
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2008; 38:361–396
Published online 21 August 2007 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.835

An illustrative example of
refactoring object-oriented
source code with
aspect-oriented mechanisms

Miguel P. Monteiro1 and João M. Fernandes2,∗,†

1Departamento de Informática, Faculdade de Ciências e Tecnologia da
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
2Departamento de Informática & CCTC, Universidade do Minho,
4710-057 Braga, Portugal

SUMMARY

This paper describes a refactoring process that transforms a Java source code base into a functionally
equivalent AspectJ source code base. The process illustrates the use of a collection of refactorings for
aspect-oriented source code, covering the extraction of scattered implementation elements to aspects, the
internal reorganization of the extracted aspects and the extraction of commonalities to super-aspects.
Copyright © 2007 John Wiley & Sons, Ltd.

Received 12 May 2006; Revised 29 April 2007; Accepted 1 May 2007

KEY WORDS: refactoring; aspect-oriented programming; design patterns

1. INTRODUCTION

Refactoring [1] and aspect-oriented programming (AOP) [2] are two techniques that contribute to
deal with the problems of continuous evolution of software. This paper shows how both techniques
can be combined to improve the structure of an existing system. In doing so, it also illustrates
current notions of good style for AOP.

∗Correspondence to: João M. Fernandes, Departamento de Informática, Universidade do Minho, 4710-057 Braga, Portugal.
†E-mail: jmf@di.uminho.pt

Contract/grant sponsor: FCT
Contract/grant sponsor: FEDER; contract/grant number: POSC/EIA/60189/2004

Copyright q 2007 John Wiley & Sons, Ltd.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55611738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

362 M. P. MONTEIRO AND J. M. FERNANDES

AOP enables the modularization of crosscutting concerns (CCCs), thus diminishing the potential
impact of changes on CCCs to code not directly related to such concerns. The advent of AOP
brings forward the problem of how to deal with large number of existing object-oriented (OO)
code bases. Experience with refactoring of OO software in recent years suggests that refactoring
techniques can be effective in bringing concepts and mechanisms of aspect orientation to existing
OO applications and frameworks. In previous work [3,4], we sought to expand the existing refac-
toring space for AOP, which is currently under development [5–7]. This work is based on AspectJ
[8], a backwards-compatible extension to Java that supports the mechanisms of AOP. AspectJ is
currently the primary representative of AOP at the level of programming languages. We undertook
refactoring experiments on code bases in Java and/or AspectJ to derive interesting refactorings
[3,4,9].
A consequence of AspectJ’s backwards compatibility with Java is that AspectJ supports multiple

programming styles: those of Java and those that are based on aspect-specific mechanisms. In
[4], we argue that Java’s traditional OO ways to deal with CCCs should be considered bad style
as more effective AspectJ-like mechanisms are available. In this light, traditional OO ways to
deal with CCCs should be regarded as bad style, amenable to improvement through a process of
refactoring.
In this paper, we illustrate results derived from experiments [4,9] performed on existing imple-

mentations of the Gang-of-Four (GoF) design patterns [10], coded in Java [11,12] and AspectJ
[13]. To this end, the paper describes a complete refactoring process using 17 of the new refactor-
ings documented in [9]. The process targets a Java implementation of the Observer design pattern
[10], implemented in Java by Eckel [11]. The aim is to transform Eckel’s implementation into
the AspectJ implementation described in [13]. This process was originally characterized in the
context of a validation effort for the collection of aspect-oriented (AO) refactorings documented
in [4,9].
The refactoring process described in this paper also illustrates how the capabilities of a program-

ming language have a strong influence on the design of programs written in that language, and
even on the very idea of what comprises a good design. The starting point of the refactoring
process is an example of good Java design, created by the author of a popular Java tutorial
[14]. The finishing point is generally regarded by the AspectJ community as an example of
good design [13,15]. Nevertheless, the two designs are profoundly different. In addition, the
Java implementation uses the Observable and Observer types from Java’s java.util API, while
the AspectJ implementation [13] relies on an internal mapping structure owned by the aspect
modules. Consequently, the structural changes made during the refactoring process are very
deep.
Several authors noted that AspectJ pointcuts can easily break when the code base to which they

compose is modified [5,6,16], a problem that is currently known as the fragile pointcut problem
[17]. As a consequence, many traditional OO refactorings can be unsound in the presence of aspects.
Though the process described in this paper does use several OO refactorings from [1], the fragile
pointcut problem is out of the scope of the paper and is not tackled here. We refer interested readers
to [18,19].
This paper is a revised and extended version of a paper presented at ICSM’05 [20]. The main

additional contributions relative to the other paper are the more thorough analysis of the Observer
pattern and the greater detail of the descriptions of the refactoring processes, particularly the second,
alternative path (Section 6). This paper also includes a more developed discussion section and

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 363

a survey of related work. Though this paper was written to stand on its own, an eclipse project
complementing the paper is available online‡.
The rest of the paper is structured as follows. Sections 2 and 3 present brief introductions to

refactoring and AOP, respectively. Section 4 provides specific information on the system used as
target of refactoring process. Section 5 describes the refactoring process. Section 6 describes a
second refactoring process that is based on an abstract aspect from [13], comprising an alternative
to the path described in the previous section. Section 7 provides a discussion and Section 8 surveys
related work. Section 9 concludes the paper.

2. REFACTORING

Refactoring [1,21,22] is a technique that aims to improve the internal structure of a software system,
at the level of the source code, without changing its externally observable behaviour. A refactoring
process comprises a sequence of small behaviour-preserving transformations of source code, also
called refactorings. Each individual refactoring should be small to better ensure safety, but a process
comprising a sequence of refactorings can yield a profound effect on the structure of a software
system. Refactoring can be useful to evolve software in line with changes in environments and
requirements.
Programmers have been performing ad hoc behaviour-preserving transformations for decades,

though they did not call it refactoring. Only at the start of 1990s it did become the subject of formal
study. The earliest works were by Opdyke and Johnson [23], who first coined the word refactoring
and focused on OO frameworks, and by Griswold and Notkin [24], who focused on block-structured
imperative programs and functional programs. Refactoring became widely known after the book by
Fowler et al. [1] was published at the end of the 1990s. One important contribution of the book is to
express notions of good style for OO source code, through collections of code smells, i.e. symptoms
in source code that are indicative of opportunities to improve the structure through refactoring.
Fowler’s book uses Java as the subject language and was published at a time when tool support

for refactoring Java programs was not available. Tool developers responded positively to Fowler’s
challenge, and thanks to that present users of various integrated development environments can
benefit from automated support for many of the refactorings described in Fowler’s book. Beyond
that, the concept of refactoring remains an effective way to express notions of style, as can be
attested in the refactoring workbook [25] and the many exchanges in the mailing list§ dedicated
to the topic. The focus of this paper is centred on this approach to refactoring, applied to AOP
source code.
Fowler et al. [1] noted that coverage by a set of unit tests is a prerequisite for the use of refactoring,

in order to ensure that the behaviour is not changed. Likewise, the process described in Sections
5 and 6 of the paper is supported by an adapted version of a unit test originally found in Eckel’s
example (not shown in the paper: it can be found in the eclipse project available online). In addition,

‡The project can be downloaded from http://www.di.uminho.pt/∼jmf/papers/ObserverExample.zip. It includes 33 complete
code snapshots. The ‘reusable’ aspect from [13] is not placed in its original package, as the refactoring process required
invasive changes on it. For that reason, the aspect is placed in the same package as the other elements of the system being
refactored.
§http://tech.groups.yahoo.com/group/refactoring/.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

364 M. P. MONTEIRO AND J. M. FERNANDES

Laddad [7] proposed taking the advantage of the visualization capabilities of the AJDT plug-in
for eclipse, namely the gutter annotations that show the interactions between aspects and classes.
These can be checked before and after performing a refactoring. In addition, some aspect-specific
techniques are proposed in [7].

3. ASPECT-ORIENTED PROGRAMMING

In OO systems, it often happens that certain kinds of concern, such as persistence, exception
handling, logging and distribution, are scattered across the units of modularity of the system.
Traditional OO mechanisms are unable to localize the code related to such concerns within a single
module. Consequently, the representation of such concerns takes the form of multiple, small code
fragments that are scattered throughout the classes of the system, a phenomenon usually referred as
code scattering. Kiczales et al. [2] refer to the concerns that give rise to code scattering as CCCs.
In addition, the various code fragments related to CCCs tend to be mixed with the code related
to the primary functionality of the system’s existing modules, harming the comprehensibility and
ease of evolution of all concerns involved. This negative effect is dubbed code tangling by Kiczales
et al. [2]. The implementation of a number of design patterns are examples of CCCs [13], including
Observer [10], the pattern surveyed in Section 4.
AOP [2,26,27] is a new programming paradigm providing constructs explicitly devoted to localize

source code-related CCCs in their own units of modularity—called aspects [2]—thus, eliminating
code scattering and tangling. Currently, the most mature AOP language is AspectJ [8,28–30], an
extension to Java that supports AOP. In the remainder of this section we briefly describe some of
the novel mechanisms of AspectJ that are used in the refactoring process described in the paper.
In AspectJ, aspects are class-like modules that can hold state and behaviour and are provided

with novel mechanisms through which aspects compose their functionality to multiple, scattered
points of a given system. The most important mechanisms are based on the concept of joinpoint, i.e.
events that occur during the execution of a program, namely method calls, constructor executions
and accesses to instance fields. AspectJ provides a construct called pointcut able to capture a set of
joinpoints related to non-contiguous points in the source code base. For instance, Listing 1 shows
a pointcut capturing all calls to the public methods of java.io.PrintStream having any number of
arguments, void as return type, and a name starting with ‘print’.
In the example, the pointcut designator (PCD) call is used to capture the methods calls of interest.

AspectJ provides a rich set of PCDs that includes a number of PCDs that restrict the set of captured
joinpoints. In addition, PCDs can also be composed like predicates, using operators &&, || and !,
which express set union, set intersection and set complement respectively. Listing 2 shows a pointcut
similar to that of Listing 1, but complemented with a within PCD that restricts captured calls to
those that originate within the lexical boundary of class Capsule.
Aspects also include advice, i.e. nameless block-statement constructs that implicitly execute upon

the occurrence of each specified joinpoint. Advice can run before, after or instead of each captured

public pointcut allCalls2SystemOutPrints(): call(public void java.io.PrintStream.print*(..));

Listing 1. Example of an Aspect pointcut.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 365

public pointcut callsFromCapsule2SystemOutPrints():
call(public void java.io.PrintStream.print*(..)) &&
within(Capsule);

Listing 2. Example of a composition of two pointcut designators.

void around(): allCalls2SystemOutPrints() {
System.out.println("message printed.");

}
Listing 3. Example of an Aspect around advice.

public pointcut messagesFromSystemOutPrint(Object message):
allCalls2SystemOutPrints() && args(message);

void around(Object message): messagesFromSystemOutPrint(message) {
String newMessage = "[" + message.toString() + "]";
proceed(newMessage);

}
Listing 4. Example of a pointcut capturing corner from the jointpoints.

private boolean Server.disabled = false;

Listing 5. Example of an inter-type declaration.

joinpoint. The latter are called around advice. Listing 3 shows a piece of around advice that executes
upon each method call captured.
The instructions within the advice from Listing 3 are executed instead of the captured joinpoints.

