily checked using �5�.

B. Spin tetrads and seminull pentads

In this subsection, we introduce a basis in S, with elements oA, �A, õA, and �̃A, in which the
symplectic metric takes the canonical form

�AB = 2o�A���B� − 2õ�A��̃�B�. �18�

This entails

oA�A = − 1 = õA�̃A, oAõA = �A�̃A = oA�̃A = �AõA = 0. �19�

The basis �oA , �A , õA , �̃A	 is the analog of the spin dyad, which is used in the spinor calculus of
four-dimensional Lorentzian geometry. We will call a basis with these properties a spin tetrad. It
is now clear that the spin space S can be written as the following direct sum:

S = S1 � S2, S1 = span�oA,�A	, S2 = span�õA, �̃A	 .

Each of the spaces S1, S2 is isomorphic to the two-dimensional spin space in which the spinors of
four-dimensional Lorentzian geometry are defined. Indeed, S2 can be related to S1 if we introduce
an antilinear operator C :S→S defined by its action on the basis oA, �A, õA, and �̃A,

C�oA� = − iõA, C��A� = − i�̃A, C�õA� = ioA, C��̃A� = i�A. �20�

The operator C has the additional property C2=−IS �IS is the identity on S�, and therefore it can be
used to endow S with a quaternionic structure. Also, we can extend the operator C to tensors if in
addition to �20�, we demand that

C��a
AB� = − �a

AB. �21�

When C acts on tensors, then it becomes an involutive operator and thus it is a complex conjuga-
tion.

We can now use the spin tetrad just introduced to construct a basis in L. The way in which this
is done is by considering the tensor equivalents of the spinors oAõB, �A�̃B, oA�̃B, õA�B, oA�B, and
õA�̃B. These tensor equivalents are

la � �a
ABoAõB, na � �a

AB�A�̃B,
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ma � − oA�a
AB�̃B, m̄a � õA�a

AB�B,

ua � 2oB�a
AB�A = − 2õB�a

AB�̃A. �22�

From �20� and �21�, we deduce that la and na are real with respect to C, whereas C�ma�= m̄a. Also
using �22� and �6�, it is easy to compute the nonvanishing scalar products of the elements of this
basis,

lana = 1, mam̄a = − 1, uaua = − 2.

Hence, we deduce that �la ,na ,ma , m̄a ,ua	 forms a seminull pentad. This is the five-dimensional
analog of the null tetrad used in four-dimensional Lorentzian geometry and it has a similar
relevance. This will be illustrated in the forthcoming sections, where we will perform a number of
computations in this basis.

We adopt a number of general conventions when working with a spin tetrad and its associated
seminull pentad. Suppose that the bases B and N defined next are, respectively, a spin tetrad and
the seminull pentad constructed from it

B � �e0
A,e1

A,e2
A,e3

A	, N � �e1
a,e2

a,e3
a,e4

a,e5
a	 . �23�

Then, we set up the assignments

e0
A � oA, e1

A � �A, e2
A � õA, e3

A � �̃A,

e1
a � la, e2

a � na, e3
a � ma, e4

a � m̄a, e5
a � ua. �24�

The relations written in �22� enable us to obtain right away the components of �AB and �a
AB in

the bases introduced above. The result is

�01 = 1, �23 = − 1, �1
02 = 1, �2

13 = 1, �3
03 = − 1, �4

12 = − 1, �5
10 = 1

2 , �5
23 = − 1

2 ,

�25�

all the other independent components of �AB and �a
AB being zero. Previous result can be written

somewhat more invariantly in the form �18� and

�a
AB = − 2nao�A�õ�B� − 2la��A��̃�B� − 2m̄ao�A��̃�B� + 2maõ�A���B� − ua�õ�A��̃�B� + o�A���B�� . �26�

III. SPIN STRUCTURES ON A FIVE-DIMENSIONAL LORENTZIAN MANIFOLD

So far all our considerations have been algebraic in nature, but as is well known one can use
these ideas to construct a spin structure on a given five-dimensional Lorentzian manifold. We
explain next how this is achieved. Suppose that �M ,g� is a five-dimensional Lorentzian manifold
and let Tp�M� be the tangent space at point p. This is a vector space which can be endowed with
the Lorentzian scalar product g� , � 
p. Therefore, the vector space Tp�M� has properties similar to
L and we can introduce a spin space Sp and a spin structure �aA

B 
p at each point p.
Definition 2: (Spin bundle) The union

S�M� � �
p�M

Sp �27�

is a vector bundle with the manifold M as the base space and the group of linear transformations
on C4 as the structure group. We will call this vector bundle the spin bundle and the sections of
S�M� are the contravariant rank-1 spinor fields on M.

We can now define the tensor algebras Ts
r�Tp�M��, TS

R�Sp�, and by means of a definition
similar to �27� use them to construct vector bundles with M as the base manifold. These bundles
are tensor bundles and we denote each of these tensor bundles by Ss,S

r,R�M�, where the meaning of
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the labels r, R, s, and S is the obvious one. In general, we will suppress these labels and use just
the notation S�M� as a generic symbol for these tensor bundles. Sections on S�M� are written
using abstract indices and we follow the same conventions explained for the case of the vector
spaces L and S. Sections of any of the bundles S0,S

0,R�M� are called spinor fields or simply spinors.
Definition 3: (Spin structure on a five-dimensional manifold) If the quantity �aA

B 
p varies
smoothly on the manifold M, then one can define a smooth section of the bundle S1,1

0,1�M�,
denoted by �aA

B. When this is the case, we call the smooth section �aA
B a smooth spin structure on

the Lorentzian manifold �M ,g�.
A spin structure can be always defined in a neighborhood of any point p�M, but further

topological restrictions on M are required if the spin structure is to be defined globally. A
necessary and sufficient condition for the existence of a spin structure is that the second Stiefel–
Whitney class of M vanishes �see, e.g., Ref. 15�.

From now on, we assume that we are working in a manifold M admitting a smooth spin
structure. Using �3� one can introduce two smooth sections �AB and �AB and use them to raise and
lower indices in any spinor field. These sections are defined up to a smooth conformal factor. The
properties shown in Eqs. �2�–�4� hold for �AB, �AB, and the quantity �A

B. Also, the algebraic
properties shown in Theorem 2 and the relations between spinors and tensors explained in Sec.
II A can be carried over to this new context.

A. Covariant derivatives on S„M…

We turn now to the study of covariant derivatives defined on the tensor bundle S�M�. Let Da

denote such a covariant derivative. Then, the operator Da can act on any quantity with tensor
indices and/or spinor indices. As a result, when Da is restricted to quantities belonging to
Ss,0

r,0�M�, we recover the standard notion of covariant derivative acting on tensor fields of M. If
Da is restricted to quantities in S0,S

0,R�M�, then Da is the covariant derivative acting on spinor
fields. The consequence of this is that the connection coefficients and the curvature of Da will be
divided in two groups: those arising from the tensorial part and those arising from the spinorial
part. The group arising from the tensorial part consists of the Christoffel symbols/Ricci rotation
coefficients and the Riemann tensor of the covariant derivative restricted to the tangent bundle
T�M�. The group coming from the spinorial part contains the connection components and the
curvature tensor of the covariant derivative restricted to the spin bundle S�M�. We will refer to
these as the inner connection and the inner curvature, respectively �see Ref. 1 for an in-depth
discussion of these concepts�.

