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Abstract—This paper presents the topological spatial 

relations that can exist in the geographical space between a 
Circular Spatially Extended Point and a Line and describes the 
use of those spatial relations in the identification of the 
conceptual neighbourhood graphs that state the transitions 
occurring among relations. The conceptual neighbourhood 
graphs were identified using the snapshot model and the 
smooth-transition model. In the snapshot model, the 
identification of neighbourhood relations is achieved looking at 
the topological distance existing between pairs of spatial 
relations. In the smooth-transition model, conceptual 
neighbours are identified analysing the topological 
deformations that may change a topological spatial relation. 
The graphs obtained were analysed as an alternative to map 
matching techniques in the prediction of the future positions of 
a mobile user in a road network. 
 

Index Terms—Topological spatial relations, Conceptual 
neighbourhood graph, Snapshot model, Smooth-transition 
model, Spatially Extended Point. 
 

I. INTRODUCTION 
Spatial relations between geometric objects have been 

classified into several types [1, 2], including direction 
relations [3], distance relations [4] and topological relations 
[5]. Topological relations are those spatial relations 
preserved under continuous transformations of the space, 
such as rotation or scaling. 

Research on topological spatial relations between different 
types of objects (points, lines and regions) has been 
undertaken for many years, identifying the topological spatial 
relations between them, and demonstrating their geometric 
realization, proving the existence of such relations. Some of 
the works undertaken so far include the identification of the 
topological spatial relations between regions [6], between 
lines [6], between regions and lines [6, 7], between regions 
with broad boundaries [8], between a spatially extended point 
and a region [9], between broad lines [10], and between lines 
with broad boundaries [10], only to mention a few. 

The relevance of identification of such topological spatial 
relations is associated with the need to conceptualize the 

spatial relations that can exist among several objects in the 
geographical space. The obtained models can be used as a 
computational framework for spatial reasoning. Their 
implementation in a system, like a Geographical Information 
System, allows the representation and manipulation of 
complex objects associated with complex realities. 
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The work described in this paper is associated with the 
topological spatial relations existing between a Circular 
Spatially Extended Point and a Line. A Circular Spatially 
Extended Point is a region-like object characterized by the 
inclusion of a point and a region that defines the area of 
influence of that point. In the scope of this work, the Circular 
Spatially Extended Point represents a complex object in the 
sense that the point and its region of influence are not 
dissociable (Fig. 1).  

 

 
Fig. 1 – A circular spatially extended point 

 
The identification of the topological spatial relations 

between a Circular Spatially Extended Point and a Line was 
first addressed by the authors of this paper in [11] to use them 
in the prediction of mobile users’ future positions in a 
context-aware mobile environment. With the topological 
spatial relations it is possible to identify the conceptual 
neighborhood graphs that state the possible transitions 
between spatial relations and, therefore, the possible 
movements that a mobile user can do in a road network. The 
use of a Circular Spatially Extended Point is associated with 
the need to associate a certain degree of uncertainty to the 
position of a mobile user. A similar approach was followed 
by Wuersch and Caduff [12, 13] for pedestrian navigation 
using the topological spatial relations existing between two 
Circular Spatially Extended Points, one representing the 
user’s location and the other representing a waypoint that is 
used to define paths for pedestrians in a pedestrian guiding 
system. 

The abstractions usually used to represent spatial objects, 
such as single points, single lines and single regions, and also 
their complex data types, complex points, complex lines and 
complex regions, and for whom the topological spatial 
relations existing between them were already identified [14], 
cannot be used for the representation of the particular 
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integration of a point and a region in the same object. This 
object is here identified as a Circular Spatially Extended 
Point. For regions with broad boundaries, for example, the 
two regions that integrate the object “region with broad 
boundary” are 2-dimensional components, not representing 
the 0-dimensional part of a Circular Spatially Extended Point 
(its pivot) [15]. In emerging applications areas, like 
context-aware mobile environments, location-based services, 
ubiquitous computing, among others, the position of a mobile 
user constitutes the key for providing specific context-aware 
services. However, this position usually integrates a certain 
degree of uncertainty associated to the sensing technology. 
Although technologies like the Global Positioning System 
provide quite accurate estimates, the position provided by 
other means like cellular networks positioning systems is 
typically much less precise. Having this limitation and the 
need to properly deal with it, the use of a Circular Spatially 
Extended Point allows the representation of such uncertainty 
and also the definition, in a specific application, of the 
maximum uncertainty value through the specification of the 
radius of the Circular Spatially Extended Point. 

The need for the identification of the topological spatial 
relations was motivated by a specific application domain - 
context-aware mobile environments - presenting this paper 
an example of how the topological spatial relations existing 
between a mobile user and a road network can be used to 
assign the user to a specific road segment. However, this 
research is of general use since the adopted principles were 
not adapted or strictly designed to a specific application. 

The motivation for this work is the identification of the 
topological spatial relations between a Circular Spatially 
Extended Point and a Line, and the need for the 
corresponding conceptual neighborhood graphs is here 
expressed. The following sections are dedicated to the 
synthesis of the conceptual framework adopted for the 
identification of such spatial relations and to the 
identification of the corresponding conceptual neighborhood 
graphs. Section 2 characterizes the objects in analysis in this 
work and presents the topological spatial relations that can 
exist between these objects. This is followed by the 
identification of the conceptual neighborhood graphs using 
two distinct approaches [7]: the snapshot model (section 3) 
and the smooth-transition model (section 4). In section 5 the 
two graphs are compared and the main differences between 
them are identified and discussed. Section 6 presents an 
example of the use of the identified spatial relations and 
conceptual neighborhood graphs, and section 7 concludes 
summarizing the work undertaken.   

II. TOPOLOGICAL SPATIAL RELATIONS BETWEEN A 
CIRCULAR SPATIALLY EXTENDED POINT AND A LINE  

A Circular Spatially Extended Point (CSEP) can be 
considered as a region-like concept. A CSEP (Fig. 1) has its 
own interior, boundary and exterior. While it shares the same 
concepts of interior, boundary and exterior of a region, the 
CSEP is distinguished from a general region by the 
identification of a point within the interior called the pivot. 
The pivot is conceptually similar to a 0-dimension object. A 
major difference between a usual point and a pivot is that a 
pivot has an area of influence that defines the boundary of the 

CSEP [9].  
From a geometrical point of view, a simple line, 

representing a linear curve, has a boundary with two simple 
points, each of which has no extension [6, 14] (Fig. 2). The 
definition of a simple line usually refers to a 1-dimensional 
object of ℜ2 with no self-intersections [16]. Closed lines are 
lines without end-points [16], so they lay out of the definition 
of simple line and consequently are not considered in the 
scope of the work presented in this paper.    