This ability to execute blocks of statements instead of the original joinpoints (as in Listing 3) means
that aspects can delete, or at least circumvent, the existing behaviour of a target code base. AspectJ
also provides the keyword proceed through which around advice can execute the original, captured
joinpoint. In addition, pointcuts can also capture context data from the captured joinpoints. For
instance, Listing 4 shows a pointcut similar to that of Listing 1 that also captures the argument
to the print method. In doing so, it also restricts the set of captured joinpoints to those calls that
receive one argument of the specified type. The around advice from Listing 4 is implicitly called
upon each of the joinpoints captured by the new pointcut and binds the method argument to variable
message. Thus, the advice shown in Listing 4 adds square brackets to the beginning and end of
the messages sent to the console.
The above composition mechanisms are often dubbed dynamic crosscutting. In addition, aspects

also provide static crosscutting in the form of inter-type declarations, i.e. the ability of aspects to
introduce additional state and behaviour to a set of target classes. Though the declarations are placed
within the aspects at the source level, the target classes are the owners of the introduced members at
the binary level. For instance, the inter-type declaration in Listing 5 declares that every instance of
class Server has additional field disabled, of type boolean, initialized to false. Similar declarations
can be made of methods. The visibility of inter-type members is relative to the aspect, not to target
classes. When an aspect declares an inter-type member as private, only code within the aspect

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

366 M. P. MONTEIRO AND J. M. FERNANDES

declare warning: allCalls2SystemOutPrints() &&
!within(DeclaringAspect): "Do not use System.out.print*().";

Listing 6. Example of a declare warning.

can use those members, despite the fact that the target classes are the owners. This further ensures
the modularity of the concern related to the aspect.
In addition, AspectJ provides constructs through which the compiler is configured to generate

additional error and warning messages. The constructs are clauses declare warning and
declare error and accept a pointcut stating the joinpoints that give rise to the warning or error, and
the associated message. For example, Listing 6 shows a declare warning that reuses the pointcut
shown in Listing 1 and generates a warning upon every call to methods from System.out whose
name starts with ‘print’ and that are not issued from the module named DeclaringAspect.
Finally, AspectJ provides the declare parents construct through which classes are made to imple-

ment additional interfaces or extend a different superclass, subject to restrictions derived from the
type rules of Java. A popular idiom based on the use of interfaces comprises declaring a marker
interface that represents an abstract role. In many cases the marker interface can be declared within
the aspect as an inner interface, often with private visibility, ensuring that no code outside the aspect
depends on the role represented by the interface. On this basis, the aspect uses inter-type declara-
tions to add state and behaviour to the interface and uses a declare parents clause to make concrete
classes implement it. Thus, the aspect composes extra functionality to a number of target classes
in a transparent way. In some cases, it is feasible to separate the case-specific parts of the aspect
code from the generally applicable parts, in which case an abstract base aspect can be extracted
that is potentially reusable. This design technique is widely used in the examples presented in [13],
including the AspectJ implementation of Observer that we describe in detail in Section 4.4.

4. THE OBSERVER DESIGN PATTERN

The intent of Observer (also known as Publish-Subscribe) is to ‘define a one-to-many dependency
between objects so that when one object changes state, all its dependents are notified and updated
automatically’ [10]. The pattern is an example of a CCC connecting sets of otherwise unrelated
classes, implemented as a simple framework. Observer defines the role of subject for objects
generating events of interest to other objects, which play the role of observer. Many implementations
provide subjects with an extra field holding the list of their registered observers. Observers are
registered (i.e. added to the list) by an attach operation and are removed from the list by a detach
operation. When a subject gives rise to an interesting event—usually a change in its state—it calls
a notify operation, which in turn calls the update operation of each registered observer. The general
structure of Observer is presented in Figure 1, which is similar to that used in [10].
The example in the GoF book [10] is coded in C++ and is therefore based on abstract classes

to represent the roles of subject and observer. With Java, it is usual to represent this kind of role
with interfaces. In each case, the implementing classes are called concrete subject and concrete
observer, respectively.
Each observer defines its reaction to a notification in the update operation. What qualifies as an

interesting event is determined by the calls to update that subjects make, so programmers must

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 367

Subject

+Attach(in Observer)
+Dettach(in Observer)
+Notify()

ConcreteSubject
-subjectState
+SetState()
+GetState()

Observer

+Update()

ConcreteObserver
-observerState
+Update()

for all o in observers {
 o->Update() }

return subjectState

observerState=
 subject->GetState

Figure 1. General structure of the observer design pattern.

ensure that such calls are placed in all desired points. In large systems, this may result in many
calls, scattered throughout lots of packages. This is probably one of the reasons why implementing
the pattern in large systems can be error prone [31]. Switching from one scattered implementation
to another in large systems is a tedious and risky task.

4.1. The Flower example of Observer

The subject in Eckel’s example [11] is one instance of a class representing a flower. Its interesting
events are the two operations it provides: open its petals and close them. These are observed by one
instance each of two unrelated types: bees and humming birds. When the flower opens its petals,
its observers have breakfast. When the flower closes its petals, its observers go to sleep. These
reactions are represented by simple messages sent to the console. Each of the flower operations
gives rise to a different observing relationship, as observers react differently to the two events and
it is possible to support one relationship without supporting the other. Eckel’s example also ensures
that observers only react once to each operation, i.e. if the flower executes the open operation twice
with no close in between, observers are notified only upon the first open. Note that the order with
which observers are notified is not relevant¶ .

4.2. The Java standard Observer-Observable API

The java.util API of Java provides a ready-made implementation of Observer, comprising
interface Observer and class Observable. Observer classes must implement Observer, which
declares an update method. Subject classes must inherit from Observable, which provides the
logic to manage the list of registered observers. Subject objects notify their observers of an
interesting event by calling method notifyObservers, which is overloaded with the following

¶The javadoc documentation for method Observable.addObserver(), used by Eckel in his implementation, states that ‘the
order in which notifications will be delivered to multiple observers is not specified’.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

368 M. P. MONTEIRO AND J. M. FERNANDES

signatures:

public void notifyObservers(Object arg)
public void notifyObservers() // equivalent to notifyObservers(null)

This method only notifies the registered observers if the object was previously marked as having
been changed, by executing the setChanged method. Observer declares method update, with the
following signature:

void update(Observable o, Object arg)

Subjects can use the second parameter of type Object to pass data to its observers. In order to
be general purpose, the parameter must accept any type, which in Java means java.lang.Object.
This provides the necessary flexibility but has the disadvantage of placing this parameter outside
the reach of the type checker‖. It is the programmer’s responsibility to ensure that subjects and its
observers use the runtime types consistently. Method update contains the actions to be carried out
by observer objects when they are notified of an interesting event. What qualifies as ‘interesting’
is exclusively determined by the places where calls to notify are made. Programmers using the
protocol must ensure that such calls are made in all suitable places. This includes calling method
setChanged. In large systems, this may comprise a large number of calls, scattered throughout
lots of packages. Naturally, this has the consequence that it would be hard to switch to a different
implementation after the structure is in place (for instance, one that does not require calls to a
setChanged() method).
In addition to the usual problems of code scattering and tangling [2], this solution has the

following disadvantages:

• Subject classes loose the option of inheriting from another class∗∗, as they already inherit from
java.util.Observable. Observer participants are less limited because they merely implement
interface java.util.Observer, but this contributes to clutter their implements clause with an
interface not related to the primary role of the class.

• Inheriting from java.util.Observable increases the memory footprint of each instance. Objects
playing this role must carry the extra state throughout their entire life cycle, even if they only
use it during certain phases.

• Use of inheritance also means that all instances will carry the extra state, even if only a subset
of the instances participates in observing relationships.

• The mechanism does not provide appropriate support for multiple separate observing rela-
tionships. If instances of a class play the subject role in various observing relationships, their
observers will be notified of the events relating to all of them, and need to run extra logic to
distinguish one kind of event from others. It is possible to ameliorate this problem by making
the subject pass itself as argument in the version of notifyObservers with two arguments, but
this merely pushes the filtering logic from subjects to observers.

‖Java 5 supports generic types but the Observer/Observable protocol was not updated to support generics.
∗∗It is fair to note that this limitation does not apply to all possible Java implementations of Observer. The implementation
described in Section 4.3 manages to circumvent it.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 369

4.3. The original pure Java implementation

Listing 7 presents class Flower and Listing 8 presents class Bee (Hummingbird is similar) as
written by Eckel [11]. Eckel’s design partially circumvents the limitations mentioned in the previous
section. The design relies on inner classes to isolate, within each class, the code related to the
pattern. Instead of directly extending the Observer or Observable types, each participant encloses
an inner class either extending Observable or implementing Observer. Each participant contains
one inner class for each of the observing relationships.
Inner classes provide users of Java a limited form of multiple inheritance, in that inner classes

can refer to the members of its enclosing class, even private ones. Inner classes are still free to

public class Flower {
private boolean isOpen;
private OpenNotifier oNotify = new OpenNotifier();
private CloseNotifier cNotify = new CloseNotifier();
public Flower() {

isOpen = false;
}
public void open() { // Opens its petals

System.out.println("Flower open.");
isOpen = true;
oNotify.notifyObservers();
cNotify.open();

}
public void close() { // Closes its petals

System.out.println("Flower close.");
isOpen = false;
cNotify.notifyObservers();
oNotify.close();

}
public Observable opening() {

return oNotify;
}
public Observable closing() {

return cNotify;
}
private class OpenNotifier extends Observable{

private boolean alreadyOpen = false;
public void notifyObservers() {

if(isOpen && !alreadyOpen) {
setChanged();
super.notifyObservers();
alreadyOpen = true;

}
}
public void close() {

alreadyOpen = false;
}

}
private class CloseNotifier extends Observable{

// similar to OpenNotifier, but focusing on operation close.
}

}
Listing 7. Initial form of the subject class Flower, as presented in [11].