To see how this works in practice, consider a spinor field �A. Then, the commutation of Da and
Db acting on �A is given by1

DaDb�A − DbDa�A = FbaB
A�B, �28�

where we assume that Da has no torsion �this condition is adopted henceforth for any covariant
derivative�. The mixed quantity FabA

B is the inner curvature mentioned above. It is antisymmetric
in the tensorial indices and it fulfills the Bianchi identity1

DaFbcA
B + DbFcaA

B + DcFabA
B = 0. �29�

Let now V��e1
A ,e2

A ,e3
A ,e4

A	 be a frame on S�M� and consider the action of Da on any element
of this frame. The result is

DaeB
A = AA

aB. �30�

Here and in the following, we will use boldface letters to denote basis indices, i.e., indices varying
within a range of numbers. The quantities AA

aB are the components of the connection defined by
Da when it is restricted to the vector bundle S�M�. Traditionally, they are regarded as nontensorial
objects but if we see them as dependent from the frame �e1

A ,e2
A ,e3

A ,e4
A	 they can be considered as
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true tensors.1 This is the viewpoint which will be adopted in this work, and therefore we shall
write

A�D,V�A
aB

for the tensor whose components in the frame V yield the quantities appearing in �30�. We will call
this tensor the inner connection tensor of Da, and we use a notation that stresses its dependence on
the frame V. It is possible to obtain a formula for FbcA

B in terms of the inner connection tensor.
The result is1

FabA
B = A�D,V�B

bCA�D,V�C
aA − A�D,V�B

aCA�D,V�C
bA − �aA�D,V�B

bA + �bA�D,V�B
aA,

�31�

where �a is any covariant derivative on S�M� without torsion and curvature. Now suppose that va

is a vector field on T�M�. Then, the commutation of Da and Db on va �Ricci identity� yields

DaDbv
c − DbDav

c = Rbad
cvd.

The tensor Rbad
c is the standard Riemann tensor and it fulfills the familiar first and second Bianchi

identities. If we introduce a frame V̂��e1
a ,e2

a ,e3
a ,e4

a ,e5
a	, we can compute the connection compo-

nents on it

Dceb
a = 	a

cb.

Again, we follow the viewpoint explained above and regard the connection components as the

components of a tensor “attached” to the frame V̂. This tensor is

	�D,V̂�a
bc.

We shall refer to this tensor as the Christoffel tensor of Da. Again note the dependency of this

tensor on the frame V̂. The components of the Christoffel tensor in the frame V̂ are known

traditionally as the Ricci rotation coefficients of Da in that frame. If V̂ is noncoordinated, then

	�D , V̂�a
cb is not symmetric on its two last indices. If the components gab of the metric in the

frame V̂ are constants and Dagbc=0, then we have instead the symmetry 	�D , V̂�abc=

−	�D , V̂�cba, where the first index of the Christoffel tensor has been lowered with the metric gab.

B. The spin covariant derivative

We wish to introduce a particular type of covariant derivative on S�M�.
Definition 4: (Spin covariant derivative) Suppose that S�M� admits a spin structure �aA

B. We
say that a covariant derivative Da defined on S�M� is compatible with the spin structure �aA

B if
it fulfills the property

Da�bC
D = 0. �32�

The covariant derivative Da is then called a spin covariant derivative with respect to the spin
structure �aA

B.
Acting with such Da on �1� gives

Dagbc = 0, �33�

which shows that the restriction of Da to quantities with tensorial indices is just the Levi-Civita
covariant derivative of gab. However, condition �32� does not fix univocally Da on spinors, and
therefore there are many covariant derivatives, which are compatible with a given spin structure.
The freedom originates from the fact that �AB is defined by �3� only up to conformal rescalings.
Differentiating �3� gives
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Da��CD�AB� = 0

or, equivalently,

Da�AB = 1
4 ��CDDa�CD��AB = �ABDaY, Y � 1

4 log det � .

Hence, Da is of Weyl type with respect to the metric �AB, but it is always possible to switch to
another compatible spin derivative which is of Levi-Civita type.

Theorem 3: There is one and only one spin covariant derivative �a on S�M� with respect to
the spin structure �aA

B, which fulfills the property

�a�AB = 0. �34�

Proof: Condition �33� determines the action of �a on tensors, and hence the components of the
Christoffel tensor of �a in any frame are the familiar connection components of the Levi-Civita
covariant derivative. We now need to show that there is a frame in which the inner connection
tensor gets also fixed. Let us work in a spin tetrad whose properties are those described in �18� and
�19� and construct from it a null pentad in the way shown in �22�. We also need to introduce the
frame derivations of N, which are

D � la�a, 
 � na�a, � � ma�a, �̄ � m̄a�a, D � ua�a. �35�

The operators D, 
, �, and �̄ correspond to the standard Newman–Penrose frame derivations used
in four-dimensional Lorentz geometry, whereas D has to be added in order to work in five
dimensions.

Now we take the conditions �a�AB=0, �a�b
AB=0, and expand them in the spin tetrad B, and

the seminull pentad N �see �23� and �24��. The derivatives of the components of �AB and �b
AB are

�a�AB = A��,B�C
aB�AC + A��,B�C

aA�CB, �36�

�a�b
AB = A��,B�C

aB�b
AC + A��,B�C

aA�b
CB − 	��,N�b

ac�
c
AB, �37�

where �1=D, �2=
, �3=�, �4= �̄, and �5=D are just the frame differentiations defined in �35�.
Since �AB and �b

AB are constants for any value of the basis indices, we deduce that the left hand
side of �36� and �37� is zero. The values of �b

AB and �AB are known �see �26� and �18�� and
	�� ,N�b

ac are the Ricci rotation coefficients of the Levi-Civita connection of gab in the seminull
pentad N so they are also fixed �they are a set of 50 independent scalar quantities because of the
symmetry 	�� ,N�abc=−	�� ,N�cba, which leaves 5 times 10 antisymmetric pairs��. Condition
�36� contains 30 independent equations �5 times 6 antisymmetric pairs�, and hence it reduces the
number of independent scalars A�� ,B�C

aB down to 80−30=50. In other words, lowering the first
index of the inner connection tensor we see that it is symmetric: A�� ,B�AcB=A�� ,B�BcA. Hence,
�37� can be regarded as a linear system in the 50 scalars of the set of components A�� ,B�C

aB taken
as independent. The linear system can be solved explicitly by writing out �37� and one finds that
it is possible to obtain a unique value for these independent quantities in terms of the 50 inde-
pendent Ricci rotation coefficients. Thus, having determined all the scalars 	�� ,N�b

ac and
A�� ,B�C

aB we conclude that �a itself is completely determined. �

From now on, the symbol �a will be reserved for the covariant derivative introduced in the
previous theorem. Therefore, when we speak of the spin covariant derivative, we will mean the
spin covariant derivative �a which is compatible with �AB. Hence, the Riemann tensor Rabcd will
be always the Riemann tensor of this spin covariant derivative �which as explained above is just
the Riemann tensor of the Levi-Civita connection of gab�. To shorten certain expressions, we
introduce the differential operator
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�AB � �a
AB�a. �38�

