
Innovations Syst Softw Eng (2009) 5:13–25
DOI 10.1007/s11334-009-0075-6

ORIGINAL PAPER

Formal requirements modelling with executable use cases
and coloured Petri nets

Jens B. Jørgensen · Simon Tjell · João M. Fernandes

Received: 1 September 2008 / Accepted: 12 January 2009 / Published online: 7 February 2009
© Springer-Verlag London Limited 2009

Abstract This paper presents executable use cases (EUCs),
which constitute a model-based approach to requirements
engineering. EUCs may be used as a supplement to model-
driven development (MDD) and can describe and link
user-level requirements and more technical software spec-
ifications. In MDD, user-level requirements are not always
explicitly described, since usually it is sufficient that one
provides a specification, or platform-independent model, of
the software that is to be developed. Therefore, a combina-
tion of EUCs and MDD may have potential to cover the path
from user-level requirements via specifications to implemen-
tations of computer-based systems.

Keywords Requirements engineering · Requirements and
specifications · Platform-independent models · Model-driven
development · Coloured Petri nets

1 Introduction

Model-driven development (MDD) [33] can offer significant
support for the path from user-level requirements, often based
on observations of the real world and informal descriptions,

J. B. Jørgensen
Mjølner Informatics, Finlandsgade 10, 8200 Aarhus N, Denmark
e-mail: jbj@mjolner.dk

S. Tjell (B)
Department of Computer Science, University of Aarhus,
Aabogade 34, 8200 Aarhus N, Denmark
e-mail: tjell@daimi.au.dk

J. M. Fernandes
Department of Informática & CCTC, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
e-mail: jmf@di.uminho.pt

via specifications to implementations of computer-based
systems. MDD focuses on automatically transforming soft-
ware models into running implementations on various
execution platforms. This implies that MDD is essentially a
solution-oriented approach. MDD approaches do not always
emphasise the requirements engineering activities needed to
produce the necessary specifications. For example, OMG’s
model-driven architecture (MDA) [43] does not encourage
software developers to pay enough attention to properly iden-
tifying and describing the problems that the software must
solve. This may result in obvious and severe mistakes, such
as developing a perfect solution for the wrong problem.

With this observation as motivation, we propose execut-
able use cases (EUCs) [21], a model-based approach to
requirements engineering that can be used together with
MDD. Figure 1 illustrates the relationship between EUCs and
MDD. The starting point for any software development pro-
ject is some real-world problem for which some stakeholders
have chosen to devise a solution. The analysis of this problem
results in the production of some agreement on the most rele-
vant and important requirements for a solution. The analysis
should also result in a common understanding of the problem
at hand. Based on the requirements, a specification is devel-
oped to more precisely describe a specific software system
that solves the problem when embedded in the environment.
This specification is then the foundation for developing the
actual software. Figure 1 also informally shows the stages at
which EUCs and MDD are most useful. This illustrates that
the two approaches cover different parts of the development
cycle. It also depicts the fact that there is an overlap in the
areas covered by the two approaches. In this paper, we inves-
tigate how this overlap may be exploited in order to devise
an approach to combining the use of EUCs and MDD.

Generally, in software engineering, the terms requirement
and specification are often used with many different meanings

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55611739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

14 J. B. Jørgensen et al.

Fig. 1 Relationship between
executable use cases and
model-driven development

Real world /
environment

Require-
ments

Specifi-
cations

Implementation /
IT system

Analysis
(describing the problem)

Design
(devising the solution)

Executable Use Cases (EUCs)

Model-Driven Development (MDD)

Fig. 2 Relationship between requirements and specification; adopted
from [13]

[13,36]. The combination requirements specification is also
very common (e.g. [35,39]). In the description of Fig. 2, we
give a more restrictive definition of the terms since they are
essential to the introduction of EUCs. This definition is in
accordance with the terminology of Jackson [13,14,41].

A requirement is a desired property that we want to be ful-
filled in the environment, for example, that the car reduces
its speed when the driver steps on the brake pedal. Require-
ments belong to the users’ world and do not need to mention
the computer-based system and the software under consider-
ation.

A specification is a description of an interaction between
the environment and the computer-based system; for exam-
ple, when the driver steps on the brake pedal, a brake-
by-wire controller computer system that is to be developed
will receive a stimulus and, in response, will send an electrical
signal to activate the physical brake. Specifications belong
in the borderline between the system and the real world.

The speed of the car and the driver stepping the brake
pedal are examples of phenomena that exist in the environ-
ment. A phenomenon is typically an event or a state. Some
of the phenomena in the environment are shared with the
software system under development. When a phenomenon
is shared, it means that both the environment and the system
may observe it, but only either the system or the environment
controls the phenomenon; for example, the brake pedal may
be represented as a shared state phenomenon. The brake-
by-wire controller is able to monitor the level of the pedal in

order to detect when it is stepped down and how deep. On
the other hand, the controller is not able to affect the state of
the pedal at all. This is only possible for the driver, who is
part of the environment. This distinction is very important,
because it defines the limitations of which responsibilities
may be assigned to the system under development.

The collection of shared phenomena form the boundary
between the system and its environment, as illustrated in
Fig. 2. Here, according to the terminology of Jackson, the
machine corresponds to the system under development (e.g.
the brake-by-wire controller). The environment phenomena
are those controlled by the environment and not shared with
the machine, while the machine phenomena are controlled by
the machine and not shared with the environment. The terms
hidden or private are sometimes used to refer to phenom-
ena that are not shared. An example of an environment phe-
nomenon that is not directly accessible to the brake-by-wire
controller is the current speed of the car. This means that the
speed should not be referred to when expressing the specifi-
cation but could well be part of a requirement. Such a require-
ment could describe how fast the speed should decrease as
a function of stepping down on the pedal. The specification
interface contains those phenomena that are shared between
the machine and the environment. The shared state phenom-
enon representing the level of the pedal described above is
a good example of what could be referred to in a specifica-
tion.

The requirements should be expressed solely in terms of
the environment phenomena, including the ones in the spec-
ification interface. The specifications should be expressed
solely in terms of the phenomena in the specification inter-
face. However, we sometimes allow for some implementa-
tion bias [13]. This means that the specification refers to
abstractions of machine phenomena that are not necessarily
shared in the specification interface. In this way, the solution
space may be superficially explored in the later stages of the
requirements analysis.