 

 
Fig. 2 – A simple line 

 
The formalism used for the identification of the 

topological spatial relations between a CSEP and a line is 
based on the algebraic approach proposed by Egenhofer (the 
4- and 9-intersections models) [6]. The topological spatial 
relations were identified [11], using a 4x3 matrix as proposed 
in [9]. The conditions that allowed the identification of the 
spatial relations were revised and their formal proofs were 
also undertaken, work that is presented in this paper. The 4x3 
matrix represents the intersections ( Ι ) between the pivot (P•), 
interior (P°), boundary (∂P) and exterior (P-) of a CSEP (P) 
and the interior (L°), boundary (∂L) and exterior (L-) of a line 
(L) (Fig. 3). 
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Fig. 3 – Parts of a CSEP and a line 

 
Each relation (R) between a CSEP (P) and a line (L) is 

characterized by 12 (4x3) intersections with empty (∅) or 
non-empty (¬∅) values depending on how the geographical 
objects are related (Equation 1). 
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The several conditions proposed by Egenhofer and 

Herring [6] for the identification of the topological relations 
between regions, lines and points in a Geographic Database 
were analyzed. Following these authors’ suggestions, 9 
conditions were adopted and adapted to the specific context 
of this work. These conditions are associated with the 
definition of the topological spatial relations that can exist 
between regions, between a region and a line, and between a 
non-point object (a region or a line) and a point, and are here 
described as conditions 1 to 9. Additional conditions were 
defined attending to the particular case of the definition of the 
topological relations between a CSEP and a line. These 
conditions are referred as condition 10 to condition 14. The 
complete set of conditions and their formal proofs are now 
described.  
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Condition 1. The exteriors of the two objects (P and L) 

intersect with each other (Equation 2). 
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Proof: Knowing that P• ∪ P° ∪ ∂P ∪ P- = ℜ2 and that L° ∪ 

∂L ∪ L- = ℜ2, the statement P- ∩ L- = ∅ can only be possible 
either if: i) P• ∪ P° ∪ ∂P = ℜ2; ii) L° ∪ ∂L = ℜ2; or iii) P• ∪ P° 
∪ ∂P ∪ L° ∪ ∂L = ℜ2. However, all these conditions are 
impossible since the objects P, L and P ∪ L are bounded and 
ℜ2 is unbounded. 

 
Condition 2. If P’s boundary intersects L’s exterior then 

P’s interior must intersect L’s exterior as well, and vice-versa 
(Equation 3, where ∨ means or).  
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Proof: Assuming that the constraint rules are false, then ∂P 

∩ L- = ¬∅ ⇒ P° ∩ L- = ∅ and ∂L ∩ P- = ¬∅ ⇒ L° ∩ P- = ∅. 
Knowing that L° ∪ ∂L ∪ L- = ℜ2, this leads to P° ∩ (L° ∪ ∂L 
∪ L-) = P° ∩ ℜ2 = ∅, which is a contradiction to the assumed 
non-emptiness of the interior of a CSEP, here represented by 
a region, so P° ∩ ℜ2 = ¬∅. For the other rule, and knowing 
that P• ∪ P° ∪ ∂P ∪ P- = ℜ2, this leads to L° ∩ (P• ∪ P° ∪ ∂P 
∪ P-) = L° ∩ ℜ2 = ∅, which is a contradiction to the assumed 
non-emptiness of the interior of a line, so L° ∩ ℜ2 = ¬∅. 

 
Condition 3. P’s boundary intersects with at least one part 

of L and vice-versa (Equation 4). 
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Proof: Knowing that P• ∪ P° ∪ ∂P ∪ P- = ℜ2, L° ∪ ∂L ∪ L- 

= ℜ2, and that only non-empty parts of both objects are 
considered, it is obtained that ∂P ∩ ℜ2 = ¬∅ and that ∂L ∩ 
ℜ2 = ¬∅. These statements are equivalent to ∂P ∩ (L° ∪ ∂L 
∪ L-) = ¬∅ and ∂L ∩ (P• ∪ P° ∪ ∂P ∪ P-) = ¬∅, which 
verify the constraint rules expressed in equation 4. 

 
Condition 4. If both interiors are disjoint then P’s interior 

cannot intersect with L’s boundary (Equation 5). 
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Proof: Assuming that both interiors are disjoint, Pº ∩ Lº = 

∅, and that P’s interior intersects L’s boundary, Pº ∩ ∂L = 
¬∅, the concept of simple line is not accomplished since the 
two end points that represent the boundary of the line are 
contiguous to the points that integrate the interior of the line 
and cannot be disaggregated from them. So, it is impossible 
for a line to be disjoint from the interior of a region and at the 
same time its boundary be intersected by the region’s interior. 

 
Condition 5. If L’s interior intersects with P’s interior and 

exterior, then it must also intersect with P’s boundary 
(Equation 6). 
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Proof: As a simple line integrates two end points that 

represent the boundary of the line and that are contiguous to 
the connected set of points that integrate the interior of the 
line, it is impossible the intersection of L’s interior with the 
interior and the exterior of P without also intersecting P’s 
boundary (between P’s interior and exterior we have P’s 
boundary). 

 
Condition 6. P’s interior always intersects with L’s 

exterior (Equation 7). 
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Proof: Let’s assume that the condition is wrong, then Pº ∩ 

L- = ∅. To confirm this condition, the statement Pº = Lº ∪ ∂L, 
or the statement Pº = Lº, must be verified. Since P is a 
region-like object (2-dimensional) and L represents a simple 
line object (1-dimensional) this leads to an impossible 
situation since they cannot be equal. 

 
Condition 7. P’s boundary always intersects with L’s 

exterior (Equation 8). 
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Proof: Let’s assume that the condition is wrong, then ∂P ∩ 

L- = ∅. To confirm this condition, the statement ∂P = ∂L ∪ Lº 
must be verified. Since a simple line has two end-points, a 
non-empty boundary, and the boundary of a region is a closed 
line with no end-points, the statement is not verified since the 
boundary of a region is not equal (in conceptual terms) to a 
simple line. 
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Condition 8. L’s interior must intersect with at least one of 
the four parts of P (Equation 9). 
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Proof: Knowing that P• ∪ P° ∪ ∂P ∪ P- = ℜ2, L° ∪ ∂L ∪ L- 

= ℜ2, and that only non-empty parts of objects are considered, 
it is possible to say that Lº ∩ ℜ2 = ¬∅. These statements are 
equivalent to Lº ∩ (P• ∪ P° ∪ ∂P ∪ P-) = ¬∅, which verifies 
the constraint rules expressed in equation 9. 

 
Condition 9. P’s pivot can only intersect with a single part 

of L (Equation 10). 
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Proof: Since P• is 0-dimensional geometric primitive, 

representing a position, and by definition it has no boundary 
(a simple point can be specified as having the following 
characteristics: ∂P = ∅ and P° = P ([14]), it can only be 
intersected by one of the three parts considered for a line, L°, 
∂L or L-. This leads to the conditions P• ∩ L° = ¬∅ ∨ P• ∩ ∂L 
= ¬∅ ∨ P• ∩ L- = ¬∅. 