From this definition, we obtain the following straightforward properties:

��AB� = �AB, �A
A = 0. �39�

The linear relation which gives the 50 independent inner connection components in terms of
the 50 independent Ricci rotation coefficients can be inverted yielding the independent values of
	�� ,N�b

ac in terms of the independent values of A�� ,B�C
aB. We write this symbolically in the

form

	ind��,N�b
ac → Aind��,B�C

aB, �40�

where 	ind�� ,N�b
ac and Aind�� ,B�C

aB denote, respectively, the independent Ricci rotation coeffi-
cients and inner connection components. It is possible to reduce further the number of independent
Ricci rotation coefficients if we take into account that some of them are complex numbers. For
example, the components 	�� ,N�1

13 and 	�� ,N�1
14 are both in the set 	ind�� ,N�b

ac but they
fulfill the relation

	��,N�1
13 = 	��,N�1

14, �41�

which comes from the fact that ma and m̄a are complex conjugates of each other. Therefore, if we
compute all the independent relations of this type and use �40� on them, we will obtain relations
among the inner connection components similar to �41�. We explain in Sec. III B 1 how to take
advantage of this fact in practical computations.

1. The spin coefficients

For practical computations, one takes the independent components of the inner connection
which have been obtained and then introduces specific symbols to denote each scalar component.
We show next which are these independent components and their assigned names. We start with

A��,B�1
41 = − �, A��,B�1

31 = − �, A��,B�1
21 = − �, A��,B�1

11 = − � ,

A��,B�1
10 = − 
, A��,B�0

41 = �, A��,B�0
31 = �, A��,B�0

21 = � ,

A��,B�0
11 = �, A��,B�1

40 = − �, A��,B�1
30 = − �, A��,B�1

20 = − � . �42�

These scalars are, in fact, the 12 complex Newman–Penrose spin coefficients, which appear in the
spinor calculus of four-dimensional Lorentzian geometry. Since the four-dimensional Lorentzian
geometry can be seen as a restriction of the five dimensional one, it is then reasonable that the
Newman–Penrose spin coefficients also appear in our context. However, in order to work with
generic five-dimensional spacetimes, we need to add more spin coefficients to the set �42�, which
is what is done next. The “new” spin coefficients are

A��,B�0
51 = �, A��,B�1

50 = �, A��,B�1
51 = �, A��,B�2

10 = � ,

A��,B�2
20 = �, A��,B�2

30 = �, A��,B�2
31 = �, A��,B�2

40 = � ,

A��,B�2
50 = �, A��,B�3

30 = � . �43�

This is a set of ten complex quantities. In addition, we need to include a set of six real spin
coefficients

A��,B�2
11 = a, A��,B�2

21 = b, A��,B�2
51 = c ,
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A��,B�3
10 = d, A��,B�3

20 = e, A��,B�3
50 = f . �44�

Therefore, we have the 12 complex Newman–Penrose spin coefficients, the 10 complex spin
coefficients of �43�, and the 6 real spin coefficients of �44�. They add up to 50 independent real
quantities as they should. We will call the spin coefficients defined in �43� and �44� the five-
dimensional spin coefficients.

Using the information on �42�–�44�, we can compute the action of the operators defined in
�35� on the spin tetrad elements. The result is

DoA = �oA + d�̃A − 
�A + �õA, 
oA = �oA + e�̃A − ��A + �õA,

�oA = �oA − ��A + ��̃A + �õA, �̄oA = �oA − ��A + �̄�̃A + �õA,

DoA = − �oA + ��A + f�̃A + �õA, D�A = aõA − ��A + �oA − �̄�̃A,


�A = bõA − ��A + �oA − �̄�̃A, ��A = − ��A + �oA + �õA − �̄�̃A,

�̄�A = − ��A + �oA + �̄õA − �̄�̃A, D�A = cõA + �oA + ��A − �̄�̃A. �45�

From this set, we can obtain a similar set of equations for õ and �̃ if we use the operator C. Again
�45� generalizes the expression which gives the action of the Newman–Penrose frame differentia-
tions on the elements of a spin dyad when working in four-dimensional Lorentzian geometry �see
Eq. �4.5.26� in Ref. 19�.

Using the spin coefficients introduced above, we can write out �40� explicitly. The result is

	��,N�2
12 = − � − �̄, 	��,N�2

22 = − � − �̄, 	��,N�2
32 = − �̄ − � ,

	��,N�2
52 = � + �̄, 	��,N�3

11 = 
̄, 	��,N�3
12 = − �, 	��,N�3

21 = �̄ ,

	��,N�3
22 = − �, 	��,N�3

31 = �̄, 	��,N�3
32 = − �, 	��,N�3

41 = �̄ ,

	��,N�3
42 = − �, 	��,N�3

51 = − �̄, 	��,N�3
52 = − �, 	��,N�4

14 = − � + �̄ ,

	��,N�4
24 = − � + �̄, 	��,N�4

34 = �̄ − � ,

	��,N�4
54 = � − �̄, 	��,N�5

11 = d, 	��,N�5
12 = − a, 	��,N�5

13 = � ,

	��,N�5
32 = − �, 	��,N�5

33 = �, 	��,N�5
34 = �̄, 	��,N�5

51 = f ,

	��,N�5
21 = e, 	��,N�5

22 = − b, 	��,N�5
23 = �, 	��,N�5

31 = � ,

	��,N�5
52 = − c, 	��,N�5

53 = � . �46�

We note that one needs to compute the complex conjugate of some of the above equations in order
to obtain the value of all the 50 independent Ricci rotation coefficients.
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IV. THE CURVATURE SPINORS

In this section we compute the spinor counterpart of the Riemann tensor Rabcd and we de-
compose the resulting spinor into irreducible parts. The result of such a decomposition yields the
curvature spinors, which completely characterize the Riemann tensor. The situation is completely
analogous to the case of spinor calculus in four-dimensional Lorentzian geometry and we will
obtain different curvature spinors for each of the irreducible parts in which the Riemann tensor is
decomposed �Weyl, traceless Ricci, and scalar curvature�. Some similarities with the curvature
spinors of the spinor calculus of four-dimensional Lorentzian geometry can be expected. For
example, we will find a totally symmetric Weyl spinor but important differences with the four-
dimensional case are also present as we will discuss.

The starting point is the Ricci identity written for an arbitrary vector vc,

�a�bv
c − �b�av

c = Rbad
cvd.

We replace in this expression the tensor va by �see �16��

va = �a
ABvAB.

The Ricci identity becomes

�c
AB��a�bv

AB − �b�av
AB� = Rbad

cvd, �47�

where the condition �a�b
AB=0 was used. Next we use the Ricci identity �28� particularly for vAB

and �a, which is

�a�bv
AB − �b�av

AB = FbaC
BvAC + FbaC

AvCB.

Using this in �47�, we get after some algebra

vAB�Fab
BC�c

C
A − Fab

AC�c
C

B − Rab
c
d�dAB� = 0.

Here, the spinor vAB can be regarded as an arbitrary antisymmetric spinor. Hence,

Fab
BC�c

C
A − Fab

AC�c
C

B − Rab
c
d�dAB = 0.