In any software development project, it is essential to pay
proper attention to both requirements and specifications. On
the one hand, stakeholders must be involved in identifying,

123

Formal requirements modelling with executable use cases and coloured Petri nets 15

eliciting, prioritising, and negotiating requirements. On the
other hand, software developers need specifications to have
operational starting points for detailed design and even for
implementation. However, often the requirements are not
explicitly formulated—they just exist in the environment
without being caught and written down or represented
explicitly. This is in contrast to specifications, which are usu-
ally produced in plan-driven approaches. An example of a
popular means to writing specifications is use cases, in the
style of unified modeling language (UML) diagrams [26,44]
or in textual form [6].

One important use of requirements and specifications is
to give adequacy arguments for the software to be devel-
oped; for example, if one’s job is to develop the brake-by-
wire controller just discussed, it is important to argue that,
if the specification is satisfied (the brake pedal produces a
stimuli to the brake-by-wire controller, which sends a sig-
nal to the physical brake, and so on), then it implies that
the requirement is also satisfied (the car starts to slow down
when the driver steps on the brake pedal). A solid argument
of this kind involves making assumptions about how external
entities in the environment work. Software engineers cannot
influence or change how brake pedals work or how the phys-
ics of the car affect its speed—they are given—but it is crucial
to know their properties, because the controller must inter-
face with them. As an example, we can assume that, when
a brake signal is sent, the physical brakes (rapidly) become
activated and cause the car to slow down. This assumption
relies on a chain of causality since the brake-by-wire con-
troller is only indirectly able to affect the speed of the car.
It is the system consisting of the controller plus the brake
pedal, the physical brakes, and other mechanisms that must
produce the desired effect in the environment. With EUCs,
we provide an approach to describe and link requirements
and specifications. In particular, EUCs can be used to give
adequacy arguments.

This paper extends a workshop paper [23] by a more
thorough introduction to coloured Petri nets (CPN), the
description of combining CPN and SDs, and a more detailed
discussions about the relationships between requirements
and specification in the context of EUCs. The paper has the
following structure. In Sect. 2, EUCs are presented. Sec-
tion 3 describes two examples in which EUCs were applied.
In Sect. 4, we introduce CPN [16,25], which has been the
modelling language used by us to give formal support to
our approach. The section also provides a discussion on the
adequacy of this particular modelling language in the con-
text of EUCs. In Sect. 5, the combined usage of CPNs and
sequence diagrams is discussed, namely in what concerns the
formalisation of EUCs. Section 5 presents some related work
and Sect. 7 draws some conclusions, discusses the relation-
ship between EUCs and MDD, and briefly mentions future
work.

2 Executable use cases

An EUC [21] supports description and validation of require-
ments and specifications. In a single description, an EUC
can represent desired behaviour of the environment (require-
ments), desired behaviour of the computer-based system
(specifications), and assumed behaviour of external entities
in the environment (often needed in adequacy arguments).

Despite the name, an EUC can have a broader scope than
a traditional use case. The latter is often a description of a
sequence of interactions between external actors and a com-
puter-based system. As noted above, a traditional use case
in this way often constitutes a specification, rather than a
requirement. An EUC can go further into the environment
and also describe potentially relevant behaviour in the envi-
ronment that does not happen at the interface. Jackson [15]
explains why requirements often need to be described in
terms of phenomena found in the physical environment rather
than in the interface between the system and the environ-
ment. It is this property that enables an EUC to represent
both requirements and specifications.

The name EUCs was chosen to facilitate a quick and
rough explanation of the main concepts and ideas behind
our approach. The stakeholders in the projects in which we
have used the EUC approach have always been familiar with
traditional use cases, and the essence of an EUC is to make an
executable representation of what is often already described
with a traditional, and well-known, use case. As can be seen
from Fig. 3, an EUC consists of three tiers.

The tiers describe the same things, but use different lan-
guages: tier 1 is an informal description; tier 2 is a formal and
executable model; tier 3 is a graphical animation of tier 2,
which uses only concepts and terminology that are familiar to

Tier 3 - Animation

Tier 2 - Formal

Tier 1 - Informal

Domain analysis

Insights

Insights

User

responses

Insights

Fig. 3 Executable use cases

123

16 J. B. Jørgensen et al.

and understandable by the future users of the computer-based
system.

The three tiers of an EUC should be created and executed
in an iterative manner. The first version of tier 1 is based on
domain analysis, and the first versions of tiers 2 and 3 are
based on the tier immediately below. Tier 1 represents typ-
ical artefacts of the requirements engineering activities, and
is created routinely in many projects, often consolidated in
the form of traditional use cases. Tier 1 should be the result
of the collaboration among a broad selection of users, soft-
ware developers, and possibly other stakeholders, with the
purpose of discovering and documenting the requirements
for a computer-based system.

Validation is supported through execution. This is possi-
ble at tier 2, but can only be done properly by people who are
able to read and understand the formal model. In practice,
this often means only software developers. However, tier 3
enables users to be actively engaged in validation by inves-
tigating the consequences of the current description as rea-
lised at tier 2. Elicitation, in the same way as validation, can
be supported through execution. When users interact with
tier 3, they often encounter questions, experience the EUC
to behave in unexpected and maybe unsuitable ways, or dis-
cover that relevant aspects have not been covered yet. In each
such case, it is possible to revisit the formal model at tier 2, or
even the natural-language descriptions at tier 1, in an attempt
to find answers to the questions raised at tier 3, and, conse-
quently, remodel at tier 2, rewrite at tier 1, or both, to produce
an improved version of the EUC.

In contrast to traditional use cases, EUCs talk back to the
users and support experiments and trial-and-error investiga-
tions.

3 Examples of systems using EUCs

In this section, we present two computer-based systems in
which EUCs were applied for their development. First, we
consider an elevator controller—an example of a reactive
system—and we describe how EUCs are applied. Next, we
consider the pervasive health-care system (PHCS) [4], a real
system aimed at use at Danish hospitals.

