
On the Derivation of Class Diagrams from
Use Cases and Logical Software Architectures

Maribel Yasmina Santos, Ricardo J. Machado
Dept. de Sistemas de Informação, Centro de Investigação Algoritmi

Universidade do Minho
Guimarães, Portugal

{maribel, rmac}@dsi.uminho.pt

Abstract—The transformation of user requirements into
system requirements models can be achieved using the
4-Step Rule Set (4SRS) method that transforms UML use
case diagrams into system-level object diagrams. These
diagrams represent the logical architecture of the system,
integrating the system-level entities, their responsibilities
and the relationships among them. The logical architecture
captures the system functional requirements and its non-
functional intentionalities. Although contributing to the
formalization of the design of software architectures, the
4SRS method needs to be extended in order to support the
design of the database subsystems that may be considered
pertinent within the specified logical architecture. This
paper presents the extension of the 4SRS method to support
the construction of the class diagram that complements the
logical architecture, and shows, through the presentation of
a demonstration case, the applicability of the proposed
approach.

Keywords-system software requirements; use case
diagrams; class diagrams; logical software architectures

I. INTRODUCTION
In the development of a software system, the most

complex activity is probably the transformation of a
requirements specification into an architectural design.
The process of designing software architectures is less
formalised and often is greatly an intuitive ad-hoc activity,
poorly based on engineering principles. The 4-Step Rule
Set (4SRS) [2] method employs successive model
transformations in order to obtain a logical architecture
that satisfies the previously elicited user requirements. It is
based on the mapping of UML use case diagrams into
UML objects diagrams [2]. The iterative nature of the
method and the usage of diagrammatic models help to
ensure that the obtained logical architecture reflects the
user requirements. After the generation of the first logical
architecture of the system, the design of class diagrams is
desired for the specification of the static characteristics of
the software to be produced, namely to address the design
of the database subsystems that may be considered
pertinent within the specified logical architecture.

In the approach described in this paper, a derivation
technique is used to obtain the class diagram, using not
only the use case model but also the logical architecture

that results from the application of the 4SRS method.
Since the 4SRS method supports a recursive approach [1]
to ensure that the system functional requirements are
present in the logical architecture independently of the
subsystem we may need to refine, the approach proposed
in this paper guarantees that the necessary classes are able
to be identified. We propose an extension to the 4SRS
method to derive class diagrams from the use case
diagrams and from the logical system architecture. We
decided not to pursue an empirically validation effort of
the technique [3]. Instead, we opted for constructing one
demonstration case to illustrate the systematic approach of
the extension proposed here for the 4SRS method. This
extension contributes for the derivation of class diagrams,
which are the most frequently used component among the
UML diagrams [4].

This paper is organized as follows. Section 2
introduces some related work. Section 3 gives an overview
of the steps that integrate the 4SRS method. Section 4
describes the additional steps added to the 4SRS method to
derive class diagrams from the use case model and the
software logical architecture. Section 5 presents a
demonstration case using the extended 4SRS method.
Section 6 discusses the proposed approach and the
obtained results. Section 7 concludes with some remarks
regarding the work undertaken and with some proposals
for future work.

II. RELATED WORK
The functional requirements of a software system can

be captured and documented in use cases [3], as happens
in the 4SRS method. Although use case-driven approaches
are frequently used to identify system classes [3, 5], there
is no established technique for the transition from use
cases to class diagrams [3]. In these approaches, the
development process may lead to missing classes because
the use cases are insufficient for deriving all necessary
classes.

The identification of classes from the documented user
requirements is one of the most important and difficult
tasks during the analysis and the design of object-oriented
systems [6]. CASE systems support the generation of class
diagrams through natural language processing of the
documented requirements. Giganto and Smith [6] argue

2010 Fifth International Conference on Software Engineering Advances

978-0-7695-4144-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSEA.2010.24

107

2010 Fifth International Conference on Software Engineering Advances

978-0-7695-4144-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSEA.2010.24

107

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55611849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that this approach has considerable problems, either in the
form of overlooked and/or excess of classes. For these
authors, the problem can be originated by the inherent
ambiguity in written language and a general lack of
conciseness and completeness in requirements
specification. Based on this, Giganto and Smith proposed
the identification of classes from use cases rather than
directly from the specification. Use cases describe specific
functionalities of the system and, therefore, the candidate
objects involved in those functionalities. In this approach,
the authors propose an algorithm that extract use case
sentences from requirements, validate functional
specifications in each sentence so that classes can be
identified, and reuse previously use cases to supply
missing functional specifications that may contain
participating classes. In this approach, ambiguity problems
are mitigated by imposing restrictions on the language that
can be used for writing requirements.