We multiply both sides of this expression by � fAB and use �5� getting

2Rab
c

f − Fab
BC�cA

C� fAB + Fab
AC�cB

C� fAB = 0,

from which we obtain

Rabcf = Fab
AB�cB

C� fAC.

This last expression can be more conveniently written if we use �12� with the result

Rabcf = − Fab
ABGcfAB. �48�

We introduce now the spinor XABCD by means of the relation

XCDAB � FabABGab
CD. �49�

Clearly, XABCD is symmetric in the last pair of indices. Previous relation can be inverted using �11�
yielding

FcdAB = 1
2GcdCDXCD

AB, �50�

which replaced back in �48� leads to
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Rabcf = − 1
2GabABGcfCDXABCD. �51�

A straightforward consequence of this relation is that we can choose XABCD invariant under the
interchange of the first and the second pair of indices �and hence symmetric also in the first pair
of indices�. Thus,

XABCD = X�AB�CD = XAB�CD� = XCDAB. �52�

The spinor XABCD can be regarded as the spinor counterpart of the Riemann tensor. We can extract
further information out of it by finding its decomposition into irreducible parts under the action of
the general linear group. The computation of this decomposition for spinors in five-dimensional
Lorentz geometry is far more difficult than for spinors in four-dimensional Lorentz geometry
because in the former case we need to use the general techniques to decompose a tensor into
irreducible parts under the general linear transformation group. It falls well beyond the scope of
this paper to explain how this decomposition is performed in general �an account of this can be
found in, e.g., Ref. 22� and we will limit ourselves to explaining how the procedure works in the
particular case of the spinor XABCD.

A. Irreducible decomposition of the spinor XABCD

To obtain the irreducible decomposition of XABCD, we shall proceed in two steps. In the first
step, we find the decomposition of XABCD in parts invariant under the trace operation. In the
second step, we take each term of this decomposition and split it into a sum of terms invariant
under the action of the symmetric group �this is a generic procedure to obtain the irreducible
decomposition of any tensor�.

There is a general algorithm for the decomposition of any tensor as a linear combination of
traceless tensors multiplied by Kronecker deltas.11 Unfortunately, there is no general formula to
get the coefficients of such linear combination, which must be obtained by solving linear systems
which rapidly grow in size with the rank of the original tensor. The decomposition for a rank-4
spinor XAB

CD in dimension 4 reads as11

XAB
CD = WAB

CD + 1
24�A

D�2XBF
CF − XBF

FC − 7XFB
CF + 2XFB

FC� + 1
24�A

C�− XBF
DF + 2XBF

FD + 2XFB
DF

− 7XFB
FD� + 1

24�B
C�2XAF

DF − 7XAF
FD − XFA

DF + 2XFA
FD� + 1

24�B
D�− 7XAF

CF + 2XAF
FC

+ 2XFA
CF − XFA

FC� + 1
30�B

D�A
C�− 3XFH

FH + 2XFH
HF� + 1

30�B
C�A

D�2XFH
FH − 3XFH

HF� ,

where WAB
CD is a completely traceless spinor, namely,

WCB
CD = WAC

CD = WDB
CD = WAD

CD = 0.

If we use now the symmetries �52�, the decomposition of XAB
CD found above becomes �we lower

all indices�

XABCD = WCDAB −
1

6
�XB

F
DF�AC + XB

F
CF�AD + XA

F
DF�BC + XA

F
CF�BD� −

XFH
FH

30
��AD�BC + �AC�BD� .

�53�

From previous expression, it is easy to deduce that, besides it being completely traceless, the
spinor WABCD has the same symmetries as XABCD.

Now we need to compute the decomposition into irreducible parts of each term of �53�. We
start by noting the formula

XA
F

CF = �CA + 1
4XBD

BD�CA, �54�

which is the decomposition of the quantity XA
F

CF in parts invariant under the trace. Here the
spinor �CA is traceless, �A

A=0 and, antisymmetric �because XA
F

CF=−XC
F

AF�. Hence, �AB is al-
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ready invariant under the action of the symmetric group and needs no further decomposition.
Something similar happens to the last term of �53�.

Thus, it only remains to find the irreducible decomposition of WABCD. Since this tensor is
totally traceless, we only need to work out its decomposition in parts invariant under the action of
the symmetric group. The way in which this is achieved is by writing WABCD as a sum of rank four
tensors each of them being a Young tableaux tensor. A Young tableaux tensor is a tensor that is
invariant under the action of a Young projector �see Definition 5.6 in Ref. 22�. For any rank-4
tensor, these are the Young tableaux, which contribute to its decomposition

𝐴 ⊗ 𝐵 ⊗ 𝐶 ⊗ 𝐷 = 𝐴 𝐵 𝐶 𝐷 ⊕ 𝐴 𝐵
𝐶 𝐷

⊕ 𝐴 𝐶
𝐵 𝐷

⊕ 𝐴 𝐵 𝐶
𝐷

⊕ 𝐴 𝐵 𝐷
𝐶

⊕𝐴 𝐶 𝐷
𝐵

⊕
𝐴 𝐵
𝐶
𝐷

⊕
𝐴 𝐶
𝐵
𝐷

⊕
𝐴 𝐷
𝐵
𝐶

⊕
𝐴
𝐵
𝐶
𝐷

.

This decomposition is obtained by successive application of the Littlewood–Richardson rule to the
product of Young tableaux which one obtains from the left hand side. If we now apply previous
decomposition to WABCD and take into account its symmetries we find that only the following
Young tableaux contribute to the decomposition:

𝐴 𝐵 𝐶 𝐷 , 𝐴 𝐵
𝐶 𝐷

, 𝐴 𝐶
𝐵 𝐷

.
�55�

Therefore, WABCD is decomposed in the form

WABCD = �ABCD + �1
ACBD + �2

ABCD. �56�

In this expression, �ABCD is a spinor with the symmetries of the first tableau in �55� �i.e., it is
totally symmetric�, and �1

ACBD and �2
ABCD have the symmetries of the second and the third

Young tableaux of �55�. These symmetries correspond to the unfilled tableau

and therefore we deduce that both �1
ACBD and �2

ABCD fulfill the same algebraic properties as the
Riemann tensor of a Levi-Civita connection, namely,

�1
ACBD = − �1

CABD = �1
BDAC, �1

ACBD + �1
ABDC + �1

ABDC = 0,

�2
ACBD = − �2

CABD = �2
BDAC, �2

ACBD + �2
ABDC + �2

ABDC = 0. �57�

The spinors �1
ABCD and �2

ABCD are not linearly independent. To see this, take Eq. �56� and
antisymmetrize both sides of it on indices C ,D. The result is

0 = 1
2�1

ACBD − 1
2�1

ADBC + �2
ABCD.

Next, we use here the cyclic property �1
ACBD=−�1

ABDC−�1
ADCB getting

�2
ABCD = −

�1
ABCD

2
.

If we replace this relation into �56�, we get

WABCD = − 1
2�1

ABCD + �1
ACBD + �ABCD.

We use here the property �1
ABCD=−�1

ACDB−�1
ADBC which arises from the algebraic property

�57�. This renders the decomposition of WABCD in the form
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WABCD = �ABCD + �ACBD + �ADBC, �58�

where we have set

�ABCD �
�1

ABCD

2
.