3.1 Elevator controller

The elevator controller is a standard textbook example; our
version has been taken from [40]. The main responsibility of
the controller is to control the movements of elevator cages
in a high-rise building. Movement is triggered by passengers,
who push request buttons. On each floor, there are floor but-
tons, which can be pushed to call the elevator; a push indicates
whether the passenger wants to travel up or down. Inside each
cage, there are cage buttons, which can be pushed to request

2 1 2 3 4 5

6 7 8 9 10

1

9

8

7

6

5

4

3

2

1

10

1
1 2 3 4 5

6 7 8 9 10
4

Floor buttons Elevator shaft Cage buttons and
location indicators

Fig. 4 EUC animation tier for the elevator controller

to be carried to a particular floor. In addition to controlling
the movements of the cages, the controller is responsible for
updating a location indicator inside each cage that displays
the current floor of the cage.

We have discussed the elevator controller and its EUCs in
[18]. The CPN model itself, without the informal tier and the
animation tier, has also been the subject of some papers, for
example in [1].

The animation tier of the EUC, which is depicted in Fig. 4
for a configuration with ten floors and two cages, represents
the elevator shaft with the elevator cages, the floor buttons,
the cage buttons plus the location indicator for each of the
cages.

The link between the formal tier and the animation tier
is that the execution of the formal tier causes drawing func-
tions to be called. In this way, the graphical objects are ani-
mated (e.g. cage icons are moved, or location indicators are
changed) in the animation tier.

Examples of requirements for the elevator controller are:

– Collect passengers: When a passenger pushes a floor but-
ton on floor f, eventually an elevator cage should arrive
at floor f and open its doors;

123

Formal requirements modelling with executable use cases and coloured Petri nets 17

– Deliver passengers: When a passenger pushes the cage
button for floor f in an elevator cage, eventually the ele-
vator cage should arrive at floor f and open its doors;

– Show floor: When a cage arrives at a floor, passengers
inside the cage should be informed about the current floor
number.

We now consider a specification related to the Collect pas-
sengers requirement.

1. Assume that a floor button is pushed;
2. The controller must receive a stimulus from the floor

button;
3. The controller must turn on the light of the pushed button;
4. The controller must allocate the request to one of the

cages. In particular, this implies that the controller must
determine whether the request can be served immedi-
ately. This is possible only if the request comes from a
floor where currently there is an idle cage. In this case,
the cage can just open its doors; it is not necessary to
start the motor;

5. If it is necessary to start the motor, the controller must
generate an appropriate signal to the motor;

6. If it is sufficient to open the doors, the controller must
generate a signal to the doors instructing them to open.

The EUC describes this scenario and its continuation; it
also describes many other scenarios. The formal tier describes
precisely a number of interactions between the elevator con-
troller and external entities such as buttons, sensors, motors,
and doors. In the animation tier, only the consequences of the
technical specifications are visible in terms of the resulting
behaviour of the physical entities.

A user can push floor and cage button icons in the ani-
mation tier. For each push, the user experiences that the ani-
mation eventually shows an elevator cage icon with open
doors at the requested floor, and that the location indicator
icons are properly updated during the emulation of elevator
movement.

When this happens, the animation tier is used to validate
that the current specification of the controller and the mod-
elled environment properties together ensure that the require-
ments are fulfilled, for the considered scenarios. This is the
adequacy argument that we are pursuing. The graphical ani-
mation can also be used to discover problems, both simple
ones (such as an elevator cage which does not stop if it comes
to a floor for which it has a request) and more complex ones
(like the scheduling not being done so that efficient use of
the elevator cages is ensured).

However, the animation tier (tier 3) cannot be used to
investigate the causes of, and ultimately find solutions to, the
problems. For debugging, it is necessary to inspect the more

technical description of the specifications that is found at the
formal tier (tier 2).

3.2 Pervasive health-care system

In contrast to the elevator controller, this section describes
how EUCs have been applied in a real-world project: the
pervasive health-care system (PHCS). The objective of the
PHCS is to ensure smooth access to and use of hospital com-
puter-based systems by taking advantage of pervasive com-
puting. The PHCS is context aware, which means that it is
able to register and react upon certain changes of context.
More specifically, nurses, patients, beds, medicine trays, and
other items to be found at hospitals are equipped with radio-
frequency identity (RFID) tags, enabling presence of such
items to be detected automatically by involved context-aware
computers, for example, located in the medicine cabinet and
in the patient beds.

Another property of the PHCS is that it is propositional
in the sense that it makes qualified propositions, or guesses.
Context changes may result in automatic generation of but-
tons, which appear at the task-bar of computers. Users must
explicitly accept a proposition by clicking a button—and
implicitly ignore or reject it by not clicking. The presence
of a nurse holding a medicine tray for patient P in front of
the medicine cabinet is a context that triggers automatic gen-
eration of a buttonMedicine plan:P on a context-aware
computer located in the cabinet, because in many cases, the
intention of the nurse is now to navigate to the medicine plan
for P that specifies the medicine that must be poured for P. If
the nurse clicks the button, she is logged in and taken to P’s
medicine plan.

We have used an EUC to represent the work process in
medicine administration, covering nurses’ pouring and giv-
ing of medicine. The EUC describes how medicine adminis-
tration is supposed to be supported by the PHCS. The use of
EUCs in requirements engineering for the PHCS is described
in detail in [19,20].

The animation tier of the EUC, which is shown in Fig. 5,
represents a hospital department where nurses are walking
around, pouring medicine, and giving medicine to patients.
It also shows context-aware computers and their reactions to
changes in the context and to the interactions of the nurses
with them.

Examples of requirements for the PHCS are:

– R1—Find plan: In the medicine room, any nurse should
be able to quickly find the medicine plan for any of her
assigned patients.

– R2—Ensure confidentiality: When a nurse leaves the
medicine room, no sensitive patient data must be left for
public viewing (data must be kept confidential).

123

18 J. B. Jørgensen et al.

Fig. 5 EUC animation tier for
PHCS

– R3—Access data: In the medicine room, it should be pos-
sible for any nurse to access the record for any of her
assigned patients.

Notice that these requirements are genuinely independent
of any technological property that should be satisfied, no
matter if the patient records are on paper, are only accessible
electronically via a desktop-based patient record computer
system, are accessible via personal digital assistants (PDAs),
are accessible via the PHCS or are made available through
some other means. The requirements seem to be quite stable;
it is likely that R1, R2, and R3 are also valid requirements
for a new hospital system, say, in 5 or 10 years. In contrast,
solution proposals—specifications—are more volatile. This
is, in its own right, an important argument for explicitly dis-
tinguishing between requirements and specifications.

