
CRUD-DOM
A Model for Bridging the Gap Between the Object-Oriented and the Relational Paradigms

Oscar M Pereira1, Rui L Aguiar2

 Instituto de Telecomunicações
University of Aveiro

Aveiro, Portugal
{omp1,ruilaa2}@ua.pt

Maribel Yasmina Santos
Algoritmi Research Centre

University of Minho
Guimarães, Portugal

maribel@dsi.uminho.pt

Abstract—Object-oriented programming is the most successful
programming paradigm. Relational database management
systems are the most successful data storage components.
Despite their individual successes and their desirable tight
binding, they rely on different points of view about data
entailing difficulties on their integration. Some solutions have
been proposed to overcome these difficulties, such as
Embedded SQL, object/relational mappings (O/RM), language
extensions and even Call Level Interfaces (CLI), as JDBC and
ADO.NET. In this paper we present a new model aimed at
integrating object-oriented languages and relational databases,
named CRUD Data Object Model (CRUD-DOM). CRUD-
DOM relies on CLI (JDBC) and aims not only at exploring
CLI advantages as preserving its performance and SQL
expressiveness but also on providing a typestate approach for
the implementation of the ResultSet interface. The model
design aims to facilitate the development of automatic code
generation tools. We also present such a tool, called CRUD
Manager (CRUD-M), which provides automatic code
generation with a complementary support for software
maintenance. This paper shows that CRUD-DOM is an
effective model to address the aforementioned objectives.

Keywords - CRUDDO; CRUD-DOM; database; impedance
mismatch.

I. INTRODUCTION
In spite of their individual successes object-oriented and

relational paradigms are simply too different to bridge
seamlessly leading to difficulties informally known as
impedance mismatch [1]. The diverse foundations of the
object-oriented and the relational paradigms are a major
hindrance for their integration, being an open challenge for
more than 45 years [2], due to the multiplicity of aspects that
need to be bridged across both paradigms: imperative
languages versus declarative languages; compilation and
execution performance versus search performance; classes,
algorithms and data structures versus relations and indexes;
transactions versus threads; null pointers versus null for the
absence of value [2], and finally, inheritance versus
specialization. The impedance mismatch thus presents
several challenges for developers of common applications,
where often both paradigms are found. These challenges are
especially noticeable in environments where production code
is under strict development deadlines, and where (timely)

code development efficiency is a major concern. In order to
cope with the impedance mismatch issue several solutions
have emerged such as language extensions (SQLJ [3], LINQ
[4]), call level interfaces [5] (JDBC [6], ODBC [7]
ADO.NET [8]), object/relational mappings (O/RM)
(Hibernate [9], TopLink [10], LINQ [4]) and persistence
frameworks (JDO [11], JPA [12]). Language extensions may
provide static syntax and type checking but always rely on
proprietary standards. Call level interfaces, despite their
performance, provide no static syntax or static checking.
O/RM have the advantage of treating data as objects but do
not take the advantage of the database engine performance
and further rely on proprietary standards. Persistent
frameworks have the same drawbacks as O/RM.

Despite CLI drawbacks, they cannot be discarded as an
important and valid option whenever performance and SQL
expressiveness are considered key issues [2]. CLI provide
mechanisms to encode Create, Read, Update and Delete
(CRUD) expressions inside strings, easily incorporating the
power and the expressiveness of SQL. Thus, power and
expressiveness are crucial advantages of CLI but this comes
with unavoidable and important drawbacks (see detailed
discussion in section III). Our work aims to overcome these
drawbacks. For such, we developed a model, known as
CRUD Data Object Model (CRUD-DOM) where each
CRUD expression is wrapped into an object-oriented
component, known as CRUD Data Object (CRUD-DO).
Furthermore, we developed a tool addressing automatic
CRUD-DO generation relying on user SQL statements
written from scratch. This tool is known as CRUD Manager
(CRUD-M).

This paper is organized as follows. Section II presents
related work. Section III highlights the impedance mismatch
problem. Section IV describes our proposed model (CRUD-
DOM), while section V presents the automatic code
generation tool (CRUD-M). Section VI presents performance
assessment and finally, Section VII presents the final
conclusion.