From this definition, it is obvious that the spinor �ABCD has the same algebraic properties as
�1

ABCD, which are shown in �57�. Also from the tracelessness of WABCD, we deduce

�B
C

DC + �BD
C

C = 0, �59�

from which, using the cyclic property �ABCD=−�ACDB−�ADBC, we obtain

�B
C

DC = 0, �BD
C

C = 0, �60�

and therefore �ABCD is completely traceless �as it should be since all nonvanishing trace parts of
WABCD were taken away in the first step of the decomposition of XABCD�.

We note that it is possible to obtain �58� without any knowledge of Young tableaux theory if
one takes the relations

�ABCD = 1
3 �WABCD + WACBD + WADBC�, �ACBD = 1

3 �WABCD − WADBC�

as the definitions for the spinors �ABCD and �ABCD and then one deduces all the algebraic
properties of these spinors straight from these definitions and the properties of WABCD.

Now, we substitute �58� and �54� into �53�, which yields the complete decomposition of XABCD

into irreducible parts

XABCD =  ��AD�BC + �AC�BD� + 1
6 ��BD�AC + �BC�AD�AD�BC + �AC�BD� + �ABCD + �ACBD + �ADBC,

�61�

where

 �
XAB

AB

20
.

At this stage, we perform some basic counting to check the consistency of �61�. On the one hand,
we compute the number of independent components of the spinor XABCD, and on the other hand,
we add the number of independent components of each of the irreducible parts in which XABCD has
been decomposed. The numbers are shown in Table I.

TABLE I. In the first column of this table we show the spinor we deal with, in the second column we give the
number of independent components of the spinor when only its symmetries are taken into account �together
with a short explanation about how this number is computed�, and the third column shows the number of
independent additional restrictions �if any� and their origin and the last column is just the difference in the
symmetry-independent components and the restrictions. If we add all the entries of this column but the last one
of the table, we get 55, which is precisely the number of independent components of XABCD, thus confirming
that �61� is indeed correct.

Quantity Symmetry-independent components Restrictions Final No.

 1 0 1

�ABCD 20 �Riemann-like rank-4 tensor in dim. 4� 6 �use �60�� 14

�ABCD 35 �totally symmetric rank-4 tensor� 0 35

�AB 6 �antisymmetric, rank-2 tensor� 1��A
A=0� 5

XABCD 55 �use �52�� 0 55
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The number of independent components of the Riemann tensor in dimension 5 is 50, which
means that one needs to impose additional restrictions on XABCD. These restrictions are just those
arising from imposing the cyclic property Rabcd+Rbcad+Rcabd=0 on �51� since the symmetries
shown in �52� only take into account the monoterm symmetries of the Riemann tensor. For our
work we do not need to compute explicitly these additional relations and it is enough to realize
that if we drop the spinor �AB from the decomposition �61� then the resulting quantity has
precisely 50 independent components �indeed, this is the only way of obtaining a quantity with 50
independent components out of �61� �see Table I��. Inserting the irreducible decomposition of
XABCD into �51� with �AB set to zero and summarizing the results found before, we can state the
following result.

Theorem 4: The Riemann tensor Rabcf of the covariant derivative �a can be decomposed in
the form

Rabcf =  �gafgbc − gacgbf� − 1
2Gab

ABGcf
CD�ABCD − Gab

ABGcf
CD�ACBD. �62�

The quantities  , �ABCD, and �ABCD are known collectively as the curvature spinors. Further-
more, the curvature spinors fulfill the algebraic properties

��ABCD� = �ABCD, �ABCD = ��AB�CD = �CDAB, �AB
C

C = �A
C

CD = 0,

�ABCD + �BCAD + �CABD = 0. �63�

�

Remark 2: Taking traces in the formula �62� using �9� and �11�, we can obtain the decompo-
sition of the Ricci tensor and the scalar curvature. The actual expressions are

Rac = − 4gac −
1

2
�a

AB�c
CD��ABCD + �ACBD�, R = − 20 . �64�

Previous expression adopts a simpler form if we apply the identity

�a
AB�c

CD��ABCD + �ACBD� = 3
2�a

AB�c
CD�ABCD.

To obtain it, we replace �ACBD by ��ACBD−�BCAD� /2 in the left hand side and then use the
replacement �ACBD=−�ABDC−�ADCB in the resulting expression. In fact, it is more convenient to
write �64� in terms of the traceless Ricci tensor, Sab�Rab−Rgab /5,

Sac = − 3
4�a

AB�c
CD�ABCD. �65�

Previous equation expresses the fact that �ABCD is indeed the spinor counterpart of the traceless
Ricci tensor. We follow the four-dimensional terminology and refer to �ABCD as the “Ricci spinor”
although the suitable name would be the “traceless Ricci spinor.”

The scalar  and the Ricci spinor vanish if and only if Sab=0, R=0 in which case Rabcd

becomes the Weyl tensor Cabcd. Therefore, by setting �ABCD=0,  =0 on �62�, we deduce

Cabcf = −
1

2
Gab

ABGcf
CD�ABCD, �66�

and hence the spinor �ABCD has all the information about the Weyl tensor. Again we use the
four-dimensional nomenclature and call �ABCD the Weyl spinor. Note that �66� is still true when
the Ricci spinor and  do not vanish because the Weyl tensor is linearly independent of any
quantity containing the Ricci scalar and the trace-free Ricci tensor. Equation �66� has been already
presented in Ref. 4, where the Weyl spinor was used to build an algebraic classification of the
Weyl tensor Cabcd.

Equation �62� bears a strong resemblance with the formula, which yields the curvature spinors
in four-dimensional Lorentzian geometry. In that case, one has three types of curvature spinors and
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two of them are of rank four as well �the Weyl spinor and the Ricci spinor�. In the case of
four-dimensional Lorentzian geometry all the curvature spinors have monoterm symmetries but
this is not true in the five-dimensional case where the Ricci spinor �ABCD fulfills the cyclic
property. As far as we know this is the first time in which the general decomposition of the
Riemann tensor �62� in a five-dimensional spacetime is computed.

B. Spinor form of the second Bianchi identity

As in the case of the spinor calculus of four-dimensional Lorentzian geometry, the curvature
spinors introduced above fulfill a differential identity which is equivalent to the second Bianchi
identity of the Riemann tensor. We present this identity in the next proposition and we explain how
it is obtained.

Proposition 3: The curvature spinors �ABCD and �ABCD satisfy the following differential
identity:

��Z�
W��V�BAW − ��Z�

W��V�ABW − ��Z�
W��V�BAW − 2��A�
�V���Z�
�B� = 0. �67�

Proof: We start with the Bianchi identity �29� particularly to the covariant derivative �a and
we replace the inner curvature by its formula in terms of XABCD given in �50�. This gives

GbcCD�aXCD
AB + GcaCD�bXCD

AB + GabCD�cX
CD

AB = 0. �68�

We replace here GabAB using �9� getting

− �b
CD�cC

F�aXABDF + �a
CD�cC

F�bXABDF − �a
CD�bC

F�cXABDF = 0.