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

370 M. P. MONTEIRO AND J. M. FERNANDES

inherit from some other class, so they enable the enclosing class to make a part of itself inherit from
a given class while remaining free to use the more traditional use of single inheritance. Eckel uses
this mechanism in both the subject and the observer participants, with the benefit of giving subjects
the option to inherit from some useful class other than java.util.Observable (though this particular
example does not take advantage of this). It also avoids cluttering the observer’s implements clause
with an additional interface. The design manages to localize, within each class, the code related to
the pattern, but nevertheless it results in a tight structural relationship between participants and the
roles they play in the pattern. It should be noted that the use of inner classes requires additional
refactoring steps, as shown in Section 5.1.
What this clever design cannot achieve is obliviousness [32] from pattern roles. Participant classes

betray the Double Personality smell [4], i.e. each participant plays more than one role in the system
and therefore contains code related to more than one concern. This is a form of code tangling. Any
method of the subject—Flower (Listing 7)—performing an interesting operation must still include
code related to its role in the pattern. There is also code scattering: code dealing with the pattern is
not modularized and each participant contains one inner class for each of the observing relationships.
There is duplication (i.e. the Duplicated Code smell [1]), which is particularly noticeable in the two
observers—Bee (Listing 8) and Hummingbird—which use four inner classes between them. Each
class duplicates the code related to the two observing relationships and each observing relationship
requires a duplication of essentially the same logic.
The instance of Flower plays the role of subject. Instances of Bee and Hummingbird are

observers. Each observing relationship must monitor both operations, due to the requirement that
observers only react to the first of multiple consecutive occurrences of the same operation (as is the
case with the unit test from Eckel’s example [11]). Therefore, observers of open need to be notified
of close, to determine whether a call to open belongs to a sequence of calls to open without calls
to close in between. This applies to observations of both open and close.

public class Bee {
private String name;
private OpenObserver openObsrv = new OpenObserver();
private CloseObserver closeObsrv = new CloseObserver();
public Bee(String nm) { name = nm; }
// An inner class for observing openings:
private class OpenObserver implements Observer {

public void update(Observable ob, Object a) {
System.out.println("Bee " + name + "’s breakfast time!");

}
}
// Another inner class for closings:
private class CloseObserver implements Observer {

public void update(Observable ob, Object a) {
System.out.println("Bee " + name + "’s bed time!");

}
}
public Observer openObserver() { return openObsrv; }
public Observer closeObserver() {

return closeObsrv;
}

}
Listing 8. Initial form of observer class Bee.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 371

4.4. The reusable AO implementation of Observer

The AspectJ implementation proposed in [13] comprises an abstract base aspect—Observer-
Protocol (Listing 9)—that deals with the parts common to all cases, plus concrete sub-aspects that
deal with case-specific parts (Listing 10). The common parts comprise the following:

• The subject and observer roles, modelled by the inner marker interfaces Subject and
Observer.

• Maintenance of a mapping from subjects to observers, implemented with a hash table field
(perSubjectObservers), owned by instances of the aspect.

• The update logic, in which changes in the subject trigger updates in the observers. Changes
in subject state are modelled by abstract pointcut subjectChange.

public abstract aspect ObserverProtocol {
protected interface Subject { }
protected interface Observer { }
private WeakHashMap perSubjectObservers;

protected List getObservers(Subject subject) {
if (perSubjectObservers == null) {

perSubjectObservers = new WeakHashMap();
}
List observers = (List)perSubjectObservers.get(subject);
if (observers == null) {

observers = new LinkedList();
perSubjectObservers.put(subject, observers);

}
return observers;

}
public void addObserver(Subject subject, Observer observer) {

getObservers(subject).add(observer);
}
public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);
}
protected abstract pointcut subjectChange(Subject s);

after(Subject subject): subjectChange(subject) {
Iterator iter = getObservers(subject).iterator();
while (iter.hasNext()) {

updateObserver(subject, ((Observer)iter.next()));
}

}
protected abstract void updateObserver(Subject subject, Observer observer);

}
Listing 9. Reusable aspect implementation of Observer from [13].

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

372 M. P. MONTEIRO AND J. M. FERNANDES

public aspect ColourObserver extends ObserverProtocol{
declare parents: Point implements Subject;
declare parents: Screen implements Observer;

protected pointcut subjectChange(Subject subject):
call(void Point.setColour(Colour)) && target(subject);

protected void updateObserver(Subject subject, Observer o) {
((Screen)o).display("Screen updated " + "(point subject changed colour).");

}
}

Listing 10. Example of case specific, concrete aspect reusing ObserverProtocol.

Parts specific to individual cases are:

• Assignment of roles subject and observer to concrete classes implemented through
declare parents clauses.

• Changes to the subject that are of interest to its observers implemented by a definition of
abstract pointcut subjectChange.

• The logic to update observers at appropriate points, implemented by aspect method
updateObserver.

Participant classes in the AspectJ implementation are oblivious to the pattern roles. None of the
disadvantages mentioned in relation to the Java implementation applies to this case. Participant
classes remain free to inherit from other classes, and instances do not expend additional memory
when not participating in observing relationships. Note that the mapping between a subject and
its observers is maintained by the aspect itself, rather than being supported by means of inter-type
declarations, as it could be expected from a more straightforward implementation: if the aspect
resorted to inter-type declarations, all instances of the target classes would be affected, throughout
their entire life cycles. The structure managing the mappings is defined in ObserverProtocol, so
each concrete sub-aspect has its own instance of the hash map. One disadvantage of this imple-
mentation is a possible degradation in performance, when dealing with large systems comprising
large numbers of participant objects (no performance measurement is presented in [13]).

5. THE REFACTORING PROCESS

Tables I–III present the 17 refactorings from [4,9] that are used throughout the refactoring process.
As with most collections of refactorings, each individual refactoring should be small to better
ensure safety. The process illustrated in this section is carried out according to the strategy proposed
in [4,9] for the extraction of a CCC. The strategy establishes that prior to anything else, all
elements related to the target concern should be moved to a single module, using refactorings from
Table I. After the extraction is completed, the focus should be on improving the internal struc-
ture of the extracted aspects, using the refactorings from Table II. The kind of improvements we
describe are considerably easier to perform (or possible at all) after the associated implementation is
modularized.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 373

Table I. Refactorings to extract crosscutting concerns into aspects.

Name Typical situation Recommended action

Extract Feature into Aspect Code related to a feature is scat-
tered across multiple methods and
classes, tangled with unrelated
code

Extract to an aspect all imple-
mentation elements related to the
feature

Extract Fragment into Advice Part of a method is related to
a concern whose code is being
moved to an aspect

Create a pointcut capturing the
appropriate joinpoint and context
and move the code fragment to
an advice based on the pointcut

Extract Inner Class to Standalone An inner class relates to a concern
being extracted into an aspect

Eliminate dependencies from the
enclosing class and turn the inner
class into a stand-alone class

Inline Interface within Aspect One or several interfaces are used
only by an aspect

Move the interfaces to within the
aspect

Move Field from Class to Inter-type A field relates to a concern other
than the primary concern of its
owner class

Move the field from the class to
the aspect as an inter-type decla-
ration

Move Method from Class to Inter-
type

A method belongs to a concern
other than the primary concern of
its owner class

Move the method into the aspect
that encapsulates the secondary
concern as an inter-type declara-
tion

Replace Implements with Declare
Parents

Classes implement an interface
related to a secondary concern.
Class code implementing the
interface is used only when the
secondary concern is included in
the system build

Replace the implements in the
class with a equivalent declare
parents in the aspect

Some of the refactorings fromTable II serve to remove theAspect Laziness smell [4], i.e. situations
when an aspect statically introduces state and behaviour to a set of classes when a more dynamic and
unpluggable composition is desirable. This smell can be found in systems that require such flexibility
of composition and yet resort to inter-type declarations, which performs the compositions statically.
Those refactorings serve to replace this static mapping with a similar mapping programmatically
supported by the aspect. Figure 2 illustrates the structural effects performed by those refactorings.
The refactorings responsible for replacing the inter-type declarations with a mapping of additional
state and behaviour are Replace Inter-type Field with Aspect Map and Replace Inter-type Method
with Aspect Method. Their effect is illustrated in Figure 3. For more details, see [4,7].
Finally, we deal with duplication between multiple aspects by factoring out commonalities to a

(in this case reusable) super-aspect, by using the refactorings from Table III. Figure 3 illustrates the
structural effects of this group of refactorings. Note that Figure 3 mentions all refactorings from
this group, not just the ones used in the example of this paper.
From a certain point, the described process follows two alternative paths, both ending with the

AOP design described in Section 4.4. The first path is performed solely in terms of the original
code, and the second path adds to the system, at a certain point, the abstract base aspect from [13]
(ObserverProtocol). Sections 5.1–5.3 describe the first path in detail, comprising the three phases

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

374 M. P. MONTEIRO AND J. M. FERNANDES

Table II. Refactorings to restructure the internals of aspects obtained through extraction processes.

Name Typical situation Recommended action

Extend Marker An inner interface models a role used within Add an inter-type abstract declaration of
Interface with the aspect. You would like the aspect to call the case-specific method signature to the
Signature a method specific to a type that implements interface

the interface but that is not declared by it
Generalise Target An aspect refers to case-specific concrete Replace the references to specific types
Type with Marker types, preventing it from being reusable with a marker interface and make the
Interface specific types implement the marker

interface
Introduce Aspect You would like an inter-type member to be Declare the inter-type member as public
Protection visible within the declaring aspect and all its and place a declare error preventing its

sub-aspects, but not outside the aspect use outside the aspect inheritance chain
inheritance chain

Replace Inter-type An aspect statically introduces additional Replace the inter-type declarations with a
Field with Aspect state to a set of classes, when a more structure owned by the aspect that
Map dynamic or flexible link between state and performs a map between the target objects

targets would be desirable. and the additional state
Replace Inter-type An aspect introduces additional methods to Replace the inter-type method with an
Method with a class or interface, when a more dynamic aspect method that gets the target object as
Aspect Method and flexible composition would be desirable an extra parameter
Tidy Up Internal The internal structure of an aspect resulting Tidy up the internal structure of the aspect
Aspect Structure from the extraction of a crosscutting concern by removing duplicated inter-type

is sub-optimal declarations and dependencies on case-
specific target types

Table III. Refactorings to improve the generalisation of aspects.

Name Typical situation Recommended action

Extract Two or more aspects contain similar code Move the common features to a super-
Super-aspect and functionality aspect
Pull Up Marker All sub-aspects use a marker interface to Move the marker interfaces to the super-
Interface model the same role aspect
Pull Up Pointcut All sub-aspects declare identical pointcuts Move the pointcuts to the super-aspect
Push Down Advice A piece of advice is used by only some sub- Move the advice to the sub-aspects that

aspects, or each sub-aspect requires different use it
advice code

of the refactoring strategy, each relating to a composite refactoring [4] prescribing the use of other
refactorings:

1. Extract Feature into Aspect: extracts the two observing relationships into aspects.
2. Tidy Up Internal Aspect Structure: improves the internal structure of the extracted aspects.
3. Extract Super-aspect: factors out common code from the aspects to an abstract super-aspect.

The above three refactorings are composite refactorings: they are more general than most and their
purpose is to set the background for the use of other refactorings.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 375

inter-type
declarations

inter-type
declarations

instances of
target classes

aspect

mapping
programatically

supported

plain object
references

instances of
target classes

aspect

Figure 2. Illustration of the structural effect obtained by the removal of the aspect laziness smell.

SubAspect1 SubAspect2

SuperAspect Push Down Advice
Push Down Declare Parents
Push Down Inter-type Declaration
Push Down Marker Interface
Push Down Pointcut

Push Down Advice
Push Down Declare Parents
Push Down Inter-type Declaration
Push Down Marker Interface
Push Down Pointcut

Figure 3. Structural effects performed by the refactorings from Table III.