 
Condition 10. P’s pivot must intersect with at least one 

part of L (Equation 11). 
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Proof: Knowing that P• ∪ P° ∪ ∂P ∪ P- = ℜ2, L° ∪ ∂L ∪ L- 

= ℜ2, and that only non-empty parts of objects are considered, 
it is possible to say that P• ∩ ℜ2 = ¬∅. These statements are 
equivalent to P• ∩ (L° ∪ ∂L ∪ L-) = ¬∅, which verifies the 
constraint rules expressed in equation 11. 

 
Condition 11. If P’s interior intersects with L’s interior, 

and P’s exterior intersects with L’s boundary, then the P’s 
boundary must intersect with L’s interior (Equation 12). 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−¬−
−−
−−¬
−−−

≠

φ
φ
φ

),( LPR
 (12) 

Proof: As a simple line integrates two end points that 
represent the boundary of the line and that are contiguous to 
the connected set of points that integrate the interior of the 
line, it is impossible the intersection of L’s interior with P’s 
interior and the intersection of L’s boundary with P’s exterior, 

without L’s interior also intersecting P’s boundary (between 
P’s interior and exterior we have P’s boundary).  

 
Condition 12. The boundary of a simple line L (simple 

lines are one-dimensional, continuous features embedded in 
the plane [14]) can only intersect with at most two parts of P 
(Equation 13). 
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Proof: A simple line has a boundary that integrates two 

points, each one of them being a 0-dimensional geometric 
primitive. These two points can only intersect, each of them, 
one part of the CSEP P. This leads to the intersection of the 
boundary of L (∂L) with at most two parts of P since the two 
points of ∂L can intersect the same part of P, with exception 
to the pivot of P (P•) that can only be intersected by one of the 
two points of ∂L. 

 
Condition 13. If L’s boundary intersects P’s pivot, then 

P’s interior must intersect L’s interior (Equation 14). 
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Proof: Assuming that the constraint rule is false, then ∂L ∩ 

P• = ¬∅ ⇒ P° ∩ L° = ∅. Knowing that L° ∪ ∂L ∪ L- = ℜ2, 
this leads to P° ∩ (L° ∪ ∂L ∪ L-) = P° ∩ ℜ2 = ∅, which is a 
contradiction to the assumed non-emptiness of the interior of 
a CSEP, here represented by a region, so P° ∩ ℜ2 = ¬∅. 

 
Condition 14. If L’s interior intersects P’s pivot, then P’s 

interior must intersect L’s interior (Equation 15). 
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Proof: Assuming that the constraint rule is false, then L° ∩ 

P• = ¬∅ ⇒ P° ∩ L° = ∅. Knowing that L° ∪ ∂L ∪ L- = ℜ2, 
this leads to P° ∩ (L° ∪ ∂L ∪ L-) = P° ∩ ℜ2 = ∅, which is a 
contradiction to the assumed non-emptiness of the interior of 
a CSEP, here represented by a region, so P° ∩ ℜ2 = ¬∅. 

 
The adoption of a 4x3 matrix for the definition of the 

intersections between the pivot (P•), interior (P°), boundary 
(∂P) and exterior (P-) of P, and the interior (L°), boundary 
(∂L) and exterior (L-) of L, results in the identification of 
4096 (212) different matrices. In this set, with a very large 
number of possible combinations, only a reduced number of 
matrices represent valid topological relations for the objects 
in analysis. 
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In order to support the process of generation of the 4096 
different matrices and the elimination of the invalid ones, a 
computational approach was followed using Mathematica® 
[17]. This implementation allowed the identification of the 
4096 matrices, the definition of the several conditions 
(Conditions 1 to 14) and the automatic elimination of the 
invalid patterns associated with those conditions (Equations 
2 to 15). 
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As an example, consider the topological spatial relations 

illustrated in Table I. Using relations R1 and R2, and their 
corresponding matrices M1 and M2, the calculated topological 
distance between these two topological spatial relations is 2. 

 
After the application of the 14 conditions, 38 matrices 

were left as possible ones. Each one of these matrices was 
manually analyzed to certify its validity. As all the matrices 
were considered valid, no more conditions were defined. 
This analysis was undertaken through the geometric 
realization of the 38 different topological spatial relations, 
validating the relations in terms of their existence.  

Table I – Topological distance: an example 
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21, =RRτ  Table III presents the identified topological relations (with 
their geometric realization) and their corresponding matrices. 
In those matrices, the absence of intersection is represented 
by 0 (∅) and its presence by 1 (¬∅).  

The calculation of the topological distances, using 
Equation 16, showed that for the majority of the topological 
relations the minimum distance to their neighborhoods is 1. 
The minimum topological distance (Table II) between one 
relation and its neighborhoods is 2 only in the case of relation 
R21. 

III. CONCEPTUAL NEIGHBORHOOD GRAPH WITH THE 
SNAPSHOT MODEL 

Geographic objects and phenomena may gradually change 
their location, orientation, shape, and size over time. A 
qualitative change occurs when an object deformation affects 
its topological relation with respect to other object. Models 
for changes of topological relations are relevant to 
spatio-temporal reasoning in geographic space as they derive 
the most likely configurations and allow for predictions 
(based on inference) about significant changes [18].  

In a conceptual neighborhood graph, nodes represent 
spatial relations and edges are created to link similar relations. 
Different definitions of similarity lead to different graphs 
involving the same set of relations. Usually, conceptual 
neighborhood graphs are built considering situations of 
continuous change, representing the possible transitions from 
one relation to other relations. Those graphs are useful for 
reducing the search space when looking for the next possible 
situations that might occur [19]. 

One of the approaches to identify a conceptual 
neighborhood graph is to use the snapshot model. This model 
compares two different topological relations with no 
knowledge of the potential transformations that may have 
caused the change [7]. The comparison is made by 
considering the topological distance between two topological 
relations [18]. This distance determines the number of 
corresponding elements, empty (∅) and non-empty (¬∅), 
with different values in the corresponding intersection 
matrices.  

The definition of topological distance (τ) between two 
spatial relations (RA and RB) given by Egenhofer and Al-Taha 
[18] is the sum of the absolute values of the differences 
between corresponding entries of the intersections verified in 
the corresponding matrices (MA and MB). The adoption of this 
definition and its adaptation to the context of this work, 
12-intersection matrices [11, 20], lead to the topological 
distance calculation as described by Equation 16. 