Examples of specifications for the PHCS are:

– S1: When a nurse approaches the medicine cabinet, the
medicine cabinet computer must add a login button and
a patient list button for that nurse to the task-bar.

– S2: When a nurse leaves the medicine cabinet, if she is
logged in, the medicine cabinet computer must blank off
its display, remove the nurse’s login button and patient
list button from the task-bar, and log her out.

– S3: When a nurse selects her login button, she must be
added as a user, and the login button must be removed
from the task-bar of the computer.

We have used the EUC to give adequacy arguments that
link requirements and specifications. For example, the EUC
relates the satisfaction of requirement R1 to specification S1.
When the user interacts with the EUC through the graphical
animation, he experiences that, when it is emulated that a
nurse enters the medicine room, the medicine plan of any
of her assigned patients can appear on the display of the
medicine cabinet computer icon with just two clicks; first on
the patient list button, and then on the name of the patient
of concern. Thus, if a computer-based system is constructed
that meets S1, and it has a reasonable performance, R1 is
satisfied. Similarly, the EUC links requirement R2 and spec-
ification S2; and requirement R3 and specification S3, respec-
tively.

123

Formal requirements modelling with executable use cases and coloured Petri nets 19

4 CPN as EUC formal-tier language

In our presentation of the EUC approach in Sect. 2, we did
not fix the language to be used at tier 2, the formal tier. There
are different possible choices. We could for example use a
suitable programming language or a general, graphical mod-
elling language such as statecharts [11], UML state machines
or activity diagrams [44], or Petri nets [30]. These languages
differ in a number of ways, and in particular they have differ-
ent degrees of formality and rigidity and distinct tool support.

In our use of EUCs so far, and in particular in the industrial
projects we have been involved with, we have used the for-
mal modelling language coloured Petri nets (CPN) [16,25]
as the tier 2 language. We have chosen CPN because we have
experience with this language, but more importantly because
CPN is appropriate for EUCs, as we argue in Sect. 4.3, and
its tool support is quite good.

4.1 An introduction to CPN

CPN is one out of many modelling languages in the family
of languages based on Petri nets [30]. The formalism behind
Petri nets was originally defined in 1962 by Carl Adam Petri
in his doctoral thesis [31].

What is commonly understood by a Petri net model is
a mathematical structure with a graphical representation. A
model is composed by a collection of basic syntactical com-
ponents: places, transitions, and arcs. These components are
graphically represented as ellipses, rectangles, and directed
arcs, respectively.

Places hold collections of tokens and thereby represent
local states (markings). The global state of a model is rep-
resented by the distribution of tokens throughout its places.
The places have an initial marking representing the initial
local state.

Arcs lead either from a place to a transition or the other
way, but never between two places or two transitions. In the
first case, the arc enables the transition to remove (or con-
sume) one or more tokens from the place. In the second case,
the arc allows the transition to produce tokens in the place.
The consumption and production of tokens to places occurs
when transitions are fired during the execution of a model. At
each step of such an execution, one or more transitions may
be enabled, i.e. ready for firing. A transition is enabled if it
is able to consume a specified collection of tokens from its
input places (those connected to the transition by incoming
arcs). If at least one transition is enabled, one of the enabled
transitions can be chosen for firing and the execution is able
to proceed to possibly performing the next step based on the
new markings of the places.

Two or more transitions may be in conflict if they are
enabled in the same step. This occurs if there is an overlap
in the collections of tokens on which they depend for their

enabling, i.e. if the firing of one transition results in the other
one being no longer enabled in the following step. If two or
more transitions are not in conflict in a given marking, they
can be considered as truly concurrent and may be fired in
any arbitrary order resulting in the same global state. This
property is known as the diamond rule [5]. For formalisms
where tokens have values (such as CPN), the diamond rule
holds at the level of binding elements [17]. This is related to
the rules about locality in the net structure: the enabling of
a transition only depends on the marking of the input places
to the transition, and the result of the firing of a transition is
only observable through the marking of the output places of
the transition.

Up to now, we have described the issues that are common
to almost all classes of modelling formalisms based on Petri
nets. One of the basic points at which classes of Petri nets
differ is in how much information is represented by the mark-
ing of places. Bernardinello and de Cindio [2] identify three
levels of Petri nets with respect to the marking of places.

At level 1, places have a Boolean marking, meaning that
they either hold zero or one token that does not represent a
value. All arcs consume or produce exactly one token. This
level corresponds to the principles of the formalism originally
defined by Petri. Elementary net systems [37] also belong at
this level.

At level 2, places hold an integer number of tokens that
are anonymous, which means that one token is not distin-
guishable from another. The arcs may have weights indicat-
ing an integer number of tokens to be consumed or produced.
Graphically, the weights are represented as annotations to the
arcs. An example of a formalism at this level are place/tran-
sition systems [32].

Finally, at level 3, tokens have values of primitive or com-
plex data types (e.g. integers, text strings, records). Instead
of weights, the input arcs have inscriptions, i.e. expressions
specifying the constraints on the collection of tokens that
should be consumed. Output arcs may contain expression
describing the collection of tokens that is produced. In this
way, it is possible to model the selection and manipulation
of data in the model. In addition, transitions may contain
guards: Boolean expression over the values of tokens in the
input places that must evaluate to true for the transition to be
enabled. CPNs constitute an example of a formalism belong-
ing to this level.

We often refer to nets at levels 1 and 2 as low-level nets and
to nets at level 3 as high-level nets. In addition to these basic
principles, CPN is based on the application of the follow-
ing modelling concepts [16]: time, hierarchy, and inscription
language.

CPN allows the specification of timing properties. This
is done by the addition of integer time stamps to individual
tokens. Timing annotations in arcs and transitions are used
to specify delays usually representing the time an action is

123

20 J. B. Jørgensen et al.

modelled to take. The firing of transitions is still an atomic
event, but the calculation of enabling for a given transition
depends on the time stamps in the tokens it needs to con-
sume through possible input arcs. Intuitively, the time stamp
in a token can be seen as a specification of the model time at
which the token is available for consumption from a place.