The work of Liang [7] also follows a use case-driven
process in which classes are identified based on the goals
of use cases without descriptions. The proposed approach
identifies use case-entity diagrams as a vehicle for
deriving classes from use cases. Classes are identified
from use cases’ goals rather than use case descriptions.
Classes are the entities that participate in achieving the
goals in the real world. With this approach, the author
avoids the identification of too many classes at one time,
what usually happens in use case-driven processes.

III. SYNOPSIS OF THE 4-STEP RULE SET METHOD
The 4SRS method generates logical architectures,

representing system requirements, from user requirements
models. A complete description of the 4SRS method can
be found in [2]. A brief description of the method is next
presented.

The 4SRS is organized in four main steps which
transform use cases into system-level objects. Step 1 is
designated object creation. It automatically transforms
each use case into three object types, interface, control and
data. From this step on, only objects exist as design
entities. Use cases continue to be used in the next steps
allowing the introduction of the user requirements into the
object model.

Step 2 is called object elimination. For each object, it
must be decided which of the three type of objects must be
maintained taking into consideration the whole system and
not each use case in particular. These decisions are based
on the use cases textual descriptions. This is the most
complex step of the 4SRS; that is why it is divided in
seven micro-steps.

In micro-step 2i (use case classification), use cases are
classified as interface, data or control, or any combination
of theses, transforming each use case into objects. Micro-
step 2ii (local elimination) analyses if each object created
in step 1 makes sense in the problem domain. This
elimination is based on the textual descriptions of the use
cases. In micro-step 2iii (object naming), objects that were
not eliminated from the previous micro-steps must receive
proper names that reflect both the use case from which

they were originated and the specific role of the objects
taking into account their main functionality.

Micro-step 2iv (object description) deals with the
description of each object resulting from previous
micro-step, allowing the inclusion of system requirements
into the object model. The descriptions must be based on
the original use case descriptions. Basically, this micro-
step leads to the system requirements based on user
requirements.

The most critical micro-step is micro-step 2v (object
representation) since it supports the elimination of
redundancy on user requirements and the identification of
missing requirements. It constitutes a validation step that
ensures the semantic coherence of the object model and
that discovers anomalies in the use case model.

Micro-step 2vi (global elimination) is a fully automatic
micro-step that eliminates objects that are represented by
other ones. It must assure the generation of a coherent
object model, from the system requirements point of view.

The last micro-step 2vii (object renaming) renames the
objects that were not eliminated in the previous micro-step
and that represent additional objects.

In step 3 (object packing and aggregation), the
remaining objects should give origin to aggregations or
packages of semantically consistent objects if there is an
advantage in being treated in a unified way. This step
supports the construction of a coherent object model
adding an additional semantic layer at a higher abstraction
layer.

The final step, step 4 (object association), supports the
introduction of associations in the object model based on
the information available in the use case model and
generated in micro-step 2i. In the 4SRS terminology, this
last version of the object diagram is called raw object
diagram.

IV. EXTENDING THE 4-STEP RULE SET
The logical architecture obtained from the iterative

application of the 4SRS method captures the functional
and non-functional system requirements. For refining the
obtained architecture, the recursive approach of the 4SRS
suggests the construction of a new use case diagram that
captures the user requirements of the subsystem to be
refined. From this new use case diagram a new raw object
diagram is obtained. This process is repeated until raw
objects diagrams are identified for all the subsystems to be
implemented.

Given a raw object diagram for a system or for one of
its subsystems (representing the system or subsystem
logical architecture), the identification of the
corresponding class diagram is not addressed by the
current version of the 4SRS method. In this paper, these
additional steps are defined and illustrated with a
demonstration case. The additional steps are: Step 5 class
creation and Step 6 class characterization.

A. Step 5 – class creation
This is a fully automatic step in which a class is created

for each one of the objects present in the raw object

108108

diagram resulting from step 4. The associations among the
classes are also inherited from the associations present in
the raw object diagram. After the execution of this step,
the classes and the relationships among them are obtained.