Throughout this paper all examples are based on Java,
SQL Server 2008 and JDBC (CLI) for SQL Server
(sqljdbc4). Code snippets may not execute properly since we
will only show the relevant code for the points under
discussion. For conciseness, Figure 1 presents a partial view
of a database schema which will be used throughout the

2010 Fifth International Conference on Software Engineering Advances

978-0-7695-4144-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSEA.2010.25

114

2010 Fifth International Conference on Software Engineering Advances

978-0-7695-4144-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSEA.2010.25

114

examples of this paper. This database is associated with the
academic life, as we expect to be easily understood.

Figure 1. Partial view of the database schema

II. RELATED WORK
This section presents the different approaches for the

integration of the object-oriented and the relational
paradigms. As a well-known problem in industry, multiple
techniques have been addressing the impedance mismatch
problem.

Embedded SQL [13] is a method for writing SQL
statements in-line with regular source code of the host
language inside source files. These files are then pre-
processed in order to check the correctness of the SQL
statements namely against the database schema, host
language data type and SQL data type checking, and finally
syntax checking of the SQL constructions. SQLJ [3] is an
example of an Embedded SQL standard which provides
language extensions for embedding SQL statements in
regular Java source files. Some SQLJ disadvantages, which
are common to most Embedded SQL technologies: 1) SQLJ
relies on an extra standard; 2) SQLJ does not decouple SQL
statements from regular source code; 3) SQLJ does not
provide a clean object-oriented interface to the assisted
application; 4) SQLJ does not provide assistance regarding
the maintenance of SQL statements; 5) SQLJ requires a JVM
(Java Virtual Machine) built in the database. In practice,
embedded SQL has never been widely adopted by end users.

Object-relational mapping [14-15] is a programming
technique aiming at enforcing relational data models to be
closely aligned with the object-oriented paradigm. The
relational to object-oriented translation is driven by an
explicit mapping (generally in XML) or by schema
annotations (inside the source code file). Much of the
enforcement is on behalf of getting an object-oriented logic
access layer coping with the impedance mismatch [1] issue.
Every relational concept must, somehow, have its
corresponding concept(s) in the object-oriented paradigm.
Very often, the translation is not straightforward leading to
complex translations, as the case of the relationship and
specialization concepts. In these cases, besides the

aforementioned hindrance, the relational model lacks
essential conceptual information obliging oneself to an extra
effort on defining relationship direction, cardinality, etc.
Nevertheless, O/RM techniques have been quite successful,
either as commercial products (e.g., Oracle TopLink [10],
ADO.NET Entity Framework [16], LINQ [4]) or as open
source projects (e.g., Hibernate [17]). Albeit this achieved
success, well known O/RM drawbacks are unavoidable: 1)
each O/RM programming technique relies on proprietary
standards introducing new mapping schemas and new SQL-
equivalent manipulation languages; 2) O/RM entails an
additional effort to map the relational model into the object-
oriented model; 3) performance and expressiveness are the
two main O/RM penalties.

Safe Query Objects [18] combine object-relational
mapping with object-oriented languages to specify queries
using strongly-typed objects and methods. They rely on Java
Data Objects to provide strongly-typed objects and also to
provide data persistence. Safe Query Objects are a promising
technique to express queries but share most of the
aforementioned drawbacks of O/RM namely regarding
performance and SQL expressiveness.

SQL DOM [19] generates a Dynamic Link Library
containing classes that are strongly-typed to a database
schema. These classes are used to construct dynamic SQL
statements without manipulating any strings. As Safe Query
Objects, SQL DOM does not take the full advantage of SQL
expressiveness and also exhibits very poor results regarding
performance.

Static Checking of Dynamically Generated Queries [20]
presents a solution based on static string analysis of Java
programs to find out where SQL statements are being
constructed. The main idea is to find out all possible
combinations of distinct SQL statements and then analyze
them regarding their syntax and their type mismatch errors.
This approach does not affect system performance but
exhibits some drawbacks as: 1) all source code is hand
written from string concatenation till JDBC execution
context; 2) it does not provide any object-oriented view of
the SQL statement execution context.