CPN models may be structured hierarchically as a collec-
tion of connected modules. A module is itself a CPN model.
Structuring is performed through two mechanisms: fusion
places or substitution transitions. A fusion place is a set con-
taining multiple places that may be found in different mod-
ules. This allows interaction to traverse boundaries of the
modules in the model. A substitution transition is a special
transition found in a CPN module that represents an instance
of another CPN module. This allows reuse of the specifica-
tions of CPN modules throughout the model. The substitu-
tion transition is connected to the module in which it is found
through an interface which must be common to all instances
of the module it represents. This interface is a collection of
places. Substitution transitions allow the modeller to work at
varying levels of abstraction.

A CPN model is typically annotated by inscriptions in its
syntactical components. The inscriptions are used, among
other things, to select and manipulate data, and to define func-
tions and data types. In the de facto implementation of CPN,
the inscription language is the functional language CPN ML
(metalanguage), a close derivative of Standard ML [29].

4.2 An example of a CPN model

Figure 6 shows an example of a CPN model. In this case,
the model represents a device for measuring and displaying
the temperature in a room. This should be done when a user
pushes a specific button represented by the Push Button 1
transition. If this transition fires, a token identifying the but-
ton is placed in the Button Events place. From this place, but-
ton events are consumed by the Start Measuring transition,
but only if they represent the pushing of button 1 (matching
the guard [b = 1]). The detection of such an event causes the
device to start measuring the room temperature through some
sensor. The room temperature is represented by the value of
the token in the Room Temperature place. This value is con-
tinuously modified by the physics of the environment (e.g.
the sun) represented very abstractly by the Modify Temper-
ature transition. When the measuring is done, the resulting
measurement is placed as a token value in the Measured Tem-
perature place, from where it is ultimately consumed by the
Finish Measuring transition. The latter causes the measure-
ment to be shown in the display represented by the value of
a token found in the Display place.

In this example, the interface between the controller and its
environment consists of three shared phenomena: the buttons,
the room temperature, and the display. We have represented

Fig. 6 An example of a CPN model

the buttons as a shared event phenomenon controlled by
the environment, and the temperature is a shared state phe-
nomenon also controlled by the environment. The display is
modelled as a shared state phenomenon controlled by the
controller. The measured temperature is an example of a
machine phenomenon, which is not shared with the envi-
ronment although it derives from the room temperature phe-
nomenon. This is an important detail since it exemplifies the
distinction between the real-world phenomenon (the room
temperature) and a machine representation thereof (the mea-
sured temperature). If the temperature sensor was somehow
faulty, these two phenomena would not necessarily be as
tightly related as they are in this case. The distinction allows
us to take such reliability properties into consideration. This
approach to representing shared phenomena and thereby dis-
tinguishing the environment from the system complies with
formalised guidelines that we have defined in earlier work
[38] based on the reference model of Gunter et al. [10].

In the examples of CPN shown here, the places carry anno-
tations specifying the data types of tokens that may exist in
the places (e.g. Temperature and Event). These data types
are specified in CPN ML as a part of the specification of the
model. Also, the two temperature places carry an inscription
that specifies the starting temperature (23) as an initial mark-
ing. This means that, before the first step of execution, each
of these two places holds a single token of the Temperature
type with the value 23.

The principle of hierarchy by substitution transitions is
shown in Fig. 7, where the control logic of the device has
been replaced by a single Controller transition. This is a
substitution transition—i.e. an instance of the Controller
module shown in Fig. 8.

123

Formal requirements modelling with executable use cases and coloured Petri nets 21

Fig. 7 The controller logic replaced by a substitution transition

Fig. 8 The contents of the Controller module

In the Controller module, some places have now been
equipped with special labels (e.g., I/O) specifying that these
places form the interface through which the module may
interact with external parts of the model. Each place in the
interface is matched to a place in each module where the
module in question is instantiated through a substitution tran-
sition.

Fig. 9 Adding timing information to the CPN module

In this way, the level of abstraction is raised in Fig. 7,
while the behaviour is maintained by placing the lower-level
details into the module in Fig. 8.

Figure 9 shows an example of how information about tim-
ing properties has been added to the module first shown in
Fig. 7. First of all, a new data type has been declared in
order to add time stamps to the tokens holding the current
room temperature in the Room Temperature place, i.e. Tem-
peratureTimed instead of Temperature. In Fig. 9, some steps
have been executed and the resulting marking is shown. This
allows us to see the time stamp in the token found in the Room
Temperature place: the room temperature is 17◦ at 5,651 time
units. We can also see how timing information has been added
to the Modify Temperature: the @+discrete(20, 45) annota-
tion of this transition specifies that the time stamps of tokens
produced by firing the transition are increased with an integer
value in the interval 20–45 time units, picked randomly based
on a uniform distribution function. This basically constrains
the enabling of the Modify Temperature transition, allowing
us to make a coarse abstraction of the physical properties
related to physics affecting the room temperature. The repre-
sentation of such properties could, of course, be much more
detailed and accurate if needed.

Timing information is also added to cause the modelling
of button pushes to occur with a fixed interval of 100 time
units. This is done by the addition of the Delay place that
holds a single token only used for delaying the enabling of
the Push Button 1 transition.

123

22 J. B. Jørgensen et al.

After the addition of the timing information, the model
reflects a different behaviour when executed compared with
the behaviour exhibited before adding the timing informa-
tion. Now, the temperature is modified with a random delay
(within some interval) and the button is periodically pushed.

4.3 On the adequacy of CPN for EUCs

Firstly, the fact that CPN is a dialect of high-level Petri
nets makes it suitable for modelling large real-world prob-
lems. This is mainly due to the features related to hierarchy
and complex data types. High-level Petri nets are sometimes
compared to high-level programming languages with elabo-
rated data types, whereas low-level Petri nets are compared
to assembly languages. EUCs based on the use of CPN are
immediately applicable to large real-world systems like the
PHCS.

Secondly, CPN is well supported by CPN Tools [42],
which is a computer tool developed at University of
Aarhus. CPN Tools is licensed in more than 4,000 copies,
and its users include several hundreds companies.

In the third place, Petri nets’ general suitability for describ-
ing the behaviour of systems with characteristics such as
concurrency, resource sharing, and synchronisation tends to
trigger attendance to important questions that are useful to
deal with in the requirements engineering process. CPN pro-
vides an extensive state concept, which facilitates the repre-
sentation of properties of the environment. For example, in
the EUC for the elevator controller, it is straightforward to
express that the current state of the environment is such that
elevator cage 1 is idle at floor 1, cage 2 is stationary at floor 4
with its doors open, and there is an outstanding request for
downwards movement for floor 9.