The quantities � in this expression can be removed if we multiply both sides of it by �a
YW�b

UV�c
TZ

and use �6� where necessary. The final expression is a bit long but it can be shortened if we
contract the free index T with W and the free index U with Y. The result of these operations is

��Z�
WX�V�WAB = 0. �69�

Note that this expression has the same information as �68� as can be checked, for instance, by
counting the independent number of equations supplied by each of them when they are written in
a generic frame �this number is 100�. Now, it only remains to insert the decomposition �61� of the
spinor XABCD into �69�. After doing this and going through some algebra, �67� is finally derived. �

Remark 3: Given the relation �48�, the Bianchi identity for the inner curvature FabAB is
equivalent to the second Bianchi identity of the Riemann tensor Rabcd. Thus, �67� has the same
information as the second Bianchi identity of the Riemann tensor.

Equation �67� has a strong resemblance to the differential identity fulfilled by the curvature
spinors in the spinor calculus of four-dimensional Lorentzian geometry.

C. The Ricci identity

Consider now the Ricci identity �28� particularly for �a. In order to handle this identity in an
easier way, we define the linear operator

�AB � Gab
AB�a�b. �70�

Straightforward properties of the operator �AB are

��AB� = �AB, �AB��A�B� = �B�AB�A + �A�AB�B. �71�

The Leibnitz rule is easily generalized to the product of two spinors of arbitrary rank. Next we find
the value of the action of �AB on any rank-1 spinor �A. To that end we take �28� and multiply both
sides of it by Gab

CD. The result is
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�CD�B = − 1
2FabA

BGab
CD�A.

We use in this formula the relation �50�, getting

�CD�B = − 1
4XFH

A
B�A��CH�DF + �CF�DH� ,

where the first of �11� was used along the way. Finally, we apply the decomposition of XFH
A

B

shown in �61� obtaining �we lower all indices�

�CD�B =  �B�C���D� − �A�B�CD�A − 1
2�A�BCDA. �72�

Using the Leibnitz rule �71� we can extend previous result to a spinor of arbitrary rank. We note
the similarity of �72� with the action of the operator which is introduced in the spinor calculus of
four-dimensional Lorentzian geometry when studying the spinor form of the Ricci identity �47�.
This operator has similar properties as the �AB studied here and that is the reason why we chose
the same notation for it as in the four-dimensional case.

V. THE EXTENSION OF THE NEWMAN–PENROSE FORMALISM

A very important application of the spinor calculus in four-dimensional Lorentzian geometry
is the Newman–Penrose formalism.16 The Newman–Penrose formalism consists in writing out all
the Ricci and Bianchi identities in a null tetrad. By doing so one is able to set up a direct link
between the components of the curvature spinors and the components of the Riemann tensor. Also
the Ricci rotation coefficients can be written in terms of the spin coefficients which are complex
quantities. This enables one to reduce the number of equations when we regard equations that are
complex conjugates of each other as dependent.

Using the ideas developed in the foregoing sections we can achieve an extension of the
Newman–Penrose formalism to a five-dimensional spacetime. The word extension is appropriate
here because our formalism contains the Newman–Penrose formalism as a particular case �which
is reasonable given that a four-dimensional spacetime is in some sense a “subset” of a five-
dimensional one�. This means that all the variables which appear in the Newman–Penrose formal-
ism �spin coefficients, curvature components, etc.� will be also present in our equations.

In this section, we present the basic variables which we use in our extension of the Newman–
Penrose formalism together with some of the five-dimensional Newman–Penrose equations. The
full set of equations will be shown and studied elsewhere.9

A. Components of the curvature spinors in a spin tetrad

The first step is the introduction of suitable symbols for each of the independent components
of the curvature spinors with respect to a spin tetrad, much in the way as it is done in the case of
four-dimensional Lorentzian geometry. This is done next separately for each curvature spinor.

These are the 16 complex independent components of the Weyl spinor

�0 � �ABCDoAoBoCoD, ��0 � �ABCDoAoBoCõD,

�1 � �ABCDoAoBoC�D, ��1 � �ABCDoAoB�CõD, �1
� � �ABCDoAoBoC�̃D,

�2 � �ABCDoAoB�C�D, ��2 � �ABCDoA�B�CõD, �2
� � �ABCDoAoB�C�̃D,

�3 � �ABCDoA�B�C�D, ��3 � �ABCDõA�B�C�D, �3
� � �ABCDoA�B�C�̃D,

�4 � �ABCD�A�B�C�D, �4
� � �ABCD�A�B�C�̃D,
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�01 � �ABCDoAoBõC�̃D, �02 � �ABCDoAoB�̃C�̃D �12 � �ABCDoA�B�̃C�̃D. �73�

The subindex in the scalars �0–�4 indicates the number of � spinors used in the contraction with
the Weyl spinor �this notation is similar to the four-dimensional case and indeed these scalars
correspond to the components of the four-dimensional Weyl spinor when the four-dimensional
reduction is performed �see Sec. V C 1��. We use these scalars as the starting point to denote other
components of the Weyl spinor as follows: a star in front of a scalar means that the replacement
oA→ õA has been performed once in the definition which yields the scalar whereas a star behind a
scalar means that the replacement �A→ �̃A is done �also once�. For example starting from �2 we
define ��2 ��2

�� as follows �see �73��:

�2 = �ABCDoAoB�C�D ⇒ ��2 =
oA→õA

�ABCDõAoB�C�D ⇒ �2
� =

�C→�̃C

�ABCDoAoB�̃C�D.

When we have a scalar with the same number of elements of the spin tetrad with no tilde as
elements with tilde we append two subindices to the scalar. Each of these subindices tells, respec-
tively, the number of spinors � and �̃ intervening in the definition of this scalar �see the definitions
of �01, �02, and �12�. The notation conventions just introduced for these components of the Weyl
spinor are kept for the remaining components of the curvature spinors. Given the symmetries of
�ABCD and �ABCD these conventions should lead to no confusion.

These are the three real components of the Weyl spinor,

�00 � �ABCDoAoBõCõD, �11 � �ABCDoA�BõC�̃D, �22 � �ABCD�A�B�̃C�̃D, �74�

These are the four complex components of the Ricci spinor,

!01 � �ABCDoAõBoC�̃D, !02 � �ABCDoA�̃BoC�̃D, !12 � �ABCDoA�̃B�C�̃D,

�!02 � �ABCDoA�̃BõC�̃D. �75�

These are the six real components of the Ricci spinor,

!00 � �ABCDoAõBoCõD, !11 � �ABCDoAõB�C�̃D, !22 � �ABCD�A�̃B�C�̃D,

� � �ABCDõA�̃BõC�̃D, �!01 � �ABCDoAõBõC�̃D, �!12 � �ABCD�A�̃BõC�̃D, �76�

To the quantities introduced in the previous paragraphs, one should add the scalar curvature  . A
simple counting shows that the number of these quantities and the number of their complex
conjugates �when they are complex� adds up to 50, which is the number of independent compo-
nents of the Riemann tensor. Also these quantities contain as a subset the Newman–Penrose
scalars which are used to represent the components of the Riemann tensor �these are denoted with
the usual symbols used within the Newman–Penrose formalism so the reader can spot them�.

B. The commutation relations

The commutation relations of the operators �1=D, �2=
, �3=�, �4= �̄, and �5=D are given
by the equation

�a�bZ − �b�aZ = T1
baDZ + T2

ba
Z + T3
ba�Z + T4

ba�̄Z + T5
baDZ ,

where Z is an arbitrary scalar field and

Ta
bc = 	��,N�a

cb − 	��,N�a
bc. �77�

All the quantities 	�� ,N�a
cb can be written in terms of the spin coefficients by means of �46�.