In order to overcome the drawbacks of these techniques,
we aim to explore CLI, namely through JDBC, for
addressing the impedance mismatch problem.

III. IMPEDANCE MISMATCH: COMMON JDBC
DRAWBACKS

JDBC is a common tool for integrating relational
databases with Java (object-oriented programming
language). JDBC is also a representative of the typical
challenges. As such, we will explore JDBC as a target tool.

Thus, this section aims to emphasize common drawbacks
regarding the utilization of JDBC including the ResultSet
interface. The drawbacks may be split into four categories: 1)
the process for editing SQL statements; 2) the process for
retrieving data from returned relations; 3) the process of
updating databases through CONCUR_UPDATABLE
ResultSets; 4) protocols of ResultSet interface regarding its
usability.

115115

Figure 2 presents a simple example which comprises
some of the drawbacks related to categories 1), 2) and 3).
This example is used in the following paragraphs, which
describe JDBC drawbacks:

a) There is no easy way to link CRUD expressions and their
results to the application they assist. CLI provide services to
ease the integration of object-oriented applications and
relational databases but relevant issues are not overcome
such as string concatenation (Figure 2: lines 22-24) and
conversion between relational and object-oriented paradigms
(Figure 2: lines 27, 28, 30).

Figure 2. Some JDBC drawbacks

b) Editing CRUD expressions and access to their results is
tricky and error-prone. CRUD expressions are constructed
by concatenating strings and access to their results is
achieved by reading attribute by attribute in a row by row
basis. Some of the most usual errors are: a) concatenation
errors - missing space between lines (lines 22, 23), missing
space before “and” (Figure 2: line 23); b) type mismatch
error - argument startYear and column Crs_startYear (Figure
2: lines 20, 24); c) retrieving data - misspelled column name
(Figure 2: line 28);

c) Errors cannot be checked for correctness at compile time,
addressed in [20]. None of the previous errors can be caught
at compile time demanding great accuracy while editing
code in order to prevent additional time on testing,
debugging and future maintenance.

d) CRUD expressions are awkward regarding their
maintenance, addressed in [21]. CRUD expressions
(construction and execution) comprise many different
entities grouped in three classes: SQL syntax, CLI services
and database schema. While SQL syntax and CLI services
can be considered stable, database schema is a dynamic
entity. Database schema may change for many reasons, as
initial error on conceptual model or the emerging of new
requirements, which usually happens several times during
the development process and even also after application
deployment.

e) CRUD expressions are vulnerable to SQL injection
attacks, addressed in [22]. This issue is not addressed in the
current version of CRUD-DOM.

f) ResultSet protocols, ResultSet interface has dozens of
states, dealing with different combinations of ResultSet
instantiation, direction, access, updates, etc. The developer
is before a huge task to become aware of how to use the
ResultSet interface. Figure 3 presents a partial view of the
ResultSet interface. Each ResultSet state has its own usage
protocol gathering a subgroup of the methods presented in
Figure 3.

Figure 3. Partial view of the ResultSet interface

Some of the aforementioned drawbacks have already
been individually addressed (see citations). In this paper we
will present a simple, integrated and unified alternative to
overcome all the aforementioned drawbacks, except the SQL
injection attack.

IV. CRUD-DOM
CRUD-DOM is our abstract model aimed at coping with

the drawbacks described in section III. CRUD-DOM must
assure that applications and databases bridge seamlessly and
also that CRUD-DOs may be automatically generated by a
tool (in our case, CRUD-M).

Before we delve into the CRUD-DOM issue we will
present a concise overview of CRUD expressions.

A. CRUD Expressions
CRUD expressions are the basic entities from which

CRUD-DOM specification must evolve. Therefore, before
proceeding with the CRUD-DOM specification, it is
advisable to briefly survey CRUD expressions in order to be
aware of the CLI context in which they are used.