B. Step 6 – class characterization
The class diagram obtained from step 5 needs to be

complemented with the attributes and methods that
characterize each class. For this task, the use case diagram
of the refined logical architecture, specifying the user
requirements, and some intermediary results from previous
steps are used. This step is divided into 2 micro-steps:
micro-step 6i, methods creation and micro-step 6ii
attributes creation.

In micro-step 6i (methods creation), each class
resulting from the raw object diagram (step 5) must
include a method that implements the use case that
originated its creation as a system-level object (step1) and
one additional method for each one of the use cases
represented by this object. This information is available
from micro-step 2v, where the information of the
represented objects leads to the corresponding use cases.
The name of the methods results from the use cases that
originated the enrolled objects.

The definition of the methods is only complete when
their parameters are specified. For this purpose, the
analysis of the refined use cases textual descriptions is
done. Besides the methods that emerge from the objects
and respective use cases, additional methods are usually
identified in the analysis of the refined use cases textual
descriptions. These methods must also be included in the
corresponding classes since they also refer to system
requirements.

Micro-step 6ii (attributes creation) allows the
identification of the attributes that must be present in each
class. For this task, the textual description associated to
each refined use case needs to be analysed in order to
identify the data that must persist in the system.

Our approach is based on the linguistic analysis of the
requirements documentation (use case textual
descriptions), written in a natural language [8]. Attributes
correspond to the nouns, and the operations (also known
as methods or services) are related to verbs [9]. This
strategy must be used with some prudence and requires
strong linguistic knowledge, since it is possible to
transform a noun into a verb and vice-versa.

V. THE DEMONSTRATION CASE
The usefulness of the new steps added to the 4SRS

method will now be discussed making use of a
demonstration case. This demonstration case is associated
to a mobile application platform for which the service-
oriented architecture was obtained applying the 4SRS [10].
In this paper, we give special attention to one of the
system services, the AVAccess Service. This service is a
refinement of a package obtained in the raw object
diagram of the overall USE-ME.GOV platform
specification [11].

User

Presentation

Communication

{0.1} register new
user

{0.2} remove user

{0.3} remove user
terminal

{0.4} add user
terminal

{0.5} subscribe
service

{0.6} suspend
subscription

{0.7} restore
subscription

{0.8} check
subscription status

{0.9} select service

{0.10} unsubscribe
service

{U0} user interface

ApplicationSystem
ContextAggregationService

ApplicationSystem
Service Repository

Figure 1. Use case diagram for the AVAccess Service

Figure 2. Table that supports the 4SRS method

109109

The AVAccess service is a point of contact with the

mobile platform and redirects the user to the appropriate
service. Users usually start the interaction with the mobile
system contacting this component. Figure 1 presents the
refined use case diagram for the AVAccess service.

The execution of the 4SRS method for this use case
diagram is described in detail in [1, 2]. In this paper, it is
presented an extract of the table that allows the 4SRS
transformation, as this table supports the application of the
additional steps of the 4SRS method to this demonstration
case. This table is presented in Figure 2.

After the execution of the 4SRS approach until step 4,
Figure 3 shows the obtained raw object diagram with the
subsystem (AVAccess service) logical architecture. At this
stage, it is now possible to apply the two additional steps for
the 4SRS method in order to obtain the class diagram that
gives a static characterization of the described service.

In step 5 (class creation), each object in the raw object
diagram gives origin to one class in the generated class
diagram. The name of each class follows the name of the
corresponding object. The relationships among the classes
correspond also to those existent in the raw object diagram.
After the execution of step 5, the first draft of the class
diagram is presented in Figure 4.