Making the appropriate replacements, we get �we suppress the arbitrary scalar Z�
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D
 − 
D = − �� + �̄�D − �� + �̄�
 − �� + �̄�� − ��̄ + ���̄ − �a + e�D , �78�

D� − �D = − ��̄ + � + �̄�D + 

 + �� − �̄ − �̄�� − ��̄ − �� − ��D , �79�

DD − DD = �− 2a + � + �̄�D + 2d
 + ��̄ − 2�̄�� + �� − 2���̄ − fD , �80�


� − �
 = − �̄D + ��̄ + � + ��
 + �� − �̄ + ��� + �̄�̄ + �� + ��D , �81�


D − D
 = − 2bD + �2e − � − �̄�
 + �� − 2�̄�� + ��̄ − 2���̄ + cD , �82�

��̄ − �̄� = �− � + �̄�D + �− � + �̄�
 + �− � + �̄�� + ��̄ − ���̄ − �� − �̄�D , �83�

�D − D� = ��̄ − 2��D + �� + 2��
 + �� − �̄ − 2�̄�� − 2��̄ − �D . �84�

These equations reduce to the standard Newman–Penrose commutation relations when we set the
five-dimensional spin coefficients and D to zero.

C. The components of the Riemann tensor

In this subsection we show the relation between the components of the Riemann tensor in a
seminull pentad and the quantities introduced in Sec. V A. The starting point is Eq. �62� which is
expressed in the spin tetrad and the seminull pentad. The components in these frames of Gab

AB can
be readily computed using �9� and �26� so we only need to insert the corresponding values. After
some algebra, the independent components of the Riemann tensor turn out to be

R1212 = 2!11 +  − 1
2 ��2 + �̄2� + �11, R1213 = − !01 + 1

2 ��1 − �01� ,

R1215 = ��1 + ��̄1 − 2 �!01, R1223 = !12 − 1
2 �− �12 + �̄3� ,

R1225 = �3
� + �̄3

� + 2 �!12, R1234 = 1
2 ��2 − �̄2� ,

R1235 = − ��̄2 − �2
�, R1313 = − 1

2�0, R1314 = !00 + 1
2�00, R1315 = − ��0,

R1323 = − !02 − 1
2�02, R1324 =  + 1

2�2 + �, R1325 = − �2
� − 2 �!02,

R1334 = − !01 − 1
2 ��1 + �01�, R1335 = �1

�, R1345 = ��1 + 2 �!01,

R1515 = 2�!00 − �00�, R1523 = ��̄2 − 2 �!02, R1525 = 2�!11 +  − �11 − 2�� ,

R1534 = − ��1 + ��̄1, R1535 = − 2�!01 − �01�, R2323 = − 1
2�̄4,

R2324 = !22 + 1
2�22, R2325 = �̄4

�, R2334 = − !12
1
2 �− �12 − �̄3� ,

R2335 = − ��̄3, R2345 = − �̄3
� + 2 �!12, R2525 = 2�!22 − �22� ,
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R2534 = − �3
� + �̄3

�, R2535 = − 2�!12 − �12� ,

R3434 = 2!11 +  − 1
2 ��2 + �̄2� − �11 + 2�, R3435 = − ��̄2 + �2

� − 2 �!02,

R3535 = 2�!02 − �02�, R3545 = 2�!11 −  − �11 + �� . �85�

This is a set of 34 equations, which has all the information about the Riemann tensor. Now, one
can write the Riemann tensor components in terms of the Ricci rotation coefficients by means of
the standard formula

Rabcd = gdf�	��,N�f
bh	��,N�h

ac − 	��,N�f
ah	��,N�h

bc − 	��,N�f
hcT

h
ab − �a	��,N�f

bc

+ �b	��,N�f
ac� . �86�

If we replace here the values of the Riemann tensor components found in �85� and the Ricci
rotation coefficients by their values in terms of the spin coefficients, shown in �46�, we get a set of
34 equations which can be used as the starting point to extend the four-dimensional Newman–
Penrose equations to a five-dimensional spacetime. The complete set of these equations shall be
presented an analyzed in Ref. 9.

1. Four-dimensional reduction

It is instructive to study how the standard four-dimensional Newman–Penrose formalism is
recovered from the five-dimensional equations �one does not need to know the full set of five-
dimensional equations in order to study this reduction�. To perform the reduction first we set to
zero the spin coefficients defined by �43� and �44�. Next we must compute the conditions on the
components of the curvature spinors which leads to the reduction. These conditions are given by
the relations

R1215 = R1225 = R1235 = R1315 = R1325 = R1335 = R1345 = R1515 = R1523 = R1525 = R1534 = R1535 = R2325

= R2335 = R2345 = R2525 = R2534 = R2535 = R3435 = R3535 = R3545 = 0,

which means that there is a local coordinate system �x1 ,x2 ,x3 ,x4 ,x5	 on M such that ua=� /�x5 on
it and the metric tensor takes the form

ds2 = − �dx5�2 + �
i,j=1

4

gijdxidxj ,

with the functions gij only depending on �x1 ,x2 ,x3 ,x4�, i.e., the metric tensor is decomposable or
reducible.7 If we replace here the values of the components of the Riemann tensor found in �85�,
we get

�02 = !02,
��2 = 0, �3

� = 0, �13 = !12,
��3 = 0, �4

� = 0,

��0 = 0, �1
� = 0, ��1 = 0, �2

� = 0, �01 = !01, �00 = !00,

�11 = !11 −
 

3
, �22 = !22,

�!02 = 0, � =
2 

3
, �!01 = 0, �!12 = 0. �87�

From this expression, we deduce that some components of the four-dimensional Ricci spinor are
related to components of the five-dimensional Weyl spinor.
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VI. CONCLUSIONS

We have studied in detail the spinor calculus in a five-dimensional Lorentzian manifold and
shown how concepts so important as the spin structure, spin covariant derivative, and the curva-
ture spinors are defined in this framework. The algebraic and differential properties of the curva-
ture spinors have been studied in detail. An interesting application of the ideas presented in this
paper is the extension of the Newman–Penrose formalism to a five-dimensional spacetime. In this
regard, we have shown how by using the spinor techniques one can define a set of quantities �the
spin coefficients and the components of the curvature spinors in a spin tetrad� which contains the
variables used in the four-dimensional Newman–Penrose formalism. This means that when certain
quantities in our formalism are set to zero one recovers the usual four-dimensional Newman–
Penrose formalism �this corresponds to a dimensional reduction from five to four dimensions�. In
particular, we have seen that under this dimensional reduction some components of the four-
dimensional Ricci spinor are directly related to components of the five-dimensional Weyl spinor.
Also the introduction of complex spin coefficients and the curvature spinors enables us to reduce
the number of variables in our frame formalism. For example we only need to deal with 28 spin
coefficients, and 30 curvature scalars, rather than the 50 quantities which we would need in each
case if we used a frame formalism not based on the spinor approach.