CRUD expressions comprise the four basic SQL
statements for accessing information in databases: Select,
Insert, Update and Delete. While Insert, Update and Delete
statements are used to alter the state of databases, Select
statement allows the implementation of several views of the
database. Hence, CRUD expressions may be grouped into

116116

two categories: “query CRUD expressions” (Q-CRUD)
whenever involving a Select statement; and “execute CRUD
expressions” (E-CRUD) whenever involving an Insert,
Update or Delete statement. The corresponding CRUD-DOs
share some source code but relevant differences must be
emphasized. The most relevant difference is that Q-CRUD
expressions return relations from the database therefore
requiring specific processing, as seen in Figure 2 (lines 26-
28). Additionally, in some circumstances and also for certain
Q-CRUD expressions it is possible to instantiate updatable
ResultSets. Updatable ResultSets provide embedded
protocols to update, to delete and to insert data in databases.
Figure 2 (lines 30-32) concisely presents a case for the
update situation. Q-CRUD expressions underlying updatable
ResultSet are named as Active Q-CRUD expressions (AQ-
CRUD). The remaining non updatable are known as Passive
CRUD expressions (PQ-CRUD).

B. CRUD-DOM Details
We will present CRUD-DOM by enumerating and

describing the fundamental features for each type of CRUD
expression: E-CRUD, PQ-CRUD and AQ-CRUD.
Afterwards, we will present class diagrams for each type of
CRUD expression. For all presented examples we assume
that:

• “CruddoName” is the name for all used types of
CRUD expressions;

• Q-CRUD expression is “select co1A, colB from table
where colA>param” where colA is integer and colB
is string;

• E-CRUD is any delete, update or insert SQL
statement with one parameter (param) of type
integer.

Features:

All CRUD expressions share the following features:
• Each CRUD expression must have a unique name

which will be used to build some names of CRUD-
DO classes;

• Every CRUD-DO is built around one class, known
as invocation class, and among other things, the class
is responsible for the execution of the CRUD
expression. The name of the invocation class is the
same as the one given to the CRUD expression.

• The invocation class has only one constructor with
one argument, the type of which is Connection
(java.sql).

• The invocation class has one method named as
execute which is responsible for the execution of the
CRUD expression. This method returns no value and
has as many arguments as the number of the CRUD
expression parameters. The name, type and order of
the arguments depend on the name, type and order of
CRUD expression parameters.

All CRUD-DOs derived from E-CRUD expressions

share the following feature:

• The invocation class has a method with the
following signature: int getAffectedRows(); this
method returns the number of affected rows by the
execution of the E-CRUD expression.

Figure 4 presents the class diagram for the E-CRUD
expression example, CruddoName.

Figure 4. Invocation class for E-CRUD expressions

All CRUD-DOs derived from Q-CRUD expressions
share the following feature:

• The invocation class has one method with the
signature: boolean moveNext(); it is responsible for
indicating if there is another row and for moving the
cursor down one row from the current position;

Q-CRUD expressions have no concrete instances. They
are super types for PQ-CRUD and AQ-CRUD expressions.

If ResultSet is created as scrollable, the invocation class
implements other scrollable methods.

All CRUD-DOs derived from PQ-CRUD expressions

share the following features:
• Extend features of Q-CRUD expressions;
• The invocation class has one method with the

following signature: CruddoName_readTuple
beginRead();

Figure 5. Invocation class for PQ-CRUD expressions

• CruddoName_readTuple class, known as the access
class, implements one method, generally known as
access method, for each attribute of the returned
relation. Each access method has the following
signature JavaDataType getAttributeName() where
JavaDataType is the correspondent java data type
for the SQL data type and the method’s name is built
by concatenating the name of the attribute (first letter

117117

converted into uppercase) with the prefix get. Figure
5 and Figure 7 present the class diagrams for PQ-
CRUD expressions.

All CRUD-DOs derived from AQ-CRUD expressions

share the following features:
• Extend features of Q-CRUD expressions;
• The invocation class may provide any subset of the

following four features: readable, updatable,
insertable and deletable; whenever provided, the
readable feature may also be included in the
remaining features to improve their usability;

• If CRUD-DO is readable it implements one method
with the following signature:
CruddoName_readTuple beginRead();

• If CRUD-DO is updatable it implements one
method with the following signature:
CruddoName_updateTuple beginUpdate();

• If CRUD-DO is insertable it implements one method
with the following signature:
CruddoName_insertTuple beginInsert();

• If CRUD-DO is deletable it implements one method
with the following signature: delete();

• CruddoName_readTuple class: previously explained
for PQ-CRUD;

• CruddoName_updateTuple and
CruddoName_insertTuple classes provide
functionalities easily perceived from
CruddoName_readTuple class: access methods have
set as prefix instead of get;.