The second path is described in Section 6. It diverges from the first path from the beginning of
the second phase (tidying up). In it, ObserverProtocol is added to the system and therefore Extract
Super-aspect (third phase of the first path) is not needed.
It is important to note that the refactoring processes described in this paper correspond to just

two of many possible paths. Though the finishing point of the various paths should result in an
implementation of the intended design in all cases, it is possible to achieve it through multiple
different paths, since there are several possible alternatives to choose from after each step.
Throughout the description of the process, code listings and code fragments are used to illustrate

relevant details. In many occasions, changes from the previous illustration are highlighted in bold,
following the example from [1]. Likewise, deleted sections of code are signalled in strike-through
in some occasions.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

376 M. P. MONTEIRO AND J. M. FERNANDES

5.1. First phase: extracting features

The first phase begins with the extraction of the observing relationship associated with Flower.open.
There are three inner classes related to this concern (Listings 7 and 8): Flower.OpenNotifier,
Bee.OpenObserver andHummingbird.OpenObserver (not shown).We applyExtract Inner Class
into Standalone to inner class Flower.OpenNotifier. This refactoring also entails the prior extrac-
tion of method Flower.isOpen, using Extract Method [1]. Note that the code that creates instances
of inner classes is not affected by the refactoring

public class Flower { public class Flower {
private boolean _isOpen; private boolean _isOpen;
private OpenNotifier oNotify = private OpenNotifier oNotify =

new OpenNotifier(); new OpenNotifier();
... ...
private class OpenNotifier boolean isOpen() {

extends Observable { return _isOpen;
private boolean alreadyOpen = false; }
public void notifyObservers() { private void setIsOpen(boolean newValue) {

if(_isOpen && !alreadyOpen) { _isOpen = newValue;
setChanged(); }
super.notifyObservers(); ...
alreadyOpen = true; __

}
} public class OpenNotifier
public void close() { extends Observable {

alreadyOpen = false; private Flower _enclosing;
} private boolean alreadyOpen = false;

} public OpenNotifier(Flower flower) {
_enclosing = flower;

}
public void notifyObservers() {

if(_enclosing. isOpen() && !alreadyOpen){
this.setChanged();
super.notifyObservers();
this.alreadyOpen = true;

}
}
public void close() {
this.alreadyOpen = false;

}
}

Next, we would like to do the same with classes Bee.OpenObserver and Hummingbird.Open
Observer. However, each class contains an action (print a message to the console) that belongs to
the primary functionality of its enclosing class. We therefore first use Extract Method [1] on both
classes, giving rise to two methods breakfastTime. Both inner classes have the same name and are
almost identical, so it is feasible to extract them into a single stand-alone class. However, the inner
classes hold a field referring to their enclosing classes, which are of different types. For this reason,
we use Extract Interface [1] on the enclosing classes so that the new stand-alone class can refer to
the former enclosing type through the extracted interface. Operations declared by interfaces must

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 377

be public and for this reason we make both breakfastTime methods public

public class Bee { public interface BreakfastTaker {
private String name; public void breakfastTime();
private OpenObserver openObsrv = }

new OpenObserver();
private CloseObserver closeObsrv = ____________________________________

new CloseObserver(); public class Bee implements BreakfastTaker {
public Bee(String nm) { //...

name = nm; void breakfastTime() {
} System.out.println("Bee " + name +
// An inner class for observing openings: "’s breakfast time!");
private class OpenObserver }

implements Observer { // An inner class for observing openings:
public void update(private class OpenObserver

Observable ob, Object a) { implements Observer {
System.out.println(public void update(

"Bee " + name + Observable ob, Object a) {
"’s breakfast time!"); breakfastTime();

} }
} }

Next, we apply Extract Inner Class into Standalone and use the new interface as the type of the
‘former enclosing object’. The code is now ripe for the extraction of the various elements to an
aspect. The blank aspect ObservingOpen is created and we apply the following refactorings:

• Move Field from Class to Inter-type to field Flower.oNotify. The private visibility of oNotify
is (temporarily) relaxed to package-protected.

• Move Method from Class to Inter-type to method Flower.opening.
• Extract Fragment into Advice to the call to method Flower.oNotify.notifyObservers.
• Extract Fragment into Advice to the call to method Flower.oNotify.close.

The above refactorings move to the aspect all code using field oNotify, so it is now possible to
make the field private again, but this time relative to the aspect. Code that initializes the moved
fields is moved along with them. The aspect now has the following contents:

public aspect ObservingOpen {
private OpenNotifier Flower.oNotify = new OpenNotifier(this);
public Observable Flower.opening() {

return oNotify;
}
pointcut flowerOpen(Flower flower): execution(void open()) && this(flower);
after(Flower flower) returning :

flowerOpen(flower) {
flower.oNotify.notifyObservers();

}
pointcut flowerClose(Flower flower): execution(void close()) && this(flower);
after(Flower flower): flowerClose(flower) {

flower.oNotify.close();
}

}

Flower is now clean of code related to the first observing relationship. The next step is to extract
from observer classes Bee and Hummingbird all their remaining elements related to the concern.
We apply Move Field from Class to Inter-type to Bee.openObsrv.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

378 M. P. MONTEIRO AND J. M. FERNANDES

Fields are usually private to their owner classes. For this reason, Extract Feature into Aspect
recommends that fields be moved before methods that use those fields. That entails relaxing the
visibility of the fields, as they are temporarily referred by code from multiple modules. In this
case, field visibility is relaxed from private to package protected. The documentation ofMove Field
from Class to Inter-type recommends that a ‘scouter’ declare warning be temporarily added to the
aspect, to ensure all points referring to the fields are located:

declare warning:
get(OpenObserver Bee.openObsrv) && !within(ObservingOpen):
"field Bee.openObsrv accessed outside aspect.";

The declare warning signals a use of the field outside the aspect, in method Bee.openObserver.
In principle, a method that uses a field related to a concern is likely to belong to that concern.
That is indeed the case with Bee.openObserver and therefore we apply Move Method from Class
to Inter-type to it. The warnings are gone, so the declare warning is removed and the visibility
of field openObsrv is changed back to private (to the aspect). Similar refactorings are applied to
Hummingbird. Both observers are now devoid of any code related to the first observing relationship,
except for the implements clause referring to BreakfastTaker:

public class Bee implements BreakfastTaker {
private String name;
private OpenObserver openObsrv = new OpenObserver(this);
private CloseObserver closeObsrv = new CloseObserver();

public Bee(String nm) {
name = nm;

}
public void breakfastTime() {

System.out.println("Bee " + name + "’s breakfast time!");
}
private class OpenObserver implements Observer {

//...
}

// Another inner class for closings:
private class CloseObserver implements Observer {

public void update(Observable ob, Object a) {
System.out.println("Bee " + name + "’s bed time!");

}
}
public Observer openObserver() {

return openObsrv;
}
public Observer closeObserver() {
return closeObsrv;

}
}

At this point, aspect ObservingOpen contains the following code:

public aspect ObservingOpen {
private OpenNotifier Flower.oNotify = new OpenNotifier(this);
private OpenObserver Hummingbird.openObsrv = new OpenObserver(this);
private OpenObserver Bee.openObsrv = new OpenObserver(this);
public Observable Flower.opening() {
return oNotify;

}

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 379

public Observer Hummingbird.openObserver() {
return openObsrv;

}
pointcut flowerOpen(Flower flower): execution(void open()) && this(flower);
after(Flower flower) returning : flowerOpen(flower) {
flower.oNotify.notifyObservers();

}
pointcut flowerClose(Flower flower): execution(void close()) && this(flower);
after(Flower flower): flowerClose(flower) {

flower.oNotify.close();
}
public Observer Bee.openObserver() {

return openObsrv;
}
declare error: get(OpenObserver openObsrv) && !within(ObservingOpen):
"field openObsrv accessed outside aspect.";

}

The next task comprises the extraction of the second observing relationship, through a similar
sequence of steps. This exposes a significant amount of duplication between the aspects, which
warrants further refactorings (see Section 5.3). The second extraction comprises the following steps:

• Apply Extract Inner Class to Standalone to class CloseNotifier within Flower.
• Create a new blank aspect ObservingClose.
• Apply Move Field from Class to Inter-type to field Flower.cNotify, whose visibility is
temporarily relaxed from private to package protected. This refactoring entails creating a
declare warning exposing three points in Flower that still use the field.

• ApplyMove Method From Class to Inter-type to Flower.closing, which removes one warning.
The import statements in Flower can now be removed.

• ApplyExtract Fragment into Advice to the calls to cNotify.open and cNotify.notifyObservers.
This removes the two remaining warnings exposed by the declare warning, so the
declare warning is removed and the field Flower.cNotify is made private (to the aspect).

From this point on, Flower is clean of any code related to observing relationships. Next, we deal
with the remaining code in the observer participants, Bee and Hummingbird. The first thing to do
is to unify both CloseObserver inner classes within Bee and Hummingbird, so that Extract Inner
Class into Standalone can be applied to both classes simultaneously, yielding a single stand-alone
class. This entails: (1) applying Extract Method [1] to create method bedtimeSleep in each of
them; (2) use Extract Interface [1] to extract BedtimeSleeper, just as in the actions that yielded
method breakfastTime and interface BreakfastTaker:

public interface BedtimeSleeper {
public void bedtimeSleep();

}

Now, we can use Extract Inner Class into Standalone to both CloseObserver inner classes to yield
the common stand-alone class CloseObserver:

public class CloseObserver implements Observer {
private BedtimeSleeper _enclosing;
public CloseObserver

(BedtimeSleeper enclosing) {
_enclosing = enclosing;

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

380 M. P. MONTEIRO AND J. M. FERNANDES

}
public void update(Observable ob, Object a) {
_enclosing.bedtimeSleep();

}
}

We then move all remaining members related to the extracted concern to the second aspect:

• Apply Move Field From Class to Inter-type to Bee.closeObsrv.
• Apply Move Method From Class to Inter-type to Bee.closeObserver.
• Apply Move Field From Class to Inter-type to Hummingbird.closeObsrv.
• Apply Move Method From Class to Inter-type to Hummingbird.closeObserver.

Some import statements in Bee and Hummingbird can now be removed. The only remaining code
in the participants relating to the observing relationships is the implements clauses referring to
BreakfastTaker and BedtimeSleeper. We now use Encapsulate Implements with Declare Parents
to both Bee and Hummingbird, so that all participants become completely free of any code related
to the extracted concerns.
The refactorings performed until now cleaned the participant’s code but also created several

stand-alone classes and interfaces that provide little functionality and are used only by code placed
within the aspects. We therefore inline them so that all codes related to observing relationships
are encapsulated in their respective aspects. The former inner classes depend on the interfaces
and therefore it is convenient to inline the classes before the interfaces. We apply Inline Class
within Aspect to classes OpenObserver, CloseObserver, OpenNotifier and CloseNotifier. Next,
we use Inline Interface within Aspect on interfaces BreakfastTaker and BedtimeSleeper. The
code related to both concerns is now completely modularized within their respective aspects
(Listing 11).