We have given the explicit form of the commutation relations of the Newman–Penrose frame
derivations in five dimensions but we have not written out in full all the remaining Newman–
Penrose equations �Ricci and Bianchi identities� due to their length. This complete set of equations
is much larger than the four-dimensional set of Newman–Penrose equations but this fact does not
render the five-dimensional Newman–Penrose equations less useful. In fact our expressions may
be more suited in computations which seek to find exact solutions because in that case one
normally needs to write out all the Ricci and Bianchi identities and, as explained before, the
introduction of complex quantities arising from the spin formalism permits us to work with a set
of less quantities and eventually less equations. For example, in particular cases in which a
number of components of the curvature spinor vanish we may expect significant simplifications
just as it happens in the four-dimensional Newman–Penrose formalism. Other important applica-
tions in which the five-dimensional Newman–Penrose formalism developed by us could really
show its advantage happens when one wishes to study how to extend a known four-dimensional
exact solution �or group of exact solutions� to five dimensions. For example, we may be interested
in studying all the possible extensions of the four-dimensional Petrov type D vacuum solutions to
five dimensions. In this particular case, one knows from the four-dimensional analysis that a spin
tetrad such that the conditions �0=�1=�3=�4=0 can be chosen. Something similar would
happen if we are looking for extensions of four-dimensional Petrov type N solutions to five
dimensions �in this case the conditions are �1=�2=�3=�4=0�.

Another interesting property is the fact that some of the quantities used in the extended
Newman–Penrose formalism behave as weighted quantities under the transformation

oA → HoA, �A →
1

H
�A, õA → H̄õA, �̃A →

1

H̄
�̃A, �88�

where H is a complex parameter. This transformation keeps the symplectic metric �AB and hence
it can be related to a Lorentz transformation of the metric gab. If under �88� a scalar Z changes
according to the rule

Z → HpH̄qZ ,

then it is said that the scalar Z is a �p ,q�-weighted quantity. One can then define the boost weight
and the spin weight of Z in a similar fashion as in four dimensions

boost weight:
p + q

2
, spin weight:

p − q

2
.
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All the components of the curvature spinors defined in �73�–�76� are �p ,q�-weighted quanti-
ties for certain integers p, q. Also most of the spin coefficients are weighted quantities and indeed
only �, �, �, �, and � are nonweighted.9 This raises the possibility of an extension of the Geroch,
Held, and Penrose �GHP� formalism10 to dimension 5. In fact, it is not very difficult to introduce
the weighted differential operators in terms of the Newman–Penrose frame differentials. One

concludes that the weighted differential operators constructed from D, 
, �, and �̄ coincide with
the four-dimensional definitions of, respectively, Þ, Þ�, ð, ð� as shown in Ref. 9.

Other interesting issue is the algebraic classification of the Weyl spinor. This has been tackled
in Ref. 4 where an invariant classification of this spinor was put forward. Under this classification,
there are 12 different “Petrov types” of the Weyl spinor so it would be interesting to find out how
one can characterize these Petrov types in terms of conditions involving the components of the
Weyl spinor �some cases are already analyzed in Ref. 4�. Alternatively, one could try to apply the
alignment theory directly to the Weyl spinor and devise a classification for it as in Refs. 14 and 3.
This theory is based on studying the boost weights of those scalar components of the Weyl tensor
which do not vanish on a suitably chosen frame and hence it is clear that we could follow the same
procedure if we used the scalar components of the Weyl spinor and the notion of boost weight
discussed above. Indeed, some Petrov types adopt a simpler form when we work with the com-
ponents of the Weyl spinor. For example, a spacetime is of Petrov type D if and only if the
components of the Weyl spinor different from zero are those of boost weight zero. These are

�2, �11,
��2, �2

�, �02.

One could take this as the starting point of a systematic study of all the possible five-dimensional
�vacuum� type D exact solutions of the Einstein equations. To that end, one sets to zero in the
five-dimensional Newman–Penrose equations all the curvature scalars except those shown in
previous equation �if we do not work in vacuum then we need to retain the components of the
Ricci spinor� and then checks the consistency with the commutation relations shown below. Work
in this direction has been already started in Ref. 9 for the vacuum case using the extension of the
GHP formalism mentioned above.

The five-dimensional spinor calculus is now being implemented in the MATHEMATICA package
Spinors,8 which is part of the xAct system.12
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APPENDIX: SYMPLECTIC METRICS ON A VECTOR SPACE

Let V and V� be, respectively, a vector space �real or complex� and its dual and let us use
small Latin characters a ,b ,c , . . . to denote the abstract indices of the elements of the tensor algebra
built with V and V�, which is T�V�. We introduce next two quantities Mab and Tab establishing
linear isomorphisms M :V→V� and T :V�→V in the following way:

va � Mabv
b and �a � Tab�b for any va � V, �a � V�. �A1�

Note the convention of having only the second indices of M and T as contracted indices. Previous
isomorphisms are generalized to T�V� in the obvious way and shall be referred to as the operation
of “raising and lowering of indices.” In addition, we impose that T=M−1 and so �A1� implies

TabMbc = 
a
c, �A2�

with 
a
c the identity on V �Kronecker delta on V�, and
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MabTbc = �a
c, �A3�

with �a
c the identity on V� �Kronecker delta on V��.

We can change indices with the Kronecker delta tensors, and now we can also raise and lower
indices by making use of the M and T isomorphisms. Suppose now that we wish to compute the
product Mab
b

c. We can either lower an index of 
 or change an index of M. We conclude

Mac = 
ac �A4�

and, similarly,

Tac = �ac. �A5�

We can also see that

Tab = Mba and Tab = Mba, �A6�

independent of the symmetries of M and T, which could even have no symmetry at all. Conclud-
ing, we always have, for indices of any character, and any symmetry

Tab = Mba = 
ba = �ab, Tab = Mba = 
ba = �ab, Ta
b = �a

b, Ma
b = 
a

b. �A7�

The four quantities T, M, 
, and � are essentially the same. Let us take, for clarity, only T. It
always obeys

va = Tabvb, va = Ta
bvb, vb = vaTab, vb = vaTa

b. �A8�

However, the following are generically undefined

Tabv
b, Ta

bv
b, vaTab, vaTa

b, �A9�

unless Tab has a definite symmetry which means that either Tab is symmetric or antisymmetric.
When this is the case, we deduce from �A7� that Tab Mab, Mab, 
ab, �ab, 
ab, and �ab all inherit the
symmetry of Tab and indeed we could just regard the quantity Tab as fundamental and the remain-
ing ones as derived from it, keeping the symbol T as the kernel letter for all of them. Also using
�A7�, one may deduce

�a
b = 
b

a, �A10�

if Tab is symmetric and

�a
b = − 
b

a,

if Tab is antisymmetric. In the case of Tab being symmetric then one introduces a quantity �b
a to

mean either �a
b or 
b

a and no confusion can arise. However, if Tab is antisymmetric and we insist
on keeping only one delta symbol �b

a, we need to specify also whether �b
a refers to �a

b or to 
b
a.

We believe that to keep the notation �b
a in this context is somewhat confusing and one should

instead pick up one of the “deltas” as the fundamental one and regard the other as a derived
quantity. For example, if we agree to take �a

b as the fundamental quantity �as we do in our
discussion in Sec. II�, then we have

�a
b = 
a

b = − �b
a,

and no confusion arises.
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