• The delete method, deletes the current row from the
ResultSet.

Figure 6, Figure 7, Figure 8 and Figure 9 present the

class diagrams for AQ-CRUD expressions.

Figure 6. Invocation class for AQ-CRUD expressions

Class diagrams have been presented for each type of
CRUD expression. To completely understand the class
diagrams it is necessary to have an understanding of how the

ResultSet interface is implemented. Original ResultSet
method names have been renamed and some new ones have
been included. Renamed methods are easily identified: next-
>moveNext, previous->movePrevious, etc. Only a subgroup
of all methods has been presented in order to avoid
overcrowd the class diagrams.

Figure 7. Readable class for Q-CRUD expressions

Figure 8. Insertable class for AQ-CRUD expressions

Figure 9. Updatable class for AQ-CRUD expressions

V. CRUD MANAGER
The CRUD-M addresses the features for CRUD-DO
automatic code generation and also for CRUD-DO
maintenance. No special programming skills should be
required to use CRUD-M and learning time should be
minimal. CRUD-M usage is centered in a GUI component
presented in Figure 10. Figure 10 shows a concrete example
for an AQ-CRUD expression, called GetCourses, which is
readable, updatable and insertable but not deletable. Figure
11 shows the usage of CRUD-DO GetCourses from the
application point of view. As one can see, the integration is
seamless regarding impedance mismatch. Additionally, an
initial approach for the implementation of ResultSet as a
typestate [23] component is provided improving this way
CRUD-DO usability. This may be verified, as an example,
by the definition of the GetCourses_readTuple class (Figure
11, lines 44,45) which provides a coherent protocol for
retrieving data from the ResultSet.

118118

Figure 10. CRUD-M GUI

Figure 11. GetCourses from the application point of view

The CRUD-M encompasses five main blocks as depicted

in Figure 12. User launches CRUD-M and defines which
database is going to be used. Then, “Schema Reader” reads
the schema of the database. From now on, users may edit
and/or maintain CRUD expressions. “CRUD Editor”
provides a context where CRUD expressions may be edited.
“CRUD Execution Unit” may help “CRUD Editor” in some
specific tasks as defining SQL parameters and executing
statements against the database. After executing successfully
a SQL statement against the database, users are allowed to
create CRUD-DO which will be accomplished by “CRUD-
DO Generator”. “CRUD Maintenance” parses CRUD-DO
and retrieves the underlying CRUD expression to be reedited
by “CRUD Editor”. A more detailed description for each
bock follows:

Schema Reader: this component reads the schema of the

database which is mainly used to automatically suggest the
Java data types for parameters of CRUD expressions.
CRUD Editor: CRUD Editor is a text editor where CRUD
expressions may be written from scratch. Parameters defined
in runtime must be identified through a unique name
preceded by a ‘@’ character. These names will be used for
the arguments of the invocation classes. In our example we
have defined two parameters: dptId and startYear.

Figure 12. Block diagram of the CRUD-M

CRUD Execution Unit: CRUD Execution Unit is responsible
for three tasks: 1) providing, whenever necessary, input data
components for SQL parameters. Each input component is
identified by the name of the associated parameter and has a

119119

default Java Data Type derived from the database schema.
Users may select another Java Data Type becoming
responsible for their decision; 2) executing the edited CRUD
expression against the database proving this way an expedite
and integrated tool for evaluating the correctness of CRUD
expressions and also for testing the outcome of CRUD
expressions. Developers are relieved to write source code to
test and debug their CRUD expressions; 3) formatting a table
in runtime to present the content of returned relations,
whenever the underlying CRUD is a Q-CRUD expression.
This visualization allows developers to have an immediate
visual feedback about the retuned data and easily evaluate
the outcome of Q-CRUD expressions. In our example, the Q-
CRUD expression returned a relation with 4 rows and 5
attributes.
CRUD-DO Generator: CRUD-DO Generator creates
automatically all the necessary classes for the underlying
CRUD expressions. For all types of CRUD expressions,
users must input some additional information, as: CRUD-
DO’s name, package’s name, type of CRUD expression,
pool directory for CRUD-DOs, etc. Some additional
information is required if CRUD expression is of type AQ-
CRUD, as if it is readable, insertable, updatable or
deletable.
CRUD Maintenance: this component keeps track of all
existing CRUD-DOs in the pool directory. Any CRUD-DO
in the pool directory may be selected for editing or to be
deleted. If it is selected for editing, the underlying CRUD
expression is retrieved from the invocation class and
presented by the CRUD editor. From now on, the CRUD
expression may be retested or reedited to update the current
CRUD-DO or even to create a new one.