The possibility of easily modelling concurrency was also
helpful when modelling the real-world environment of the
PHCS, which is indeed highly based on concurrent actions.
This makes the EUCs useful for answering questions about
the interaction between the system and the nurses. Exam-
ples of questions (Q), and corresponding answers (A) of this
nature that have emerged at workshops at which the PHCS
EUC was used by nurses are: (Q1) What happens if two
nurses both are close to the medicine cabinet computer? (A1)
The computer generates login buttons and patient list buttons
for both of them. (Q2) What happens when a nurse carrying a
number of medicine trays approaches a bed computer? (A2)
In addition to a login button and a patient list button for that
nurse, only one medicine plan button is generated—a button
for the patient associated with that bed. (Q3) Is it possible for
one nurse to acknowledge pouring of medicine for a given
patient while another nurse at the same time acknowledges
giving of medicine for that same patient? (A3) No, that would
require a more fine-grained concurrency control exercised
over the patient records.

With pervasive computing, requirements engineering must
deal with new issues such as mobility and context aware-
ness. Both issues are accommodated in a natural way in a
CPN model. Objects such as users (for example nurses) and
things (for example medicine trays) are naturally modelled
as CPN tokens, and the various locations of interest can be
captured as CPN places. A CPN state as a distribution of
tokens on places is a straightforward modelling of a context
affecting the appearance of a pervasive system. Mobility in
terms of movements of users and things are described by
transition occurrences.

As we argue in more detail in [24], CPN is a modelling
language that satisfies four of the five criteria that Selic puts
forward as being essential for good modelling languages in
[33]. CPN models (1) are abstract, (2) are understandable
(when used as ingredient in an EUC, that is, hidden behind a
graphical animation), (3) can be made accurate, and (4) can
be used for prediction. However, there is no evidence that
CPN models satisfy Selic’s fifth criteria, that models must
be inexpensive. The cost effectiveness of using CPN has not
been established well—which, by the way, is an issue that
CPN shares with many, if not all, formal methods.

5 CPN models and sequence diagrams

In previous work, we have explored different approaches to
combining the use of UML 2 sequence diagrams with CPN
models. We see this combination as a sensible means to clos-
ing the gap between the desired informality of tier 1 and the
necessary formality of tier 2. We add formality to sequence
diagrams by translating them to executable CPN models and
thereby defining their execution semantics. The advantage is
that a CPN model representation of one or more sequence dia-
grams is unambiguous, because of the well-defined semantics
of the underlying modelling language.

We describe how a CPN model is systematically generated
based on a collection of sequence diagrams in [9]. The struc-
ture of all sequence diagrams is translated into a composite
CPN model representing all possible behaviour expressed by
those sequence diagrams. The focus is on the behaviour of the
human actors—e.g., the nurses in the PHCS. In any reactive
system, the scenarios of behaviour of the system can be seen
as an interplay between the system being designed and its
physical environment (including possible human actors). In
[9], the behaviour of the environment is implicitly modelled
by the introduction of variation points, which are used to
represent scenarios separating into several potential paths of
behaviour. For example, a scenario in which a nurse enters
the medicine room could have a variation point leading to
two potential paths: in one path, the medicine room is empty
when the nurse enters, and in the other path another nurse
is already in the medicine room. We provide a method for

123

Formal requirements modelling with executable use cases and coloured Petri nets 23

specifying specific scenarios to be simulated (and animated)
at adjustable levels of strictness. In the extreme cases, a walk
through a scenario is either completely fixed or completely
free. In between, it is possible to make fixed choices for some
variation points, while allowing the choice to be free in oth-
ers. Whenever the choice is free at a variation point, a path
can either be determined randomly by the simulation tool
or by an interacting user through the animation interface of
tier 3.

In [7], we introduce explicit modelling of the assumed
behaviour of the physical environment of the system being
developed. In order to do this in a structured manner, we
describe how the environment and the computer system are
modelled in a composite model, in which the interface
between the two domains is explicitly identified. In [15],
Jackson points out the importance of properly identifying
this interface, and of describing both the computer-based sys-
tem and its environment. As an example, it is important to
explicitly distinguish actions performed by the nurse from
those performed by the system. This is important for many
reasons, one being that requirements can only be rightfully
expressed about the behaviour of the system and not about the
behaviour of the nurse. No requirements can be made about
the behaviour of the nurse, but scenarios can be designed to
imitate some thought-of behavioural patterns—i.e. assump-
tions about the behaviour of the environment. We can pro-
vide the nurse with a manual on how to perform specific tasks
using the PHCS but because she is a human being acting out
of free will, she may exhibit spontaneous behaviour that does
not comply with the requirements. On the other hand, such
behaviour may be covered by our anticipated scenarios of
behaviour.

We further elaborate the approach by the specification of
a generic sequence diagram interpreter expressed as part of
a CPN model in [8]. This permits to experiment with large
collections of sequence diagrams by simply changing param-
eter values in the CPN model. The assumed behaviour of the
physical environment entities are still expressed in terms of
specialised CPN structure and the explicitly described inter-
face between environment and system is preserved.

6 Related work

The EUC approach was first published in [19] in 2003 and
has since then been refined in a number of papers. EUCs
are, obviously, not a fundamentally new idea. For at least
15–20 years, the basic idea that we use in EUCs, that of aug-
menting traditional use cases or scenarios with notions of exe-
cution, formality, and animation, has been well-established in
the software industry. A usual prototype based on an informal
sketch may be seen as an EUC with the formal tier created
in a programming language and the animation tier being the

graphical user interface of an application. A detailed com-
parison of EUCs and traditional prototypes is reported in [3].

Execution and animation of requirements through formal-
isation in various graphical modelling languages have had
and are having attention by the research community, but often
the systems considered are small, such as the simple com-
munication protocol in [28]. In comparison, EUCs based on
the use of CPNs, are, as we noted above, scalable to large
real-world systems.

Harel and Marelly [12] also adopt the term EUC. Their
approach aims at specification of reactive systems through an
intuitive way to automatically generate executable and formal
models from scenarios. In comparison, our EUC approach
focuses explicitly on and strongly emphasises the represen-
tation of the environment in which the system must function.