5.2. Second phase: tidying up the extracted aspects

At this point, the internal structure of the extracted aspects Listing 11) is confusing and need-
lessly complex. It contains much duplication and several inner classes and interfaces for whose
existence there is no longer a compelling reason. In addition, both aspects betray the Aspect Lazi-
ness smell [4]: they statically attach additional state and behaviour to participant classes, while
in this case a dynamic and unpluggable composition is advantageous. With the modularization
attained through AOP, the scattering effect is just another code smell that can be removed with
refactorings [4].
The aim of the refactoring phase described in this section is to improve the internal structure of the

aspects, by removing internal duplication and Aspect Laziness, thus bringing the current structure
to one closer to current notions of good AO design [13]. These tidying up transformations are
prescribed by Tidy Up Internal Aspect Structure, to be used to each aspect in turn. This also makes
the internal structure of the aspect more amenable to the subsequent use of Extract Super-aspect,
which removes duplication across multiple aspects. We start by refactoring ObservingOpen. As
soon as the process is completed, a similar process is carried out on ObservingClose. We first use
Generalise Target Type with Marker Interface to eliminate duplication in inter-type declarations
resulting from Extract Feature into Aspect. This entails creating inner marker interfaces Subject

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 381

public aspect ObservingOpen {
private interface BreakfastTaker {

public void breakfastTime();
}
declare parents: (Bee || Hummingbird) implements BreakfastTaker;

static class OpenNotifier extends Observable {
private Flower _enclosing;
private boolean alreadyOpen = false;
public OpenNotifier(Flower flower) {

_enclosing = flower;
}
public void notifyObservers() {

if(_enclosing.isOpen() && !this.alreadyOpen) {
this.setChanged();
super.notifyObservers();
this.alreadyOpen = true;

}
}
public void close() {

this.alreadyOpen = false;
}

}
static class OpenObserver implements Observer {

private BreakfastTaker _enclosing;
public OpenObserver(BreakfastTaker enclosing) {

_enclosing = enclosing;
}
public void update(Observable ob, Object a) {

_enclosing.breakfastTime();
}

}
private OpenNotifier Flower.oNotify = new OpenNotifier(this);
private OpenObserver Hummingbird.openObsrv = new OpenObserver(this);
private OpenObserver Bee.openObsrv = new OpenObserver(this);

public Observable Flower.opening() {
return oNotify;

}
pointcut flowerOpen(Flower flower): execution(void open()) && this(flower);
after(Flower flower) returning : flowerOpen(flower) {

flower.oNotify.notifyObservers();
}
pointcut flowerClose(Flower flower): execution(void close()) && this(flower);
after(Flower flower): flowerClose(flower) {

flower.oNotify.close();
}
public Observer Bee.openObserver() {

return openObsrv;
}
public java.util.Observer Hummingbird.openObserver() {

return openObsrv;
}

}
Listing 11. Aspect ObservingOpen just after the extraction of all code related to observing operation open.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

382 M. P. MONTEIRO AND J. M. FERNANDES

and Observer to represent the pattern roles

public aspect ObservingOpen {
private interface Subject {}
private interface Observer {}
declare parents: Flower implements Subject;
declare parents: (Bee | | Hummingbird) implements Observer;

A name conflict arises due to two elements being called Observer. We therefore remove the
import statement referring to java.util.Observer and make all references use the full compound
name
import java.util.Observable; import java.util.Observable;
import java.util.Observer; import java.util.Observer;

public aspect ObservingOpen { public aspect ObservingOpen {
//... //...
static class OpenNotifier static class OpenNotifier

extends Observable { extends java.util.Observable {
//... //...

} }

We first applyGeneralise Target Type with Marker Interface to type Flower. We do this by replacing
all references to Flower with marker interface Subject, including references found within the
various OpenNotifier inner classes. This transformation gives rise to a compiler error: the Subject
interface does not declare operation isOpen. As a stopgap, we use Extend Marker Interface with
Signature on Subject to add the signature of isOpen to Subject. This entails changing the visibility
of method Flower.isOpen from package protected to public. Next, we applyGeneralise Target Type
with Marker Interface to Bee and Hummingbird to eliminate all references to the case-specific
interface BreakfastTaker, which are replaced with references to marker interface Observer. Next,
interface BreakfastTaker is removed

public aspect ObservingOpen { public aspect ObservingOpen {
//... //...
private interface BreakfastTaker { private interface BreakfastTaker {

public void breakfastTime(); public void breakfastTime();
} }
//... //...

static class OpenObserver static class OpenObserver
implements java.util.Observer { implements java.util.Observer {

private BreakfastTaker _enclosing; private Observer _enclosing;
public public
OpenObserver(BreakfastTaker enclosing) { OpenObserver(Observer enclosing) {

_enclosing = enclosing; _enclosing = enclosing;
} }

Once more we use Extend Marker Interface with Signature, to add the case-specific signa-
ture of method breakfastTime to Observer. This step also eliminates duplication in method
openObserver, which is introduced twice (to Bee and Hummingbird). The aspect now refers to
the concrete participants only in the declare parents.
Now that some glaring duplication is removed, the next step is to remove Aspect Laziness,

by replacing the inter-type state and behaviour with equivalent functionality that is dynamically
composable. This entails adding aspect methods akin to the inter-type methods to be replaced and

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 383

then replace the calls to the original inter-type methods in the client code (located within test code
from [11], not shown) with calls to the new aspect methods.
What follows is to some extent an elaborated instance of Replace Inter-type Field with Aspect

Map. The difference is that in the present case we deal with inner classes rather than inter-type
fields. As prescribed in the description of Replace Inter-type Field with Aspect Map, we use Replace
Inter-type Method with Aspect Method as a follow-up (the strategy is first to deal with fields and
next with the methods that use those fields). The aim of this sequence of refactorings is to perform
the transformation sketched in Figure 3. They add a mapping structure to the aspect, along with
the associated logic. Note that the new logic includes one operation (clearObservers) that is not
present in the abstract aspect presented in [13]
public aspect ObservingOpen {

private interface Subject {}
private interface Observer {}
declare parents: Flower implements Subject;
declare parents: (Bee || Hummingbird) implements Observer;

private WeakHashMap subject2ObserversMap = new WeakHashMap();

private List getObservers(Subject subject) {
List observers = (List)subject2ObserversMap.get(subject);
if(observers == null) {

observers = new ArrayList();
subject2ObserversMap.put(subject, observers);

}
return observers;

}
public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);
if(!observers.contains(observer))

observers.add(observer);
subject2ObserversMap.put(subject, observers);

}
public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);
}
public void clearObservers(Subject subject) {

getObservers(subject).clear();
}

Next, Replace Inter-type Method with Aspect Method is used, which entails adding aspect method
notifyObservers. The method provides the same functionality as OpenNotifier.notifyObservers,
using a boolean field (alreadyOpen) newly added to Subject, to be used for the same purposes
as field alreadyOpen of inner class OpenNotifier:

public aspect ObservingOpen {
private interface Subject {}
private interface Observer {}
//...
public abstract boolean Subject.isOpen();

public abstract void Observer.breakfastTime();
private boolean Subject.alreadyOpen = false;
//...
private void notifyObservers(Subject subject) {

if(subject.isOpen() && !subject.alreadyOpen){

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

384 M. P. MONTEIRO AND J. M. FERNANDES

subject.alreadyOpen = true;
List observers = getObservers(subject);
for(ListIterator it = observers.listIterator(); it.hasNext();){

((Observer)it.next()).breakfastTime();
}

}
}

Also as prescribed in Replace Inter-type Method with Aspect Method, we add a declare warning
to expose all places where the logic to be replaced is located. The declare warning targets method
Subject.opening, the accessor method for the instance of inner class OpenNotifier

declare warning: call(java.util.Observable opening()): "opening() called here.";

Compiling after the declare warning is added exposes six warnings, all pointing to client (unit
test††) code. We replace the original calls with calls to aspect logic. One example is as shown:

f.opening().addObserver(ha.openObserver());
ObservingOpen.aspectOf().addObserver
(f, ha);

Tidying up the second aspect: Improving the internal structure of ObservingClose requires
essentially the same steps as with ObservingOpen, i.e. another instance of Tidy Up Internal Aspect
Structure. The steps are:

• Removal of imports of java.util.Observable and java.util.Observer. The compound names
are used instead.

• Creation of private inner interfaces Observer and Subject as a preliminary step to using
Generalise Target Type with Marker Interface.

• ApplyingGeneralise Target withMarker Interface to Flower: references to Flower are replaced
by references to marker interface Subject.

• While using Generalise Target with Marker Interface, Extend Marker Interface with Signature
is used to introduce method isOpen to Subject. References to Bee and Hummingbird are
replaced by references to marker interface Observer. Interface BedtimeSleeper is removed
(along with a declare parents that served to add a signature). Extend Marker Interface with
Signature is used once more to extend type Observer with the signature of bedtimeSleep.

• Use of Replace Inter-type Field with Aspect Map, followed by Replace Inter-type Method with
Aspect Method to add a new implementation to ObservingClose. As prescribed by Replace
Inter-type Method with Aspect Method, a declare warning is added to expose calls to accessor
method CloseNotifier.closing:

declare warning: call(java.util.Observable closing()): "closing() called here.";

• Following the locations exposed by the declare warning, the calls to CloseNotifier.closing (in
test code, not shown) are replaced. Again, we must reverse the order in which observers are
registered. We remove the declare warning, compile and the test passes.

††In the course of the transformations described, an assertion within test code fails at a given point, due to two implementations
traversing in opposite orders the list of observers to be notified. The order of notification of observers is not relevant but
the particular way with which Eckel’s original test was adapted needlessly hard coded the original order of notifications.
For this reason, the order with which observers are registered in the test is inverted.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 385

5.3. Third phase: factoring out common code to a super-aspect

Though the refactored aspects are better formed, when considered together they betray much dupli-
cation across aspects, namely in the marker interfaces, field subject2ObserversMap and associated
logic. We eliminate the duplication by using Extract Super-aspect to factor out common code to a
super-aspect. This entails performing the following steps:

• Create blank abstract aspect ObservingRelationships.
• Aspects ObservingOpen and ObservingClose are made to extend ObservingRelationships.
• Use Pull Up Marker Interface on inner interfaces Subject and Observer of both aspects, to
move them to ObservingRelationships. Their visibility is relaxed from private to protected.

• Use Pull Up Field [1] on the field subject2ObserversMap of both aspects.
• Use Pull Up Method [1] on methods getObservers, addObserver, removeObserver and

clearObservers of both aspects.