VI. PERFORMANCE ASSESSMENT
Performance is an indicator of how well a software

system or component meets its requirements for timeliness
[24]. There are two dimensions: responsiveness and
scalability. This paper mostly discusses responsiveness
aspects and scalability will be considered in a near future.
Hereafter, performance should be understood as the
responsiveness dimension.

The performance assessment here presented covers
standard JDBC and CRUD-DOM solutions. All assessments
share the same platform: PC - Dell Latitude E5500; CPU -
Intel Duo Core P8600 @2.40GHz; RAM - 4.00 GB; OS -
Windows Vista Enterprise Service Pack 2 (32bits); Java SE
6; JDBC(sqljdbc4); NetBeans 6.5.1; SQL Server 2008
running on localhost; minimum used counting interval –
0,1ms. In order to provide an ideal test environment the
following actions were taken: the running thread was given
the highest priority and all non essential processes/services
were cancelled.

TABLE I presents the results of all measurements and

also relevant supplementary information (at the bottom part
of the table) to understand its contents. Depending on the

ResultSet type and on the performed operation, 10 types of
conditions were defined for an AQ-CRUD expression. AQ-
CRUD expression was the chosen type because it is the most
susceptible CRUD type regarding CRUD-DOM architecture
in terms of wrapping classes and therefore regarding overall
performance. For the 10 conditions 30 assessments were
carried out for 3 contexts: JDBC, DOM and Submit. All
values, for each condition, represent the time required to
compute N cycles as explained in the next topics. Figure 13
and Figure 14 present a partial view of the source code to
execute an update and delete operation, respectively, for each
of the 3 contexts. Each context is detailed in the next
paragraphs.

JDBC: this context represents, for each individual condition,
the normalized performance. The value 1.000 represents, for
each condition, 100.0 ms in which are computed N cycles of
standard JDBC code. This value N is computed in an
interactive way and will be used in the remaining 2 contexts
to evaluate the time required to compute the equivalent
source code. The important issue in this context is that the
updated information (update, insert and delete operations) is
not submitted to the database, see Figure 13 and Figure 14
(JDBC). This way, the results will only depend on the
implemented approaches avoiding overheads from external
components.

DOM: this context represents the normalized performance to
execute each equivalent CRUD-DOM condition with the
same number of N cycles, see Figure 13 and Figure 14
(CRUD-DOM). Akin to JDBC, the information is not
submitted to the database.

TABLE I. ASSESSMENT FOR JDBC AND CRUD-DOM

Id Rs O N JDBC DOM Submit %
0 FR R 40,668 1,000 1,017 0 1.7
1 FU R 35,370 1,000 1,013 0 1.3
2 FU U 34,620 1,000 1,021 204,352 0.01
3 FU C 39,650 1,000 1,029 207,367 0.01
4 FU D 3,010e3 1,000 1,155 735,280e3 <0.001
5 SR R 34,320 1,000 1,012 0 1.2
6 SU R 34,670 1,000 1,017 0 1.7
7 SU U 35,018 1,000 1,040 220,779 0.02
8 SU C 38,671 1,000 1,041 215,189 0.02
9 SU D 3,071e3 1,000 1,168 758,940e3 <0.001

Rs(ResultSet Type): F –forward only, S – scrollable, R –
only readable, U – readable and updatable;
O (Operation): R – read, U – update, C – insert,
D – delete.
Performed operation/loop: C – two strings and two
integers; R – two strings and two integers; U – two strings
and two integers; D – one row.
% = [(DOM+Submit)-(JDBC+Submit)]/(JDBC+Submit)

Submit: this context is the total time required to execute N
cycles and also for submitting the information to the
database for each condition, see Figure 13 and Figure 14
(Submit). We present a single column because, in this

120120

context, standard JDBC and CRUD-DOM performances
could not be distinguished. Figure 13 and Figure 14 present
the code for standard JDBC (Submit).