 

 

Table II – Topological distance (snapshot model) 
R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12 R 13 R 14 R 15 R 16 R 17 R 18 R 19 R 20 R 21 R 22 R 23 R 24 R 25 R 26 R 27 R 28 R 29 R 30 R 31 R 32 R 33 R 34 R 35 R 36 R 37 R 38

R 1 0 2 1 1 4 3 2 4 2 5 4 3 4 5 5 4 3 6 5 6 4 7 6 6 7 6 6 4 7 6 5 6 7 7 6 5 8 7
R 2 2 0 1 3 2 1 2 2 4 3 2 3 4 3 5 4 5 4 3 4 6 5 4 6 7 6 4 6 5 4 5 6 5 7 6 7 6 5
R 3 1 1 0 2 3 2 1 3 3 4 3 2 5 4 6 5 4 5 4 5 5 6 5 7 8 7 5 5 6 5 4 7 6 8 7 6 7 6
R 4 1 3 2 0 3 2 1 5 1 4 3 2 5 6 4 3 2 5 4 7 3 6 5 7 6 5 7 3 6 5 4 7 8 6 5 4 7 6
R 5 4 2 3 3 0 1 2 2 4 1 2 3 4 3 3 4 5 2 3 4 6 3 4 6 5 6 4 6 3 4 5 6 5 5 6 7 4 5
R 6 3 1 2 2 1 0 1 3 3 2 1 2 5 4 4 3 4 3 2 5 5 4 3 7 6 5 5 5 4 3 4 7 6 6 5 6 5 4
R 7 2 2 1 1 2 1 0 4 2 3 2 1 6 5 5 4 3 4 3 6 4 5 4 8 7 6 6 4 5 4 3 8 7 7 6 5 6 5
R 8 4 2 3 5 2 3 4 0 4 1 2 3 2 1 3 4 5 2 3 2 6 3 4 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5
R 9 2 4 3 1 4 3 2 4 0 3 2 1 4 5 3 2 1 4 3 6 2 5 4 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5
R 10 5 3 4 4 1 2 3 1 3 0 1 2 3 2 2 3 4 1 2 3 5 2 3 5 4 5 3 5 2 3 4 5 4 4 5 6 3 4
R 11 4 2 3 3 2 1 2 2 2 1 0 1 4 3 3 2 3 2 1 4 4 3 2 6 5 4 4 4 3 2 3 6 5 5 4 5 4 3
R 12 3 3 2 2 3 2 1 3 1 2 1 0 5 4 4 3 2 3 2 5 3 4 3 7 6 5 5 3 4 3 2 7 6 6 5 4 5 4
R 13 4 4 5 5 4 5 6 2 4 3 4 5 0 1 1 2 3 2 3 4 6 5 6 2 3 4 4 6 5 6 7 2 3 3 4 5 4 5
R 14 5 3 4 6 3 4 5 1 5 2 3 4 1 0 2 3 4 1 2 3 7 4 5 3 4 5 3 7 4 5 6 3 2 4 5 6 3 4
R 15 5 5 6 4 3 4 5 3 3 2 3 4 1 2 0 1 2 1 2 5 5 4 5 3 2 3 5 5 4 5 6 3 4 2 3 4 3 4
R 16 4 4 5 3 4 3 4 4 2 3 2 3 2 3 1 0 1 2 1 6 4 5 4 4 3 2 6 4 5 4 5 4 5 3 2 3 4 3
R 17 3 5 4 2 5 4 3 5 1 4 3 2 3 4 2 1 0 3 2 7 3 6 5 5 4 3 7 3 6 5 4 5 6 4 3 2 5 4
R 18 6 4 5 5 2 3 4 2 4 1 2 3 2 1 1 2 3 0 1 4 6 3 4 4 3 4 4 6 3 4 5 4 3 3 4 5 2 3
R 19 5 3 4 4 3 2 3 3 3 2 1 2 3 2 2 1 2 1 0 5 5 4 3 5 4 3 5 5 4 3 4 5 4 4 3 4 3 2
R 20 6 4 5 7 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5 0 4 1 2 2 3 4 2 6 3 4 5 4 3 5 6 7 4 5
R 21 4 6 5 3 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5 4 0 3 2 4 3 2 6 2 5 4 3 6 7 5 4 3 6 5
R 22 7 5 6 6 3 4 5 3 5 2 3 4 5 4 4 5 6 3 4 1 3 0 1 3 2 3 3 5 2 3 4 5 4 4 5 6 3 4
R 23 6 4 5 5 4 3 4 4 4 3 2 3 6 5 5 4 5 4 3 2 2 1 0 4 3 2 4 4 3 2 3 6 5 5 4 5 4 3
R 24 6 6 7 7 6 7 8 4 6 5 6 7 2 3 3 4 5 4 5 2 4 3 4 0 1 2 4 6 5 6 7 2 3 3 4 5 4 5
R 25 7 7 8 6 5 6 7 5 5 4 5 6 3 4 2 3 4 3 4 3 3 2 3 1 0 1 5 5 4 5 6 3 4 2 3 4 3 4
R 26 6 6 7 5 6 5 6 6 4 5 4 5 4 5 3 2 3 4 3 4 2 3 2 2 1 0 6 4 5 4 5 4 5 3 2 3 4 3
R 27 6 4 5 7 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5 2 6 3 4 4 5 6 0 4 1 2 3 2 1 3 4 5 2 3
R 28 4 6 5 3 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5 6 2 5 4 6 5 4 4 0 3 2 1 4 5 3 2 1 4 3
R 29 7 5 6 6 3 4 5 3 5 2 3 4 5 4 4 5 6 3 4 3 5 2 3 5 4 5 1 3 0 1 2 3 2 2 3 4 1 2
R 30 6 4 5 5 4 3 4 4 4 3 2 3 6 5 5 4 5 4 3 4 4 3 2 6 5 4 2 2 1 0 1 4 3 3 2 3 2 1
R 31 5 5 4 4 5 4 3 5 3 4 3 2 7 6 6 5 4 5 4 5 3 4 3 7 6 5 3 1 2 1 0 5 4 4 3 2 3 2
R 32 6 6 7 7 6 7 8 4 6 5 6 7 2 3 3 4 5 4 5 4 6 5 6 2 3 4 2 4 3 4 5 0 1 1 2 3 2 3
R 33 7 5 6 8 5 6 7 3 7 4 5 6 3 2 4 5 6 3 4 3 7 4 5 3 4 5 1 5 2 3 4 1 0 2 3 4 1 2
R 34 7 7 8 6 5 6 7 5 5 4 5 6 3 4 2 3 4 3 4 5 5 4 5 3 2 3 3 3 2 3 4 1 2 0 1 2 1 2
R 35 6 6 7 5 6 5 6 6 4 5 4 5 4 5 3 2 3 4 3 6 4 5 4 4 3 2 4 2 3 2 3 2 3 1 0 1 2 1
R 36 5 7 6 4 7 6 5 7 3 6 5 4 5 6 4 3 2 5 4 7 3 6 5 5 4 3 5 1 4 3 2 3 4 2 1 0 3 2
R 37 8 6 7 7 4 5 6 4 6 3 4 5 4 3 3 4 5 2 3 4 6 3 4 4 3 4 2 4 1 2 3 2 1 1 2 3 0 1
R 38 7 5 6 6 5 4 5 5 5 4 3 4 5 4 4 3 4 3 2 5 5 4 3 5 4 3 3 3 2 1 2 3 2 2 1 2 1 0  

 

Based on the calculated topological distances, a conceptual 
neighborhood graph was identified. Fig. 4 presents the 
obtained graph, where the closest relations of each 
topological relation are connected.  
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Table III – Topological spatial relations between a circular spatially extended point and a line 
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Fig. 4 – Conceptual neighborhood graph: snapshot model 

 
The graph (Fig. 4) is virtually divided in three parts. In 

the upper part, the 19 topological relations do not include 
any intersection between the pivot of the CSEP and the 
line. If the pivot of the spatially extended point is ignored, 
making a CSEP equal to a region, these 19 topological 
spatial relations correspond to the 19 topological spatial 
relations identified in [7] for line-region relations. The 
middle of the graph contains the relations in which one of 
the boundaries of the line intersects the pivot of the CSEP. 
The lower part of the graph contains the topological 
relations in which the pivot of the CSEP is intersected by 
the interior of the line. These three parts are linked by 
relation R21 that presents edges to relations R9, R23, R26 and 
R28 with the minimum topological distance of 2. All the 
other edges, and as previously mentioned, link spatial 
relations with topological distance equal to 1. 