EUCs are a manual approach, but we see this characteris-
tic as an important benefit, because the interplay between the
three tiers of an EUC not only supports, but actually stimu-
lates communication between users and software developers.

Another example of formalisation at an early stage is
found in [34], where the authors annotate use cases and
thereby allowing automated translation into low-level Petri
nets. This is a typical alternative to our approach where the
informal nature of tier 1 is explicitly preserved. Another dif-
ference is that the resulting models do not explicitly
distinguish the behaviour of the system from that of the
environment. Consequently, it is difficult, if not impossible,
to identify the specifications without including the assumed
behaviour of the environment.

While we strive to distinguish the representations of sys-
tem and environment, Lauesen [27] describes task descrip-
tions, where one explicitly postpones the decision about if
a given action is performed by the computer or a human
actor. This gives advantages in some situations, such as when
the computer-based system is partly constructed from off-
the shelf components. In our approach, such components are
modelled as having assumed behaviour and are therefore con-
sidered as given parts of the environment, rather than parts
of the computer-based system being developed. It is relevant
to investigate how to perform the move from requirements
expressed as task descriptions to EUCs in a practical manner.
Some preliminary work is presented in [22].

7 Conclusions

This paper presents the concept of EUC, which supports
requirements engineering activities by means of a model-
based approach. Structurally, an EUC consists of three tiers.
All tiers describe the same reality, but use distinct description
languages: tier 1 is an informal description, tier 2 is a formal
and executable model, and tier 3 is a graphical animation that

123

24 J. B. Jørgensen et al.

just uses concepts that are familiar to and understandable by
the users of the system under consideration.

In Fig. 1, the bar that indicates the scope of an EUC
stretches from the Real world bubble to the Requirements
and Specifications bubble. This means that the end product
of applying the EUC approach is a specification, when EUC
usage is taken as close to an implementation as possible.
The bar that indicates the scope of MDD stretches from the
Requirements and Specifications bubble to the Implementa-
tion bubble. At the point where the two bars meet, in the
Requirements and Specifications bubble, it is indicated that
EUCs and MDD can overlap. The size and position of the
overlap may be subject to discussion, because it is of course
possible to pay proper attention to requirements, that is user-
level requirements as we have discussed in this paper, in
an approach based on MDD. However, if use cases in the
sense of specific interactions between external actors and a
computer-based system is the first thing that is produced,
the MDD approach does not start with describing require-
ments—problems to be solved—but with making specifica-
tions—solutions to be made.

Providing a tighter and stronger connection between EUCs
and MDD requires more research in finding good ways to
structure the formal tier of an EUC, such that it clearly dis-
criminates between the environment and the computer-based
system and such that the part of the model that describes the
computer-based system can easily be turned into an imple-
mentation. Some work on this topic is described in [1], which
(1) presents a CPN model that is used to express user require-
ments, and then (2) explains how this CPN model is trans-
formed into a design-level CPN model, for describing the
behaviour of the software to be developed, and in this way
constitutes a specification. Another line of research is to
investigate the adoption of other formal modelling languages
at tier 2 of EUCs. However, as discussed in Sect. 4, we believe
that CPN models are a proper alternative and present impor-
tant advantages.

References

1. Barros JP, Jørgensen JB (2005) A case study on coloured petri nets
in object-oriented analysis and design. Nord J Comput 12(3):229–
250

2. Bernardinello L, de Cindio F (1992) A survey of basic net mod-
els and modular net classes. In: Advances in Petri Nets 1992, The
DEMON project. Springer, Heidelberg, pp 304–351

3. Bossen C, Jørgensen JB (2004) Context-descriptive prototypes
and their application to medicine administration. In: 5th Conf.
on designing interactive systems (DIS 2004), pp 297–306.
doi:10.1145/1013115.1013157

4. Christensen HB, Bardram JE (2002) Supporting human activities—
exploring activity-centered computing. In: 4th Int. Conf. on ubi-
quitouos computing (UbiComp 2002). LNCS, vol 2498. Springer,
Heidelberg, pp 107–116

5. Christensen S, Hansen ND (1993) Coloured petri nets extended
with place capacities, test arcs and inhibitor arcs. In: 14th Int. Conf.
on application and theory of petri nets (ICATPN 1993). LNCS,
vol 691. Springer, Heidelberg, pp 186–205

6. Cockburn A (2000) Writing effective use cases. Addison-Wesley,
Reading

7. Fernandes JM, Jørgensen JB, Tjell S (2007) Requirements engi-
neering for reactive systems: coloured petri nets for an elevator
controller. In: 14th Asia-Pacific software engineering conf. (AP-
SEC 2007), pp 294–301. doi:10.1109/APSEC.2007.81

8. Fernandes JM, Tjell S, Jørgensen JB (2007) Requirements engi-
neering for reactive systems with coloured petri nets: the gas pump
controller example. In: 8th Workshop and tutorial on practical use
of coloured petri nets and the cpn tools (CPN 2007)

9. Fernandes JM, Tjell S, Jørgensen JB, Ribeiro O (2007) Designing
tool support for translating use cases and uml 2.0 sequence dia-
grams into a coloured petri net. In: 6th Int. Workshop on Scenarios
and State Machines (SCESM 2007). doi:10.1109/SCESM.2007.1

10. Gunter CA, Gunter EL, Jackson M, Zave P (2000) A reference
model for requirements and specifications. IEEE Softw, 17(3):37–
43. doi:10.1109/52.896248

11. Harel D (1987) Statecharts: a visual formalism for complex sys-
tems. Sci Comput Program 8(3):231–274

12. Harel D, Marelly R (2003) Specifying and executing behavioural
requirements: the play-in/play-out approach. Softw Syst Model
2(2):82–107

13. Jackson M (1995) Software requirements and specifications: a
lexicon of practice, principles and prejudices. Addison-Wesley,
Reading

14. Jackson M (2001) Problem frames—analyzing and structuring
software development problems. Addison-Wesley, Reading

15. Jackson M (2002) Some basic tenets of description. Softw Syst
Model 1(1):5–9

16. Jensen K (1992) Coloured petri nets—basic concepts, analysis
methods and practical use. Basic Concepts. Monographs in the-
oretical computer science, vol. 1. Springer, Heidelberg