{O0.1.i} users management
interface {O0.5.c} subscribe service

{O0.5.d} available activities{O0.9.c} select service

Figure 3. Raw object diagram for the AVAccess Service

In the execution of step 6 (class characterization), the
process starts by micro-step 6i where the methods of each
class are identified.

usersManagementInterface subscribeService

availableActivitiesselectService

Figure 4. First schema of the class diagram

Analysing the results presented in Figure 2, object
{O0.1.i} must be kept by the system and also has the
representation of objects {O0.2.i}, {O0.3.i}, {O0.4.i},
{O0.5.i}, {O0.6.i}, {O0.7.i}, {O0.8.i}, {O0.9.i} and
{O0.10.i}. Each one of these objects gives origin to one
method of the usersManagementInterface class. Each

method is associated with the use case that originated the
corresponding object. For example, object {O0.1.i} is
originated from the use case {U0.1} register new user, so
this will result on the registerNewUser method. Following
this procedure for the other objects, all remaining methods
are identified (Figure 1 includes all corresponding use cases):
removeUser, removeUserTerminal, addUserTerminal,
subscribeService, suspendSubscription, restoreSubscription,
checkSubscriptionStatus, selectService, and
unsubscribeService.

After the identification of the methods, it is necessary to
complement their definition through the identification of
their parameters. In this task, the refined use cases textual
descriptions are analysed. As an example, let us consider the
textual description associated with the use case {U0.1}
register new user:

{U0.1} Register new user: the user provides (through
communication subsystem) user personal information to the
AVAccess system. Its personal information consists of
userName, password, and, optionally, user profile
information. The AVAccess service parses user personal
information and sends it to subsystem User. The AVAccess
system sends back the information on success/no success of
this operation. The information sent to the user is formatted
by the subsystem Presentation. The system must know
terminal model information.

From this description, the mandatory parameters of the
registerNewUser method are identified: username and
password. Besides the methods that emerge from the objects,
other methods are usually needed in the classes. These
methods are mentioned in the use cases descriptions:

{0.2} Remove user: the user provides (through
communication subsystem) user username and password
information to the AVAccess system. The user must be
authenticated. The AVAccess system sends a request to User
system to remove the user identified by username and
password. The AVAccess system sends back the information
on success/no success of this operation. The information sent
to the user is formatted by the subsystem Presentation. The
system must know terminal model information.

In this use case textual description, we identify the
parameters of the removeUser method (which are also the
username and the password) and recognize the need for a
method that answers to the question if the user is
authenticated or not. Using this process, it is possible to
identify all the methods that must appear in the
usersManagementInterface class. This class is presented in
Figure 5.

usersManagementInterface

registerNewUser(userName:UserName, passwod:String): User
removeUser(userName:UserName, password:String)
removeUserTerminal(userName:UserName, terminalID:TerminalID)
addUserTerminal(userName:UserName,terminalModel:TerminalModel, telNumber:String)
subscribeService(userName:UserName, serviceID:ServiceID)
suspendSubscription(userName:UserName, serviceID:ServiceID)
checkSubscriptionStatus(userName:UserName, serviceID:ServiceID)
selectService(userName:UserName, serviceID:ServiceID)
unsubscribeService(userName:UserName, serviceID:ServiceID)
isUserAuthenticated(): Boolean

Figure 5. Methods for the usersManagementInterface class

110110

Classes can also integrate attributes. These attributes add
persistency to the system, enabling the storage of
information in a database system. The identification of the
relevant attributes is carried out by analysing the refined use
cases textual descriptions. For the class availableActivities
originated from the object {O0.5.d} and that also represents
the object {O0.9.d} (see Figure 2), the relevant attributes
were identified by analysing the following two use cases
descriptions:

{U0.5} Subscribe service: the user provides (through
communication subsystem) service subscription information
to the AVAccess: the user gets (through communication
system) activities defined in AVAccess system; The user gets
activityID, activityName and activityDescription; The
information on activities sent to the user (through
communication subsystem) is formatted by the subsystem
Presentation; The user provides (through communication
subsystem) the activityID to the AVAccess system; The
AVAccess system computes the AVService type serviceType
that match the chosen activity; The AVAccess system sends
back the complete list of AVServices (information on name,
description, cost and ServiceID (URI)) registered in the
service repository. The user must be authenticated. Service
subscription information provided to AVAccess system
consists of a list of serviceID. The AVAccess system sends
back the information on success/no success of this operation.
The information sent to the user (through communication
subsystem) is formatted by the subsystem Presentation. The
system must know terminal model information.