IV. CONCEPTUAL NEIGHBORHOOD GRAPH WITH THE 
SMOOTH-TRANSITION MODEL 

The smooth-transition model states that two relations 
are conceptual neighbors if there is a smooth-transition 
from one relation to the other. Egenhofer and Mark [7] 
define a smooth-transition as an infinitesimally small 

deformation that changes the topological relation. 
Attending to the adopted 12-intersection matrix, the 
existence of a smooth-transition means that an intersection 
or its adjacent intersection changes from empty to 
non-empty or reverse. The concept of adjacency between 
the several parts (interior, boundary and exterior) of a 
region (R) is formalized as [7]: 

 
Adjacent (R°) = ∂R 
Adjacent (∂R) = R° and R-

Adjacent (R-) = ∂R 
 
In the context of this work, the notion of adjacency 

needs to be adapted to the several parts of a CSEP [21]. 
For a CSEP (P) we have: 

 
Adjacent (P•) = P° 
Adjacent (P°) = P• and ∂P 
Adjacent (∂P) = P° and P-

Adjacent (P-) = ∂P 
 
Following the work of Egenhofer and Mark [7], the 

changes that can occur in the smooth-transition model 
between a line and a region are associated with moving the 
boundary of the line to an adjacent part of the region or 
pushing the interior of the line to an adjacent part of the 
region. In this work this principles are adopted and 
adapted in order to change the parts of a region to the parts 
of a CSEP. 

For the definition of the conditions that allow the 
identification of the conceptual neighbors, the notion of 
extent was introduced [7]. It represents the number of 
non-empty intersections existing between the line and the 
four parts of the CSEP. If the interior of the line is 
completely located in the exterior of the CSEP then the 
extent of this relation is 1 (Extent(P, L°)=1). This is the 
case of relation R1. If the interior of the line intersects the 
four parts of the CSEP then the extent of the relation is 4 
(Extent(P, L°)=4) and this is verified in relations like R28 

or R30. 
Using the Adjacent and Extent concepts, the smooth- 

-transitions that can occur between a CSEP (P) and a line 
(L) can be formalized as follows: 

 
Condition I.  If the two boundaries of L intersect the 

same part of P then the intersection must be extended to 
the adjacent parts of P (Equation 17). 
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Condition II.  If the two boundaries of L intersect 
different parts of P then the intersection must be extended 
to the adjacent parts of P (Equation 18). 
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Condition III.  The intersection of L’s interior must be 
moved to an adjacent part of P (Equation 19). 
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Condition IV.  The intersection of L’s interior with the 
parts of P must be reduced (Equations 20, 21 and 22). 
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The established conditions to the smooth-transitions 
may generate impossible patterns (in terms of the 
topological spatial relations that can really exist). This 
impossible patterns need to be identified and eliminated 
from the set of valid ones (possible conceptual neighbors). 
One simple validation can be done by checking if the 
identified conceptual neighbor does match with one of the 
intersections matrices that are the possible topological 
spatial relations. If not, certainly that represents an 
impossible pattern. Although this simple validation, 
Egenhofer and Mark [7] defined two consistency 
constraints that are here adopted and extended in order to 
consider the specific case of the topological spatial 
relations that can exist between a CSEP (P) and a line (L). 
These constraints limit the possible transitions that can 
occur following conditions I to IV in order to guarantee 
that the identified patterns are valid. In that sense, these 
constraints are equivalent to some of the conditions used in 
the identification of the topological spatial relations that 
can exist between a CSEP and line. 

Constraint I.  If L’s interior intersects with P’s interior 
and exterior, then it must also intersect P’s boundary 
(Equation 23). 

 
[ ] [ ] [ ] φφφ ¬=∂⇒¬=∧¬= − :,,, οοοο LPMLPMLPM  (23) 
 

Constraint II.  If L’s boundary intersects with P’s 
interior (exterior), then L’s interior must intersect P’s 
interior (exterior) (Equations 24 and 25). 
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 [ ] [ ] φφ ¬=⇒¬=∂ −− :,, οLPMLPM                           (25) 
 

Constraint III.  P’s pivot can only intersect with a 
single part of L (Equations 26, 27 and 28). 
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In order to exemplify the use of these conditions to 
identify the conceptual neighborhood graph using the 
smooth-transition model, let us consider Condition I and 
the corresponding Equation 17. Taking R1 and its 
corresponding M1, Table IV shows the neighbors 
identification process. For the initial relation R1, and after 
the application of Equation 17, a matrix is identified with a 
valid pattern that corresponds to R3 meaning that an edge 
linking these two relations in the conceptual neighborhood 
graph is needed. Another example, using the same 
Equation 17, is also presented in Table IV. For the initial 
relation R13, and as P’s interior has two the adjacent parts, 
P’s pivot and P’s boundary, two matrices are identified, 
each one of them corresponding to a valid pattern: R14 and 
R24. In this case, two of the neighbors of R13 are R14 and R24. 

 

Table IV – Smooth-transition model: an example 
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Applying Condition I to Condition IV, Constraint I to 

Constraint III, and their respective equations (17 to 28), 
the several links between relations in the conceptual 
neighborhood graph were identified. The corresponding 
graph has 83 edges linking 38 topological spatial relations, 
and is shown in Fig. 5.  

 

 
Fig. 5 – Conceptual neighborhood graph: 

smooth-transition model 
 
The complexity of the graph results from the fact that 11 

relations have 5 conceptual neighbors, and 6 relations 
have 6 conceptual neighbors. By comparison, in the graph 

obtained through the snapshot model each relation has a 
maximum of 4 neighbors, resulting in a total of 51 edges. 

V. COMPARISON OF THE TWO CONCEPTUAL 
NEIGHBORHOOD GRAPHS 

The analysis of the two conceptual neighborhood graphs 
highlighted the main differences between them. It also 
allowed the validation of the two graphs, as the transitions 
between spatial relations were analyzed to check whether 
they are possible or not. These verifications ensure that the 
graphs accomplish the principles that guided their 
identification. One of the main differences between the 
two graphs, as shown in Table V, is the list of the possible 
transitions between the 38 topological spatial relations.  
 