Surprisingly, the obtained results show that performances
for JDBC and CRUD-DOM contexts are very similar. if D
operation is not considered, the maximum percentage
difference is 4.1% and was on SU-C (Id=8). Some additional
tests were carried out to understand these results. We came
into the conclusion that the overhead introduced by ResultSet
methods (shared by both approaches – getInt, getString,
updateInt, updateString) consumed almost all the required
time to compute JDBC and DOM contexts. This assertion
has been proved after removing those operations from both
contexts. Those methods cannot be avoided leading to no
other option than taking them as part of the overall
performance assessment.

The Delete (D) operation introduces an overhead close to
16%. This result comes from the fact that JDBC and CRUD-
DOM contexts are very short of code, see Figure 14 (JDBC
and CRUD-DOM). Any additional code may convey a
significant overhead as is the case of ru.delete() in spite of
being an empty method.

Figure 13. Update operation

In many situations performances of JDBC and CRUD-
DOM contexts may be considered equivalent or at least
similar. But JDBC and CRUD-DOM contexts, for most of
the conditions, do not express real situations. Conditions
where update, delete or insert operations are carried out, the
information must be submitted to the database. These
conditions have been addressed in the Submit context.
Submit column (TABLE I) shows that the normalized values
are much higher than the ones for JDBC and CRUD-DOM
contexts. Submit context tells us that the time to accomplish
the submission task takes at least 200 times the ones for the

JDBC and CRUD-DOM contexts in spite of the optimal
running environment.

Regarding delete operations, they take at least 700,000
times more. This value results from the fact that the JDBC
and CRUD-DOM contexts, as mentioned before, are very
short of code conveying a very high weight to the effective
delete operation.

As a final summary, column % shows the overall
performance decay in percentage. The results were obtained
from the formula shown at the bottom of the TABLE I which
stresses the total performance decay for real situations. The
maximum decays come from “read” operations which
oscillate between a maximum of 1.7% and a minimum of
1.2%. Regarding “update” and “insert” operations
performance decays oscillate between 0.01% and 0.02%.
Regarding “delete” operations, performance decay is under
0.001%. From the obtained results, loosely speaking, we
may argue that the overhead introduced by CRUD-DOM
may be considered as irrelevant in a Submit context.

Figure 14. Delete operation

VII. CONCLUSION
CRUD-DOM proved to be an effective model for

wrapping customized CRUD expressions. The main positive
advantages of this model are: 1) it encapsulates CRUD
expressions and exposes an object-oriented interface to the
assisted application; 2) the interface is strongly-typed; 3) it is
amenable to the development addressing automatic code
generation; 4) it copes with requirements as SQL
expressiveness and system performance; 5) it does not rely
on any complementary or proprietary technology; 6) it
promotes the development of intermediate access layers
decoupled from applications and databases. Regarding
CRUD-DOM performance, in spite of the limited range of
tests involving read and write operations, this early
assessment suggests that any additional effort to improve its
performance should start and be focused on “read”
operations. Performance of the remaining operations in the
Submit context is not sensible to the JDBC or to the CRUD-
DOM approach. It is beyond the programmer’s scope. Thus,
it is expected that any improvement in the source code

121121

should have a negligible impact on performance.

The automatic code development tool, CRUD-M,

designed as proof of concept, proved to be an efficient tool
addressing all features of CRUD-DOM in an integrated way.
Programmers are only required to input customized SQL
statements. CRUD-M relieves programmers from writing
and testing any source code. Additionally, it provides an
interactive GUI where programmers are guided step by step,
since the editing of CRUD expressions till the creation of
CRUD-DO.

In order to improve CRUD-DO performance, we are

already addressing some key issues such as support for
PreparedStatements, implementing concurrency between
CRUD-DOs and also implementing instance pooling for
CRUD-DOs.