17. Jensen K, Kristensen LM, Wells L (2007) Coloured petri nets
and cpn tools for modelling and validation of concurrent sys-
tems. Softw Tools Technol Transfer 9(3–4):213–254. doi:10.1007/
s10009-007-0038-x

18. Jørgensen JB (2006) Addressing problem frame concerns via col-
oured petri nets and graphical animation. In: 2nd Int. Workshop
on advances and applications of problem frames (IWAAPF 2006),
pp 49–57

19. Jørgensen JB, Bossen C (2003) Requirements engineering for a
pervasive health care system. In: Proc. 11th IEEE Int. Conf. on
requirements engineering (RE 2003), pp 55–64, Monterey Bay,
California. IEEE. doi:10.1109/ICRE.2003.1232737

20. Jørgensen JB, Bossen C (2004) Executable use cases as links
between application domain requirements and machine specifi-
cations. In: 3rd Int. Workshop on Scenarios and State Machines
(SCESM 2004), pp 8–13

21. Jørgensen JB, Bossen C (2004) Executable use cases: require-
ments for a pervasive health care system. IEEE Softw 21(2):34–41.
doi:10.1109/MS.2004.1270759

22. Jørgensen JB, Lassen KB, van der Aalst WMP (2007) From task
descriptions via colored petri nets towards an implementation of a
new electronic patient record workflow system. Softw Tools Tech-
nol Transfer 10(1):15–28. doi:10.1007/s10009-007-0054-x

23. Jørgensen JB (2007) Executable use cases: a supplement to model-
driven development? In: 4th Int. Workshop on Model-Based
Methodologies for Pervasive and Embedded Software (MOMPES
2007), pp 8–15

24. Jørgensen JB (2008) Coloured petri nets and graphical animation:
a proposal for a means to address problem frame concerns. Expert
Syst 25(1):54–73. doi:10.1111/j.1468-0394.2008.00454.x

123

http://dx.doi.org/10.1145/1013115.1013157
http://dx.doi.org/10.1109/APSEC.2007.81
http://dx.doi.org/10.1109/SCESM.2007.1
http://dx.doi.org/10.1109/52.896248
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1109/ICRE.2003.1232737
http://dx.doi.org/10.1109/MS.2004.1270759
http://dx.doi.org/10.1007/s10009-007-0054-x
http://dx.doi.org/10.1111/j.1468-0394.2008.00454.x

Formal requirements modelling with executable use cases and coloured Petri nets 25

25. Kristensen LM, Christensen S, Jensen K (1998) The practitioner’s
guide to coloured petri nets. Softw Tools Technol Transfer 2(2):98–
132

26. Larman C (2005) Applying UML and patterns—an intro to
object-oriented analysis and design and iterative development.
Prentice-Hall, Englewood Cliffs

27. Lauesen S (2003) Task descriptions as functional requirements.
IEEE Softw 20(2):58–65

28. Magee J, Pryce N, Giannakopoulou D, Kramer J (2000) Graphical
animation of behaviour models. In: 22nd Int. Conf. on Software
Engineering (ICSE 2000), pp 499–508. doi:10.1109/ICSE.2000.
870440

29. Milner R, Tofte M, Harper R, Macqueen D (1997) The definition
of standard ML—Revised. MIT Press, Cambridge

30. Murata T (1989) Petri nets: properties, analysis and applications.
Procee IEEE 77(4):541–580

31. Petri CA (1962) Kommunikation mit automaten. Ph.D. thesis, Insti-
tut für instrumentelle Mathematik, Bonn

32. Reisig W (1987) Place/transition systems. In: Advanced course on
petri nets: central models and their properties, advances in petri
nets 1986, Part I. Springer, Heidelberg, pp 117–141

33. Selic B (2003) The pragmatics of model-driven development. IEEE
Softw 20(5):19–25. doi:10.1109/MS.2003.1231146

34. Silva JR, Santos EA (2003) Applying petri nets to requirements
validation. In: 17th Int. Congress of Mechanical Engineering
(COBEM 2003) ABCM Symposium Series in Mechatronics, vol 1

35. Sommerville I (2007) Software engineering. Addison-Wesley,
Reading

36. Strunk EA, Furia CA, Rossi M, Knight JC, Mandrioli D (2006)
The engineering roles of requirements and specification. Technical
report, CS-2006-21, Dept. Computer Science, University of Vir-
ginia. Also: Technical Report 2006.61, Dipartimento di Elettronica
e Informazione, Politecnico di Milano

37. Thiagarajan PS (1987) Elementary net systems. In: Advanced
course on petri nets: central models and their properties, advances
in petri nets 1986, Part I. Springer, Heidelberg, pp 26–59

38. Tjell S (2007) distinguishing environment and system in coloured
petri net models of reactive systems. In: 2nd IEEE Int. Sympo-
sium on Industrial Embedded Systems (SIES 2007), pp 242–249.
doi:10.1109/SIES.2007.4297341

39. Wieringa RJ (1996) Requirements engineering: frameworks for
understanding. Wiley, London

40. Wieringa RJ (2003) Design methods for reactive systems: yourdon,
statemate, and the UML. Morgan Kaufmann

41. Zave P, Jackson M (1997) Four dark corners of require-
ments engineering. ACM Trans Softw Eng Methodol 6(1):1–30.
doi:10.1145/237432.237434

42. CPN Tools. http://www.daimi.au.dk/CPNTools
43. MDA Resource Page. http://www.omg.org/mda
44. UML Resource Page. http://www.uml.org

123

http://dx.doi.org/10.1109/ICSE.2000.870440
http://dx.doi.org/10.1109/ICSE.2000.870440
http://dx.doi.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.1109/SIES.2007.4297341
http://dx.doi.org/10.1145/237432.237434
http://www.daimi.au.dk/CPNTools
http://www.omg.org/mda
http://www.uml.org

	Formal requirements modelling with executable use casesand coloured Petri nets
	Abstract
	1 Introduction
	2 Executable use cases
	3 Examples of systems using EUCs
	3.1 Elevator controller
	3.2 Pervasive health-care system

	4 CPN as EUC formal-tier language
	4.1 An introduction to CPN
	4.2 An example of a CPN model
	4.3 On the adequacy of CPN for EUCs

	5 CPN models and sequence diagrams
	6 Related work
	7 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