Table V – Possible transitions among relations 
Snapshot Model Smooth-transition Model 

1 → 3, 4 1 → 3, 4 
2 → 3, 6 2 → 3, 6 
3 → 1, 2, 7 3 → 1, 2, 7 
4 → 1, 7, 9 4 → 1, 7, 9 
5 → 6, 10 5 → 6, 10 
6 → 2, 5, 7, 11 6 → 2, 5, 7, 11 
7 → 3, 4, 6, 12 7 → 3, 4, 6, 12 
8 → 10, 14 8 → 10, 14, 27=

9 → 4, 12, 17_, 21_ 9 → 4, 12, 28=

10 → 5, 8, 11, 18  10 → 5, 8, 11, 18, 29=

11 → 6, 10, 12, 19 11 → 6, 10, 12, 19, 30=

12 → 7, 9, 11 12 → 7, 9, 11, 17=, 31=

13 → 14, 15 13 → 14, 15, 24=, 32=

14 → 8, 13, 18 14 → 8, 13, 18, 20≡, 33=

15 → 13, 16, 18 15 → 13, 16, 18, 25=, 34=

16 → 15, 17_, 19 16 → 15, 19, 26=, 35=

17 → 9_, 16_ 17 → 12=, 19=, 21≡, 36=

18 → 10, 14, 15, 19 18 → 10, 14, 15, 19, 22≡, 37=

19 → 11, 16, 18 19 → 11, 16, 17=, 18, 23≡, 38=  
20 → 22 20 → 14≡, 22, 24=, 27=, 33≡

21 → 9_, 23, 26_, 28 21 → 17≡, 23, 28, 36≡

22 → 20, 23 22 → 18≡, 20, 23, 25=, 29=, 37≡

23 → 21, 22 23 → 19≡, 21, 22, 26=, 30=, 38≡

24 → 25 24 → 13=, 20=, 25, 32=

25 → 24, 26 25 → 15=, 22=, 24, 26, 34=

26 → 21_, 25 26 → 16=, 23=, 25, 35=

27 → 29, 33 27 → 8=, 20=, 29, 33 
28 → 21, 31, 36_ 28 → 9=, 21, 31 
29 → 27, 30, 37 29 → 10=, 22=, 27, 30, 37 
30 → 29, 31, 38 30 → 11=, 23=, 29, 31, 38 
31 → 28, 30 31 → 12=, 28, 30, 36=

32 → 33, 34 32 → 13=, 24=, 33, 34 
33 → 27, 32, 37 33 → 14=, 20≡, 27, 32, 37 
34 → 32, 35, 37 34 → 15=, 25=, 32, 35, 37 
35 → 34, 36_, 38 35 → 16=, 26=, 34, 38 
36 → 28_, 35_ 36 → 17=, 21≡, 31=, 38=

37 → 29, 33, 34, 38 37 → 18=, 22≡, 29, 33, 34, 38 
38 → 30, 35, 37 38 → 19=, 23≡, 30, 35, 36=, 37 

 
The notation used in Table V is as follows:  

• n, for common transitions among relations in the two 
graphs; 

• n-, for transitions allowed in the graph obtained by the 
snapshot model and not possible in the graph obtained 
by the smooth-transition model; 
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• n= and n≡, for transitions allowed in the graph obtained 
by the smooth-transition model and not possible in the 
graph obtained by the snapshot model.  

From the analysis of Table V one can see that the graph 
obtained following the smooth-transition model integrates 
almost all the edges (transitions) identified by the snapshot 
model. Two exceptions are verified: one is associated with 
relation R17 and the other with relation R36. In all other 
cases, the graph obtained by the smooth-transition model 
allows more transitions since it looks for small 
deformations that change the topological relations. In what 
concerns R17 and R36, the snapshot model includes 
transitions from those relations to other relations with 
topological distance 1. Although this is the minimum 
value for the topological distance it does not correspond to 
the smallest amount of changes that can affect the objects. 
Looking at R17, this relation has transitions to relation R9 
and relation R16. In the smooth-transition model these 
transitions are not possible since R17 has one of the line’s 
boundaries intersecting the interior of the CSEP and the 
other boundary intersecting the exterior of the CSEP. Any 
small deformation in R17 includes the movement of one of 
the line’s boundaries to an Adjacent part of the intersected 
component of the CSEP. Following this, the intersection 
between one line’s boundary and the CSEP’s interior is 
moved to the Adjacent parts of CSEP’s interior (its pivot 
and its boundary), allowing the transitions to relation R12 
and relation R21, or the intersection between the other 
line’s boundary and the CSEP’s exterior is moved to the 
Adjacent part of CSEP’s exterior (its boundary), allowing 
the transition to relation R19. The other possible transition 
for R17 allowed in the smooth-transition model is obtained 
moving the line’s interior to an Adjacent part of CSEP’s 
interior (its pivot in this specific case since the boundary 
already has an intersection in this relation) leading to 
relation R36.  

Looking at the possible transitions for R36 in the 
snapshot model, which are different from those allowed in 
the smooth-transition model, one can see that the 
differences are due to the movement of the line’s 
boundaries, as explained above for R17.  

This analysis shows that topological distance equal to 1 
is not synonym of a small change. Table VI presents the 
possible transitions identified for the smooth-transition 
model and the respective topological distances. In this 
table one can see that many of the identified transitions are 
associated with topological distances of 2 (represented 
with the symbol = and in Table V) and some topological 
distances of 3 (represented with the symbol ≡ in Table V). 
The topological distance of 3 is associated with relations 
that present the pivot of the CSEP intersected either by the 
line’s interior or by the line’s boundary, being these 
relations a start or an end relation in the conceptual 
neighborhood graph. As a CSEP’s pivot can only intersect 
with a single part of the line, moving the line’s boundary 
or the line’s interior to intersect the pivot implies that any 
other intersection with the pivot must be removed. This 
increases the topological distance between the relations. 
This is also the situation verified with many of the 

transactions with topological distance 2 existing in the 
graph obtained by the smooth-transition model. 

To conclude this analysis we refer that in what concerns 
relations R1 to R7, the transitions allowed in the two graphs 
are exactly the same (Table V) since these relations are 
associated with lines that do not intersect the CSEP’s 
interior avoiding the Adjacent parts of this interior, which 
would be the pivot and the boundary of the CSEP and 
would increase the number of possible transitions. 