{U0.9} Select service: the user gets (through
communication subsystem) AVService handler (URL). The
user gets (through communication system) activities defined
in AVAccess system. The user gets activityID, activityName
and activityDescription; there are three types of activities:
activities based on free-subscription context-aware services,
activities based on subscription-based context-aware
services and activities based on subscription non context-
aware services. The information on activities sent to the user
is formatted by the subsystem Presentation; The user sends
(through communication subsystem) activityID to the
AVAccess system; The AVAccess system computes the
AVService type serviceType that match the selected activity;
(1) The user selects activity based on free-subscription context-
aware services: The AVAccess system sends back a list of
AVServices of serviceType (information on name, description, cost
and Uri) in accordance to the user context. If the system does not
retrieve relevant services the AVAccess gets user selection on
context information; the context-aware list of AVServices is filtered
by ContextAggregatorService subsystem from the list of AVServices
of serviceType registered in service repository.
(2) The user selects activity based on subscription-base context-
aware services: The AVAccess system sends back a list of
AVServices of that serviceType (information on name, description,
cost and Uri) subscribed by the user in accordance to the user
context. If the system does not retrieve relevant services the
AVAccess gets user selection on context information. The user must
be authenticated. The context-aware list of AVServices is filtered by
ContextAggregatorService subsystem from the list of AVServices of
serviceType subscribed by the user.
(3) The user selects activity based on subscription-base non
context-aware services: The AVAccess system sends back a list of

AVServices of that serviceType (information on name, description,
cost and Uri) subscribed by the user independent on current user
context. The user must be authenticated. The list of AVServices is
returned from the list of AVServices of serviceType subscribed by
the user.

AVService information provided by AVAccess system
consists of service serviceUri, service description and
service name. The AVAccess system sends back the
information on selected service. The information sent to the
user (through communication subsystem) is formatted by the
subsystem Presentation. The system must know terminal
model information.

Through the analysis of the use case {U0.5}, the relevant
attributes for the availableActivites class are activityID,
activityName and activityDescription. Relevant attributes
about the services are also presented in the description and
must be included in the corresponding class (in this case,
they belong to another subsystem).

From the {U0.9} use case description, it is also identified
the activityType attribute for the availableActivities class. In
terms of functionalities, and after the analysis of both use
cases, the relevant ones were underlined in the textual
descriptions and are now summarized:
 The user gets the activities defined in the AVAccess

system (getActivities():Activity[]);
 The user provides the activityID and gets the complete

list of AVServices that match the chosen activity
(getActivityServices(activityID:ActivityID):AVServices[]);

 The user provides the activityID and gets the service type
that matches the chosen activity
(getActivityType(activityID:ActivityID):ActivityType);

 The user selects activities based on the three types of
activities, free subscription, subscription-base
context-aware services and subscription-base non
context-aware services, and gets a list of AVServices
(activitiesSubscribedServices(username:UserName,
activityType:ActivityType):AVService[]).

The availableActivities class integrates now attributes

and methods, as depicted in Figure 6.

availableActivities

activityID: ActivityID
activityName: ActivityName
activityDescription: ActivityDescription
activityType: ActivityType

getActivities():Activity[]
getActivityType(activityID:ActivityID):ActivityType
getActivityService(activityID:ActivityID):AVService[]
activitiesSubscribedServices(username:UserName, activityType:ActivityType):AVService[]

Figure 6. Attributes and methods for the availableActivities class

For the subscribeService class (Figure 7), the analysis of
the {U0.5} use case allowed the identification of:
 The user subscribes a service

(subscribeService(serviceID:SerrviceID,
username:UserName));

 The user provides the activityID and gets the complete
list of AVServices that match the chosen activity
(getServices(activityID:ActivityID):AVServices[]);

111111

 The user provides the activityID and gets the complete
list of service id’s of the subscribed services
(getSubscribedServices(activityID:ActivityID,
username:UserName):ServiceID[]).

subscribeService

getServices(activityID:ActivityID):AVServices[]
subscribeService(serviceID:SerrviceID, username:UserName)
getSubscribedServices(activityID:ActivityID, username:UserName):ServiceID[]

Figure 7. Attributes and methods for the subscribeService class

The last class, selectService, is based on the {U0.9} use
case. The identified methods (Figure 8) are:
 The user selects a service

(selectService(serviceID:SerrviceID,
username:UserName));

 The user gets an AVService handler based on the service
id (getServiceHandler(serviceID:SerrviceID):URL);

 The user gets a list of AVServices based on the service
type
(getService(serviceType:SerrviceType):AVService[]).

selectService

selectService(serviceID:SerrviceID, username:UerName)
getServiceHandler(serviceID:SerrviceID):URL
getService(serviceType:SerrviceType):AVService[]

Figure 8. Attributes and methods for the selectService class

After the analysis of all objects and their corresponding
use case descriptions, the resulting class diagram is shown in
Figure 9.