Method notifyObservers is another candidate to being pulled up, but it depends on too many case-
specific members. For this reason, we merely extract to the super-aspect its abstract declaration.
Pointcuts flowerOpen and flowerClose are also case specific and for this reason we refrain from
adding more abstract declarations to the super-aspect. This decision illustrates one of the advantages
of refactoring: as the code can be changed in the future, design decisions do not have to be made
upfront. Developers have the option to change their minds at a later phase, and refactor. The extracted
super-aspect (very similar to ObserverProtocol from [13]; Listing 9) is shown in Listing 12 and
ObservingOpen is shown in Listing 13.

public abstract aspect ObservingRelationships {
protected interface Subject { }
protected interface Observer { }
protected WeakHashMap subject2ObserversMap = new WeakHashMap();
protected List getObservers(Subject subject) {

List observers = (List)subject2ObserversMap.get(subject);
if(observers == null) {

observers = new ArrayList();
subject2ObserversMap.put(subject, observers);

}
return observers;

}
public void addObserver(Subject subject, Observer observer) {

List observers = getObservers(subject);
if(!observers.contains(observer))

observers.add(observer);
subject2ObserversMap.put(subject, observers);

}
public void removeObserver(Subject subject, Observer observer) {

getObservers(subject).remove(observer);
}
public void clearObservers(Subject subject) {

getObservers(subject).clear();
}
protected abstract void notifyObservers(Subject subject);

}
Listing 12. Stable form of the ObservingRelationships abstract aspect.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

386 M. P. MONTEIRO AND J. M. FERNANDES

public aspect ObservingOpen extends ObservingRelationships {
public abstract boolean Subject.isOpen();
public abstract void Observer.breakfastTime();
private boolean Subject.alreadyOpen = false;

protected void notifyObservers(Subject subject) {
if(subject.isOpen() && !subject.alreadyOpen) {

subject.alreadyOpen = true;
List observers = getObservers(subject);
for(ListIterator it = observers.listIterator(); it.hasNext();) {

((Observer)it.next()).breakfastTime();
}

}
}
pointcut flowerOpen(Subject subject): execution(void open()) && this(subject);
after(Subject subject) returning : flowerOpen(subject) {

notifyObservers(subject);
}
pointcut flowerClose(Subject subject): execution(void close()) && this(subject);
after(Subject subject): flowerClose(subject) {

subject.alreadyOpen = false;
}
declare parents: Flower implements Subject;
declare parents: (Bee || Hummingbird) implements Observer;

}
Listing 13. ObservingOpen after factoring out duplicated code to the super-aspect.

6. ALTERNATIVE REFACTORING PATH

The previous section shows how to use refactoring to gradually transform a Java implementation
of Observer into an implementation in AspectJ. However, we also have the option of reusing the
ObserverProtocol aspect from [13]. It is equally feasible to take advantage of this ready-made
aspect while refactoring the case-specific aspects of the example. In this section, we describe such
an alternative refactoring path.
The alternative path starts diverging from the one described in the previous section after the

completion of the extraction process (Section 5.1). It almost exclusively involves adding just
the case-specific parts, as ObserverProtocol already provides the most of the generally appli-
cable parts. The existing structure must be tidied up as previously, but becauseObserverProtocol is
included, the alternative path involves adding fewer amounts of new code compared to the previous
path.
Again, we tackle one aspect at a time, starting with the use of Tidy Up Internal Aspect Structure

on ObservingOpen. This refactoring prescribes the use of Generalise Target Type with Marker
Interface, which requires adding marker interfaces Subject and Observer representing the
participant roles in the pattern. This time we do not need to add them as they are declared in
ObserverProtocol. Instead, we make ObservingOpen inherit from ObserverProtocol. This in
turn gives rise to several issues. One is the conflict caused by two member types being named
Observer, which we again solve by removing the import to java.util.Observer and making all
references to the interface use the full compound name. Another issue is the need to provide

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 387

definitions corresponding to the abstract declarations made by ObserverProtocol—pointcut
subjectChange and method updateObserver. At this stage, we start with a blank definition of
updateObserver and subjectChange is added with the expression that captures the interesting
events:

protected pointcut subjectChange(Subject subject):
execution(void open()) && this(subject);

protected void updateObserver(Subject s, Observer o) { }

In this intermediate stage, the internal structure of aspect ObservingOpen is rather confused,
particularly because it contains two alternative implementations of the same logic. Fortunately,
modularization places us in a good position to tidy up the internal structure. The first step is
to apply Generalise Target Type with Marker Interface, which entails assigning the roles to the
participants by means of a declare parents:

public aspect ObservingOpen extends ObserverProtocol {
declare parents: Flower implements Subject;
declare parents: (Bee || Hummingbird) implements Observer;

Next, we use Generalise Target Type with Marker Interface, starting with Flower. We replace
all references to Flower with Subject, and again we use Extend Marker Interface with Signa-
ture to extend Subject with the isOpen signature, which in turn compels us again to relax the
visibility of method Flower.isOpen from package protected to public. Next, we replace refer-
ences to Bee and Hummingbird with references to marker interface Observer, which again
enables us to replace references to inner interface BreakfastTaker with references to Observer,
and remove BreakfastTaker, as well as the declare parents clause that targeted it. We also
use Extend Marker Interface with Signature again, this time to extend Observer with signature
breakfastTime.

public public
OpenObserver(BreakfastTaker enclosing) { OpenObserver(BreakfastTaker enclosing) {

_enclosing = enclosing; _enclosing = enclosing;
} }

public abstract

void Observer.breakfastTime();
//...

static class OpenObserver static class OpenObserver
implements java.util.Observer { implements java.util.Observer {

private BreakfastTaker _enclosing; private Observer _enclosing;
public public
OpenObserver(BreakfastTaker enclosing) { OpenObserver(Observer enclosing) {

_enclosing = enclosing; _enclosing = enclosing;
} }

As before, the replacements of Bee and Hummingbird with Observer eliminate duplication in
the introductions of field openObsrv and method openObserver. Note that the code passing
the self-variable this to the constructor of OpenObserver (which now refers to an instance

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

388 M. P. MONTEIRO AND J. M. FERNANDES

of Observer) only compiles because all references to BreakfastTaker were first replaced with
Observer

private OpenObserver Hummingbird.openObsrv = new OpenObserver(this);
private OpenObserver Bee.openObsrv = new OpenObserver(this);
//...
public java.util.Observer Bee.openObserver() {

return openObsrv;
}
public java.util.Observer Hummingbird.openObserver() {

return openObsrv;
}

private OpenObserver Hummingbird.openObsrv = new OpenObserver(this);
private OpenObserver Observer.openObsrv = new OpenObserver(this);
//...
public java.util.Observer Bee.openObserver() {

return openObsrv;
}
public java.util.Observer Observer.openObserver() {

return openObsrv;
}

This completes the application of Generalise Target Type with Marker Interface to types
Hummingbird, Bee and Flower. From this point on, participants are referred only in the role-
assigning declare parents clause. In the process, pointcut flowerOpen is removed as well, as it is
identical to subjectChange. Further improvements on the internal structure of ObservingOpen
require the replacement of the current implementation with the one defined in ObserverProtocol.
Only then it is possible to remove the inner classes and the dependence on theObservable/Observer
protocol from java.util.
There are a few hurdles. ObserverProtocol expects the events triggering the reactions of the

observers to be represented by a single pointcut—subjectChange—but in this particular case, it is
convenient to use two, to account for the two different operations of Flower. In addition, this case
requires that notification of all observers in the subject’s list depend on the result of a test (if it is
the first occurrence of a sequence). Only if the test succeeds are the subject’s registered observers
notified. This test relies on boolean field alreadyOpen of inner class OpenNotifier. The field
should be moved to Flower, as an inter-type declaration, but the point where the test is made lies
within the abstract base aspect ObserverProtocol, in a piece of advice acting on the joinpoints
captured by pointcut subjectChange:

after(Subject s): subjectChange(s) {
Iterator iter = getObservers(s).iterator();
while (iter.hasNext()) {
updateObserver(s, ((Observer)iter.next()));
}

}

Therefore, ObserverProtocol must incur invasive changes to be used in this example. A sub-
aspect cannot override advice inherited from the super-aspect and therefore the advice must be

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 389

pushed down fromObserverProtocol toObservingOpen, through Push Down Advice. In addition,
functionality is missing in ObserverProtocol: the ability to clear all observers subscribing to a
given subject. We therefore add the method clearObservers (identical to the one added during the
tidying up phase described in Section 5.2) to ObserverProtocol.

ObservingOpen now has two pieces of after advice acting on this pointcut, related to the old
and new implementations, respectively. Two advice of the same kind acting on the same pointcut
within a single aspect clearly seems bad style—in the normal case, the two advice blocks should
merge into a single advice, perhaps with calls to suitably named auxiliary methods. However, the
advice related to the original implementation is about to be removed. We now add the missing logic
to ObservingOpen. It is based on the alreadyOpen field introduced to Subject. This involves
adapting the advice pulled down from ObserverProtocol according to the rules of this case:

public aspect ObservingOpen extends ObserverProtocol {
protected pointcut subjectChange(Subject subject):
execution(void Subject+.open()) && this(subject);

after(Subject s): subjectChange(s) {
Flower f = (Flower)s;
if(f.isOpen() && !f.alreadyOpen) {

Iterator iter = getObservers(s).iterator();
while (iter.hasNext()) {

updateObserver(s, ((Observer)iter.next()));
}

}
}

We add the advice acting on the pointcut that captures the execution of method Flower.close:

public aspect ObservingOpen extends ObserverProtocol {
//...
pointcut flowerClose(Subject flower): execution(void close()) && this(flower);
after(Subject flower): flowerClose(flower) {
flower.oNotify.close();

}
after(Subject subject): flowerClose(subject) {

if (subject instanceof Flower) {
((Flower)subject).alreadyOpen = false;

}
}

Finally, we provide aspect method updateObserver with the logic suitable for the new implemen-
tation:

public aspect ObservingOpen extends ObserverProtocol {
//...
protected void updateObserver(Subject s, Observer o) {

o.breakfastTime();
((Flower)s).alreadyOpen = true;

}

We now remove the original implementation. We could consider one last tidying up to do, related to
the breakfastTime signature that is still extending interface Observer. Though we could replace

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

390 M. P. MONTEIRO AND J. M. FERNANDES

public aspect ObservingOpen extends ObserverProtocol {
declare parents: Flower implements Subject;
declare parents: (Bee || Hummingbird) implements Observer;

protected pointcut subjectChange(Subject subject):
execution(void Subject+.open()) && this(subject);

after(Subject s): subjectChange(s) {
Flower f = (Flower)s;
if(f.isOpen() && !f.alreadyOpen) {

Iterator iter = getObservers(s).iterator();
while (iter.hasNext()) {

updateObserver(s, ((Observer)iter.next()));
}

}
}
pointcut flowerClose(Subject flower): execution(void close()) && this(flower);
after(Subject subject): flowerClose(subject) {

if (subject instanceof Flower) {
((Flower)subject).alreadyOpen = false;

}
}
protected void updateObserver(Subject s, Observer o) {

o.breakfastTime();
((Flower)s).alreadyOpen = true;

}
public abstract void Observer.breakfastTime();
private boolean Subject.alreadyOpen = false;

}
Listing 14. Final version of ObservingOpen obtained from the alternative path.

it with type conversions in the points where breakfastTime is used, it is proving rather convenient
because it is affecting two different and unrelated types, thus avoiding duplication. We choose to
leave it there for now. Listing 14 shows the final version of ObservingOpen. We now perform a
similar sequence of steps to the second aspect, yielding similar results. This time there is no need
to make more methods public.

7. DISCUSSION

We base our work on the hypothesis that evolving a complex collection of scattered code fragments
in systems of realistic dimensions is a costly and risky process and that the modularization of such
collections, made possible by AOP, bring benefits to comprehensibility and evolution [33]. We
assume that the larger is the system, the larger is the expected benefit to comprehensibility and ease
of evolution that modularization can bring.
Hannemann [13] analyses the GoF patterns and their AspectJ implementations according to the

roles defined by the pattern. The pattern roles are classified as superimposed when the object
has a distinct, primary role besides the one assigned by the pattern. Otherwise, pattern roles are
classified are defining, i.e. the object exists only to play the role in the pattern. Such roles do not
lend themselves for a separation of roles because the participant plays only that role. The authors
acknowledge that role classification into superimposed and defining is not clear-cut in some cases.
Classes with superimposed roles betray the Double Personality smell as we define it in [4,9].