 

Table VI – Topological distance (smooth-transition 
model) 

R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12 R 13 R 14 R 15 R 16 R 17 R 18 R 19 R 20 R 21 R 22 R 23 R 24 R 25 R 26 R 27 R 28 R 29 R 30 R 31 R 32 R 33 R 34 R 35 R 36 R 37 R 38

R 1 0 2 1 1 4 3 2 4 2 5 4 3 4 5 5 4 3 6 5 6 4 7 6 6 7 6 6 4 7 6 5 6 7 7 6 5 8 7
R 2 2 0 1 3 2 1 2 2 4 3 2 3 4 3 5 4 5 4 3 4 6 5 4 6 7 6 4 6 5 4 5 6 5 7 6 7 6 5
R 3 1 1 0 2 3 2 1 3 3 4 3 2 5 4 6 5 4 5 4 5 5 6 5 7 8 7 5 5 6 5 4 7 6 8 7 6 7 6
R 4 1 3 2 0 3 2 1 5 1 4 3 2 5 6 4 3 2 5 4 7 3 6 5 7 6 5 7 3 6 5 4 7 8 6 5 4 7 6
R 5 4 2 3 3 0 1 2 2 4 1 2 3 4 3 3 4 5 2 3 4 6 3 4 6 5 6 4 6 3 4 5 6 5 5 6 7 4 5
R 6 3 1 2 2 1 0 1 3 3 2 1 2 5 4 4 3 4 3 2 5 5 4 3 7 6 5 5 5 4 3 4 7 6 6 5 6 5 4
R 7 2 2 1 1 2 1 0 4 2 3 2 1 6 5 5 4 3 4 3 6 4 5 4 8 7 6 6 4 5 4 3 8 7 7 6 5 6 5
R 8 4 2 3 5 2 3 4 0 4 1 2 3 2 1 3 4 5 2 3 2 6 3 4 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5
R 9 2 4 3 1 4 3 2 4 0 3 2 1 4 5 3 2 1 4 3 6 2 5 4 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5
R 10 5 3 4 4 1 2 3 1 3 0 1 2 3 2 2 3 4 1 2 3 5 2 3 5 4 5 3 5 2 3 4 5 4 4 5 6 3 4
R 11 4 2 3 3 2 1 2 2 2 1 0 1 4 3 3 2 3 2 1 4 4 3 2 6 5 4 4 4 3 2 3 6 5 5 4 5 4 3
R 12 3 3 2 2 3 2 1 3 1 2 1 0 5 4 4 3 2 3 2 5 3 4 3 7 6 5 5 3 4 3 2 7 6 6 5 4 5 4
R 13 4 4 5 5 4 5 6 2 4 3 4 5 0 1 1 2 3 2 3 4 6 5 6 2 3 4 4 6 5 6 7 2 3 3 4 5 4 5
R 14 5 3 4 6 3 4 5 1 5 2 3 4 1 0 2 3 4 1 2 3 7 4 5 3 4 5 3 7 4 5 6 3 2 4 5 6 3 4
R 15 5 5 6 4 3 4 5 3 3 2 3 4 1 2 0 1 2 1 2 5 5 4 5 3 2 3 5 5 4 5 6 3 4 2 3 4 3 4
R 16 4 4 5 3 4 3 4 4 2 3 2 3 2 3 1 0 1 2 1 6 4 5 4 4 3 2 6 4 5 4 5 4 5 3 2 3 4 3
R 17 3 5 4 2 5 4 3 5 1 4 3 2 3 4 2 1 0 3 2 7 3 6 5 5 4 3 7 3 6 5 4 5 6 4 3 2 5 4
R 18 6 4 5 5 2 3 4 2 4 1 2 3 2 1 1 2 3 0 1 4 6 3 4 4 3 4 4 6 3 4 5 4 3 3 4 5 2 3
R 19 5 3 4 4 3 2 3 3 3 2 1 2 3 2 2 1 2 1 0 5 5 4 3 5 4 3 5 5 4 3 4 5 4 4 3 4 3 2
R 20 6 4 5 7 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5 0 4 1 2 2 3 4 2 6 3 4 5 4 3 5 6 7 4 5
R 21 4 6 5 3 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5 4 0 3 2 4 3 2 6 2 5 4 3 6 7 5 4 3 6 5
R 22 7 5 6 6 3 4 5 3 5 2 3 4 5 4 4 5 6 3 4 1 3 0 1 3 2 3 3 5 2 3 4 5 4 4 5 6 3 4
R 23 6 4 5 5 4 3 4 4 4 3 2 3 6 5 5 4 5 4 3 2 2 1 0 4 3 2 4 4 3 2 3 6 5 5 4 5 4 3
R 24 6 6 7 7 6 7 8 4 6 5 6 7 2 3 3 4 5 4 5 2 4 3 4 0 1 2 4 6 5 6 7 2 3 3 4 5 4 5
R 25 7 7 8 6 5 6 7 5 5 4 5 6 3 4 2 3 4 3 4 3 3 2 3 1 0 1 5 5 4 5 6 3 4 2 3 4 3 4
R 26 6 6 7 5 6 5 6 6 4 5 4 5 4 5 3 2 3 4 3 4 2 3 2 2 1 0 6 4 5 4 5 4 5 3 2 3 4 3
R 27 6 4 5 7 4 5 6 2 6 3 4 5 4 3 5 6 7 4 5 2 6 3 4 4 5 6 0 4 1 2 3 2 1 3 4 5 2 3
R 28 4 6 5 3 6 5 4 6 2 5 4 3 6 7 5 4 3 6 5 6 2 5 4 6 5 4 4 0 3 2 1 4 5 3 2 1 4 3
R 29 7 5 6 6 3 4 5 3 5 2 3 4 5 4 4 5 6 3 4 3 5 2 3 5 4 5 1 3 0 1 2 3 2 2 3 4 1 2
R 30 6 4 5 5 4 3 4 4 4 3 2 3 6 5 5 4 5 4 3 4 4 3 2 6 5 4 2 2 1 0 1 4 3 3 2 3 2 1
R 31 5 5 4 4 5 4 3 5 3 4 3 2 7 6 6 5 4 5 4 5 3 4 3 7 6 5 3 1 2 1 0 5 4 4 3 2 3 2
R 32 6 6 7 7 6 7 8 4 6 5 6 7 2 3 3 4 5 4 5 4 6 5 6 2 3 4 2 4 3 4 5 0 1 1 2 3 2 3
R 33 7 5 6 8 5 6 7 3 7 4 5 6 3 2 4 5 6 3 4 3 7 4 5 3 4 5 1 5 2 3 4 1 0 2 3 4 1 2
R 34 7 7 8 6 5 6 7 5 5 4 5 6 3 4 2 3 4 3 4 5 5 4 5 3 2 3 3 3 2 3 4 1 2 0 1 2 1 2
R 35 6 6 7 5 6 5 6 6 4 5 4 5 4 5 3 2 3 4 3 6 4 5 4 4 3 2 4 2 3 2 3 2 3 1 0 1 2 1
R 36 5 7 6 4 7 6 5 7 3 6 5 4 5 6 4 3 2 5 4 7 3 6 5 5 4 3 5 1 4 3 2 3 4 2 1 0 3 2
R 37 8 6 7 7 4 5 6 4 6 3 4 5 4 3 3 4 5 2 3 4 6 3 4 4 3 4 2 4 1 2 3 2 1 1 2 3 0 1
R 38 7 5 6 6 5 4 5 5 5 4 3 4 5 4 4 3 4 3 2 5 5 4 3 5 4 3 3 3 2 1 2 3 2 2 1 2 1 0  

VI. TOPOLOGICAL DISTANCE IN PREDICTING MOVEMENT 
IN SPACE 

As already stated in this paper, several models for 
topological relations have been developed. These models 
provide a computational basis for spatial reasoning 
relating the formal ground needed by an information 
system and the human perception of the geographic space 
[8].  