The application of the 4SRS method in this
demonstration case allowed the identification of the system
logical architecture, as well as the identification of the class
diagram that adds persistence to the data manipulated in the
AVAccess service.

As advantages for this approach, we can point out that
the identified classes properly represent the system
requirements as they are identified through a recursive
process embedded in the 4SRS method that ensures the
elimination of redundancy and the identification of missing
requirements. Comparing to the Giganto and Smith [6]
approach, our approach is more robust since it complements
the use of use case models with object-oriented diagrams to
base the derivation of class diagrams. This complementary
approach attenuates the typical problems of the natural
language ambiguity.

In what concerns the lack of conciseness and
completeness in requirements specification, as already
mentioned, micro-step 2v constitutes a validation step
certifying the semantic coherence of the object-model and
discovering anomalies in the use case model.

Additionally, the recursive nature of the 4SRS method
permits that several components of a system can be treated
one at a time (each one with its own 4SRS execution [1]).
This approach reduces the complexity of the overall system
design, avoiding the construction of a global and massively
complex class diagram for the whole system. Instead, we

obtain a single class diagram for each system component,
when the 4SRS executions adopt the recursive approach.

When compared to the existing approaches, the current
version of the 4SRS method adopts a complementary
approach by using both object-driven artefacts and use cases
to support the complex process of identifying class diagrams
from user requirements.

availableActivities

activityID: ActivityID
activityName: ActivityName
activityDescription: ActivityDescription
activityType: ActivityType

getActivities():Activity[]
getActivityType(activityID:ActivityID):ActivityType
getActivityService(activityID:ActivityID):AVService[]
activitiesSubscribedServices(username:UserName, activityType:ActivityType):AVService[]

subscribeService

getServices(activityID:ActivityID):AVServices[]
subscribeService(serviceID:SerrviceID, username:UserName)
getSubscribedServices(activityID:ActivityID, username:UserName):ServiceID[]

usersManagementInterface

registerNewUser(userName:UserName, passwod:String): User
removeUser(userName:UserName, password:String)
removeUserTerminal(userName:UserName, terminalID:TerminalID)
addUserTerminal(userName:UserName,terminalModel:TerminalModel, telNumber:String)
subscribeService(userName:UserName, serviceID:ServiceID)
suspendSubscription(userName:UserName, serviceID:ServiceID)
checkSubscriptionStatus(userName:UserName, serviceID:ServiceID)
selectService(userName:UserName, serviceID:ServiceID)
unsubscribeService(userName:UserName, serviceID:ServiceID)
isUserAuthenticated(): Boolean

selectService

selectService(serviceID:SerrviceID, username:UerName)
getServiceHandler(serviceID:SerrviceID):URL
getService(serviceType:SerrviceType):AVService[]

Figure 9. Final class diagram

VI. DISCUSSION
Usually, object-oriented methodologies do not pay too

much attention to the object diagram, i.e., they are class-
driven. When they do, the class diagram is built firstly and
only later the object diagram is specified. The approach
presented here reverses this order, not in a reverse
engineering approach, but in an object-driven perspective.
We believe that it is more important to have a good system-
level object model (with logical architecture semantics),
because the system is composed of objects and not by their
classes. This is the main reason to first identify the system-
level objects and to later classify them, that is, to select the
classes to which those objects belong.

Some specialists may classify the object-driven
perspective (that puts classes in an apparently secondary role
and that firstly defines the objects and later the classes) as
object-based rather than object-oriented. Nonetheless, the
object-driven approach is somehow similar to the bottom-up
discovery of inheritance, as defined in [12], to hierarchically
organize the classes.

112112

In the approach described in this paper, the identification
of a class diagram for an already refined logical architecture
is based on the structural characteristics of that model
(refined raw object model). Currently, for discovering the
methods and the attributes, we are analyzing the textual
descriptions of the refined use cases. We plan to develop a
study to analyze the possibility of using the textual
descriptions of each system-level object to support the
discovering of methods and attributes, avoiding imprecise
and incomplete system requirements. This study will also
make possible the conciliation of all the obtained class
diagrams for each subsystem to construct a global class
diagram to support the design of the database that may be
considered pertinent within the specified logical architecture.