REFERENCES
[1] M. David, "Representing database programs as

objects," in Advances in Database Programming
Languages, ed N.Y.: ACM, 1990, pp. 377-386.

[2] W. Cook and A. Ibrahim. (2010 Mar 20).
Integrating programming languages and
databases: what is the problem? Available:
http://www.odbms.org/experts.aspx#article10

[3] Part 1: SQL Routines using the Java (TM)
Programming Language, 1999.

[4] A. Hejlsberg. (2010 Mar 15). The LINQ Project.
Available: http://msdn2.microsoft.com/en-
us/netframework/aa904594.aspx

[5] ISO. (2003, 2010) ISO/IEC 9075-3:2003.
Available:
http://www.iso.org/iso/catalogue_detail.htm?csnum
ber=34134

[6] S. Microsystems. (2010 Feb 27). JDBC Overview.
Available:
http://java.sun.com/products/jdbc/overview.html

[7] Microsoft. (2010 Mar 18). Microsoft Open
Database Connectivity. Available:
http://msdn.microsoft.com/en-
us/library/ms710252(VS.85).aspx

[8] Microsoft. (2010 Mar 12). Overview of ADO.NET.
Available: http://msdn.microsoft.com/en-
us/library/h43ks021(VS.71).aspx

[9] Hibernate. (2010 Feb 24). Hibernate. Available:
http://www.hibernate.org/

[10] Oracle. (2010 Mar 15). Oracle TopLink. Available:
http://www.oracle.com/technology/products/ias/topl
ink/index.html

[11] S. Microsystems. (2010 Mar 23). Java Data Objects
(JDO). Available: http://java.sun.com/jdo/

[12] Sun.Microsystems. (2010 Feb 25). JPA - Java
Persistent API. Available:
http://java.sun.com/javaee/technologies/persistence.
jsp

[13] J. W. Moore, "The ANSI binding of SQL to ADA,"
Ada Letters, vol. XI, pp. 47-61, 1991.

[14] W. Keller, "Mapping Objects to Tables - A Pattern
Language," in European Conference on Pattern
Languages of Programming Conference
(EuroPLoP), Irsse, Germany, 1997.

[15] R. Lammel and E. Meijer, "Mappings Make data
Processing Go 'Round: An Inter-paradigmatic
Mapping Tutorial," in Generative and
Transformation Techniques in Software
Engineering, Braga, Portugal, 2006.

[16] C. Pablo, et al., "ADO.NET entity framework:
raising the level of abstraction in data
programming," in ACM SIGMOD International
Conference on Management of Data,
Beijing,China, 2007, pp. 1070-1072.

[17] Hibernate. (2010). Hibernate. Available:
http://www.hibernate.org/

[18] R. C. William and R. Siddhartha, "Safe query
objects: statically typed objects as remotely
executable queries," in 27th International
Conference on Software Engineering, St. Louis,
MO, USA, 2005, pp. 97-106.

[19] A. M. Russell and H. K. Ingolf, "SQL DOM:
compile time checking of dynamic SQL
statements," in 27th International Conference on
Software Engineering, St. Louis, MO, USA, 2005,
pp. 88-96.

[20] W. Gary, et al., "Static checking of dynamically
generated queries in database applications," ACM
Transansactions on Software Eng. Methodology,
vol. 16, p. 14, 2007.

[21] M. Andy, et al., "Impact analysis of database
schema changes," in 30th International Conference
on Software Engineering, Leipzig, Germany, 2008,
pp. 451-460.

[22] B. Gregory, et al., "Using parse tree validation to
prevent SQL injection attacks," in 5th International
Workshop on Software Engineering and
Middleware, Lisbon, Portugal, 2005.

[23] R. E. Strom and S. Yemini, "Typestate: A
programming language concept for enhancing
software reliability," IEEE Trans. Softw. Eng., vol.
12, pp. 157-171, 1986.

[24] C. U. Smith and L. G. Williams, Performance
Solutions: a Practical Guide to Creating
Responsive, Scalable Software, 1st ed.: Addison
Wesley, 2001.

122122