Spatial relations between geographic objects are 
time-dependent and can change due to various phenomena. 
Models of changes are relevant to spatio-temporal 
reasoning as they allow for predictions related with the 
objects in analysis [18]. The objects involved are expected 
not to make discontinuous changes such as jumps, nor may 
the deformations destroy the topology of a single object, 
for example, tearing it into pieces. 

For Galton [22], the phenomenon of movement arises 
whenever the same object occupies different positions in 
space at different moments. The given definition suggest 
that a theory of movement must include a theory of time, a 
theory of space, a theory of objects and a theory of position. 
Time can be treated as instants or as intervals, and an 
ordering relation need to be established, representing 
temporal sequences.  Space integrates elements as points, 
lines or regions as fundamental entities.  Objects present 
specific characteristics being capable of motion (or 
different types of motion), or not. Position integrates the 
theory of objects with the theory of space, with each object 
occupying a certain part of space at a specific time. 

Looking at position, this work takes into account the 
topological constraints present in the space in which the 
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user is moving, whilst trying to predict his/her future 
positions. The first step of this prediction process is 
concerned with the assignment of the user to a specific 
road segment in the road network. For this task, the 
topological distance can be used instead of the geometrical 
distance. The second step is associated with the movement 
of the user along the road network, after his/her 
assignment to a road segment. 

A user that moves from one point to another in a road 
network generates a trajectory. A user’s trajectory can be 
defined as a sequence of connected road segments or as a 
sequence of connected vertices between two locations [23]. 
Knowing a start point, the initial position, and an end point, 
the target destination, trajectories can be generated for the 
user. 

If the destination of the user is unknown, the 
anticipation of his/her next position can be achieved 
following the transitions allowed in one of the conceptual 
neighborhood graphs identified in the previous sections. 
As an example, let us consider the road network 
represented in Fig. 6. In this example, the position of the 
user (in gray), obtained through a GPS receiver, does not 
overlap a specific road segment.  

 
Fig. 6 – A user and a part of a road network 

 
Analyzing the example, and being the user in an 

imprecise point in terms of the road network, how can the 
user be assigned to a specific road segment? The answer 
can be using the minimum topological distance that allows 
the intersection of the CSEP’s pivot and the road segments. 
Using the area of uncertainty associated with the user’s 
position, Fig. 7 presents the actual scenario, now with each 
road segment identified by a specific label. 

1s
2s

3s
4s

5s
 

Fig. 7 – A user represented by a CSEP  
 

Analyzing the topological spatial relations that exist 
between the CSEP and the neighbors’ road segments – s2, 
s3 and s4 – it is possible to verify that the spatial relations 
are R9, R12 and R3, respectively. Following the conceptual 
neighborhood graphs obtained through the snapshot model 
and the smooth-transition model, the closest spatial 
relations in which an intersection with the CSEP’s pivot is 
possible is R21 (for s2, s3 and s4), in the case of the snapshot 
model, and R28 (for s2) and R31 (for s3 and s4), in the case of 
the smooth-transition model. Tables II and VI give us the 
topological distances among those relations: 

• Snapshot model: i) topological distance of 2 between 
R9 and R21; ii) topological distance of 3 between R12 
and R21; iii) topological distance of 5 between R3 and 
R21. 

• Smooth-transition model: i) topological distance of 2 
between R9 and R28; ii) topological distance of 2 
between R12 and R31; iii) topological distance of 4 
between R3 and R31. 

Following the snapshot model, the user would be 
assigned to s2 since this road segment presents the 
minimum topological distance. Looking at the 
smooth-transition model, as it allows small deformations 
that change the topological relation, the user could be 
assigned to s2 or to s3 since both alternatives present the 
same topological distance. 

The question that can now be posted is: ignoring the 
topological spatial relations that can exist between the 
objects in analysis and the conceptual neighborhood 
graphs with the possible transitions, is it possible to predict 
the user’s position? 

Map matching methods are used to locate a mobile user 
on a road network map. A simple way of performing map 
matching is to assign the position of the mobile user to the 
nearest road segment [24]. Although this method is simple 
to implement it can ignore alternative paths as only the 
nearest distance is considered and it can be difficult to 
implement in dense urban road networks. In order to 
improve the location capabilities, other methods have been 
proposed and developed. They usually consider historical 
information about the user’s motion (his/her past 
locations).  

The prediction system that is envisaged in this work 
does not consider any previous knowledge about the user’s 
motion, for privacy reasons, and opens new possibilities in 
the exploration of the paths that can be followed by a 
mobile user, as several road segments can be associated to 
the user through the use of a CSEP.  

If the geometrical representation of the user is done 
recurring to a single point that locates the user in a 
particular location, the prediction of the user’s next 
position depends upon the map matching location strategy 
used. Following the example presented in Fig. 6, Fig. 8 
shows the assignment of the user to the nearest road 
segment present in the road network in analysis. As the 
user is not geometrically represented by a CSEP that 
topologically relates he/she to the other line segments, the 
user is located on segment s2, without considering the s3 
and s4 ways. 

1s
2s

3s
4s

5s

 
Fig. 8 – Assignment of the user to the nearest road segment 
 

The first step of the prediction process can consider the 
topological distance as an alternative or as a complement 
of the geometric distance (since a combination of both 
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metrics can be considered). In the second step, the 
transitions allowed in the conceptual neighborhood graphs 
can be used to predict user’s future movements. In this 
case, graph paths can be generated considering the several 
alternatives present in the road network and the probability 
of following such alternatives (considering for instance 
the traffic load associated to each road segment). 

VII. CONCLUSION 
This paper presented the topological spatial relations 

that can exist between a CSEP and a line and identified the 
conceptual neighborhood graphs that state the transitions 
that can occur between relations. Two graphs were 
obtained. One, using the principles associated with the 
snapshot model, looks for the topological distances 
between relations, and the other using the principles 
associated with the smooth-transition model verifies any 
small deformation that changes the topological relation. 

The two graphs were analyzed in order to verify if the 
identified transitions were possible or not, and also 
compared in order to identify the main differences 
between them. The graph obtained through the 
smooth-transition model presents a more complex 
structure integrating more edges. This means that more 
transitions are allowed. 

This work constitutes a basis for dealing with spatial 
objects that can be represented geometrically by a CSEP 
and a line, and is suitable for reasoning about gradual 
changes in topology. These changes can be associated with 
objects’ motion and/or deformations over a period of time 
[8].  

After ongoing implementation of a prototype that 
follows the prediction approach introduced in this paper, it 
will be possible to analyze the importance of the 
topological distance in the prediction process and how this 
metric can be combined with the geometrical distance in 
map matching techniques. 
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