The 4SRS method relies on a model-driven development
approach, which is a technique that uses models during the
software development. It is executed by successively
transforming models into other (more reified) models, until
the final system design is obtained. Using the MDA
(model-driven architecture) [13] reference framework, we
consider that the extension of the 4SRS method presented in
this paper transforms UML use case diagrams (that represent
the original user requirements) and UML object diagrams
(that represent the system requirements of the logical
architecture) into UML class diagrams (to be used in future
transformation steps - not covered by this paper - to derive
the structure of the relational database component of the
global solution).

VII. CONCLUSION
This paper presented the additional steps added to the

4SRS method in order to be possible the identification of the
class diagram for a given logical architecture. One open issue
in the 4SRS method was the transformation of the raw object
diagram, with the system level entities, into a class diagram.
Two additional steps were included into the 4SRS method to
allow this transformation. These steps use the available raw
object diagram and the refined textual use cases descriptions.

A demonstration case showed the application of these
two supplementary steps of the 4SRS method. Through
them, a class diagram was identified. It includes the classes,
attributes and methods that emerge from the several steps
that now constitute the 4SRS method.

As future work we intend to add two more steps to this
process. One of them is associated with the design of

sequence diagrams modelling the interactions between
system entities. After that, the sequence diagrams will be
used to validate the class diagram ensuring that all system
requirements were considered.

REFERENCES
[1] R.J Machado, J.M. Fernandes, P. Monteiro, and H. Rodrigues,

“Refinement of Software Architectures by Recursive Model
Transformations”, Proc. of the 7th International Conference on
Product Focused Software Process Improvement - PROFES’06. 2006.
Amsterdam: Springer-Verlag.

[2] R.J. Machado, J.M. Fernandes, P. Monteiro, and H. Rodrigues,
“Transformation of UML Models for Service-Oriented Software
Architectures”, Proc. of the 12th IEEE International Conference on
the Engineering of Computer-Based Systems - ECBS 2005. 2005.
Maryland, U.S.A.: IEEE Computer Society Press.

[3] B. Anda and D.I.K. Sjoberg, “Investigating the Role of Use Cases in
the Construction of Class Diagrams”, Empirical Software
Engineering, vol. 10, 2005, pp. 285-309.

[4] B. Dobing and J. Parsons, “How UML is used”, Communications of
the ACM, vol. 49, 2006, pp. 109-113.

[5] H. Christiansen, C. T. Have, and K. Tveitane, “From use cases to
UML class diagrams using logic grammars and constraints”, Proc. of
Recent Advances in Natural Language Processing. Shoumen,
Bulgaria, 2007.

[6] R. Giganto and T. Smith, “Derivation of Classes from Use Cases
Automatically Generated by a Three-Level Sentence Processing
Algorithm”, Proc. of the Third International Conference on Systems,
2008. IEEE Computer Society.

[7] Y. Liang, “From use cases to classes: a way of building object model
with UML”, Information and Software Technology, 45:83-93, 2003.

[8] N. Juristo, A.M. Moreno, and M. López, “How to Use Linguistic
Instruments for Object-Oriented Analysis”, IEEE Software, 17(3):80-
9, May/June 2000.

[9] R. J. Abbott, “Program Design by Informal Descriptions”,
Communications of the ACM, 26(11):882-94, Nov. 1983.

[10] J.M Fernandes, R.J. Machado, P. Monteiro, and H. Rodrigues, “A
Demonstration Case on the Transformation of Software Architectures
for Service Specification”, Proc. of the 5th IFIP Working Conference
on Distributed and Parallel Embedded Systems - DIPES 2006. 2006.
Braga, Portugal: Springer-Verlag, New York, U.S.A.

[11] P. Monteiro, “Model-based Transformations for Software
Architectures: a prevasive application case study”, MSc Thesis,
University of Minho, Portugal, 2005.

[12] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
“Object-Oriented Modeling and Design”, Prentice-Hall International,
1991.

[13] OMG Unified Modeling LanguageTM (OMG UML), Infrastructure,
Version 2.2, OMG Document Number: formal/2009-02-04.

113113