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 391

Conceptually, superimposed roles can be plugged and unplugged from existing objects. However,
OO languages are often unable to do that, because they do not modularize superimposed roles such
as those defined by Observer. Instead, code related to the roles is scattered throughout participant
classes. In terms of reusability and ease of evolution, it seems reasonable to assume that patterns
defining superimposed roles will derive significant benefits from AOP. Among the GoF patterns,
the benefits brought by Observer are particularly noticeable, as it is the only pattern that includes
two superimposed roles, in addition to not including any defining roles. Consequently, the AspectJ
implementation of Observer modularizes a whole collaboration of objects. That is one reason why
in this case we observe a significant improvement over traditional OO.
Experience gained from usingExtract Feature into Aspect shows that extractions of class members

based on inter-type declarations do not change the original design, they merely isolate its various
elements in a single module at the source code level. This makes the internal structure of the
extracted aspect awkward to deal with and may betray the Aspect Laziness smell [4]. Such modules
can benefit from changes to its internal structure, if not a downright replacement of the original
internal design and implementation. That provides the motivation for using Tidy Up Internal Aspect
Structure and modularization is a prerequisite for applying it.
The refactoring process described in this paper also suggests that it is hard to derive reusable

modules, even with AOP. Though the abstract aspect from [13] is potentially reusable, it had to
undergo invasive changes in order to adapt it to the simple Java example by Eckel [11].
As regards the obliviousness property [32], participant classes do become oblivious to roles

defined by the pattern after the system is refactored to AspectJ. However, it is still necessary
for some part of the system to remain aware of the fact that participant classes play the addi-
tional roles, in order to set relationships and perform configurations. In Eckel’s example, that role
is played by test code (not shown in the paper); in the example by Hannemann and Kiczales
[13], it is played by a main method. Those parts are responsible for calling aspect methods to
register and unregister observers to a given subject. Conceptually, such parts reside at a different
level than participant classes and it seems reasonable to expect them not to be oblivious to the
aspects.
It is important to note that the definition of obliviousness proposed in [32] applies not only to a

set of classes but also to the programmers that develop the classes. We do not abide by that more
demanding view of obliviousness. Although classes do not betray code that is dependent on aspects
throughout the process, the code base must be refactored in order for it to expose the joinpoint
leverage that aspects need. One example is the isOpen method, which was extracted from the
class playing the role of Subject (see Section 5.1). Our experiments suggest that although class
obliviousness is desirable and often achievable, programmer obliviousness raises important issues
related to the development process and does not seem to be feasible in practice. We give the name
aspect-friendly [3] to a code base that is refactored to provide the necessary leverage to aspects but
remains code oblivious to any specific aspect code (i.e. a system build can be performed without
including the aspects in it).
The experience gained from deriving the refactoring process described in this paper, as

well as other experiments [9], suggests that manual extraction of CCCs in systems of real-
istic dimensions involves a significant amount of work. For this reason, we think it is highly
desirable that automated support [34] be provided in tools and developing environments. Future
work includes testing the refactorings illustrated in the paper in larger and more complex
systems.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

392 M. P. MONTEIRO AND J. M. FERNANDES

8. RELATED WORK

The refactoring process described in this paper comprises a first use and illustrating example of
a collection of novel refactorings for AOP code that we describe in [3,4]. In [4], we propose a
few novel code smells, including Double Personality and Aspect Laziness. Several other authors
report on the successful reuse of those refactorings. van Deursen et al. [36] describe the analysis
of the JHotDraw framework‡‡ and the extraction of several CCCs from its code base. They report
using Encapsulate Implements with Declare Parents and Move Method from Class to Inter-type.
Fuentes et al. [37] report on refactoring the Java code base of an ambient intelligence application
and mention benefits derived from our refactorings [4,9]. Likewise, Kulesza et al. [38] report on
refactoring the JUnit framework§§ mainly on the basis of those refactorings.
Hannemann [13] presents implementations of the 23 GoF patterns [10] in both Java and AspectJ.

They were able to modularize the implementation of 17 of the patterns, 12 of which had part of
the implementations abstracted into reusable aspect modules. In a few cases multiple instances of
the aspect can be transparently composed into a system. Observer is one of the patterns, whose
design is used as the target of the refactoring processes described in this paper. The authors present
an analysis of the two sets of implementations and conclude that improvements of the AspectJ
implementations over the Java ones are directly correlated to the presence of crosscutting structure
in the patterns. The crosscutting effect arises in patterns that superimpose additional (secondary)
roles on participant classes and whose implementation code cuts across participant classes.
Hannemann et al. [34] and again Hannemann [35] propose that refactoring support for AOP

be divided into three categories: aspect-aware OO refactorings (a concept previously proposed
by Hanenberg et al. [5]), aspect-oriented refactorings (i.e. refactorings that specifically target AO
constructs, such as those used here) and refactorings of CCCs, i.e. refactorings in which the scattered
elements comprising a target CCC and their individual transformations are considered together,
instead of handling each element separately. It does not seem possible to carry out, as a single
operation, the latter category of refactorings without the support of a tool and the focus of [34] is
to present one such tool. However, a sequence of AO refactorings, such as the process described in
this paper, achieves a similar effect as a refactoring of CCCs as understood by Hannemann.
Like us, Hannemann et al. [34] useObserver as a basis for an illustrating example of a refactoring

process that results in the modularization of an implementation ofObserver. They provide an outline
of the steps to be carried out, but it is significantly less detailed than the one we present in this
paper. The outcome of their illustrating refactoring is the AspectJ design for Observer presented in
[13], which we also use in this paper. As it would be expected, there are similarities between the
transformations presented in the outline and the ones we describe here. However, more details than
those provided in [34] are required for a thorough comparison and analysis.
Several other authors use the GoF patterns, again with an emphasis on Observer, to illustrate

the relative advantages of AOP [4,39–41]. The comparison presented in [40] is interesting in that
the comparison made is not between OO and AO implementations of Observer, but between the
AspectJ implementation proposed in [13] and a different AO implementation coded in Caesar.

‡‡www.jhotdraw.org.
§§www.junit.org.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 393

The comparison stresses the disadvantages of the AspectJ implementation relative to the Caesar
implementation as regards internal modularity, polymorphism and compositional capabilities.
Iwamoto and Zhao [6] announce their intention to build a catalogue of AOP refactorings. They

present a catalogue of 24 refactorings, but the information provided about them is limited to the
names of the refactorings. In this paper, we provide more detail about the AO refactorings used
throughout the process described in this paper, even if we refer the full documentation to [3,4,9].
Hanenberg et al. [5] also propose three AOP refactorings—Extract Advice, Extract Introduction

and Separate Pointcut. Their proposed Extract Advice corresponds to our Extract Fragment into
Advice and their proposed Extract Introduction corresponds to our Move Field from Class to Inter-
type and Move Method from Class to Inter-type. Separate Pointcut relates to evolution of pointcuts
and has no correspondence in our collection. The latter refactoring concerns good style for pointcuts,
expressing the notions that pointcuts should in most situations be named rather than anonymous,
and be as decomposed as possible to enhance their reusability. The latter notion is also argued by
Lagaisse and Joosen [42]. Separate Pointcut is not needed in the process described in this paper
because anonymous pointcuts are avoided. In addition, the declaration and use of pointcuts is in
part constrained by the existing interface of ObserverProtocol.
Laddad [7] presents a collection of refactorings tailored to J2EE applications, covering a different

area of the AO refactoring space than the refactorings used in the process described in this paper.
The refactorings vary widely in both level and scope of applicability, including generally appli-
cable refactorings like Extract Interface Implementation, Extract Method Calls and Replace Over-
ride with Advice, but also concern-specific refactorings such as Extract Concurrency Control and
Extract Contract Enforcemement. Some refactorings target specific AO design patterns [28], e.g.
Extract Worker Object Creation and Replace Argument Trickle by Wormhole and Extract Exception
Handling. Some of the refactorings are presented with only a mention to the name and a brief
motivating paragraph. van Deursen et al. [36] report on using Extract Method Calls. Kellens and
Gybels [43] provide a description of Extract Method Calls that is more detailed and analyse the
refactoring in the light of its automated application.
van Deursen et al. [36] propose a few new refactorings based on their work on JHotDraw,

though without providing much detail. These include Move Role to Aspect, which entails moving
code related to a secondary role to an aspect. This is actually a refactoring that removes Double
Personality. The refactorings we propose in [4] are more low level but can achieve similar results
through a suitable sequence. van Deursen et al. also propose Move Observer to Aspect, a more
high level compound refactoring that moves an entire implementation of Observer to an aspect. In
addition, the authors propose Override Method with Advice for Overlapping Roles, which applies
to methods that perform multiple features relating to multiple roles. The refactoring extracts a
method definition to the Java interface to which the method belongs. An aspect uses an around
advice to override the default behaviour provided by the extracted method in the situations where
it is suitable. Finally, the authors propose Advise Method Overrides, a refactoring that extracts to
an aspect the idiom comprising duplicated statements common to the (start or end of) all method
overrides of a given (superclass) method.
There are a number of works describing experiments in refactoring existing OO code bases, with

various degrees of detail provided. In [3], we report on our experiments in extracting a concern
from a Java framework for workflow applications. Tonella and Ceccato [44] report on the results
obtained in extracting the implementation of interfaces (approached as symptoms of latent aspects)
from the source code of some of the packages in the standard Java library. Bruntink et al. [45]

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

394 M. P. MONTEIRO AND J. M. FERNANDES

report on the refactoring of specific concern—parameter checking—to separate modules coded
in a domain-specific language. Colyer and Clement [46] describe an experiment in refactoring a
middleware product line with tens of thousand classes, many millions of lines of code and hundreds
of developers. Zhang and Jacobsen [47] describe the refactoring they performed of ORBacus, an
industrial strength CORBA implementation.
Cole and Borba [48] propose programming laws from which refactorings for AspectJ can be

derived. The authors focus on the use of their laws to derive existing refactorings such as those
proposed in [3,4], and describe two case studies in which the laws were tested, comprising the
extraction of concurrency control and distribution, respectively. Most of the proposed laws relate to
the extraction of CCCs to aspects, and therefore there is some overlap between the refactorings they
derive and the extraction refactorings used in Section 5.1. However, their focus is on providing proofs
that the transformations are behaviour preserving, while we focus on developing a notion of style
for AOP, by increasing its refactoring space. Cole and Borba remark that the extraction procedure
for the second case study is generalizable, as the implementation of distribution is commonly used.
The authors claim that it is possible to derive a concern-specific Extract Distribution refactoring,
though details are not provided.

9. CONCLUSION

This paper presents a practical example of a refactoring process that includes the extraction of CCCs
to aspects, the subsequent internal restructuring of the extracted aspects and the factoring out of
common code to super-aspects. The process described serves as an introduction to the collection of
refactorings documented in [4,9], playing a similar role to chapter 1 of [1]. It also complements the
various code examples found in [4]. Though the paper was written to stand on its own, it refers to
an eclipse project available as an online supplement, containing over 30 complete code snapshots.
After the description of the process, we provide a discussion and a survey of related work.

ACKNOWLEDGEMENTS

This work was supported by FCT (the Portuguese Foundation for Science and Technology) and FEDER (the
European Regional Development Fund) under contract SOFTAS (POSC/EIA/60189/2004).

REFERENCES

1. Fowler M, Beck K, Opdyke W, Roberts D. Refactoring—Improving the Design of Existing Code. Addison-Wesley:
Reading, MA, 1999.

2. Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier J, Irwin J. Aspect-oriented programming. Proceedings
of the 11th European Conference on Object-oriented Programming, Jyväskylä, Finland, 1997 (Lecture Notes in Computer
Science, vol. 1241), Aksit M, Matsuoka S (eds.). Springer: Berlin, Germany, 1997; 220–242.

3. Monteiro MP, Fernandes JM. Object-to-aspect refactorings for feature extraction. Industry track paper at the 3rd
International Conference on Aspect-oriented Software Development, Boston, MA, 2004.

4. Monteiro MP, Fernandes JM. Towards a catalogue of aspect-oriented refactorings. Proceedings of the 4th International
Conference on Aspect-oriented Software Development, Chicago, IL, 2005. ACM Press: New York, NY, 2005; 111–122.
DOI: 10.1145/1052898.1052908.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

AN ILLUSTRATION OF REFACTORING OO CODE TO AOP 395

5. Hanenberg S, Oberschulte C, Unland R. Refactoring of aspect-oriented software. Fourth Annual International Conference
on Object-oriented and Internet-based Technologies, Concepts, and Applications for a Networked World (Net.ObjectDays),
Thuringia, Germany, 2003. Springer: Berlin, Germany, 2003; 19–35.

6. Iwamoto M, Zhao J. Refactoring aspect-oriented programs. Fourth AOSD Modeling with UML Workshop at UML 2003,
San Francisco, CA, 2003.

7. Laddad R. Aspect-oriented Refactoring, Parts 1 and 2, The Server Side, 2003.
http://www.theserverside.com/tt/articles/ article.tss?l=AspectOrientedRefactoringPart1,
http://www.theserverside.com/tt/articles/article.tss?l=AspectOrientedRefactoringPart2 [25 April 2007].

8. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG. An overview of AspectJ. Proceedings of the 15th
European Conference on Object-oriented Programming, Budapest, Hungary, 2001 (Lecture Notes in Computer Science,
vol. 2072), Knudsen JL (ed.). Springer: Berlin, Germany, 2001; 327–335.

9. Monteiro MP. Refactorings to evolve object-oriented systems with aspect-oriented concepts. PhD Thesis, Universidade
do Minho, Braga, Portugal, 2005.

10. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns, Elements of Reusable Object-oriented Software. Addison-
Wesley: Reading, MA, 1995.

11. Eckel B. Thinking in Patterns, revision 0.9. Book in progress, available online.
http://www.pythoncriticalmass.com/downloads/TIPatterns-0.9.zip [16 June 2007].

12. Cooper J. Java Design Patterns: A Tutorial. Addison-Wesley: Reading, MA, 2000.
13. Hannemann J, Kiczales G. Design pattern implementation in Java and AspectJ. Proceedings of the 17th ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applications, Seattle, WA, 2002. ACM Press:
New York, NY, 2002; 161–172. DOI: 10.1145/582419.582436.

14. Eckel B. Thinking in Java (4th edn). Prentice-Hall: Englewood Cliffs, NJ, 2006.
15. Miles R. AspectJ Cookbook. O’Reilly: Sebastopol, CA, 2005.
16. Tourwé T, Brichau J, Gybels K. On the existence of the AOSD-evolution paradox. Workshop on Software-engineering

Properties of Languages for Aspect Technologies at AOSD 2003, Boston, MA, 2003.
17. Koppen C, Störzer M. PCDiff: Attacking the fragile pointcut problem. Proceedings of the Interactive Workshop on

Aspects in Software, Berlin: Germany, 2004.
18. Wloka J. Aspect-aware refactoring tool support. Proceedings of the Workshop on Linking Aspect Technology and Evolution

at AOSD 2005, Chicago, IL, 2005.
19. Wloka J. Towards tool-supported update of pointcuts in AO refactoring. Proceedings of the Workshop on Linking Aspect

Technology and Evolution Revisited at AOSD 2006, Bonn, Germany, 2006.
20. Monteiro MP, Fernandes JM. Refactoring a Java code base to AspectJ: An illustrative example. Proceedings of the

IEEE International Conference on Software Maintenance, Budapest, Hungary, 2005. IEEE Computer Society Press: Los
Alamitos, CA, 2005; 17–26. DOI: 10.1109/ICSM.2005.75.

21. Griswold WG. Program restructuring as an aid to software maintenance. PhD Thesis, University of Washington, 1991.
22. Opdyke WF. Refactoring object-oriented frameworks. PhD Thesis, University of Illinois at Urbana-Champaign, IL, 1992.
23. Opdyke WF, Johnson RE. Refactoring: An aid in designing application frameworks and evolving object-oriented systems.

Proceedings of the Symposium on Object-oriented Programming Emphasizing Practical Applications, Poughkeepsie, NY,
1990; 145–160.

24. Griswold WG, Notkin D. Automated assistance for program restructuring. ACM Transactions on Software Engineering
and Methodology 1993; 2(3):228–269. DOI: 10.1145/152388.152389.

25. Wake W. Refactoring Workbook. Addison-Wesley: Reading, MA, 2005.
26. Elrad T (moderator) with panelists Aksit M, Kiczales G, Lieberherr K, Ossher H. Discussing aspects of AOP.

Communications of the ACM 2001; 44(10):33–38. DOI: 10.1145/383845.383854.
27. Filman RE, Elrad T, Clarke S, Aksit M. (eds.). Aspect-oriented Software Development. Addison-Wesley: Reading, MA,

2005.
28. Laddad R. AspectJ in Action—Practical Aspect-oriented Programming. Manning: Greenwich, CT, 2003.
29. Colyer A. AspectJ. Aspect-oriented Software Development, Filman RE, Elrad T, Clarke S, Aksit M (eds.). Addison-Wesley:

Reading, MA, 2005; 123–143.
30. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG. Getting started with AspectJ. Communications

of the ACM 2001; 44(10):59–65. DOI: 10.1145/383845.383858.
31. Martin M, Livshits B, Lam MS. Finding application errors and security flaws using PQL: A program query language.

Proceedings of the 20th Annual ACM Conference on Object-oriented Programming, Systems, Languages, and Applications,
San Diego, CA, 2005. ACM Press: New York, NY, 2005; 365–383. DOI: 10.1145/1094811.1094840.

32. Filman RE, Friedman DP. Aspect-oriented programming is quantification and obliviousness. Aspect-oriented Software
Development, Filman RE, Elrad T, Clarke S, Aksit M (eds.). Addison-Wesley: Reading, MA, 2005; 21–35.

33. Garcia A, Sant’Anna C, Figueiredo E, Kulesza U, Lucena C, Staa A. Modularizing design patterns with aspects: A
quantitative study. Transactions on Aspect-oriented Software Development (Lecture Notes in Computer Science, vol.
3880), Rashid A, Aksit M (eds.). Springer: Berlin, Germany, 2006; 36–74. DOI: 10.1007/11687061 2.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

396 M. P. MONTEIRO AND J. M. FERNANDES

34. Hannemann J, Murphy G, Kiczales G. Role-based refactoring of crosscutting concerns. Proceedings of the 4th International
Conference on Aspect-oriented Software Development, Chicago, IL, 2005. ACM Press: New York, NY, 2005; 135–146.
DOI: 10.1145/1052898.1052910.

35. Hannemann J. Aspect-oriented refactoring: Classification and challenges. LATEr Workshop at AOSD 2006, Bonn, Germany,
March 2006.

36. van Deursen A, Marin M, Moonen L. A systematic aspect-oriented refactoring and testing strategy, and its application
to JHotDraw. Technical Report SEN-R0507, Centrum voor Wiskunde en Informatica, 2005.

37. Fuentes L, Jimenez D, Pinto M. Experiences refactoring ambient intelligence applications with aspects. LATE Workshop
at AOSD 2005, Chicago, IL, 2005.

38. Kulesza U, Sant’Anna C, Lucena C. Refactoring the JUnit framework using aspect-oriented programming. Companion to
the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications,
San Diego, CA, 2005. ACM Press: New York, NY, 2005; 136–137. DOI: 10.1145/1094855.1094901.

39. Nordberg II IM. Aspect-oriented dependency management. Aspect-oriented Software Development, Filman RE, Elrad T,
Clarke S, Aksit M (eds.). Addison-Wesley: Reading, MA, 2005; 557–584.

40. Mezini M, Ostermann K. Untangling crosscutting models with Ceaser. Aspect-oriented Software Development, Filman
RE, Elrad T, Clarke S, Aksit M (eds.). Addison-Wesley: Reading, MA, 2005; 165–199.

41. Lesiecki N. Enhance Design Patterns with AspectJ, Part 2 (AOP@Work Series at Developerworks), IBM, 2005.
http://www-128.ibm.com/developerworks/java/library/j-aopwork6/index.html [25 April 2007].

42. Lagaisse B, Joosen W. Decomposition into elementary pointcuts: A design principle for improved aspect reusability.
SPLAT! Workshop at AOSD 2006, Bonn, 2006.

43. Kellens A, Gybels K. Issues in performing and automating the ‘extract method calls’ refactoring. SPLAT! Workshop at
AOSD 2005, Chicago, IL, 2005.

44. Tonella P, Ceccato M. Migrating interface implementation to aspects. Proceedings of 20th IEEE International Conference
on Software Maintenance, Chicago, IL. IEEE Computer Society Press: Los Alamitos, CA, 2004; 220–229. DOI:
10.1109/ICSM.2004.1357806.

45. Bruntink M, van Deursen A, Tourwé T. Isolating idiomatic crosscutting concerns. Proceedings of the 21st IEEE
International Conference on Software Maintenance, Budapest, Hungary, 2005. IEEE Computer Society Press: Los
Alamitos, CA, 2005; 322–329. DOI: 10.1109/ICSM.2005.57.

46. Colyer A, Clement A. Large-scale AOSD for middleware. Proceedings of the 3rd International Conference on
Aspect-oriented Software Development, Lancaster, U.K., 2004. ACM Press: New York, NY, 2004; 56–65. DOI:
10.1145/976270.976279.

47. Zhang C, Jacobsen H. Re-factoring middleware systems: A case study. Proceedings of the International Symposium on
Distributed Objects and Applications, Catania, Italy, 2003 (Lecture Notes in Computer Science, vol. 2888), Meersman R,
Tari Z, Schmidt DC (eds.). Springer: Berlin, Germany, 2003; 1243–1262.

48. Cole L, Borba P. Deriving refactorings for AspectJ. Proceedings of the 4th International Conference on Aspect-oriented
Software Development, Chicago, IL, 2005. ACM Press: New York, NY, 2005; 123–134. DOI: 10.1145/1052898.1052909.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:361–396
DOI: 10.1002/spe

